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Abstract

The ensemble of regular Low-Density Parity-Check (LDPC) codes introduced by Gallager is
considered. Using probabilistic arguments a lower bound on the normalized minimum distance is
derived. Chained Gallager codes are introduced as a combination of two Gallager codes and their
error correcting capabilities are studied.

. TwWO TRANSMISSIONSCHEMES

Consider two different binary transmission schemes for communication over two parallel,
independent channels. In the rst transmission scheme, defdgtadd illustrated in Fig. 1(a),
the message sequenge is split into two partsu (11) andu(lz), that is,u; = u(ll)u(lz), where
u(ll) andu(f) have equal length. The messagélQ, i =1;2; are encoded separately by the
codesC”, i = 1;2, both of rateR. Then, the two codewords!” andv{? are transmitted
over independent channels before the received sequer‘lfémdr(f) are decoded. Finally,
the two partial message sequenéé8 and0'? decided by the two decoders, are combined

into the decided message sequefige= 0(11)0(12).

(a) (b)

Fig. 1. Transmission schenTa (a) andT, (b) with two parallel, independent channels.

In the second transmission scheme dendteahd shown in Fig. 1(b), the message sequence
u,, whereus, is twice as long asi}, i = 1;2, is encoded by a single encod@r of rate R.
Clearly, the encoding matrix fof, has twice as many rows and columns as each of the two

encoding matrices fof;. The obtained codeword, is split into two partial codewords(zl)

and v(zz), that is,v, = V(21)V(22)’ Wherev(zl) and V(22) have equal length, and are transmitted
over parallel, independent channels. Finally, tThe two received sequekiteandr ) are
concatenated into, = r(zl) r (22) and decoded by a single decoder to obtain the decided message

sequencel,.

[I. GALLAGER CODES

Considering large encoding matrices, it is not far-fetched to use Low-Density Parity-Check
(LDPC) codes due to their low decoding complexity. We will consider the Gallager ensemble
of binary LDPC(j; k )-regular codes of block length [1]. The parity-check matrix of such a
Gallager code hagsones in each column arkdones in each row. An integen is chosen such



thatn = km and| = jm denote the total number of columns and rows of its parity-check
matrix H, respectively.
Combiningk identity matrices, the so-calletst layer parity-check matrixXd is obtained,
that is,
H = lm Im{z::: In} Q)
k times

wherel , is them m identity matrix. The parity-check matrid has a single one in each
column andk ones in each row, dimensioms andkm, and corresponds to @; k)-regular
LDPC code with rateR =1  +.

Combiningj of the ™ column permutations of the rst layer parity-check mattik
row-wise, we obtain the parity-check mattk as

H=H {H ,::H ;' ()
with different permutation matrices;, i =1;2;:::;j. Such a parity-check matrix hasones
in each column and ones in each row. The dimensions are givenl @ndn with | = jm
andn = km and a (design) rateof R=1 L.

Hereinafter we will consider the ensemldén; j; k) of LDPC Gallager codes where the
rst layer parity-check matrix is given by (1) and the permutation matrices =1;2;:::;j,
are chosen randomly and independently of each other [2].

I1l. A LOWER BOUND ON THE MINIMUM DISTANCE

Following Gallager's approach [1], it can be shown, that the probability of randomly chosen
sequence of length and weightw being a valid codeword of(n;j; k) is given by
I
N (w) : n

n w
w

3)

whereN (w) is the number of codewords of weight of the rst layer parity check matrix

H andl= | is the probability of randomly chosen sequence of lengtind weightw. We
conclude that as long as the sum over (3) frams 2 to wy is smaller thari, there exists a
Gallager code amon@(n; j; k ), whose minimum distance is at leag§+ 1. Upper-bounding

N (w) by s YE(s), whereE(s) is the generating function of the number of codewords, and
exploiting the regular structure of the rst layer parity-check matrix we obtain,

L+9k+@ 9k "

N (w) < min s > . 4)
By combining (3) and (4), we conclude that, as long as
n o]
- 1 :
f()"j min I log(s)+ K log 1+9s)¢+(@1 )¢ 1 g Dh() (O
with ! = T, is negative, there exists a code amd(@; j; k) with a normalized minimum

distance greater than or equal'!to We will summarize this in the following theorem:
Theorem 1:Given the ensemble of Gallager codgs:; j; k) with its parity-check matrices
havingj ones per columrk ones per row, and (design) rateRf=1 |. The dimensions of

1The actual code rate may be slightly greater than the design rate since there may exist linear dependertt rows in



(@) RateR =0:3 (b) RateR =0:6 (c) RateR =0:9

Fig. 2. Obtained lower bound on the normalized minimum distance for Chained Gallager £egey of different rates
R compared to one of its underlying Gallager cofle([ )) of lower rate, normalized by the same length

these parity-check matrices are givenlbgndn, wherel = jm andn = km. Denoting the
largest zero of (! ) by ! o, the normalized minimum distance of the ensemble of Gallager
codesC(n;j; k) is lower bounded by o. That is, amongC(n;j; k), there exists a Gallager
code whose normalized minimum distance is greater than or equal to ]
Applying this lower bound to two previously introduced transmission schemes we have the
following theorem:
Theorem 2:Consider the previously introduced transmission scheTmemd T,. Let Cfll)
C? 2 C(n;j; k), andG 2 C(2n;j; k), all with the same rat® =1 L. More error patterns
can be corrected by the transmission sch@dmé&an by schemd;. [

IV. CHAINED GALLAGER CODES

As a variant of Gallager codes, we will introduce what we Gikined Gallager codesf
rateR =1 4 as a combination of two Gallager codes of the lower Rite 1

i
. k*
Given two parity-check matriceld;, H, 2 C(n;j;k), each of rate(R =1 L, the parity-
check matrix of a Chained Gallager coHey can be written as
Hcg = H; Hy. (6)

With 2k ones per row angl ones per columnH, corresponds to &j; 2k)-regular LDPC
code with rateR =1 4. However,H4 belongs only to a subclass 6{2n;j; 2k), as each
half is an independently Gallager code chosen figm; j; k).

Following the de nition of C(n;j; k), the ensemble of randomly chosen Chained Gallager
codes withj ones per column ankl ones per rows is denoted I&yy(n; j; k ). The correspond-
ing parity-check matrixd.y has dimension$ andn such that = jm andn = km, with its
two halves belonging t&€(n=2;j; k=2).

Hereinafter we denote the number of codewords that Havenly in either the left or the
right half by N;(w), that is,

n 0
Ni(w) = vEVE | (W(v§)) > 07 wi(vi?) = 0) _ (Wh(v§)) =0~ wi(v?) > 0)
(7)
Similarly, denote byN,(w) the number of codewords that hate in both halves, that is,
n o
Now) = vEVE jwy(vl)) > 07 wy(vP) > 0 8)

Removing the restrictions to codewords in (7) and (8), the corresponding number of sequences
is given byM,(w) andM ,(w), respectively. The probability that a xed sequence among the



RateR =1 j=k j k o qv
35 50 Q1893 1:4412 10 °
R=0:3 0:1893 7
70 | 100 | Q1893 14445 10
20 50 Q0794 3:6326 10 *
R=0:6 0:0794 5
70 | 175 | Q0794 14654 10
5 50 00044 0:6618
R=0:9 0:0130 3
70 | 700 | Q0130 87523 10
TABLE |

NUMERICAL RESULTS

set of all possible sequences ful lls the conditions in (7) and (8) is denoteB @y) and
P ("), respectively. ClearhyP (") + P(",) = 1.

Having introduced these notations, the probabty .,,) that a randomly chosen sequence
coincides with a codeword di4(n;j; k) is

PCa) =2 5 P + 12 IP (), ©

With in total " sequences of length and weightw, we have
pe= W ang pegy= MW (10

Substituting (10) into (9), we naII;/N obtain '
ooy = 2 M) M) | Na) M) _ 2Ns(w) + Nalw) _ NegW) ;o

Mi(w) & My(w) T g

w w w

with N¢4(w) denoting the total number of codewords of weightn Cy(n; j; k). Thereby we
conclude, that for botl(n; j; k) and G4(n;j; k), the same lower bound on the normalized
minimum distance o, namely (5), holds. Moreover we note that the additional restriction on
Co(n; i k) that each half belongs t6(n=2; j; k=2) has no in uence on the derivation of the
lower bound on the normalized minimum distarige Thus we have the following theorem:
Theorem 3:The lower bound on the normalized minimum distamgeof C(n;j; k) coin-
cides with the lower bound on the normalized minimum distanc€gh;j; k). O

V. NUMERICAL RESULTS

The lower bound on the normalized minimum distahgen (5) is calculated for (Chained)
Gallager codes of rate® = 0:3, R = 0:6, andR = 0:9. As the rate(R =1 | depends only
onj andk, we keep one of these parameters constant while we vary the other, obtaining
different rates. The numerical results are given in Table | together with the corresponding
absolute and relative Gilbert-Varshamov bouggland de ned by

|
w=h1 R) and = Cov to) (12)
gv
where h 1(x) is the inverse binary entropy function. Although the lower bound in (5) is
restricted to the class of (Chained) Gallager codes, we obtain almost the Gilbert-Varshamov
lower bound. Note that the parametg¢randk have to be chosen suf ciently large.



VI. CHANNEL STATE INFORMATION

Now, we restrict the transmission schemefurther by assuming that during any transmis-
sion interval errors can occur only in one of the two parallel, independent channels. Moreover,
this information is available as Channel State Information (CSI) at the receiver side, but not
necessarily known to the sender. _

The parity-check matrix of a Chained Gallager code frag{n;j;k ) with rateR =1
consists of two parity-check matrices fra@in=2; j; k=2) with rateR%= 1 2?‘ <R (cf. (6)).

Using a Chained Gallager code of r&Re> 0.5 and decoding only its underlying Gallager
code of the channel being in the error free state, more error patterns can be corrected. The
lower bounds on the normalized minimum distance for Chained Gallager codes and Gallager
codes,fo(! ) andf (! ), obtained from (5) and normalized by the same block lemgtire
illustrated in Figs. 2(b) and 2(c), respectively. Moreover, if the Chained Gallager code has
rate R < 0:5, each of its two underlying parity-check matrices fr@m=2;j; k=2) has full
rank, and by using the CSI all possible error patterns can be corrected.

We will summarize these observations in the following two theorems:

Theorem 4:Consider transmission schemgover two parallel, independent channels, with
at least one channel being in the error free state during any transmission interval. Let this
information be available as CSI at the receiver side. By using a code@g(m j; k ) instead
of Q(n;j; k) the number of correctable error patterns is increased as lojg<a®:5, that is,
the rateR > 0:5. O

Theorem 5:Consider transmission schemgover two parallel, independent channels, with
at least one channel being in the error free state during any transmission interval. Let this
information be available at the receiver side as CSI. By using a code @gm; j; k) with
rateR =1 L all possible error patterns can be corrected as lon§ as0:5, that is, the
rateR < 0O:5. O

VIlI. CONCLUSIONS

We have introduced two different transmission schemgand T,. Using probabilistic
arguments, we obtained a tight lower bound on the normalized minimum distance of the
ensemble ofj; k )-regular LDPC codes with block length showing that more errors patterns
can be corrected using schefg

Chained Gallager codes, a combination of two Gallager codes of lower rate, have been
introduced for which the same lower bound on the normalized minimum distance holds.

Moreover, we compared Gallager codes and Chained Gallager code of sarRe usitay
schemeT, with at least one channel being in the error free state during any transmission
interval. Assuming CSI being available at the receiver side and aRate0:5, more error
patterns can be corrected by using Chained Gallager codes. Furthermore, fBr «at@5
Chained Gallager codes can correct any error pattern since each of the underlying Gallager
codes has full rank.
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