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Abstract

The ensemble of regular Low-Density Parity-Check (LDPC) codes introduced by Gallager is
considered. Using probabilistic arguments a lower bound on the normalized minimum distance is
derived. Chained Gallager codes are introduced as a combination of two Gallager codes and their
error correcting capabilities are studied.

I. TWO TRANSMISSIONSCHEMES

Consider two different binary transmission schemes for communication over two parallel,
independent channels. In the �rst transmission scheme, denotedT1 and illustrated in Fig. 1(a),
the message sequenceu 1 is split into two partsu (1)

1 and u (2)
1 , that is,u 1 = u (1)

1 u (2)
1 , where

u (1)
1 and u (2)

1 have equal length. The messagesu (i )
1 , i = 1; 2; are encoded separately by the

codesC(i )
1 , i = 1; 2, both of rateR. Then, the two codewordsv (1)

1 and v (2)
1 are transmitted

over independent channels before the received sequencesr (1)
1 and r (2)

1 are decoded. Finally,
the two partial message sequencesû (1)

1 andû (2)
1 , decided by the two decoders, are combined

into the decided message sequenceû 1 = û (1)
1 û (2)

1 .

(a) (b)

Fig. 1. Transmission schemeT1 (a) andT2 (b) with two parallel, independent channels.

In the second transmission scheme denotedT2 and shown in Fig. 1(b), the message sequence
u 2, whereu 2 is twice as long asu i

1, i = 1; 2, is encoded by a single encoderC2 of rateR.
Clearly, the encoding matrix forT2 has twice as many rows and columns as each of the two
encoding matrices forT1. The obtained codewordv2 is split into two partial codewordsv (1)

2

and v (2)
2 , that is,v2 = v (1)

2 v (2)
2 , wherev (1)

2 and v (2)
2 have equal length, and are transmitted

over parallel, independent channels. Finally, tThe two received sequencesr (1)
2 and r (2)

2 are
concatenated intor 2 = r (1)

2 r (2)
2 and decoded by a single decoder to obtain the decided message

sequencêu 2.

II. GALLAGER CODES

Considering large encoding matrices, it is not far-fetched to use Low-Density Parity-Check
(LDPC) codes due to their low decoding complexity. We will consider the Gallager ensemble
of binary LDPC(j; k )-regular codes of block lengthn [1]. The parity-check matrix of such a
Gallager code hasj ones in each column andk ones in each row. An integerm is chosen such



that n = km and l = jm denote the total number of columns and rows of its parity-check
matrix H , respectively.

Combiningk identity matrices, the so-called�rst layer parity-check matrixH � is obtained,
that is,

H � =
�

I m I m : : : I m| {z }
k times

�
(1)

whereI m is them � m identity matrix. The parity-check matrixH � has a single one in each
column andk ones in each row, dimensionsm andkm, and corresponds to a(1; k)-regular
LDPC code with rateR = 1 � 1

k .
Combining j of the

� km
k

�
column permutations of the �rst layer parity-check matrixH �

row-wise, we obtain the parity-check matrixH as

H =
�
H � � 1 H � � 2 : : : H � � j

� T
(2)

with different permutation matrices� i , i = 1; 2; : : : ; j . Such a parity-check matrix hasj ones
in each column andk ones in each row. The dimensions are given byl and n with l = jm
andn = km and a (design) rate1 of R = 1 � j

k .
Hereinafter we will consider the ensembleC(n; j; k ) of LDPC Gallager codes where the

�rst layer parity-check matrix is given by (1) and the permutation matrices� i , i = 1; 2; : : : ; j ,
are chosen randomly and independently of each other [2].

III. A LOWER BOUND ON THE MINIMUM DISTANCE

Following Gallager's approach [1], it can be shown, that the probability of randomly chosen
sequence of lengthn and weightw being a valid codeword ofC(n; j; k ) is given by

 
N (w)
� n

w

�

! j �
n
w

�
(3)

whereN (w) is the number of codewords of weightw of the �rst layer parity check matrix
H � and1=

� n
w

�
is the probability of randomly chosen sequence of lengthn and weightw. We

conclude that as long as the sum over (3) fromw = 2 to w0 is smaller than1, there exists a
Gallager code amongC(n; j; k ), whose minimum distance is at leastw0 + 1. Upper-bounding
N (w) by s� wE(s), whereE(s) is the generating function of the number of codewords, and
exploiting the regular structure of the �rst layer parity-check matrix we obtain,

N (w) < min
s> 0

�
s� w

�
(1 + s)k + (1 � s)k

2

� m �
. (4)

By combining (3) and (4), we conclude that, as long as

f (! ) ' j min
s> 0

n
� ! log(s)+

1
k

�
log

�
(1 + s)k + (1 � s)k

�
� 1

� o
� (j � 1)h(! ) (5)

with ! = w
n , is negative, there exists a code amongC(n; j; k ) with a normalized minimum

distance greater than or equal to! . We will summarize this in the following theorem:
Theorem 1:Given the ensemble of Gallager codesC(n; j; k ) with its parity-check matrices

havingj ones per column,k ones per row, and (design) rate ofR = 1 � j
k . The dimensions of

1The actual code rate may be slightly greater than the design rate since there may exist linear dependent rows inH .



(a) RateR = 0 :3 (b) RateR = 0 :6 (c) RateR = 0 :9

Fig. 2. Obtained lower bound on the normalized minimum distance for Chained Gallager codes (f 0(! )) of different rates
R compared to one of its underlying Gallager code (f 1(! )) of lower rate, normalized by the same lengthn.

these parity-check matrices are given byl andn, wherel = jm andn = km. Denoting the
largest zero off (! ) by ! 0, the normalized minimum distance of the ensemble of Gallager
codesC(n; j; k ) is lower bounded by! 0. That is, amongC(n; j; k ), there exists a Gallager
code whose normalized minimum distance is greater than or equal to! 0.

Applying this lower bound to two previously introduced transmission schemes we have the
following theorem:

Theorem 2:Consider the previously introduced transmission schemesT1 andT2. Let C(1)
1 ,

C(2)
1 2 C(n; j; k ), andC2 2 C(2n; j; k ), all with the same rateR = 1 � j

k . More error patterns
can be corrected by the transmission schemeT2 than by schemeT1.

IV. CHAINED GALLAGER CODES

As a variant of Gallager codes, we will introduce what we callChained Gallager codesof
rateR = 1 � j

2k as a combination of two Gallager codes of the lower rateR = 1 � j
k .

Given two parity-check matricesH1, H2 2 C(n; j; k ), each of rateR = 1 � j
k , the parity-

check matrix of a Chained Gallager codeHcg can be written as

Hcg =
�
H1 H2

�
. (6)

With 2k ones per row andj ones per column,Hcg corresponds to a(j; 2k)-regular LDPC
code with rateR = 1 � j

2k . However,Hcg belongs only to a subclass ofC(2n; j; 2k), as each
half is an independently Gallager code chosen fromC(n; j; k ).

Following the de�nition of C(n; j; k ), the ensemble of randomly chosen Chained Gallager
codes withj ones per column andk ones per rows is denoted byCcg(n; j; k ). The correspond-
ing parity-check matrixHcg has dimensionsl andn such thatl = jm andn = km, with its
two halves belonging toC(n=2; j; k=2).

Hereinafter we denote the number of codewords that have1s only in either the left or the
right half by N1(w), that is,

N1(w) =
n

v (1)
2 v (2)

2 j (wH(v (1)
2 ) > 0 ^ wH(v (2)

2 ) = 0) _ (wH(v (1)
2 ) = 0 ^ wH(v (2)

2 ) > 0)
o

.

(7)

Similarly, denote byN2(w) the number of codewords that have1s in both halves, that is,

N2(w) =
n

v (1)
2 v (2)

2 j wH(v (1)
2 ) > 0 ^ wH(v (2)

2 ) > 0
o

. (8)

Removing the restrictions to codewords in (7) and (8), the corresponding number of sequences
is given byM 1(w) andM 2(w), respectively. The probability that a �xed sequence among the



RateR = 1 � j=k j k ! 0 � gv �

R = 0 :3
35 50 0:1893

0:1893
1:4412� 10� 7

70 100 0:1893 1:4445� 10� 7

R = 0 :6
20 50 0:0794

0:0794
3:6326� 10� 4

70 175 0:0794 1:4654� 10� 6

R = 0 :9
5 50 0:0044

0:0130
0:6618

70 700 0:0130 8:7523� 10� 5

TABLE I

NUMERICAL RESULTS

set of all possible sequences ful�lls the conditions in (7) and (8) is denoted byP("1) and
P("2), respectively. Clearly,P("1) + P("2) = 1 .

Having introduced these notations, the probabilityP(" cw) that a randomly chosen sequence
coincides with a codeword ofCcg(n; j; k ) is

P(" cw) = 2
N1(w)
M 1(w)

P("1) +
N2(w)
M 2(w)

P("2). (9)

With in total
� n

w

�
sequences of lengthn and weightw, we have

P("1) =
M 1(w)

� n
w

� and P("2) =
M 2(w)

� n
w

� . (10)

Substituting (10) into (9), we �nally obtain

P(" cw) = 2
N1(w)
M 1(w)

M 1(w)
� n

w

� +
N2(w)
M 2(w)

M 2(w)
� n

w

� =
2N1(w) + N2(w)

� n
w

� =
Ncg(w)

� n
w

� (11)

with Ncg(w) denoting the total number of codewords of weightw in Ccg(n; j; k ). Thereby we
conclude, that for bothC(n; j; k ) and Ccg(n; j; k ), the same lower bound on the normalized
minimum distance! 0, namely (5), holds. Moreover we note that the additional restriction on
Ccg(n; j; k ) that each half belongs toC(n=2; j; k=2) has no in�uence on the derivation of the
lower bound on the normalized minimum distance! 0. Thus we have the following theorem:

Theorem 3:The lower bound on the normalized minimum distancew0 of C(n; j; k ) coin-
cides with the lower bound on the normalized minimum distance ofCcg(n; j; k ).

V. NUMERICAL RESULTS

The lower bound on the normalized minimum distance! 0 in (5) is calculated for (Chained)
Gallager codes of ratesR = 0:3, R = 0:6, andR = 0:9. As the rateR = 1 � j

k depends only
on j and k, we keep one of these parameters constant while we vary the other, obtaining
different rates. The numerical results are given in Table I together with the corresponding
absolute and relative Gilbert-Varshamov bound� gv and � de�ned by

� gv = h� 1(1 � R) and � =
(� gv � ! 0)

� gv
(12)

where h� 1(x) is the inverse binary entropy function. Although the lower bound in (5) is
restricted to the class of (Chained) Gallager codes, we obtain almost the Gilbert-Varshamov
lower bound. Note that the parametersj andk have to be chosen suf�ciently large.



VI. CHANNEL STATE INFORMATION

Now, we restrict the transmission schemeT2 further by assuming that during any transmis-
sion interval errors can occur only in one of the two parallel, independent channels. Moreover,
this information is available as Channel State Information (CSI) at the receiver side, but not
necessarily known to the sender.

The parity-check matrix of a Chained Gallager code fromCcg(n; j; k ) with rateR = 1 � j
k

consists of two parity-check matrices fromC(n=2; j; k=2) with rateR0 = 1 � 2j
k < R (cf. (6)).

Using a Chained Gallager code of rateR > 0:5 and decoding only its underlying Gallager
code of the channel being in the error free state, more error patterns can be corrected. The
lower bounds on the normalized minimum distance for Chained Gallager codes and Gallager
codes,f 0(! ) and f 1(! ), obtained from (5) and normalized by the same block lengthn are
illustrated in Figs. 2(b) and 2(c), respectively. Moreover, if the Chained Gallager code has
rate R < 0:5, each of its two underlying parity-check matrices fromC(n=2; j; k=2) has full
rank, and by using the CSI all possible error patterns can be corrected.

We will summarize these observations in the following two theorems:
Theorem 4:Consider transmission schemeT2 over two parallel, independent channels, with

at least one channel being in the error free state during any transmission interval. Let this
information be available as CSI at the receiver side. By using a code fromCcg(n; j; k ) instead
of C(n; j; k ) the number of correctable error patterns is increased as long asj

k < 0:5, that is,
the rateR > 0:5.

Theorem 5:Consider transmission schemeT2 over two parallel, independent channels, with
at least one channel being in the error free state during any transmission interval. Let this
information be available at the receiver side as CSI. By using a code fromCcg(n; j; k ) with
rate R = 1 � j

k all possible error patterns can be corrected as long asj
k > 0:5, that is, the

rateR < 0:5.

VII. C ONCLUSIONS

We have introduced two different transmission schemesT1 and T2. Using probabilistic
arguments, we obtained a tight lower bound on the normalized minimum distance of the
ensemble of(j; k )-regular LDPC codes with block lengthn, showing that more errors patterns
can be corrected using schemeT2.

Chained Gallager codes, a combination of two Gallager codes of lower rate, have been
introduced for which the same lower bound on the normalized minimum distance holds.

Moreover, we compared Gallager codes and Chained Gallager code of same rateR using
schemeT2 with at least one channel being in the error free state during any transmission
interval. Assuming CSI being available at the receiver side and a rateR > 0:5, more error
patterns can be corrected by using Chained Gallager codes. Furthermore, for rateR < 0:5
Chained Gallager codes can correct any error pattern since each of the underlying Gallager
codes has full rank.
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