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Abstract

This paper presents a Fisher information based Bayesian approach to analy-

sis and design of the regularization and preconditioning parameters used with

gradient based inverse scattering algorithms. In particular, a one-dimensional

inverse problem is considered where the permittivity and conductivity pro-

�les are unknown and the input data consist of the scattered �eld over a

certain bandwidth. A priori parameter modelling is considered by nonlinear

exponential and arctangential parameter scalings and robust preconditioners

are obtained by choosing the related scaling parameters based on a Fisher

information analysis of the known background. The Bayesian approach and

a principal parameter (singular value) analysis of the stochastic Cramér-Rao

bound provide a natural interpretation of the regularization that is necessary

to achieve stable inversion, as well as an indicator to predict the feasibility of

achieving successful reconstruction in a given problem set-up. In particular,

the Tikhonov regularization scheme is put into a Bayesian estimation frame-

work. A time-domain least-squares inversion algorithm is employed which is

based on a quasi-Newton algorithm together with an FDTD-electromagnetic

solver. Numerical examples are included to illustrate and verify the analysis.

1 Introduction

Inverse scattering problems o�er a variety of applications in e.g., medicine, non-
destructive testing, surveillance, quantum mechanics, acoustics and optics. These
problems are in general ill-posed, i.e., they are not well-posed in the sense of exis-
tence, uniqueness, and the solution being a continuous function of the data [1, 4, 12,
15, 16, 19, 21, 33]. Since the solution does not generally depend continuously on the
data, it is almost always necessary to employ some kind of regularization to control
the imaging error, see e.g., [1, 4, 19]. Typically, the number of degrees of freedom
(NDF) pertaining the number of signi�cant singular values of a linear operator is a
very useful tool, see e.g., [1, 2, 27, 28]. The NDF, which in many cases is virtually
independent of the noise level, can be used to estimate the number of retrievable pa-
rameters of an object, and hence the resolution. Another approach is the Tikhonov
regularization [16], which controls the modelling error as well as a suitable norm of
the image itself. However, these approaches do not quantify the amount of a priori
information that is inherent with the regularization scheme.

A Fisher information analysis and the Cramér-Rao bound provides a very useful
instrument for sensitivity analysis of various wave propagation phenomena, and
which facilitates valuable physical interpretations, see e.g., [3, 5, 6, 11, 14, 23�26, 31,
34]. Cramér-Rao bounds for the location, size and orientation of a known object
has been studied in the context of di�raction tomography and Maximum Likelihood
(ML) estimation in [5, 23, 34]. Previously, the Cramér-Rao bound has been employed
as an analytical tool to investigate the one-dimensional inverse scattering problem of
multilayer structures [11], and a canonical two-dimensional microwave tomography
set-up is analyzed in [24]. The Fisher information analysis has also been used with
electromagnetic inverse source problems, see e.g., [25, 26]. In [11, 24�26], the Cramér-
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Rao bound is employed as an analytical tool to quantify the ill-posedness of the
reconstruction and to explicitely describe the inherent trade-o� between the accuracy
and the resolution.

The resolution limit of an ill-posed imaging inverse problem is often in practice
restricted to about a half wave length, see e.g., [11, 24�26]. In this view, the regu-
larization scheme supplies a priori information to an extent that the resolution limit
may be achieved, while at the same time stability is maintained. On the other hand,
if stability requires that too much a priori information is supplied, the only thing
that can be retrieved is the a priori information itself and the image can not be
resolved. In order for an inverse problem to be feasible, there must be a balance
between these two contradictory requirements. In this paper, the Bayesian approach
with MAP estimation [14, 16], and a principal parameter (singular value) analysis of
the stochastic Cramér-Rao bound [35] is employed to provide a natural interpreta-
tion of the regularization that is necessary to achieve stable inversion, as well as an
indicator to predict the feasibility of achieving successful reconstruction in a given
problem set-up. In particular, the Tikhonov regularization scheme is put into the
Bayesian estimation framework.

Closely related to the regularization is the concept of preconditioning, which is
often used to accelerate the convergence of iterative methods, see e.g., [10, 18]. There
are very few theoretical results on preconditioning and �nding a good preconditioner
is sometimes considered as a combination of art and science [30]. In this paper, a
robust preconditioner is considered which is obtained by incorporating a parameter
scaling (or transformation) such that the scaled Fisher information has a unit di-
agonal at some known background parameter value, cf., the Jacobi preconditioner
in numerical analysis [10, 18]. This preconditioner is robust in the sense that the
scaling, i.e., the diagonal Fisher information is virtually invariant to the numerical
resolution and the discretization model that is employed, see [7] for a detailed study
about this issue. Here, an a priori parameter modelling is considered by nonlinear
exponential [33] and arctangential parameter scalings.

The purpose of this paper is to present a Fisher information based Bayesian
approach to analysis and design of the regularization and preconditioning param-
eters used with gradient based inverse scattering algorithms. A one-dimensional
inverse scattering problem is considered as it o�ers a natural introduction to pa-
rameter identi�cation and wave splitting techniques cf., [12, 20]. A time-domain
least-squares inversion algorithm [12] based on a quasi-Newton algorithm [9] to-
gether with an FDTD-electromagnetic solver [32] has been employed in order to
generate the numerical examples.

The rest of the paper is outlined as follows. In section 2 is presented the one-
dimensional inverse scattering problem with basic gradient expressions. In section 3
is presented a conditional statistical analysis containing Maximum Likelihood (ML)
estimation and Fisher information analysis. In section 4 is presented the robust
Fisher information based preconditioning strategy covering linear, exponential and
arctangential parameter scalings. In section 5 is given the Bayesian, or Maximum
A Posteriori (MAP) framework for Tikhonov regularization and a principal (SVD)
parameter analysis. Section 5 also covers a discussion about nonlinear a priori
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models in general, and the lognormal distribution in particular. Section 6 contains
the numerical examples and section 7 the summary and conclusions.

2 The one-dimensional inverse scattering problem

Throughout the paper, let (x, y, z) ∈ R3 denote the cartesian coordinates and
(x̂, ŷ, ẑ) the corresponding unit vectors. It is assumed that all �elds depend on
the x-coordinate only and that the electric and magnetic �elds E and H are lin-
early polarized with E = E(x)ẑ and H = H(x)ŷ. Further, let eiωt be the time-
convention where ω = 2πf is the angular frequency. Let k0, c0, ε0, µ0 and η0 denote
the wave number, the speed of light, the permittivity, the permeability and the wave
impedance of free space, respectively.

2.1 Problem formulation

 

 

 

E+(x, t)

E−(x, t)

x = 0 x = a x

σ(x)

ε(x)
ε = 1

σ = 0

Figure 1: One-dimensional inverse problem for an isotropic half space with relative
permittivity ε(x) and conductivity σ(x).

Consider the electromagnetic inverse problem of imaging a one-dimensional iso-
tropic half space x ≥ 0, with relative permittivity ε(x) and conductivity σ(x), see
Fig.1. The imaging is based on a measurement of the incident �eld E+(x, t) and the
scattered �eld E−(x, t) at the boundary x = 0 for t ∈ [0, T ] where T is the length
of the observation interval. The left half space x < 0 is free space with ε = 1 and
σ = 0.

The electric and magnetic �elds u = (E,H) satisfy Maxwell's equations1

Pu =

{
ε∂tE − ∂xH + σE = 0
∂tH − ∂xE = 0

(2.1)

for x ∈ R and t ∈ [0, T ], together with the initial conditions E(x, 0) = 0 for x ≥ 0

and t = 0, and the boundary conditions E+(0, t) = E
(m)
+ (t) for x = 0 and t ∈ [0, T ],

where the superscript (·)(m) denotes measured �eld quantities.

1Here, the common SI-unit quantities are normalized as (t, ω, ε, σ,E,H,J)norm =
(c0t, ω/c0, ε, η0σ,

√
ε0E,

√
µ0H,

√
µ0J) so that the speed of wave propagation is normalized to

unity and all �elds are measured in the same energy unit (Energy/Volyme)1/2.
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In inverse problems and microwave tomography, see e.g., [8, 12, 13], it is common
to employ the following least squares mis�t functional

J =
1

2

∫ T

0

(|E(0, t)− E(m)(t)|2 + |H(0, t)−H(m)(t)|2) dt (2.2)

where the aim is to minimize J with respect to the material parameters ε and σ.
Using the split �elds E± = (E ∓H)/2, the mis�t functional (2.2) becomes

J (ε, σ) =

∫ T

0

|E−(0, t)− E(m)
− (t)|2 dt (2.3)

where the boundary conditions of (2.1) have been used.
It is assumed that the spatial region S = {x|0 ≤ x ≤ a} = ∪Ii=1Si is decomposed

into a �nite set of disjoint intervals Si corresponding to some speci�c scale of reso-
lution. The attenuation is assumed to be very high at the computational boundary
x = a. The relative permittivity and conductivity within the material is discretized
according to the �nite expansions

ε(x) =
I∑
i=1

εiχi(x)

σ(x) =
I∑
i=1

σiχi(x)

(2.4)

where εi and σi are the optimization variables and χi(x) the characteristic function
for pixel Si, i.e., χi(x) = 1 if x ∈ Si and χi(x) = 0 if x /∈ Si.

2.2 Derivation of the gradient

To obtain the gradient of J (ε, σ) de�ned in (2.3), a �rst order perturbation analysis
is considered as in [8, 12, 13]. Here, let (ε, σ) → (ε, σ) + δ(ε′, σ′) and (E,H) →
(E,H) + δ(E ′, H ′) +O(δ2) where ‖O(δ2)‖ ≤ Cδ2 as δ → 0. The incremental �elds
u′ = (E ′, H ′) satisfy Maxwell's equations

Pu′ =
{
ε∂tE

′ − ∂xH ′ + σE ′ = −ε′∂tE − σ′E
∂tH

′ − ∂xE ′ = 0
(2.5)

where the boundary conditions are E ′+(0, t) = 0 and E the solution to (2.1). The
�rst variation δJ of (2.3) is given by

δJ (ε, σ) = 2

∫ T

0

(E−(0, t)− E(m)
− (t))E ′−(0, t) dt (2.6)

where E ′−(0, t) is the solution to (2.5).

The adjoint electric and magnetic �elds ũ = (Ẽ, H̃) satisfy the adjoint Maxwell's
equations

P†ũ =

{
−ε∂tẼ + ∂xH̃ + σẼ = 0

−∂tH̃ + ∂xẼ = 0
(2.7)
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for x ∈ R and t ∈ [0, T ], together with the boundary conditions Ẽ−(0, t) = E−(0, t)−
E

(m)
− (t) yielded from the solution of (2.1). Note that (2.7) is solved backwards in

time and the �initial� conditions are Ẽ(x, T ) = 0 for x ≥ 0.
By de�ning the inner product

〈u,v〉 =

∫
R

∫ T

0

u · v dt dx (2.8)

and by employing (2.1) and (2.7), it can be readily veri�ed that

〈ũ,Pu〉 − 〈P†ũ,u〉 =

∫ T

0

(H̃(0, t)E(0, t) + Ẽ(0, t)H(0, t)) dt (2.9)

where all �elds are assumed to vanish for x → ∞. Using the split �elds E± =
(E∓H)/2 as well as the boundary conditions E ′+(0, t) = 0 and Ẽ−(0, t) = E−(0, t)−
E

(m)
− (t), the relation (2.9) yields

〈ũ,Pu′〉 − 〈P†ũ,u′〉 = 2

∫ T

0

(E−(0, t)− E(m)
− (t))E ′−(0, t)) dt. (2.10)

Since 〈P†ũ,u′〉 = 0, it follows from (2.10) and (2.6) that 〈ũ,Pu′〉 = δJ , and hence
by (2.5)

δJ (ε, σ) = 〈ũ,Pu′〉 = −
∫

R

∫ T

0

(ε′∂tE + σ′E)Ẽ dt dx. (2.11)

The gradients Gε(x) and Gσ(x) are de�ned by the Fréchet derivative
δJ = 〈Gε(x), ε′(x)〉+ 〈Gσ(x), σ′(x)〉 where 〈u, v〉 =

∫
R uv dx. Hence,

Gε(x) = −
∫ T

0

Ẽ∂tE dt

Gσ(x) = −
∫ T

0

ẼE dt.

(2.12)

Assume now that the relative permittivity and conductivity are discretized as in
(2.4), where εi and σi are the optimization variables and Si the disjoint intervals.
By inserting ε′(x) = χi(x) dεi and σ′(x) = χi(x) dσi in (2.11), the �nite gradients
are given by 

∂J
∂εi

= −
∫
Si

∫ T

0

Ẽ∂tE dt dx

∂J
∂σi

= −
∫
Si

∫ T

0

ẼE dt dx.

(2.13)

3 Conditional Statistical Analysis

3.1 Maximum Likelihood Estimation

In the frequency domain, Maxwell's equations (2.1) yield the following wave equation
for the scalar �eld E, i.e., the Helmholtz equation

LE =
{
∂2
x + k2

}
E = 0 (3.1)
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where k = k0
√
εc = ω

√
εc, εc(x) = ε(x) − iσ(x)/ω and the boundary condi-

tions are E+(0, f) = E
(m)
+ (f). Here, the Fourier transform is given by E(x, f) =∫∞

−∞E(x, t)e−i2πft dt.
Consider now the �nite time interval [−τ/2, τ/2], and let E(x, p) denote the

one-dimensional Fourier coe�cients

E(x, p) =
1

τ

∫ τ
2

− τ
2

E(x, t)e−i2π p
τ
t dt (3.2)

corresponding to a τ -periodic extension of the time-domain pulses. Assuming that
E(x, t) is a time-limited pulse with support in [0, T ], it is seen that τE(x, p) →
E(x, f)|f= p

τ
as τ →∞.

Consider the following statistical measurement model for the time-domain

E
(m)
− (t) = E−(0, t) +N(t), t ∈ [−τ/2, τ/2] (3.3)

where N(t) is zero mean Gaussian noise with correlation function
rN(∆t) = E {N(t+∆t)N(t)} and power spectral densityRN(f) =

∫∞
−∞ rN(t)e−i2πft dt.

Here, E {·} denotes the expectation operator.
A discrete measurement model is now obtained by �rst creating the complex

(time-domain) Hilbert pair [29] corresponding to (3.3), and then considering the
corresponding Fourier series representation. Note that the complex Hilbert pair
corresponding to a real Gaussian random process is complex Gaussian, and the
Fourier transform of a complex Gaussian process is complex Gaussian [22]. Hence,
(3.3) yields

2E
(m)
− (p) = 2E−(0, p) +Np, p ≥ 0 (3.4)

where Np is discrete zero mean complex Gaussian noise with correlation function
given by

E
{
N∗pNp′

}
=

1

τ
4RN(

p

τ
)δpp′ , p ≥ 0 (3.5)

where (·)∗ denotes the complex conjugate and where it has been assumed that the
support time tN for the correlation function rN(∆t) is much less then the period,
tN � τ .

Let ν = [εTσT]T denote the parameter vector with elements εi and σi as de�ned

in (2.4) and let x denote the measurement vector x = {2E(m)
− (p)} with probability

density function p(x|ν). Since the measurement noise Np is an uncorrelated complex
Gaussian random process, the negative loglikelihood function [14, 16, 17] is given by

− log p(x|ν) = b+ lim
τ→∞

∞∑
p=0

τ

RN( p
τ
)
|E−(0, p)− E(m)

− (p)|2

= b+
1

2

∫ ∞
−∞

1

RN(f)
|E−(0, f)− E(m)

− (f)|2 df = b+
1

2N0

J (ν) (3.6)

where the power spectral density is assumed to be a constant RN(f) = N0 over the
relevant bandwidth, b a constant, and J (ν) the mis�t functional de�ned in (2.3).
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Hence, with the Gaussian noise model adopted here, the optimization problem stated
in section 2 is equivalent to the classical Maximum Likelihood (ML) criterion [17].

In order to de�ne the signal to noise ratio, it is assumed that the incident signal
is a normalized Gaussian pulse with{

E2
+(0, t) = 1√

2πσt
e−t

2/2σ2
t

E2
+(0, f) = 1√

2πσf
e−f

2/2σ2
f

(3.7)

which has been centered at the origin (base-band) for simplicity. Note that σtσf =
1/4π. De�ning the time and frequency bandwidths as tB = 2 · 1.96σt and fB =
2 · 1.96σf for 95 % of the pulse energy, the time-frequency bandwidth product is
given by tBfB = 1.962

π
≈ 1. Hence,

1
T

∫
E2

+(0, t) dt∫
RN(f) df

≈
∫
E2

+(0, t) dt

tB4N0fB

≈ 1

4N0

= SNR (3.8)

where the factor 4N0 is due to the base-band translation.

3.2 Fisher information analysis

The Fisher information matrix [17] for the parameters εi and σi based on the sta-
tistical measurement model (3.4) is given by

[Iνζ ]ij = 2 Re
∞∑
p=0

τ

RN( p
τ
)

∂E∗−(0, p)

∂νi

∂E−(0, p)

∂ζj
(3.9)

where ν and ζ are either ε or σ, and i, j = 1, . . . , I. In the limit as τ → ∞, the
expression (3.9) becomes

[Iνζ ]ij =

∫ ∞
−∞

1

RN(f)

∂E∗−(0, f)

∂νi

∂E−(0, f)

∂ζj
df. (3.10)

The di�erentiated �eld, or sensitivity �eld, satisfy the wave equation (3.1)

L∂E
∂νi

=
{
∂2
x + k2

} ∂E
∂νi

= iωgνχiE (3.11)

where gν = 1 if ν = σ and gν = iω if ν = ε. Note that the solution E of (3.1) now
appears in the source term of (3.11).

After solving (3.11) and evaluating (3.10), the total Fisher information matrix
is assembled as

I(ν) =

(
Iεε Iεσ

Iσε Iσσ

)
. (3.12)

Assuming that the right half space x ≥ 0 is homogenous, the transmitted �eld
is given by the corresponding transmission coe�cient. Hence, for x ≥ 0

E(x, f) = E+(0, f)
2η

η + 1
e−ikx (3.13)
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where η = 1/
√
εc. The corresponding background Green's function G(x, x′) for a

point source at x′ satis�es LG(x, x′) = −δ(x−x′) where δ(·) is an impulse function.
For a homogenous half space and x′ = 0, the Green's function is given by

G(x, 0) =
1

iω + ik
e−ikx (3.14)

for x ≥ 0. The sensitivity �eld can now be expressed as

∂E(x, f)

∂νi
= −iωgν

∫
S
G(x, x′)χi(x

′)E(x′, f) dx′, (3.15)

or
∂E−(0, f)

∂νi
= −iωgν

∫
Si
G(x′, 0)E(x′, f) dx′ (3.16)

where the symmetry of the Green's function G(x, x′) = G(x′, x) and ∂E+(0,f)
∂νi

= 0
have been employed. By inserting (3.13) and (3.14) in (3.16) and evaluating the
integral, the sensitivity �eld for a homogenous background is given by

∂E−(0, f)

∂νi
= −2gν

E+(0, f)

(1 +
√
εc)2

sin(k∆x)

k∆x
∆xe−ik(2i−1)∆x (3.17)

where Si = [(i− 1)∆x, i∆x], ∆x the spatial sampling interval and i = 1, . . . , I.

4 Parameter scaling

A robust preconditioning as well as an e�cient a priori modelling of the inverse
problem may be obtained by appropriate parameter scaling. The basic ideas are
brie�y outlined below for the present context, see also [7, 14, 33].

The optimization problem aims at minimizing the mist�t functional (2.3), or
equivalently, to minimize the negative loglikelihood function (3.6). The Hessian of
the negative loglikelihood function is given by

H(x|ν) = −∂
2 log p(x|ν)

∂ν∂νT
(4.1)

and the Fisher information matrix is de�ned by

I(ν) = E{H(x|ν)} = −E{∂
2 log p(x|ν)

∂ν∂νT
}, (4.2)

see e.g., [17].
A robust preconditioner is obtained by incorporating a parameter scaling (or

transformation) such that the scaled Fisher information has a unit diagonal at some
known background parameter value ν, cf., the Jacobi preconditioner in numerical
analysis [10, 18]. Since the Fisher information matrix is the mean value of the Hessian
in the corresponding Maximum Likelihood estimation problem, it is expected that
such a strategy will stabilize any gradient based numerical inversion algorithm and
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that the problem with local minima should be alleviated [7]. The preconditioner is
robust in the sense that the scaling, i.e., the diagonal Fisher information is virtually
invariant to the numerical resolution and the discretization model that is employed,
see [7] for a detailed study about this issue.

Consider the following linear and nonlinear parameter models

νi = ξi/βi Linear
νi = αie

ξi/βi + ν0i Exponential
νi = αi arctan(ξi/βi + ξ̄i) + ν0i Arctangential

(4.3)

where ξi is the new optimization variable and βi the scaling constant. Here, αi, ν0i,
and ξ̄i are a priori known model constants.

With the linear scaling, the gradient is given by ∂
∂ξi

= Gi
∂
∂νi

and the scaled

Fisher information is [I(ξ)]ij = GiGj[I(ν)]ij where Gi = 1
βi
. Hence, a robust

Fisher information based Jacobi preconditioner with [I(ξ)]ii = 1, is given by βi =
√

[I(ν)]ii
∂

∂ξi
=

1√
[I(ν)]ii

∂

∂νi

(4.4)

and the resulting scaled Fisher information matrix is given by

[I(ξ)]ij =
1√

[I(ν)]ii
√

[I(ν)]jj
[I(ν)]ij. (4.5)

With the exponential scaling, it is assumed that the known background cor-
responds to ξi = 0, or νi = αi + ν0i where ν0i represents a lower parameter
bound. The gradient is given by ∂

∂ξi
= Gi

∂
∂νi

and the scaled Fisher information

is [I(ξ)]ij = GiGj[I(ν)]ij where Gi = αi
βi

eξi/βi . The appropriate scaling is then
given by  βi = αi

√
[I(ν)]ii

∂

∂ξi
=

1√
[I(ν)]ii

eξi/βi
∂

∂νi

(4.6)

and the resulting scaled Fisher information matrix at the background level ξ = 0 is
again given by (4.5).

With the arctangential scaling, it is assumed that the known background cor-
responds to ξi = 0, or νi = αi arctan(ξ̄i) + ν0i. Further, if vui and vli denotes
upper and lower parameter bounds, respectively, it is seen that 2v0i = vui + vli and
παi = vui− vli. The gradient is given by ∂

∂ξi
= Gi

∂
∂νi

and the scaled Fisher informa-

tion is [I(ξ)]ij = GiGj[I(ν)]ij where Gi = αi
βi

(1 + (ξi/βi + ξ̄i)
2)−1. The appropriate

scaling is then given by
βi =

αi

1 + ξ̄i
2

√
[I(ν)]ii

∂

∂ξi
=

1 + ξ̄i
2

1 + (ξi/βi + ξ̄i)2

1√
[I(ν)]ii

∂

∂νi

(4.7)
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and the resulting scaled Fisher information matrix at the background level ξ = 0 is
again given by (4.5).

The contrast in the scaled parameter ∆ξi corresponding to a deviation ∆νi with
respect to the known background, is given for the three parameter models in (4.3)
as follows

∆ξi =
√

[I(ν)]ii∆νi (4.8)

∆ξi = αi
√

[I(ν)]ii log(1 +
∆νi
αi

) (4.9)

∆ξi =
αi
√

[I(ν)]ii

1 + ξ̄i
2 (4.10)

×
[
tan

(
∆νi
αi

+ arctan(ξ̄i)

)
− ξ̄i

]
. (4.11)

Obviously, the nonlinear models above yield ∆ξi ≈
√

[I(ν)]ii∆νi when
∆νi
αi

is small.

5 A priori modelling and regularization

5.1 The a priori statistics of Tikhonov regularization

In inverse problem theory and applications, it is common to employ a Tikhonov type
of regularization that punish rapid spatial variations in the medium parameters [12].
Hence, the following Tikhonov regularization scheme may be considered

min
ξ

{
J (ξ) + γ

∫ a

0

(
∂ξ

∂x

)2

dx

}
(5.1)

where γ is the regularization constant. By employing the boundary conditions ξ(0) =
ξ(a) = 0 and integrating by parts, the integral above can be approximated in discrete
form as ∫ a

0

(
∂ξ

∂x

)2

dx = −
∫ a

0

ξ(x)
∂2ξ

∂x2
dx ≈ 1

∆x
ξTC̄

−1
ξ (5.2)

where ∆x is the discretization interval, ξ an N × 1 sample vector and

C̄−1 =


2 −1 0
−1 2 −1

. . .

−1 2 −1
0 −1 2

 (5.3)

an N ×N symmetric Toeplitz matrix. It is noted that the matrix C̄−1 is the inverse
of the symmetric matrix C̄ with elements [C̄]ij = i(N − j + 1)/(N + 1) for j ≥ i
and [C̄]ij = [C̄]ji.

Now, the Tikhonov regularization scheme can be given an unconditional statis-
tical (or Bayesian estimation) interpretation as follows. Assume that the parameter
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vector ξ has zero mean and known prior Gaussian distribution with probability den-
sity function p(ξ) where log p(ξ) = d− 1

2
ξTC−1ξ, d is a constant and the correlation

matrix C is given by

C = E
{
ξξT

}
=
∆xN0

γ
C̄ (5.4)

where N0 is the spectral density of the measurement noise. The spatial variance
and correlation coe�cient corresponding to the correlation matrix C̄ is depicted in
Fig. 2 below.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
[C̄]ii/(N + 1) [C̄]ij/

√
[C̄]ii[C̄]jj

i/N i/N

Figure 2: Spatial variance [C̄]ii/(N+1) and correlation coe�cient [C̄]ij/
√

[C̄]ii[C̄]jj
plotted for large N (N = 100). In the right �gure, j/N = {0.1, 0.3, 0.5, 0.7, 0.9}.

The Maximum A Posteriori (MAP) criterion [14, 16, 17] is to maximize the pos-
terior conditional density function p(ξ|x) with respect to ξ where x is the measure-
ment vector, or equivalently, to minimize the function − log p(x|ξ)− log p(ξ) where
− log p(x|ξ) is the negative loglikelihood function de�ned in (3.6). Hence, the MAP
criterion can be stated as

min
ξ

{
1

2N0

J (ξ) +
1

2
ξTC−1ξ

}
(5.5)

which is equivalent to (5.1) when C−1 = γ
∆xN0

C̄−1 according to the de�nition (5.4).
Note that the gradient corresponding to (5.5) is given by

1

2N0

∂

∂ξ
J (ξ) + C−1ξ (5.6)

where ∂
∂ξ

is de�ned in section 4 and ∂
∂ν
J (ν) in section 2.2.

According to the Bayesian statistical analogue given above, the use of the Tikhonov
regularization scheme is equivalent to the assumption of a certain prior Gaussian pa-
rameter distribution together with an application of the MAP criterion. As will be
demonstrated by using numerical experiments below, even if this parameter model
is not physically justi�ed, the statistical analogue is useful for characterizing the
balance between the estimation error (the Cramér-Rao bound), the regularization
constant, the signal to noise ratio and the spatial resolution in a given measurement
situation. The aim is to employ the Fisher information analysis as a tool to predict
the feasibility of successful reconstruction as well as to choose a proper regularization
constant.
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5.2 Principal parameter analysis

The Fisher information matrix for a stochastic vector parameter ξ is given by

I = −Ex,ξ
{
∂2 log p(ξ|x)

∂ξ∂ξT

}
= −EξEx|ξ

{
∂2 log p(x|ξ)

∂ξ∂ξT

}
− Eξ

{
∂2 log p(ξ)

∂ξ∂ξT

}
= Eξ {I(ξ)}+ C−1 (5.7)

where Ex,ξ and Ex|ξ denote the unconditional and the conditional expectation op-
erator, respectively, see e.g., [35]. In (5.7), I(ξ) denotes the conditional Fisher
information de�ned in e.g., (4.5), (4.2) and (3.10), and C the correlation matrix
de�ned in (5.4). The stochastic Cramér-Rao bound is given by the inverse of I, see
e.g., [35].

In practice, it will be extremely costly to compute Eξ {I(ξ)} in the expression
(5.7), and hence the approximation I ≈ I(ξ)|ξ=0 + C−1 will be used where the
conditional Fisher information is calculated at the known background. Note that this
approximation is assymptotically unbiased and converges in probability as γ →∞.

The Fisher information matrix I is extremely ill-conditioned and a calculation
of the Cramér-Rao bound for individual pixels ξi is virtually impossible (and ir-
relevant) if the pixel resolution ∆x is far below the resolution limit ∆x � λ/2,
cf., [11]. However, a principal parameter analysis using the singular value decom-
position (SVD) may be carried out to identify the signi�cant number of retrievable
parameters, and hence the resolution. The following notation will be employed

I(ξ)|ξ=0 + C−1 = UΣUT (5.8)

where U contains the singular vectors and Σ the singular values. The principal
parameters are de�ned by UTξ and the corresponding Cramér-Rao bounds are given
by the diagonal elements of Σ−1.

5.3 On the lognormal a priori model

When considering an a priori model such as the multivariate lognormal distribution
it may be appealing to approach the problem from the point of view of estimating
the parameter ν directly. Suppose that the parameter is given by ν = eξ where ξ is
Gaussian distributed with mean η and correlation matrix C. In this case, the MAP
criterion (expressed in the variable ξ) becomes

min
ξ

{
1

2N0

J(ξ) + 1Tξ +
1

2
(ξ − η)TC−1(ξ − η)

}
(5.9)

where 1 is a vector of ones. The high-noise solution when N0 →∞ is given by the
a priori distribution only and is obtained here as ξ = η −C1.

It is instructive to consider the a priori statistics of the multivariate lognormal
distribution. It is straightforward to derive the �rst and second order statistics
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in terms of the a priori parameters η and C by completing the squares in the
corresponding exponentials. Of particular interest is the mean E{νi} = eηi+σ

2
i /2, the

correlation function

[Cν ]ij = E {(νi − E{νi})(νj − E{νj})} = eηi+ηj+σ
2
i /2+σ2

j /2
(
eCij − 1

)
(5.10)

and the a priori Fisher information

[Iν ]ij = −E
{
∂2 log p(ν)

∂νi∂νj

}
= δije

−2ηi+2σ2
i + e−ηi−ηj+σ

2
i /2+σ2

j /2eCijC−1
ij (5.11)

where Cij and C
−1
ij denote the elements of C and C−1, respectively, and σ2

i = Cii.
The assymptotics of (5.10) and (5.11) is readily investigated for large and small

variances by putting Cij = 1
γ
C̄ij where C̄ij and ηi are �xed. Hence, by letting

γ → ∞ the correlation tends to zero and the Fisher information tends to in�nity.
In particular [Cν ]ij → eηi+ηjCij, [C−1

ν ]ij → e−ηi−ηjC−1
ij and [Iν ]ij → δije

−2ηi +

e−ηi−ηjC−1
ij ≈ [C−1

ν ]ij. This makes perfect sense and corresponds to a collapse of the
lognormal distribution at ν = eη.

On the other hand, when γ → 0 the correlation tends to in�nity [Cν ]ij →∞, but
the Fisher information does not tend to zero, instead [Iν ]ij →∞. This is obviously
a re�ection of the fact that the lognormal distribution collapses at the origin when
η is �xed and C→∞. Hence, if η is a given constant (as in section 5.1), the high-
noise solution ν → 0 as γ → 0. To avoid this undesirable situation, it is necessary to
invoke a condition such as η−C1 = log νb where νb is the (�xed) known background.
However, it is not obvious how the choose a proper preconditioning and parameter
scaling ξi/βi such that the required high-noise solution νb is maintained at the same
time.

In conclusion, it is generally rather di�cult to choose appropriate model parame-
ters in the multivariate lognormal distribution in order to control its assymptotic be-
haviour with respect to the regularization and preconditioning (scaling) parameters.
It is analytically and numerically much more tractable to consider the estimation of
the Gaussian a priori parameters ξ as outlined in section 5.1 and 5.2.

6 numerical examples

Consider the one-dimensional inverse scattering problem as described in section
2 and depicted in Fig. 1. A conditional Fisher information analysis and related
preconditioning was carried out for the exponential and arctangential parameter
scalings as described in section 3 and 4, and an a priori model principal parameter
analysis as described in section 5. The calculations were performed for a homogenous
background with ε = 15 and σ = 0.4 S/m (σ = 0.4η0). The center frequency was
f0 = 6 GHz and the bandwidth fB = 8 GHz. The computational boundary was
a = 15λ where λ = 7.7 mm denotes the wavelength in the background medium at
10 GHz. The pixel resolution was ∆x = 0.1λ. The conditional Fisher information
employed is de�ned in (3.10). Further, the conductivity parameter has been scaled
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as σ/ω0 (where ω0 is the center frequency) in order for the parameters ε and σ/ω0 to
obtain similar sensitivity, cf., [11]. Note that εc = 15− i1.2ω0/ω gives a loss tangent
of 0.08 at the center frequency.
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Figure 3: Principal Cramér-Rao bound [Σ−1]n as a function of resolution 2a/nλ.
Here γ0 denotes the regularization parameter and I6λ the required contrast level at
x = 6λ for SNR = 30, 40 and 50 dB.

In Fig. 3 is shown the principal Cramér-Rao bound (singular values) [Σ−1]n as
de�ned in (5.8), plotted as a function of resolution 2a/nλ. The resolution is here
de�ned as the size of the spatial domain in wave lengths divided by the number
(n/2) of retrieved parameters for ε and σ, respectively. In Fig. 3, the regularization
parameter de�ned in (5.1) and (5.4) is given by γ = γ02N010−4 where γ0 ranges
from 10−3 to 102, and I6λ is the required contrast level (4.8) at x = 6λ for ∆νi = 1
and SNR = 30, 40 and 50 dB. Note that the scaled Fisher information (4.5) used in
(5.8) is independent of the noise strength N0, and hence motivates the scaling of γ
with N0 as above.

In Fig. 3 can be clearly seen the sharp resolution limit at λ/2, beyond which
reconstruction (estimation) becomes virtually unfeasible, cf., also [11]. For a reso-
lution limit not below about 0.6λ and a signal to noise ratio of 50 dB, the analysis
predicts that reconstruction is feasible and virtually independent of the regulariza-
tion constant if γ0 ≤ 1 (the Cramér-Rao bound is signi�cantly below the required
contrast level I6λ with ∆νi = 1). On the other hand, with a signal to noise ratio
of 30 dB, a regularization constant of γ0 = 100 is required to force the Cramér-
Rao bound below the required contrast level. In this case, the singular values as a
function of resolution has become totally �at, indicating that the regularization has
saturated, i.e., the regularization has become so dominating that the only thing that
can be retrieved is the a priori information itself, i.e., the background parameters.
Hence, reconstruction is unfeasible for SNR = 30 dB.

Next, a numerical implementation of the one-dimensional inverse problem is con-
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sidered with the exponential and arctangential scaling and preconditioning de�ned
in (4.3), (4.6) and (4.7). A priori model parameters for the exponential scaling was
αε = 1, ε0 = 14, ασ = 1.2 and σ0 = 0 and for the arctangential scaling παε = 3,
ε0 = 15.5, ε̄ = tan −0.5

3/π
, πασ = 3, σ0 = 1.5 and σ̄ = tan −0.3

3/π
. The contrast level was

∆ε = ∆σ = 1.
An inversion algorithm was implemented based on a quasi-Newton algorithm

using the BFGS formula and Golden section line search, see e.g., [9], together with
the gradient calculations that are described in section 2.2 and (5.6) above. The
solution to the related direct and adjoint electromagnetic problems were based on
an implementation of the FDTD algorithm, see e.g., [32], where the spatial resolution
was 10 points per wavelength. A di�erent spatial grid was used for the generation
of input data in order to avoid the �inverse crime� [16, 33]. The signal to noise ratio
was SNR = 30-50 dB, and arti�cial noise was added correspondingly prior to the
reconstruction.
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Figure 4: Reconstruction for the one-dimensional inverse problem with exponential
parameter scaling. The graphs show the parameters ε and σ/ω0 versus x/λ, with and
without preconditioning, and iteration 1�5. The true parameter values are shown
as a dashed line. The signal to noise ratio is SNR = 50 dB and the regularization
constant γ0 = 1.

In Figs. 4 and 5 are shown the reconstruction for the one-dimensional inverse
problem with exponential and arctangential parameter scalings, respectively. The
signal to noise ratio is SNR = 50 dB and the regularization constant γ0 = 1. The
graphs show the parameters ε and σ/ω0 versus x/λ, with and without precondition-
ing. The true parameter values are shown as a dashed line. The 4 columns illustrate
the �rst 5 iterations in the reconstruction of ε (with preconditioning), ε (without
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Figure 5: Reconstruction for the one-dimensional inverse problem with arctangen-
tial parameter scaling. The graphs show the parameters ε and σ/ω0 versus x/λ,
with and without preconditioning, and iteration 1�5. The true parameter values
are shown as a dashed line. The signal to noise ratio is SNR = 50 dB and the
regularization constant γ0 = 1.

preconditioning), σ/ω0 (with preconditioning) and σ/ω0 (without preconditioning),
respectively. Here, an iteration is referred to as a calculation of a new search direc-
tion and a completed line search. As can be seen in these reconstructions, the scaled
version of the algorithm (with preconditioning) has improved capabilities of �nding
objects in the interior of the material early in the iteration process. This is due to
the fact that the gradient scaling takes into account the e�ect of losses (attenuation)
and ampli�es the gradient further inside the material.

In Figs. 6 and 7 are shown similarly as above, the reconstructions with expo-
nential and arctangential parameter scalings in a comparison where the signal to
noise ratio is SNR = 30 dB and the regularization constant is either γ0 = 1 or
γ0 = 100. The case with SNR = 30 dB and γ0 = 1 represents a situation where the
regularization is insu�cient and the parameter values tend to diverge as with the
exponential scaling shown in Fig. 6. Note however, that the arctangential parameter
scaling still regularizes the problem by limiting the parameter values by the upper
and lower bounds as shown in Fig. 7. By increasing the regularization constant to
γ0 = 100, the regularization saturates and the parameters are forced to the known
background level. Hence, with SNR = 30 dB, it does not seem to be feasible to
retrieve the parameters accurately.

The reconstruction results in Figs. 4 through 7 can be compared and evaluated
against the principal parameter analysis which was discussed above and illustrated in



17

0 5 10
14
15
16
17

0 5 10
14
15
16
17

0 5 10

1
2
3

0 5 10

1
2
3

0 5 10
14
15
16
17

0 5 10
14
15
16
17

0 5 10

1
2
3

0 5 10

1
2
3

0 5 10
14
15
16
17

0 5 10
14
15
16
17

0 5 10

1
2
3

0 5 10

1
2
3

0 5 10
14
15
16
17

0 5 10
14
15
16
17

0 5 10

1
2
3

0 5 10

1
2
3

0 5 10
14
15
16
17

0 5 10
14
15
16
17

0 5 10

1
2
3

0 5 10

1
2
3

ε (γ0 = 1) ε (γ0 = 100) σ
ω0

(γ0 = 1) σ
ω0

(γ0 = 100)

1

2

3

4

5

x/λ

Figure 6: Reconstruction for the one-dimensional inverse problem with exponential
parameter scaling. The graphs show the parameters ε and σ/ω0 versus x/λ, with
regularization constant γ0 = 1 and γ0 = 100, and iteration 1�5. The true parameter
values are shown as a dashed line. The signal to noise ratio is SNR = 30 dB.

Fig. 3. As was predicted by the principal Fisher information analysis, the inversion
problem is feasible (reconstruction works reasonably well) when the signal to noise
ratio is SNR = 50 dB and is unfeasible (inversion is either unstable or saturated)
when SNR = 30 dB. Furthermore, with the higher signal to noise ratio SNR = 50
dB, the behaviour of the inversion algorithm was (as predicted) rather independent
of the regularization constant for γ0 ≤ 1. In conclusion, the principal parameter
analysis worked well as an indicator to whether the inverse problem was feasible or
not, as well as an indicator to a proper choice of regularization constant.

7 Summary and conclusions

In this paper, a Fisher information based Bayesian approach is presented for analysis
and design of the regularization and preconditioning parameters used with gradient
based inverse scattering algorithms. In particular, a one-dimensional inverse problem
is considered where the permittivity and conductivity pro�les are unknown and the
input data consist of the scattered �eld over a certain bandwidth. A priori parameter
modelling with nonlinear exponential and arctangential parameter scalings is treated
and robust preconditioners are obtained by choosing the related scaling parameters
based on a Fisher information analysis of the known background.

The Bayesian approach and a principal parameter (singular value) analysis of
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Figure 7: Reconstruction for the one-dimensional inverse problem with arctangen-
tial parameter scaling. The graphs show the parameters ε and σ/ω0 versus x/λ, with
regularization constant γ0 = 1 and γ0 = 100, and iteration 1�5. The true parameter
values are shown as a dashed line. The signal to noise ratio is SNR = 30 dB.

the stochastic Cramér-Rao bound is used to investigate the regularization that is
necessary to achieve stable inversion, as well as to predict the feasibility of achieving
successful reconstruction in a given problem set-up. In particular, the Tikhonov
regularization scheme is put into a Bayesian estimation framework.

A time-domain least-squares inversion algorithm based on a quasi-Newton algo-
rithm together with an FDTD-electromagnetic solver has been employed in order
to generate the numerical examples. The numerical examples verify the principal
parameter analysis by considering low and high noise situations corresponding to
feasible and unfeasible inverse problem set-ups, respectively. In a low noise sit-
uation, the behaviour of the inversion algorithm is typically independent of the
regularization constant if the constant is below a certain limit which is predicted by
the principal parameter analysis. In a high noise situation, the inverse problem is
typically unfeasible (if the noise is high enough) and the regularization will saturate
the reconstruction, yielding the a priori known background as an output.
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