
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Time domain inversion techniques for electromagnetic scattering problems

Kristensson, Gerhard

1990

Link to publication

Citation for published version (APA):
Kristensson, G. (1990). Time domain inversion techniques for electromagnetic scattering problems. (Technical
Report LUTEDX/(TEAT-7011)/1-33/(1990); Vol. TEAT-7011). [Publisher information missing].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/586c4fd4-b26a-4668-814f-4a9cba30a319


Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
Sweden

CODEN:LUTEDX/(TEAT-7011)/1-33/(1990)

Time domain inversion techniques for
electromagnetic scattering problems

Gerhard Kristensson



Gerhard Kristensson

Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
P.O. Box 118
SE-221 00 Lund
Sweden

Editor: Gerhard Kristensson
c© Gerhard Kristensson, Lund, June 19, 2001



1

Abstract

This paper presents a review of and a comparison between two different meth-
ods to solve an inverse scattering problem in the time domain. The problem
is that of propagation of transient electromagnetic waves in spatially inho-
mogeneous slabs of finite length. The permittivity and conductivity profiles
are assumed to vary only with depth and the scattering problem is thus one-
dimensional. Several algorithms to solve the direct and inverse scattering
problems for continuous and discontinuous permittivity profiles are suggested.
Some of these algorithms have not been published before. The aim of this pa-
per is to compare and review these methods. More specifically, the numerical
performance of the invariant imbedding approach (layer-stripping) and the
Green functions formulation (downward continuation) is compared. Some
new results based upon time reversal techniques for a lossless slab are pre-
sented in an appendix.

Notation

c−2(z) = ε(z)µ0 u±(x, s) = 1
2

{
u(x, s) ∓

∫ s

0
ux(x, s

′)d s′
}

b(z) = σ(z)µ0 ρ(x) = r exp
{∫ 1

x
B(x′)d x′

}

x = x(z) =
∫ z

0
d z′

lc(z′) r = (1 − c1)/(1 + c1)

s = t/l τ(x) = 2t−(x, 1)/(1 + c1)

l =
∫ L

0
d z
c(z)

t±(x, y) = exp
{
±

∫ y

x
b±(x′)d x′

}
A(x) = − d

d x
ln c(z(x)) b±(x) = 1

2
{A(x) ±B(x)}

B(x) = −lb(z(x))c2(z(x)) g(1) = exp
{∫ 1

0
B(x′) dx′

}

c1 =
√

ε(L+)
ε(L−)

= c(L−)
c(L+)

a(1) = 1
2
b−(1)g(1)

1 Introduction

This paper is concerned with propagation of transient electromagnetic waves in lossy
spatially inhomogeneous slabs of finite length. A homogeneous lossless medium is
situated on either side of the slab and the permittivity and conductivity profiles
are assumed to vary only with depth. The direct scattering problem is to calculate
the scattering kernels from known permittivity and conductivity profiles. In the
inverse problem these profiles are calculated from finite time traces of scattering
data. These scattering problems have been analyzed both by scattering operator
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techniques (invariant imbedding), [3]– [6], and by Green functions techniques [7].
These two approaches are reviewed and compared in this paper. The two methods
will be referred to as the invariant imbedding method or the layer-stripping method
and the Green functions method or the downward continuation method, respectively.
Special emphasis is made in comparing the numerical performance of the various
algorithms in reconstructing the permittivity and conductivity profiles by using noisy
data.

In Refs. [3]– [6], several algorithms based upon iteration schemes are suggested.
In this paper, however, no attempts are made to cover these aspects of the inverse
scattering problem. Therefore, only algorithms that utilize the basic equations in a
non-iterative way are reviewed.

2 Basic equations

The geometry of the wave-scattering problem is such that the inhomogeneous slab
occupies the region 0 ≤ z ≤ L, see Figure 1. An electromagnetic plane wave is
launched in the region z < 0 exterior to the slab. This field impinges normally on
the medium, giving rise to an electric field E(z, t) within the slab, with E satisfying

Ezz(z, t) − c−2(z)Ett(z, t) − b(z)Et(z, t) = 0, (2.1)

where

c−2(z) = ε(z)µ0, b(z) = σ(z)µ0,

and µ0 is the permeability of vacuum. For simplicity, the permittivity profile is
assumed to be continuously differentiable and the conductivity is assumed to be
continuous in the interior of the slab. These assumptions can be relaxed. At the
back edge, z = L, both the permittivity and the conductivity can have a finite jump
discontinuity. In Ref. [5] it is shown that there is no loss of generality in assuming
that the permittivity profile is continuous at the front edge, z = 0. More explicitly,
the scattering problem with finite jump discontinuities in the permittivity profile at
the front and back edges, z = 0 and z = L, respectively, can always be reduced to
a problem with only a finite jump discontinuity at the back edge, z = L. In this
paper it is therefore assumed that the permittivity is continuous at the front edge.
This removal of jump discontinuities at the edges of the slab can also be carried
out at the back edge, z = L. It is, however, advantageous for the solution of the
inverse scattering problem to retain the back edge jump discontinuity, if there is one
present.

In order to facilitate the numerical computations a conversion to travel time
coordinates is made. These coordinates are defined as

x = x(z) =

∫ z

0

d z′

lc(z′)
,

s = t/l,

u(x, s) = E(z, t),
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0 L
z

ε1

σ = 0

ε(z)

σ(z)

ε2

σ = 0

Figure 1: The geometry of the slab.

where

l =

∫ L

0

d z

c(z)
.

This transformation maps the slab into the region [0, 1]. The time coordinate s is
normalized so that s = 1 is the time it takes for the wave front to travel through
the slab once. A round trip through the slab will then be s = 2. The wave equation
(2.1) then transforms into

uxx(x, s) − uss(x, s) + A(x)ux(x, s) +B(x)us(x, s) = 0, (2.2)

where

A(x) = − d

d x
ln c(z(x)),

B(x) = −lb(z(x))c2(z(x)).

From the knowledge of the two functions A(x) and B(x), the constant l, and the
value of ε(0), it is possible to reconstruct the depth z, the permittivity ε(z), and the
conductivity σ(z).



z(x) =
l√
µ0ε(0)

∫ x

0

exp

{
−

∫ x′

0

A(x′′) dx′′

}
dx′,

ε(z(x)) = ε(0) exp

{
2

∫ x

0

A(x′) dx′
}
, 0 < x < 1,

σ(z(x)) = −ε(0)B(x)

l
exp

{
2

∫ x

0

A(x′) dx′
}
.

(2.3)

The boundary conditions at the edges are the continuity in the transverse electric
and magnetic fields. With the assumptions made on the permittivity profile above,
these boundary conditions are

u(0+, s) = u(0−, s),

ux(0
+, s) = ux(0

−, s),
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at the front edge. The discontinuity in the permittivity profile at the back edge of
the slab, x = 1, however, gives a discontinuity in the spatial derivative of u(x, s).
The boundary conditions at the back edge are therefore

u(1+, s) = u(1−, s),

c1ux(1
+, s) = ux(1

−, s),

where

c1 =

√
ε(L+)

ε(L−)
=
c(L−)

c(L+)
.

This constant c1 is a measure of the jump discontinuity at the back edge. The
completely continuous profile then corresponds to c1 = 1, and the problem of a slab
with a perfectly conducting wall at x = 1 corresponds to c1 → ∞.

The keystone in the two formulations that are treated in this paper is the wave
splitting concept. The wave splitting is defined as [1]

u±(x, s) =
1

2

{
u(x, s) ∓

∫ s

0

ux(x, s
′)d s′

}
. (2.4)

This transformation is symbolically depicted in Figure 2. In a homogeneous lossless
region the wave splitting, (2.4), projects out the left- and right-going parts, respec-
tively, of the solution. In a non-homogeneous region, (2.4) generalizes this projection
always having

u(x, s) = u+(x, s) + u−(x, s),

everywhere.

0 1x
x

u−(x, s) u+(x, s)

Figure 2: The wave splitting.

3 Invariant imbedding formulation

This section presents the scattering operator formulation of the scattering problem
in an invariant imbedding setting.

Consider a subsection [x, 1] of the physical region [0, 1], see Figure 3. Mathemat-
ically, the original problem, [0, 1], is imbedded in a family of problems where the left
edge of the slab, x, is the parameter that is varied.
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0 x 1
x

u+(x, s)

u−(x, s)

Figure 3: The geometry of the subsection problem [x, 1].

3.1 Basic equations

The fields u+(x, s) and u−(x, s), defined at the position x, are related to each other
by the scattering operators. This relation is represented as an integral operator,
where the scattering kernels R+(x, s) and T (x, s) are defined for s > 0 by [5]


u−(x, s) = ρ(x)u+(x, s− 2(1 − x)) +

∫ s

0

R+(x, s− s′)u+(x, s′)d s′,

u+(1, s+ 1 − x) = τ(x)

{
u+(x, s) +

∫ s

0

T (x, s− s′)u+(x, s′)d s′
}
,

(3.1)

where 


ρ(x) = r exp

{∫ 1

x

B(x′)d x′
}

= ρ(0) exp

{
−

∫ x

0

B(x′)d x′
}
,

τ(x) = 2t−(x, 1)/(1 + c1),

r = (1 − c1)/(1 + c1),

and1



t±(x, y) = exp

{
±

∫ y

x

b±(x′)d x′
}
,

b±(x) =
1

2
{A(x) ±B(x)} .

The kernels R+(x, s) and T (x, s) can be interpreted as the reflection and the
transmission kernels, respectively, for the subsection [x, 1], where the medium to
the left of x is of constant permittivity ε(z(x)). The field u+(x, s) serves as an
incident field, while u−(x, s) is a reflected field, for this subsection problem. For
the special value x = 0, the physical reflection and transmission kernels for the
scattering problem are denoted R+(s) = R+(0, s) and T (s) = T (0, s), respectively.

1Note the sign change in the definition of t±(x, y) compared to [3]– [6].
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Hence, the reflection and transmission kernels, R+(s) and T (s), for the physical
region [0, 1] is imbedded in a family of subsection problems [x, 1] with reflection and
transmission kernels R+(x, s) and T (x, s), respectively.

The reflection kernel R+(x, s) satisfies a non-linear integro-differential equation
that is related to the Riccati equation. Lengthy but straightforward calculations
give the imbedding equation for the reflection kernel R+(x, s) [5]

R+
x (x, s) = 2R+

s (x, s) −B(x)R+(x, s) − b+(x)

∫ s

0

R+(x, s− s′)R+(x, s′)d s′

−2H(s− 2(1 − x))ρ(x)b+(x)R+(x, s− 2(1 − x)), s > 0, (3.2)

R+(1, s) = 0, s > 0,

R+(x, 0+) = −1

2
b−(x), 0 < x < 1, (3.3)

where H(s) is the Heaviside function H(s) =

{
0, s < 0,
1, s > 0.

The reflection kernel R+(x, s) is a continuous function except along the lines
s = 2(1 − x) and s = 4(1 − x) where the kernel has finite jump discontinuities.
These jumps are

[
R+(x, s)

]s=2(1−x)+

s=2(1−x)−
=

1

2
exp

{∫ 1

x

B(x′)d x′
}

×
{
r2b+(1) + b−(1) − 2r

∫ 1

x

b+(x′)b−(x′)d x′
}
, (3.4)

[
R+(x, s)

]s=4(1−x)+

s=4(1−x)−
= −1

2
ρ2(x)b+(x).

Similar to the derivation of the imbedding equation of the reflection kernel above,
it can be proved that the transmission kernel also satisfies an imbedding equation.
The imbedding equation for the transmission kernel T (x, s) is

Tx(x, s) = −b+(x)

{
R+(x, s) +

∫ s

0

T (x, s− s′)R+(x, s′)d s′

+H(s− 2(1 − x))ρ(x)T (x, s− 2(1 − x))
}
, s > 0, (3.5)

T (1, s) = 0, s > 0.

The transmission kernel is a continuous function except along the line s = 2(1 − x)
where the kernel has a finite jump discontinuity

[T (x, s)]
s=2(1−x)+

s=2(1−x)− = −1

2
ρ(x)b+(x).

Of fundamental importance for the analysis presented in this paper is the re-
solvent of the transmission kernel. The resolvent equation defines the propagator
kernel W (x, s).

T (x, s) +W (x, s) +

∫ s

0

T (x, s− s′)W (x, s′)d s′, s > 0. (3.6)
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The imbedding equation for the propagator kernel W (x, s) is similar to the one
for the transmission kernel.

Wx(x, s) = b+(x)

{
R+(x, s) +

∫ s

0

W (x, s− s′)R+(x, s′)d s′

+H(s− 2(1 − x))ρ(x)W (x, s− 2(1 − x))
}
, s > 0. (3.7)

The propagator kernelW (x, s) has a fundamental property that the other kernels
R+(x, s) and T (x, s) do not have. The propagator kernel W (x, s) has compact
support in [0, 2(1 − x)] and the value at s = 2(1 − x)− is

W (x, 2(1 − x)−) = −1

2
ρ(x)b+(x). (3.8)

This fact is used below in the solution of the inverse scattering problem.

3.2 Special case, c1 = 1

The special case of no back wall, c1 = 1, leads to simplifications. In this special case,
reflection from the right hand side is employed in the solution of the inverse problem.
The scattering kernel R−(x, s) is defined in analogy with the kernels R+(x, s) and
T (x, s) above, i.e., R−(x, s) is the reflection kernel for the subsection problem [x, 1]
for an excitation impinging from the right, z > L. The physical kernel is denoted
R−(s) = R−(0, s) in analogy with the notations R+(s) and T (s). The following
properties of the reflection kernel R−(x, s) are important for the solution of the
inverse problem [3]:

[
R−(x, s)

]s=2(1−x)+

s=2(1−x)−
= −1

2
b+(x) exp

{∫ 1

x

B(x′) dx′
}
, (3.9)

R−(x, s) = R−(0, s) = R−(s), s < 2(1 − x). (3.10)

4 The Green function formulation

The scattering operator representations between the fields u+(x, s) and u−(x, s) in
Section 3 are defined at the position x. It is also possible to relate the fields u+(x, s)
and u−(x, s) to the external excitation u+(0, s), see Figure 4.

0 1x
x

u+(0, s) u−(x, s) u+(x, s)

Figure 4: The fields u+(x, s) and u−(x, s) and the excitation u+(0, s).
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4.1 Basic equations

The definition of the Green functions for s > 0 are [7]


u+(x, s) = t−(0, x)

{
u+(0, s− x)

+

∫ s−x

0

G1(x, s− s′)u+(0, s′)d s′
}
,

u−(x, s) =
[
t+(0, x)

]−1
{
ρ(0)u+(0, s+ x− 2)

+

∫ s−x

0

G2(x, s− s′)u+(0, s′)d s′
}
.

(4.1)

These relations are derived in analogy with the ones in equation (3.1).
The Green functions satisfy a set of coupled partial differential equations, which

are derived in a similar manner as (3.2) [7]

∂xG1(x, s) + ∂sG1(x, s) = b+(x) exp

{
−

∫ x

0
B(x′)d x′

}
G2(x, s),

∂xG2(x, s) − ∂sG2(x, s) = b−(x) exp
{∫ x

0
B(x′)d x′

}
G1(x, s),

(4.2)

G1(0, s) = 0,

G2(1, s) = ρ(0)G1(1, s),

G1(x, x
+) = −1

2

∫ x

0

b+(x′)b−(x′)d x′,

G2(x, x
+) = −1

2
b−(x) exp

{∫ x

0

B(x′)d x′
}
. (4.3)

The Green functions G1(x, s) and G2(x, s) are continuous everywhere except
along the lines s = 2±x, whereG1(x, s) andG2(x, s) have finite jump discontinuities.

[G1(x, s)]
s=(2−x)+

s=(2−x)− =
1

2
b+(x)ρ(x), (4.4)

[G1(x, s)]
s=(2+x)+

s=(2+x)− = −1

2
b+(0)ρ(0),

[G2(x, s)]
s=(2−x)+

s=(2−x)− =
1

2
b−(1) exp

{∫ 1

0

B(x′)d x′
}

+
1

2
ρ(0)

{
−

∫ 1

0

b+(x)b−(x)d x−
∫ 1

x

b+(x′)b−(x′)d x′
}

+
1

2
rρ(0)b+(1). (4.5)

In addition to the jumps above, the Green function G2(x, s) has a finite jump
discontinuity at s = 4 − x.

[G2(x, s)]
s=(4−x)+

s=(4−x)− = −1

2
ρ(0)2b+(0).

The Green functions are, of course, related to the physical scattering operators
that were analyzed in Section 3. These relations between the Green functions and
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the scattering operators are given as relations at the boundaries of the slab, i.e., at
x = 0 and x = 1 as easily seen from (3.1) and (4.1). The result is{

G2(0, s) = R+(s),
G1(1, s+ 1) = T (s).

5 Extension of data

A very useful property, which also is the one that solves the inverse scattering
problems in Sections 7.1.1, 7.2.2, 8.1.2 and 8.2, is the concept of extension of data.
In Ref. [3] it is proved that one round trip of transmission data, i.e., T (s), 0 < s < 2,
suffices to uniquely calculate transmission data for later times, i.e., s > 2. This
extension concept relies on the special property that the propagator kernel W has
compact support in the time interval of one round trip. The extension of data can
be formulated for the subsection problem [x, 1], and the following equation holds:

T (x, s) +

∫ s

2(1−x)

W (x, s− s′)T (x, s′)d s′ = G(x, s), s > 2(1 − x), (5.1)

where

G(x, s) =




−
∫ 2(1−x)

s−2(1−x)

W (x, s− s′)T (x, s′)d s′, 2(1 − x) < s < 4(1 − x),

0, s > 4(1 − x).

If transmission data T (x, s) are known for one round trip, i.e., 0 < s < 2(1 − x),
then the function G(x, s) is known, since the propagator kernel W (x, s) is known
everywhere. Equation (5.1), which is a Volterra equation of the second kind, can
then be solved uniquely for the unknown transmission kernel T (x, s), s > 2(1 − x).

A similar extension property holds for the reflection data R±. However, this
time transmission data as well as reflection data have to be known for one round
trip in order to calculate the reflection data for times greater than one round trip.
Transmission data are needed to get the propagator kernel W . The basic equation
for extension of reflection data is [3]

R±(x, s) +

∫ s

2(1−x)

W (x, s− s′)R±(x, s′)d s′ =

g(x, s) − ρ(x)W (x, s− 2(1 − x)), s > 2(1 − x), (5.2)

where

g(x, s) =




−
∫ 2(1−x)

s−2(1−x)

W (x, s− s′)R±(x, s′)d s′, 2(1 − x) < s < 4(1 − x),

0, s > 4(1 − x).
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This is again a Volterra equation of the second kind for the unknown R±(x, s),
s > 2(1 − x).

Moreover, the Green functions, G1 and G2, satisfy a similar extension property
as the ones given for R±(x, s) and T (x, s) above. In particular, for G1 and G2 it can
be demonstrated that [7]

G1(x, s) +

∫ s

2−x

G1(x, s
′)W (0, s− s′) ds′ = F (x, s), s > 2 − x, (5.3)

G2(x, s) +

∫ s

2−x

G2(x, s
′)W (0, s− s′) ds′ = f(x, s), s > 2 − x, (5.4)

where

F (x, s) =




−W (0, s− x) −
∫ 2−x

x

G1(x, s
′)W (0, s− s′) ds′, 2 − x < s < 2 + x,

−
∫ 2−x

s−2

G1(x, s
′)W (0, s− s′) ds′, 2 + x < s < 4 − x,

0, s > 4 − x,

and

f(x, s) =




−
∫ 2−x

max(x,s−2)

G2(x, s
′)W (0, s− s′) ds′

− ρ(0)W (0, s+ x− 2), 2 − x < s < 4 − x,

0, s > 4 − x.

and where the propagator kernel W (0, s) is the resolvent kernel of the physical
transmission kernel, T (0, s) = T (s). Notice that these equations are Volterra second
kind equations for G1(x, s) and G2(x, s) above the line s = 2 − x, so once G1 is
known below that line, it is known above the line and similarly for G2.

6 Layer-stripping vs. downward continuation in

the lossless case

In this section inversion algorithms for the simpler case of a lossless profile, σ = 0,
are considered. This case is included in this paper merely for completeness. Some
new results, however, on the properties of the reflection and the transmission kernels
are found in Appendix A. These results are proved by employing the concept of time
reversion. Several new integral relations and inequalities for the reflection and the
transmission kernels are proved.

The inverse problem here is to find the permittivity profile ε(z) from a finite
time trace of reflection data. This inverse problem has been presented in [1] for the
scattering operator approach or layer-stripping method, but for completeness and
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comparison this method is reviewed here together with the approach based upon
the Green function approach. Numerical illustrations can be found in [1].

Sufficient data set for a reconstruction of the permittivity profile ε(z) is given in
Table 1 [1]. These data suffice for both the downward continuation and the layer-
stripping method. The two constants l and ε(0) are needed to transform the function
A(x) back to the physical quantities z(x) and ε(z), see (2.3).

Data set for inversion
R+(s), 0 < s < 2
l
ε(0)

Table 1: The data set for inversion of the lossless permittivity profile.

6.1 Layer-stripping

The inverse problem using the imbedding equations is solved by the following equa-
tions, which are special cases of (3.2) and (3.3):

R+
x (x, s) =

2R+
s (x, s) − 1

2
A(x)

∫ s

0

R+(x, s− s′)R+(x, s′)d x′, 0 < s < 2(1 − x), (6.1)

R+(x, 0+) = −1

4
A(x), (6.2)

and where 0 < x < 1.
The inversion algorithm using the invariant imbedding equations then proceeds

as follows:

1) Use (6.1) to implicitly step a portion of R+ forward in the x-direction to the
grid point (x1, 0), where x1 = x0 + h.

2) Compute A(x1) from (6.2).

3) Use (6.1) to implicitly step the remaining R+(x0, s) data forward in the x-
direction to the set of grid points at x1 for 0 < s < 2(1 − x1).

4) Repeat steps 1-3 to move one grid line deeper into the medium.
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6.2 Downward continuation

The inverse problem using the Green functions equations is solved by the following
equations, which are special cases of (4.2) and (4.3):


∂xG1(x, s) + ∂sG1(x, s) = 1

2
A(x)G2(x, s),

x < s < 2 − x,
∂xG2(x, s) − ∂sG2(x, s) = 1

2
A(x)G1(x, s),

(6.3)

G2(x, x
+) = −1

4
A(x), (6.4)

and where 0 < x < 1.
The inversion algorithm using the Green functions technique then proceeds as

follows:

1) Use (6.3) to implicitly step G2 forward in the x-direction to the grid point
(x1, x1), where x1 = x0 + h.

2) Compute A(x1) from (6.4).

3) Use (6.3) to implicitly step the remaining G1(x0, s) and G2(x0, s) data forward
in the x-direction to the set of grid points at x1 for x1 < s < 2 − x1.

4) Repeat steps 1-3 to move one grid line deeper into the medium.

This algorithm is, in general, one order of magnitude faster than the algorithm
based upon the invariant imbedding equation in Section 6.1, due to the absence of
convolution integrals.

7 Layer-stripping vs. downward continuation in a

lossy case with no back wall

This is the case of a completely continuous permittivity profile. With the notation
defined in Section 2, this corresponds to c1 = 1. Some special considerations have
already been given in Section 3.2. At present, it seems only the invariant imbedding
equations generate a robust method. This algorithm is presented in Section 7.1. Two
additional algorithms based upon the imbedding equations and the Green functions,
respectively, are presented in Section 7.2. These two inversion algorithms utilize a
smaller data set, and they are considerably less stable.

7.1 T , R+ and R− data given

The details of the inversion algorithm using the invariant imbedding equations given
in this section can be found in Refs. [3, 4]. No algorithm based upon the Green
functions technique is at present available that uses this data set.

The data set for inversion is given in Table 2 [4]. This data set implies that
measurements have to be performed with sources on both sides of the slab. This
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data set is the largest data set used in this paper. As in the lossless case the two
constants l and ε(0) are needed to transform the two functions A(x) and B(x)
back to the physical quantities z(x), ε(z) and σ(z), see (2.3). The constant g(1) =
t+(0, 1)t−(0, 1) is assumed to be extracted from the knowledge of t+(0, 1) and t−(0, 1)
through the transmission experiments [4].

Data set for inversion
R+(s), 0 < s < 2
R−(s), 0 < s < 2
T (s), 0 < s < 2

g(1) = exp
{∫ 1

0
B(x′) dx′

}
l
ε(0)

Table 2: The first data set for inversion of the continuous lossy permittivity
profile.

7.1.1 Layer-stripping

The jump in R−(x, s) at s = 2(1 − x), given by (3.9), can be rewritten using the
extension of data in (5.2). If equation (3.10) is also used the result is

∫ 2(1−x)

0

W (x, 2(1 − x) − s′)R−(0, s′)d s′ +R−(0, 2(1 − x)−)

=
1

2
b+(x) exp

{∫ 1

x

B(x′) dx′
}
. (7.1)

The inverse problem, i.e., to recover A(x) and B(x), using the invariant imbed-
ding equations is solved by employing the following equations as suggested in [4]:

R+
x (x, s) = 2R+

s (x, s) −B(x)R+(x, s)

−b+(x)

∫ s

0

R+(x, s− s′)R+(x, s′)d x′, 0 < s < 2(1 − x), (7.2)

Wx(x, s) =

b+(x)

{
R+(x, s) +

∫ s

0

W (x, s− s′)R+(x, s′)d s′
}
, 0 < s < 2(1 − x), (7.3)

R+(x, 0+) = −1

2
b−(x), (7.4)∫ 2(1−x)

0

W (x, 2(1 − x) − s′)R−(0, s′)d s′ +R−(0, 2(1 − x)−)

=
1

2
b+(x)g(1) exp

{
−

∫ x

0

B(x′) dx′
}
, (7.5)
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and where 0 < x < 1. These four equations are special cases of equations (3.2),
(3.7), (3.3) and (7.1).

The inversion algorithm using the invariant imbedding equations then proceeds
as follows:

1) Use (7.3) to explicitly step W from the current grid line x0 to the next grid
line x1 = x0 + h for 0 < s < 2(1 − x1).

2) Use (7.2) to implicitly step a portion of R+ forward in the x-direction to the
grid point (x1, 0).

3) To estimate A(x1) and B(x1), set x = x1 in (7.4) and (7.5). In this case, one
of these coefficients is found by solving a quadratic equation, and the other is
found by simple substitution.

4) Use (7.2) to implicitly step the remaining R+(x0, s) data forward in the x-
direction to the set of grid points at x1 for 0 < s < 2(1 − x1).

5) Repeat steps 1-4 to move one grid line deeper into the medium.

The accuracy of this algorithm can be considerably improved through the use of
iteration. All that needs to be done is to add the following steps after step 4:

4a) Use (7.3) to implicitly step W from the current grid line x0 to the next grid
line x1 for 0 < s < 2(1− x1). This can be done since A, B and R+ are known
(to some degree of accuracy) on the grid lines x0 and x1.

4b) Go to step 2.

7.1.2 Numerical experiments

Figures 5 and 6 illustrate the inversion of noise-free data using the layer-stripping
algorithm. More numerical examples are found in [4]. As seen from Figures 5 and 6
excellent agreement with the true profile is obtained in the reconstructions using the
data set in Table 2.

Figures 7 and 8 illustrate how the algorithm reconstructs the permittivity and
the conductivity profiles with noisy data. Gaussian noise with STD=0.05 has been
added to the reflection data, R+, R−, and the transmission data T . This correspond
to a S/N ratio of 5.4 for the reflection kernels, and 2.2 for the transmission kernel.
The reconstruction of the conductivity found in Figure 8 clearly demonstrates that
the reconstruction of the deeper portions of the medium is quite good in spite of fairly
noisy data. The reconstruction of the permittivity is always one order smoother than
the reconstruction of the conductivity, see (2.3). This algorithm, based upon the
imbedding equations, satisfies the criteria of stability very well.
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Figure 5: The reconstruction of the relative permittivity profile without a
back wall using noise-free R+, T and R− data. Three iterations to
improve the reconstruction in A(x) and B(x) are made.

7.2 T and R+ data given

This data set uses only measurements from an experiment with sources on one
side of the slab. However, the algorithms presented below are considerably less
robust compared with the one given in Section 7.1 that uses data from a two-sided
experiment. The lack of robustness is due to differentiation of data. This sensitivity
clearly shows up in the numerical illustrations in Section 7.2.3.

The data set for inversion is given in Table 3. This data set is smaller than the
one given in Table 2.

Data set for inversion
R+(s), 0 < s < 2
T (s), 0 < s < 2
l
ε(0)

Table 3: The second data set for inversion of the continuous lossy permit-
tivity profile.

7.2.1 Layer-stripping

In the layer-stripping algorithm presented in Section 7.1.1 the jump discontinuity in
the reflection kernel R− was used in recovering the functions A(x) and B(x). In this
algorithm, the jump discontinuity in the reflection kernel R+(x, s) at s = 2(1 − x)
is utilized.
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Figure 6: The reconstruction of the conductivity profile without a back wall
using noise-free R+, T and R− data. Three iterations to improve
the reconstruction in A(x) and B(x) are made.

The propagator kernel W (x, s) is continuous at s = 2(1 − x) and W (x, 2(1 −
x)+) = W (x, 2(1 − x)−) = 0, see (3.8). This yields

[Wx(x, s)]
s=2(1−x)+

s=2(1−x)− = 2 [Ws(x, s)]
s=2(1−x)+

s=2(1−x)− = −2Ws(x, 2(1 − x)−).

The jump condition of R+(x, s) at s = 2(1 − x), see (3.4), and the imbedding
equation for W (x, s), see (3.7), therefore, imply that

−2Ws(x, 2(1 − x)−) = b+(x)
[
R+(x, s)

]s=2(1−x)+

s=2(1−x)−

= b+(x)a(1) exp

{
−

∫ x

0

B(x′) dx′
}
, (7.6)

where a(1) = 1
2
b−(1) exp

{∫ 1

0
B(x′) dx′

}
.

The inverse problem using the invariant imbedding equations is solved by the
following equations:

R+
x (x, s) = 2R+

s (x, s) −B(x)R+(x, s)

−b+(x)

∫ s

0

R+(x, s− s′)R+(x, s′)d x′, 0 < s < 2(1 − x), (7.7)

Wx(x, s) =

b+(x)

{
R+(x, s) +

∫ s

0

W (x, s− s′)R+(x, s′)d s′
}
, 0 < s < 2(1 − x), (7.8)

R+(x, 0+) = −1

2
b−(x), (7.9)

Ws(x, 2(1 − x)−) = −1

2
b+(x)a(1) exp

{
−

∫ x

0

B(x′) dx′
}
, (7.10)



17

7

6

5

R
el

a
ti

ve
 p

er
m

it
ti

vi
ty

1086420
Depth (m)

 True profile
 Layer-stripping

Figure 7: The reconstruction of the relative permittivity profile without a
back wall using noisy data. Gaussian noise with STD=0.05 has
been added to the reflection data, R+, R−, and the transmission
data T . The data are smoothed once before inversion. Three iter-
ations to improve the reconstruction in A(x) and B(x) are made.

and where 0 < x < 1. These four equations are special cases of equations (3.2), (3.7),
(3.3) and (7.6). The value of the propagator kernel at one round trip, Ws(x, 2(1 −
x)−), is computed by numerical differentiation. The constant a(1) can be obtained
by extension of data since the jump discontinuity for the physical reflection kernel
R+(s) is, see (3.4) evaluated at x = 0

[
R+(s)

]s=2+

s=2−
= a(1).

The inversion algorithm using the invariant imbedding equations then proceeds
as follows:

1) Use (7.8) to explicitly step W from the current grid line x0 to the next grid
line x1 = x0 + h for 0 < s < 2(1 − x1).

2) Use (7.7) to implicitly step a portion of R+ forward in the x-direction to the
grid point (x1, 0).

3) To estimate A(x1) and B(x1), set x = x1 in (7.9) and (7.10). Ws(x, 2(1−x)−)
is computed by numerical differentiation. In this case, one of these coefficients
is found by solving a quadratic equation, and the other is found by simple
substitution.

4) Use (7.7) to implicitly step the remaining R+(x0, s) data forward in the x-
direction to the set of grid points at x1 for 0 < s < 2(1 − x1).

5) Repeat steps 1-4 to move one grid line deeper into the medium.
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Figure 8: The reconstruction of the conductivity profile without a back wall
using noisy data. Gaussian noise with STD=0.05 has been added to
the reflection data, R+, R−, and the transmission data T . The data
are smoothed once before inversion. Three iterations to improve the
reconstruction in A(x) and B(x) are made.

The accuracy of this algorithm can be considerably improved through the use of
iteration. All that needs to be done is to add the following steps after step 4:

4a) Use (7.8) to implicitly step W from the current grid line x0 to the next grid
line x1 for 0 < s < 2(1− x1). This can be done since A, B and R+ are known
(to some degree of accuracy) on the grid lines x0 and x1.

4b) Go to step 2.

7.2.2 Downward continuation

The inversion algorithm using the Green functions equations is developed in a similar
way to the one in Section 7.2.1 above. The algorithm utilizes the jump discontinuity
in the time derivative in the Green function G1 at s = 2 − x.

The Green functionG1 is continuous along the line s = 2−x, see (4.4). Therefore,

[∂xG1(x, s)]
s=(2−x)+

s=(2−x)− = [∂sG1(x, s)]
s=(2−x)+

s=(2−x)− ,

or using (4.2) and (4.5)

[∂sG1(x, s)]
s=(2−x)+

s=(2−x)− =
1

2
a(1)b+(x) exp

{
−

∫ x

0

B(x′)d x′
}
, (7.11)

where a(1) = 1
2
b−(1) exp

{∫ 1

0
B(x′) dx′

}
. The value of ∂sG1(x, (2 − x)+) can be

computed using the concept of extension of data in Section 5. Differentiate (5.3)
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with respect to s and let s = (2 − x)+. The result is

∂sG1(x, (2 − x)+) = W (0, 0)

{
W (0, 2(1 − x)+)

+

∫ 2−x

x

G1(x, s)W (0, 2 − x− s) ds
}

−Ws(0, 2(1 − x)+) −
∫ 2−x

x

G1(x, s)∂sW (0, 2 − x− s) ds.

(7.12)

The inverse problem using the Green functions equations is solved by the use of
the following equations:


∂xG1(x, s) + ∂sG1(x, s) = b+(x) exp

{
−

∫ x

0

B(x′)d x′
}
G2(x, s),

∂xG2(x, s) − ∂sG2(x, s) = b−(x) exp

{∫ x

0

B(x′)d x′
}
G1(x, s),

(7.13)

for x < s < 2 − x and

G2(x, x
+) = −1

2
b−(x) exp

{∫ x

0

B(x′)d x′
}
, (7.14)

W (0, 0)

{
W (0, 2(1 − x)+) +

∫ 2−x

x

G1(x, s
′)W (0, 2 − x− s′) ds′

}

−Ws(0, 2(1 − x)+) −
∫ 2−x

x

G1(x, s
′)∂sW (0, 2 − x− s′) ds′

− ∂sG1(x, (2 − x)−) =
1

2
a(1)b+(x) exp

{
−

∫ x

0

B(x′)d x′
}
,

(7.15)

and where 0 < x < 1. These four equations are (4.2), (4.3) and a combination
of (7.11) and (7.12). ∂sG1(x, (2 − x)−) and Ws(0, s) are computed by numerical
differentiation and the constant a(1) can be obtained by extension of data in the
same way as in Section 7.2.1.

The inversion algorithm using Green functions then proceeds as follows:

1) Use (7.13) to explicitly step G1 and G2 from the current grid line x0 to the
next grid line x1 = x0 + h for x1 < s < 2 − x1.

2) To estimate A(x1) and B(x1), set x = x1 and use (7.14) and (7.15). The
values ∂sG1(x, (2 − x)−) and Ws(0, 2(1 − x)+) are computed by numerical
differentiation. In this case, one of these coefficients is found by solving a
quadratic equation, and the other is found by simple substitution.

3) Repeat steps 1 and 2 to move one grid line deeper into the medium.

The accuracy of this algorithm can be considerably improved through the use of
iteration. All that needs to be done is to add the following steps after step 2:
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2a) Use (7.13) to implicitly step G1 and G2 from the current grid line x0 to the
next grid line x1 for x1 < s < 2 − x1. This can be done since A and B are
known (to some degree of accuracy) on those grid lines.

2b) Go to step 2.

To initiate the inversion algorithm, it is easy to use the following equations to find
the unknown A(0) and B(0), see (3.3) and (7.6) for x = 0:

R+(0) = −1

2
b−(0),

Ws(0, 2
−) = −1

2
b+(0)a(1).

7.2.3 Numerical experiments

The downward continuation algorithm given in Section 7.2.2 is, in general, one order
of magnitude faster compared to the layer-stripping algorithm in Section 7.2.1, due
to the absence of convolution integrals in the main equation (7.13).

Figures 9 and 10 illustrate the inversion of noise-free data. It is clearly seen
that the algorithm presented in Section 7.1.1 using the complete data set R±(s)
and T (s), see Figures 5 and 6, is superior to the algorithms using only one-sided
reflection data and transmission data, viz. R+(s) and T (s). No illustrations with
noisy data are presented. These algorithms are too sensitive to give any reasonable
results with noisy data.
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Figure 9: The reconstruction of the relative permittivity profile without a
back wall using noise-free R+ and T data. Three iterations to
improve the reconstruction in A(x) and B(x) are made.
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Figure 10: The reconstruction of the conductivity profile without a back wall
using noise-free R+ and T data. Three iterations to improve the
reconstruction in A(x) and B(x) are made.

8 Layer-stripping vs. downward continuation in a

lossy case with a back wall

A finite jump discontinuity in the permittivity profile at the back edge, x = 1,
simplifies the inversion algorithms and less data are required to get stable inversion
algorithms. The theoretical aspects of this problem using the invariant imbedding
equations are developed in Refs. [5, 6]. The main algorithms are summarized and
illustrated below. They both rely on the information extracted from the propagator
kernel W . Two different ways of obtaining this kernel are given here. The first
one, when transmission data are available, is obvious. The resolvent equation (3.6)
is solved for W at x = 0. The second way of obtaining W is more involved and a
Fredholm integral equation of the second kind has to be solved. This method is also,
as expected, less stable than the first one that relies on a Volterra integral equation
of the second kind.

8.1 T and R+ data given

The data set for inversion is given in Table 4. This data set consists of two kernels,
one reflection and one transmission kernel measured for one round trip, and three
constants.

Data set for inversion
R+(s), 0 < s < 2
T (s), 0 < s < 2
ρ(0)
l
ε(0)
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Table 4: The first data set for inversion of the discontinuous lossy permit-
tivity profile.

The transmission kernel in this data set is used to obtain the propagator kernel
W (s) using the resolvent equation (3.6) at x = 0. The constants l and ε(0) are needed
to transform the two functions A(x) and B(x) back to the physical quantities z(x),
ε(z) and σ(z), see (2.3). The constant ρ(0) is assumed to be extracted from the
scattering experiments, see (3.1).

8.1.1 Layer-stripping

The algorithm based on the invariant imbedding equations is presented in detail in
Refs. [5, 6]. The inverse problem is solved by using the following equations:

R+
x (x, s) = 2R+

s (x, s) −B(x)R+(x, s)

−b+(x)

∫ s

0

R+(x, s− s′)R+(x, s′)d x′, 0 < s < 2(1 − x), (8.1)

Wx(x, s) =

b+(x)

{
R+(x, s) +

∫ s

0

W (x, s− s′)R+(x, s′)d s′
}
, 0 < s < 2(1 − x), (8.2)

R+(x, 0+) = −1

2
b−(x), (8.3)

W (x, 2(1 − x)−) = −1

2
ρ(0)b+(x) exp

{
−

∫ x

0

B(x′) dx′
}
, (8.4)

and where 0 < x < 1. These equations are (3.2), (3.7), (3.3) and (3.8).
The inversion algorithm using the invariant imbedding equations then proceeds

as follows:

1) Use (8.2) to explicitly step W from the current grid line x0 to the next grid
line x1 = x0 + h for 0 < s < 2(1 − x1).

2) Use (8.1) to implicitly step a portion of R+ forward in the x-direction to the
grid point (x1, 0).

3) To estimate A(x1) and B(x1), set x = x1 in (8.3) and (8.4). In this case, one
of these coefficients is found by solving a quadratic equation, and the other is
found by simple substitution.

4) Use (8.1) to implicitly step the remaining R+(x0, s) data forward in the x-
direction to the set of grid points at x1 for 0 < s < 2(1 − x1).

5) Repeat steps 1-4 to move one grid line deeper into the medium.

The accuracy of this algorithm can be considerably improved through the use of
iteration. All that needs to be done is to add the following steps after step 4:
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4a) Use (8.2) to implicitly step W from the current grid line x0 to the next grid
line x1 for 0 < s < 2(1− x1). This can be done since A, B and R+ are known
(to some degree of accuracy) on the grid lines x0 and x1.

4b) Go to step 2.

8.1.2 Downward continuation

The inversion problem using the Green functions equations is solved by the use of
the following equations:


∂xG1(x, s) + ∂sG1(x, s) = b+(x) exp

{
−

∫ x

0

B(x′)d x′
}
G2(x, s),

∂xG2(x, s) − ∂sG2(x, s) = b−(x) exp

{∫ x

0

B(x′)d x′
}
G1(x, s),

(8.5)

for x < s < 2 − x and

G2(x, x
+) = −1

2
b−(x) exp

{∫ x

0

B(x′)d x′
}
, (8.6)

W (0, 2(1 − x)+) +

∫ 2−x

x

G1(x, s
′)W (0, 2 − x− s′) ds′ +G1(x, (2 − x)−)

= −1

2
ρ(0)b+(x) exp

{
−

∫ x

0

B(x′) dx′
}
,

(8.7)

and where 0 < x < 1. These equations are (4.2), (4.3) and a combination of (5.3),
evaluated at s = (2 − x)+, and (4.4).

The inversion algorithm using the Green functions then proceeds as follows:

1) Use (8.5) to explicitly step G1 and G2 from the current grid line x0 to the next
grid line x1 = x0 + h for x1 < s < 2 − x1.

2) To estimate A(x1) and B(x1), set x = x1 and use (8.6) and (8.7). In this
case, one of these coefficients is found by solving a quadratic equation, and
the other is found by simple substitution.

3) Repeat steps 1 and 2 to move one grid line deeper into the medium.

The accuracy of this algorithm can be considerably improved through the use of
iteration. All that needs to be done is to add the following steps after step 2:

2a) Use (8.5) to implicitly step G1 and G2 from the current grid line x0 to the
next grid line x1 for x1 < s < 2 − x1. This can be done since A and B are
known (to some degree of accuracy) on those grid lines.

2b) Go to step 2.
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8.1.3 Numerical experiments

The downward continuation algorithm presented in Section 8.1.2 is, in general, one
order of magnitude faster that the the layer-stripping algorithm in Section 8.1.1,
due to the absence of convolution integrals in the main equation (8.5).

The algorithms based upon the invariant imbedding equations in Section 8.1.1
and the Green functions approach in Section 8.1.2 are illustrated in this section.
Figures 11 and 12 give the typical performance of the algorithms using noise-free
data. Excellent reconstructions are obtained using the data set in Table 4.

In Figures 13 and 14 the performance of the algorithms in Sections 8.1.1 and
8.1.2 are illustrated using noisy data. Note that the two algorithms both give recon-
structions that are very similar (in Figures 13 and 14 the difference are not resolved).
The two algorithms, layer-stripping and the downward continuation, are, however,
very different. Nevertheless, they both reconstruct almost identical profiles from the
noisy reflection and transmission data. This property provides an indication of the
stability of the two algorithms.
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Figure 11: The reconstruction of the relative permittivity profile using noise-
free data R+ and T . The constant c1 = 2. Three iterations to
improve the reconstruction in A(x) and B(x) are made.

8.2 R+ data given for two round trips

In Section 8.1 reflection data and transmission data are used to reconstruct the
permittivity and the conductivity profiles. The transmission data are only used to
obtain the propagator kernel W (s). It is, however, interesting to find that there
is a second independent way of obtaining the propagator kernel W (s) without any
transmission data. This data set consists of only reflection data measured for two
round trips, see Table 5.
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Figure 12: The reconstruction of the conductivity profile using noise-free data
R+ and T . The constant c1 = 2. Three iterations to improve the
reconstruction in A(x) and B(x) are made.

Data set for inversion
R+(s), 0 < s < 4
ρ(0)
l
ε(0)

Table 5: The second data set for inversion of the discontinuous lossy permit-
tivity profile.

Since only reflection data are needed, the receiver and the transmitter are situ-
ated on the same side of the slab. In many situations this can be advantageous, e.g.
when there is no possibility to access the other side of the slab.

The propagator kernel W (0, s) is then found by solving the following Fredholm
integral equation of the second kind:

R+(0, s+ 2) + ρ(0)W (0, s)

+

∫ 2

0

W (0, s′)R+(0, s+ 2 − s′)d s′ = 0, 0 < s < 2.
(8.8)

This equation is derived in Ref. [6]. If the reflection kernel R+(s) is known for two
round trips, 0 < s < 4, then (8.8) is a Fredholm integral equation of the second kind
for the unknown propagator kernel W (s), 0 < s < 2.

The inversion algorithms then proceed exactly as in Sections 8.1.1 and 8.1.2.

8.2.1 Numerical experiments

Figures 15 and 16 illustrate the inversion using noise-free data given by Table 5.
Once again, excellent reconstructions are obtained.
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Figure 13: The reconstruction of the relative permittivity profile using noisy
data. Gaussian noise with STD=0.05 has been added to the reflec-
tion data R+ and the transmission data T . The data are smoothed
once before inversion. The constant c1 = 2. Three iterations to
improve the reconstruction in A(x) and B(x) are made.

In Figures 17 and 18 reconstructions using noisy data are depicted. The two
algorithms, layer-stripping and downward continuation, both give reconstructions
that are very similar (the differences are not resolved in the scale given in the
figures). For additional comments, see Section 8.1.3. A comparison between the
reconstructions in this section using data in Table 5, and the reconstructions in
Section 8.1 using data given in Table 4, immediately shows that the latter data set
gives more accurate reconstructions. This becomes obvious when noisy data are
used, compare Figures 13 and 14 and Figures 17 and 18. This difference in accuracy
is due to the way the propagator kernel is obtained. In Section 8.1 the propagator
kernel was obtained by solving a Volterra integral equation of the second kind, see
(3.6), but in this section a Fredholm integral equation of the second kind, see (8.8),
is solved.

9 Conclusions

In this paper a review of transient electromagnetic wave propagation in lossy slabs
is presented. Some old algorithms are discussed and several new ones are presented.
In particular, the numerical performances of the algorithms have been compared
for both noise-free and noisy data. In an Appendix some new results on integral
identities and inequalities using time reversal arguments are presented.
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Figure 14: The reconstruction of the conductivity profile using noisy data.
Gaussian noise with STD=0.05 has been added to the reflection
data R+ and the transmission data T . The data are smoothed
once before inversion. The constant c1 = 2. Three iterations to
improve the reconstruction in A(x) and B(x) are made.

Appendix A Time reversal results for the lossless

slab

In this appendix some new results are presented using time reversion arguments. The
slab is in this entire appendix assumed to be lossless and continuous, i.e., B(x) = 0
and c1 = 1. Consider a two way excitation of the slab; one from the left, u+(0, s),
and one from the right, u−(1, s), see the space-time diagram in Figure 20.

The relation between the excitation and the response is represented as the scat-
tering operators [2]2

u−(0, s) =

∫ s

−∞
R+(s− s′)u+(0, s′)d s′

+t+
{
u−(1, s− 1) +

∫ s−1

−∞
T (s− 1 − s′)u−(1, s′)d s′

}
, (A.1)

u+(1, s) =

∫ s

−∞
R−(s− s′)u−(1, s′)d s′

+t−
{
u+(0, s− 1) +

∫ s−1

−∞
T (s− 1 − s′)u+(0, s′)d s′

}
, (A.2)

where

t± = exp

{
±1

2

∫ 1

0

A(x′)d x′
}
.

2In Ref. [3] it is shown that the two transmission kernels (transmission from left to right and
from right to left, respectively) are identical.
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Figure 15: The reconstruction of the relative permittivity profile using noise-
free reflection data R+ for two round trips. The constant c1 = 2.
Three iterations to improve the reconstruction in A(x) and B(x)
are made.

In the time reversed configuration of the original problem the excitations, u+(0, s)
and u−(1, s), and the responses, u−(0, s) and u+(1, s), are reversed, see Figure 19.
The following representations hold since the underlying PDE, see (2.2) with B(x) =
0, is invariant under time reversion and the scattering kernels R+(s), T (s) and R−(s)
are independent of the excitation:

u+(0,−s) =

∫ s

−∞
R+(s− s′)u−(0,−s′)d s′

+t+
{
u+(1,−(s− 1)) +

∫ s−1

−∞
T (s− 1 − s′)u+(1,−s′)d s′

}
, (A.3)

u−(1,−s) =

∫ s

−∞
R−(s− s′)u+(1,−s′)d s′

+t−
{
u−(0,−(s− 1)) +

∫ s−1

−∞
T (s− 1 − s′)u−(0,−s′)d s′

}
. (A.4)

Insert (A.1) and (A.2) into (A.3) and (A.4). Since the excitations, u+(0, s) and
u−(1, s), are arbitrary the following identities for the reflection kernels R±(s) and
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Figure 16: The reconstruction of the conductivity profile using noise-free re-
flection data R+ for two round trips. The constant c1 = 2. Three
iterations to improve the reconstruction in A(x) and B(x) are made.

the transmission kernel T (s) are derived:

H(s)T (s) +H(−s)T (−s) +

∫ ∞

max (0,−s)

T (s′)T (s+ s′) ds′

+

∫ ∞

max (0,−s)

R±(s′)R±(s+ s′) ds′ = 0,

H(s)R±(s) +H(2 − s)R∓(2 − s) +

∫ ∞

max (0,−s)

T (s′)R±(s+ s′) ds′

+

∫ ∞

max (0,s−2)

T (s′)R∓(2 − s+ s′) ds′ = 0,

(A.5)

where H(s) is the Heaviside function. In the first equation there is no loss of
generality to assume that s > 0 and the first equation then simplifies to

T (s) +

∫ ∞

0

T (s′)T (s+ s′) ds′ +

∫ ∞

0

R±(s′)R±(s+ s′) ds′ = 0, s > 0. (A.6)

From (3.5) and (3.3) it is easy to calculate the value of the transmission kernel
at s = 0+. Then take the s→ 0+ limit in (A.6). The result is∫ ∞

0

{
|T (s′)|2 + |R±(s′)|2

}
ds′ =

1

8

∫ 1

0

A2(x) dx,

from which it is seen that the reflection kernels R±(s) and the transmission kernel
T (s) are all square-integrable functions of the variable s. Additionally,∫ ∞

0

|R+(s′)|2 ds′ =

∫ ∞

0

|R−(s′)|2 ds′.
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Figure 17: The reconstruction of the relative permittivity profile using noisy
reflection data R+ for two round trips. Gaussian noise with
STD=0.05 has been added to the reflection data R+. The data
are smoothed once before inversion. The constant c1 = 2. Three
iterations to improve the reconstruction in A(x) and B(x) are made.

Moreover, equation (A.6) immediately implies that∫ ∞

0

R+(s′)R+(s+ s′) ds′ =

∫ ∞

0

R−(s′)R−(s+ s′) ds′, s > 0.

Furthermore, an application of the Hölder’s inequality gives∣∣∣∣
∫ ∞

0

T (s′)T (s+ s′) ds′
∣∣∣∣
2

≤
∫ ∞

0

|T (s′)|2 ds′
∫ ∞

s

|T (s′)|2 ds′,

and similarly for the kernels R±(s). From this inequality and (A.6) it is possible to
estimate the absolute value of the transmission kernel for all s > 0.

|T (s)| ≤
∣∣∣∣
∫ ∞

0

T (s′)T (s+ s′) ds′
∣∣∣∣ +

∣∣∣∣
∫ ∞

0

R±(s′)R±(s+ s′) ds′
∣∣∣∣

≤
√∫ ∞

0

|T (s′)|2 ds′
∫ ∞

s

|T (s′)|2 ds′ +
√∫ ∞

0

|R±(s′)|2 ds′
∫ ∞

s

|R±(s′)|2 ds′.

This inequality shows that

T (s) → 0, s→ ∞,

and

|T (s)| ≤
∫ ∞

0

{
|T (s′)|2 + |R±(s′)|2

}
ds′ =

1

8

∫ 1

0

A2(x) dx.
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Figure 18: The reconstruction of the conductivity profile using noisy reflection
data R+ for two round trips. Gaussian noise with STD=0.05 has
been added to the reflection data R+. The data are smoothed once
before inversion. The constant c1 = 2. Three iterations to improve
the reconstruction in A(x) and B(x) are made.

0 1

x

s

u−(0, s)

u+(0, s) u−(1, s)

u+(1, s)

Figure 19: Space-time diagram for the original problem.
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u−(0,−s) u+(1,−s)

u−(1,−s)

Figure 20: Space-time diagram for the time-reversed problem.

In an analogous way, it is straightforward to prove the following results from
(A.5) for the reflection kernels R±(s) for s > 2:

|R±(s)| ≤
√∫ ∞

0

|T (s′)|2 ds′
∫ ∞

s

|R±(s′)|2 ds′ +
√∫ ∞

0

|R∓(s′)|2 ds′
∫ ∞

s−2

|T (s′)|2 ds′.

This implies that

R±(s) → 0, s→ ∞,

and

|R±(s)| ≤ 2

√∫ ∞

0

|T (s′)|2 ds′
∫ ∞

0

|R±(s′)|2 ds′ ≤ 1

8

∫ 1

0

A2(x) dx, s > 2,

since

1

8

∫ 1

0

A2(x) dx− 2

√∫ ∞

0

|T (s′)|2 ds′
√∫ ∞

0

|R±(s′)|2 ds′

=

{√∫ ∞

0

|T (s′)|2 ds′ −
√∫ ∞

0

|R±(s′)|2 ds′
}2

≥ 0.
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