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Abstract
LSTM architectures (Hochreiter and Schmidhuber, 1997) have become standard to recognize named entities (NER) in text
(Lample et al., 2016; Chiu and Nichols, 2016). Nonetheless, Zhang et al. (2015) recently proposed an approach based on
fixed-size ordinally forgetting encoding (FOFE) to translate variable-length contexts into fixed-length features. This encoding
method can be used with feed-forward neural networks and, despite its simplicity, reach accuracy rates matching those of LTSMs
in NER tasks (Xu et al., 2017). However, the figures reported in the NER articles are difficult to compare precisely as the
experiments often use external resources such as gazetteers and corpora. In this paper, we describe an experimental setup,
where we reimplemented the two core algorithms, to level the differences in initial conditions. This allowed us to measure more
precisely the accuracy of both architectures and to report what we believe are unbiased results on English and Swedish datasets.

1. Introduction

Named entity recognition (NER) aims at identifying all the
names of persons, organizations, geographic locations, as
well as numeric expressions in a text. This is a relatively
old task of NLP that has applications in multiples fields
such as information extraction, knowledge extraction, prod-
uct recommendation, and question answering. Named en-
tity recognition is also usually the first step of named entity
linking, where the mentions of named entities, once recog-
nized, are disambiguated and linked to unique identifiers (Ji
and Nothman, 2016; Ji et al., 2017).

Over the time, NER has used scores of techniques start-
ing from hand-written rules, to decision trees, support vec-
tor machines, logistic regression, and now deep neural net-
works. The diversity of applications and datasets makes
it difficult to compare the algorithms and systems. Re-
searchers in the field quickly realized it and the committee
of the message understanding conferences (MUC) first de-
fined procedures for a systematic evaluation of NER perfor-
mance (Grishman and Sundheim, 1996). The CoNLL 2002
and 2003 conferences (Tjong Kim Sang, 2002; Tjong Kim
Sang and De Meulder, 2003) further developed them and
provided standardized annotations, multilingual datasets,
and evaluation scripts, that are still references today.

In spite of a continuous research, designing a perfect
domain-independent NER is still an unmet goal. New ideas
and architectures make that the state-of-the-art is improv-
ing every year. However, the figures reported in the NER
articles are difficult to compare precisely as the experiments
often involve external resources such as gazetteers and non-
published corpora.

In this paper, we describe an experimental setup, where
we reimplemented two of the best reported algorithms and
where we defined identical initial conditions. This allowed
us to measure more precisely the accuracy of both architec-
tures and to report what we believe are unbiased results on
English and Swedish datasets.

2. Previous Work

NER has been addressed by many techniques. Participants
in the MUC conferences, such as FASTUS, used exten-
sively gazetteers and regular expressions to extract the men-
tions (Appelt et al., 1993). The CoNLL conferences started
to distribute annotated corpora that enabled participants to
train classifiers such as logistic regression, decision trees,
perceptrons, often organized as ensembles. For a review of
early systems from 1991 to 2006, see Nadeau and Sekine
(2007).

With the advent of deep learning, long short-term mem-
ory architectures (LSTM) (Hochreiter and Schmidhuber,
1997) have become standard to recognize named entities.
Out of the 24 teams participating in the trilingual entity dis-
ambiguation and linking task (EDL) of TAC 2017, 7 used
bidirectional LSTMs — with varying degrees of success (Ji
etal., 2017).

Chiu and Nichols (2016) reported a score of 91.62 on
the CoNLL 2003 test set with LSTM and convolutional
neural networks (CNN) on character embeddings using the
development set and the training set to build their model;
Lample et al. (2016) used LSTM and conditional random
fields (CRF) and reached 90.94 on the same test set; Ma
and Hovy (2016) combined LSTM, CNN, and CRF and ob-
tained 91.21.

Parallel to the LSTM achievements, Zhang et al. (2015)
recently proposed an approach based on fixed-size ordi-
nally forgetting encoding (FOFE) to translate variable-
length contexts into fixed-length features. This encoding
method can be used with feed-forward neural networks and,
despite its simplicity, reach accuracy rates matching those
of LTSMs in NER tasks (Xu et al., 2017).

All the reported performance figures are now close and
may be subject to initialization conditions of random seeds.
See Reimers and Gurevych (2017) for a discussion on their
validity. In addition, all the experiments are carried out on
the same data sets, again and again, which may, in the long
run, entail some data leaks.



In this paper, we report experiments we have done with
reimplementations of two of the most accurate NER tag-
gers on English, to be sure we could reproduce the figures
and that we applied to the Swedish Stockholm-Umea cor-
pus (SUC) (Ejerhed et al., 1992).

3. Datasets and Annotations

Annotated datasets. As datasets, we used the English
corpus of CoNLL 2003, OntoNotes, and SUC, that bracket
the named entities with semantic categories such as loca-
tion, person, organization, etc. The corpora use either IOB
v1 or v2 as annotation tagsets. We converted the annotation
to IOBES, where S is for single-tag named entities, B, for
begin, E, for end, I, for inside, and O for outside. For the
bracketed example from CoNLL:

Promising 10th-ranked [5;75¢c American prrs¢]
[pEr Chanda Rubin pggr] has pulled out of
the [p7sc U.S. Open Tennis Championships
MmI1sc] with a wrist injury, tournament officials
announced.

the annotation yields:

Promising/O 10th-ranked/O American/S-MISC
Chanda/B-PER Rubin/E-PER has/O pulled/O
out/O of/O the/O U.S./B-MISC Open/I-MISC
Tennis/I-MISC Championships/E-MISC with/O
a/O wrist/O injury/O ,/O tournament/O offi-
cials/O announced/O ./JO

The CoNLL 2003 dataset is derived from the Reuters cor-
pus (RCV).

Word embeddings. For English, we used the pre-trained
Glove 6B embeddings (Pennington et al., 2014) and the
lower-cased 100 to 300 dimension variants. In addition,
we trained our own cased and lowercased embeddings us-
ing the Word2vec algorithm provided by the Gensim library
(liehﬁfek and Sojka, 2010). For Swedish, we used Swec-
tors (Fallgren et al., 2016) and we trained Swedish em-
beddings from the Swedish Culturomics Gigaword Corpus
(Eide et al., 2016).

4. Systems

We implemented two systems: one based on FOFE, which
is an extension to that of Klang et al. (2017) and Dib (2018)
and the second one on LSTM, taking up the work of Chiu
and Nichols (2016).

4.1 FOFE

The FOFE model can be seen as a weighted bag-of-words
(BoW). Following the notation of Xu et al. (2017), given a
vocabulary V', where each word is encoded with a one-hot
encoded vector and S = wi, ws, w3, ..., wy, an arbitrary
sequence of words, where e,, is the one-hot encoded vector
of the nth word in S, the encoding of each partial sequence
zn, 1s defined as:

b = {0, ifn=0 )

«-zZp_1+e,, otherwise,

where the o constant is a weight/forgetting factor which is
picked such as 0 < o < 1. The result of the encoding is a
vector of dimension |V|, whatever the size of the segment.

Features. The neural network uses both word and
character-level features. The word features extend over
parts of the sentence, while character features are only ap-
plied to the focus words: The candidates for a potential
entity.

Word-level Features. The word-level features use bags
of words to represent the focus words and FOFE to model
the focus words as well as their left and right contexts. As
context, we used all the surrounding words up to a max-
imum distance. The beginning and end of sentence are
explicitly modeled with BOS and EOS tokens, which have
been added to the vocabulary list.

Each word feature is used twice, both in raw text and nor-
malized lower-case text. The FOFE features are used twice,
both with and without the focus words. For the FOFE-
encoded features, we used a = 0.5. The complete list of
features is then the following:

e Bag of words of the focus words;

e FOFE of the sentence: starting from the left, exclud-
ing the focus words; starting from the left, including
the focus words; starting from the right, excluding the
focus words; and starting from the right, including the
focus words.

This means that, in total, the system input consists of 10
different feature vectors, where five are generated from the
raw text, and five generated from the lowercase text.

Character-Level Features. The character-level features
only model the focus words from left to right and right
to left. We used two different types of character features:
One that models each character and one that only models
the first character of each word. We applied the FOFE en-
coding again as it enabled us to weight the characters and
model their order. For these features, we used o« = 0.8.
Higher choice of alpha for character features matches the
original implementation. Our hypothesis is, using a higher
alpha for the FOFE encoded character features increases its
likelihood to remain salient during training.

Training. NER datasets are traditionally unbalanced with
regards to the negative outside class. To produce enough
positive examples to fit the model, we balanced every mini-
batch, so that it contains a constant and adjustable ratio of
positive and negative classes. The size of an epoch is de-
fined by the number of mini-batches we can fill with the
smallest class repeated 7' times.

4.2 LSTM

The LSTM model uses the sequential input directly, which
does not require any preprocessing. We feed the network
with the input sentences. Before training as a performance
optimization, we sorted all the sentences by length and
we then divided them into mini-batches. This reduces the
amount of masking, and thereby wasteful computations as
the majority of mini-batches will be of fixed length.



We use the same set of input features as Chiu and Nichols
(2016):

e Word-level, the matching word-embedding for the in-
put word or the unknown word embedding if the word
is not in our vocabulary.

e Word-character level, all the characters per word are
mapped to embeddings trained with the model. We
extracted the alphabet manually and the language is
specific.

e Word-case feature, per word class mapping such as
lower, upper, title, digits etc.

Architecture. The word-character level features are
passed through a convolution layer with a kernel of size 3
and a max-pooling layer with a window matching the max-
imum word length, resulting in a fixed-width character fea-
ture.

We tested LSTM cell sizes of dimension 100 and 200,
our character embedding set at 30, and a maximum word
length at 52. Dropout was set to 50% for recurrent LSTM
connections, character feature and before the output layer.
We observed that the output dropout had the greatest influ-
ence on the results.

All the word and character features are then concatenated
per word and fed to a single BILSTM layer consisting inter-
nally of two independent LSTM cells which represent the
forward and backward passes. The BILSTM output is the
concatenation of both passes. We computed the tag scores
for the BILSTM-CNN model using softmax from a single
dense layer. The BILSTM-CNN-CRF model replaces the
dense softmax layer with a CRF layer.

We used a negative log likelihood as loss function for the
BILSTM-CNN-CRF model and categorical crossentropy
for BILSTM-CNN.

5. Experimental Setup

We implemented all the models using Keras and Tensor-
flow as its backend. Early stopping was performed on all
the models with a patience ranging from 5 to 10 depend-
ing on model; the parameters from the best epoch were
selected for the resulting classifier. The word-embeddings
were preinitialized without any preprocessing or normal-
ization. In addition, we froze them during training but in a
future work we may enable training. All the models used
the Nadam optimizer.

Hyperparameters. We carried out a minimal hyperpa-
rameter search for BILSTM variants as usable parameters
could be found in previous work. However, we could not
use FOFE parameters as they produced poor results for
us. We performed a smaller hyperparameter search on the
CoNLL 2003 dataset to find more optimal parameters.

Evaluation. All the models produce IOBv2 annotations,
IOBES is postprocessed by simple rules into correct [OBv2
tags. The annotated datasets were evaluated using conlleval
from the CoNLL 2003 task, using tab delimiter instead of
space, this because SUC3 has tokens with spaces in them.
SUC3 is evaluated on the 4 statistically significant
classes instead of all 9: PERSON, PLACE, INST and

MISC. The MISC is the combination of the remaining 5.
Ontonotes 5 is evaluated on PERSON, GPE, ORG, NORP,
LOC and MISC using the same principle as SUC. Follow-
ing (Chiu and Nichols, 2016), we excluded the New Tes-
taments portion from Ontonotes 5 as it lacks goldstandard
annotations for NER.

For crossvalidation, we indexed all the sentences of the
full dataset and we randomly split the index into 10 folds;
this created 10 sets of indices. For each fold, we used one
of them as test set and the rest as training set. For the train-
ing part, we used a 90/10% split to create a validation part
which is used to determine when to stop training. Finally,
we combined the predictions of the test part in each fold,
10 of them, into one dataset which we evaluated to produce
the final score.

6. Results

BILSTM models outperform FOFE-CNN, as can be seen
in Table 1. We trained FOFE-CNN models on Ontonotes
5 and SUC 3 with similar settings as the CoNLL 2003
dataset, these parameters produced subpar models which
were not comparable without a new hyperparameter search.

Character features are important, as can be seen in Ta-
ble 3 with more substantial improvements for lowercase
embeddings. CRF improves the result for most embeddings
and larger networks appear to have mixed results.
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