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What is an Embedding?

A Problem for Category-theoretic Structuralism
PREPRINT

Staffan Angere

April 16, 2014

Abstract

This paper concerns the proper definition of embeddings in purely
category-theoretical terms. It is argued that plain category theory can-
not capture what, in the general case, constitutes an embedding of one
structure in another. We discuss three available solutions to this prob-
lem: variants of monics, concrete categories, and allegories. The first and
last of these are found to be unable to solve the problem, and the second
to be philosophically unsatisfactory. Instead, we introduce a theory of
forms and relators, which, like allegory theory, attempts to abstract from
relation algebras in the way that categories abstract from monoids, but
which does not have the shortcomings we have identified in allegories. We
show that the theory in question does indeed solve the problem of defining
embeddings.

1 Introduction

Category theory is often held up as furnishing a mathematical framework for
structuralism. Thus Awodey, when answering Hellman’s [13] question ‘Does
Category Theory Provide a Framework for Mathematical Structuralism?’ gives
the straightforward answer ‘yes, obviously’ [3]. And this seems quite right; in
category theory, we are generally dealing with properties definable only up to
isomorphism, as one would expect from a framework for structuralism. Further-
more, many important structural properties are definable entirely in category-
theoretic terms.

But a proper linguistic framework for structuralism should ideally fulfill two
criteria:

(i) it should be able to characterize all important structural relationships,
and

(ii) it should make it impossible to even talk about of non-structural relation-
ships.
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Of these, the second is somewhat less important. Standard category the-
ory, with its identity predicate defined on objects, does allow talk about non-
structural relationships, and this may tend to invite pseudo-questions such as
whether a natural numbers-object of one category is the same as a natural
numbers-object of another. But we can generally see which statements are
structural and which are not: for whole categories, a good rule of thumb is that
if a property is preserved by category equivalences, then it is structural. For
objects in a category, we have isomorphisms, which are definable from identities
among arrows. For the arrows themselves, 1-dimensonal category theory treats
identity as primitive, but higher-dimensional categories allow analyses of struc-
tural relationships between arrows as well. In the limit, we have ∞-categories,
in which it may be possible to do without identity at all. We will, however, not
delve into whether this is actually the case in this paper.

On the other hand, the first criterion is of prime importance. If there is an
important structural relationship for which we need, say, set theory, to give a
description of, then category theory is simply not rich enough to function as
an autonomous structuralist framework. I will argue here that we have reason
to think that this is indeed the case, and I will sketch a way to handle it. My
general purpose is not to attack the program of using category theory as a
language of structuralist mathematics, but only to point out a problem that has
to be solved if this program is to be carried out.

2 Embeddings and Substructures

The structural relationship I will argue is problematic is that of the embedding
of one structure inside another, or of being a substructure of another structure.
Informally, we say that structure A is embeddable in structure B iff structure A
is isomorphic to a part of structure B. Now, isomorphism is beautifully handled
by category theory, but, clearly, parthood is not. If there are two morphisms
f, g ∶ A → B, there is no way for us to say, category-theoretically, whether it
is through f or g that A is really inserted in B. A morphism is a way to fit
one object inside another, and the question of which way (if any) is actually
instantiated is a non-strucural question.

Looking at it from a structuralist viewpoint, this limitation is thus quite
reasonable. If an entity e gets its identity-conditions determined through the
relationships to all other entities in the structure, then talking about this entity
as apart from that very structure does not make sense. To give an example,
consider the natural number 2, defined as the second place in the number series.
If any thing is not the successor of 1, then this thing is not the number 2. Thus,
from this kind of structuralist point of view, it is not strictly correct to say that,
e.g. the even numbers form a part of the natural numbers, because the even
numbers themselves do not make sense without the odd ones. This is shown
by the fact that there can be no ‘even natural numbers-object’ which is not
isomorphic with the natural numbers-object, and thus, according to a popular
structuralist interpretation according to which isomorphism implies identity,
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identical with it. But proper parthood is, by definition, irreflexive, so parthood
cannot hold between N and the even numbers. This is rather similar to the
standpoint of Frege [11, §23–24], who, against Mill, questions whether it makes
sense to talk of abstract objects as standing in stand in parthood relations.

Thinking in set-theoretic terms, though, this conclusion may seem unwar-
ranted. Isn’t the set of even numbers a subset of N, at least when we have
identified N with some specific set, such as the initial segment of the von Neu-
mann ordinals? Of course it is, but subsethood is not necessairly parthood.
A’s being a subset of B is dependent on our interpretation of the membership
relation, which is given by the whole of set theory, as formulated in, say, ZFC.
Thus, interpreting numbers as von Neumann ordinals gives rise not only to the
dependence of the number 2 on the number 1, but also its dependence on the
ordinal ε0. While subset relations are definable in ZFC, subsets (or subclasses)
of a model of ZFC do not thereby constitute independent parts of it, since they
cannot be specified without reference to a model of the whole of ZFC.

This points to the lesson that, at least on one interpretation, structuralist
mathematics is holistic in a very radical sense. The things having a structure
may very well stand in parthood relations, and the structures these things have
determine which things can be parts of which through the condition that a can
be a part of b iff the structure of a is embeddable in the structure of b. But the
structures themselves should not be said to have parts. As we mentioned, this
can be seen just from the fact that if a is a part of b, then a is included in a
specific way in b, but there are generally many ways to include one structure in
another.

The concept of substructure is intimately tied to that of embedding. As
we have seen, talking about parts of a structure is, strictly speaking, senseless.
But we can still introduce a notion of substructure, which is quite compatible
with this viewpoint: we say that a substructure of A is a structure B for which
there is an embedding m ∶ B → A. Perhaps “subobject” would have been a
better word, but we will reserve this notion for the standard category-theoretic
definition.

Dual to the embedding concept is that of quotient structure: informally, a
structure in which parts of another structure have been identified. A classic ex-
ample comes from model theory, where the ultraproduct construction proceeds
by taking the quotient of a structure. Because of the dualities of category the-
ory, much of what we say about embeddings will be applicable to quotients as
well. We will, however, usually not say how the discussion transfers explicitly.

For our framework, we want both the notion of substructure and that of
embedding to designate constructions in the language of category theory. A
straightforward intuitive interpretation is the following: take a structure species1

to be a category C, and take the objects of this category to represent structures
of species C. There are two questions we need to separate here: the first is
when one species of structure is embeddable in another, and the second when a

1The name comes from Bourbaki [6, ch. IV.4], who use it to denote what is basically a set
of structures.
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structure of one species is embeddable in another. If we take structure species to
be categories, the first question is easily answered through the use of functors.
For example, the one-object category N, with arrows as natural numbers and
composition as addition, has a faithful functor to the one-object category Z,
obtained by adding inverses to the arrows in N. Such a functor is very reasonable
to take as an embedding.

On the other hand, the second problem is far more difficult: the categorical
language treats objects as featureless points, whose properties are given only by
their role as domains or codomains for morphisms. The problem is the following:
taking the morphisms of C to represent structure-preserving mappings between
the objects, we want to identify a subclass emb of these, and for each object A
a class of objects sub(A), such that

(i) B ∈ sub(A) iff there is a (not necessarily unique) m ∶ B → A such that
m ∈ emb,

(ii) B ∈ sub(A) iff B is a substructure of A, and

(iii) m ∈ emb iff m is an embedding.

The classes, moreover, are to be identified purely through equations among
arrows, and their domains and codomains. Furthermore, this identification is
to be applicable to all, or at least a large part, of the categories that contain
mathematical structures as objects and have structure-preserving maps as mor-
phisms.

The three conditions are just elucidations of what we want, and do not at
all tell us which classes emb and sub(A) are. What they mean internally to the
objects in question depends on which category we are considering, and indeed it
seems hard to say something that is both general and exact about them. Some
attempts are the following:

• An embedding is a map m ∶ A → B such that the image of A under m is
isomorphic to A.

• B is a substructure of A iff any object with the structure A has a part
with the structure B.

• m is an embedding iff, whenever it factors as g ○ f , f ’s being surjective is
sufficient for f to be an isomorphism.

All of these, however, also depend on other concepts, which themselves seem
no easier to define. In view of these problems, it may be more informative, in
practice, to say something like this: the embeddings and subobjects of a mathe-
matical structure are those that are introduced as embeddings and subobjects in
a typical textbook on that type of structure. Below are a few examples, which
will also be useful later on.

• In Set, objects are sets and morphisms are functions. Isomorphism is one-
to-one correspondence. Embeddings are injective functions. Substructures
are subsets.
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• In Ord, objects are preordered sets and morphisms are monotone func-
tions. Isomorphism is order isomorphism, and embeddings are injective
functions m ∶ A → B such that m(x) ⩽ m(y) ⇔ x ⩽ y. The substruc-
tures of A are those subsets of A for which the inclusion function is an
embedding.

• In Top, objects are topological spaces and morphisms are continuous
functions. Isomorphism is homeomorphism. Embeddings are homeomor-
phisms onto subspaces, with the subspace topology. Substructures are
subspaces, again with the subspace topology.

• In ModΣ, objects are models of a first-order language with signature Σ
and morphisms are model homomorphisms. Isomorphism is model iso-
morphism. Embeddings are model embeddings, and substructures are
submodels.

It is, of course, easy to give many more examples. What is worth pointing
out is that, just as each structure, when introduced in mathematics, is given
with its associated structure-preserving mappings, it is also usually given with
its notions of isomorphism, embedding, and substructure. Isomorphism, as we
have mentioned, is definable from structure-preserving mapping using category
theory. Does the same hold for embedding and substructure? I will argue
that it does not, and that this means that, if category theory is to serve as
an autonomous framework for structuralism, we need to either expand it or to
otherwise somehow modify it.

3 The Many Shapes of Monomorphism

To a casual reader of the category-theoretic literature, it may seem like category
theory does contain versions of substructure or embedding, as embodied in the
notion of subobject. Recall that a subobject of an object A is an equivalence
class of monomorphisms m ∶X → A, with m1 and m2 deemed equivalent iff there
is an isomorphism f ∶ domm1 → domm2 such that m2 =m1 ○ f . If this does the
work of a subset relation, could we not say that an embedding is an isomorphism
to a subobject, or perhaps to the domain of some morphism in a subobject?
A quick glance at the definition of the equivalence relation in question shows
that if any morphism m fulfills this requirement, it is itself a subobject of A.
Therefore, all that is necessary for m to be an embedding into A in this sense
is that it should be a monomorphism with codomain A. A substructure, in our
sense, would then be the domain of a subobject. Is this a reasonable condition
for m to be an embedding?

The answer is, unfortunately, no. Every embedding should be monic: assume
that m ∶ A→ B is an embedding, and that f, g ∶ C → A are different morphisms.
Being different, we would expect the result of applying them to C to be different,
but m, being an embedding, should then insert this result just as it is into B,
and therefore we cannot have that m ○ f = m ○ g. But while this is true, many
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monics are not embeddings. In Set they are, as being a monomorphism is
sufficient for being an injective function. But the following are some of the
exceptions:

• In Ord, monomorphisms are injective monotone functions, but not em-
beddings. Consider the preordered set A = {a, b} with the order {(a, a),
(a, b), (b, b)}, and the preordered set B = {a′, b′, c′}, with the maximal
order in which every element is equivalent. The map f from A to B that
takes a to a′ and b to b′ is a monic, but it is not an embedding.

• In Top, monomorphisms are injective continuous functions, and not em-
beddings (which have to have an injective inverse). Take, for instance,
the identity function from a set A with the discrete topology to itself with
the indiscrete topology. So long as ∣A∣ > 2, f will not have a continuous
inverse, even if it is a monomorphism.

• In ModΣ, monomorphisms are injective model homomorphisms, but not
embeddings. We can have that f(x)Rf(y) without xRy even if f is a
monomorphism, but an embedding requires that the same relations hold
in the image as those that hold in the domain. As it is sometimes put, a
monomorphism preserves relations, but does not have to reflect them.

To find out what has to gone wrong, it is useful to make a number of informal
philosophical distinctions. We say that a mapping f between two structures A
and B reflects identity if the number of “elements” in the image of B are the
same as the number of elements of A, i.e. if, figuratively, for each a, b in the
image of f , f(a) = f(b) implies that a = b. We say that it preserves structure if,
for any a, b in A, if a stands in a certain relationship with b, then f(a) stands
in the same relationship with f(b) in B. For this to make sense, A and B must,
of course, be structures of the same type, so that it makes sense to talk about
‘the same relationship’. Finally, we say that f reflects structure if the converse
of structure-preservation holds.

We have not introduced the notion of preserving identity, since that is sup-
posed to hold for all functions or mappings. Since a morphism is meant to be
a structure-preserving mapping, we will furthermore take every morphism to
preserve structure. Indeed, it is reasonable to say that what morphisms there
are in a category determines what ‘structure-preserving’ means, and thus also
partly determines the meaning of ‘structure’. Thus, set structure is structure
preserved by functions, algebraic structure is structure preserved by homomor-
phisms, topological structure is structure preserved by continuous mappings,
etc.

Monics can often, reasonably, be said to reflect identity, i.e they do not
usually collapse the number of things in a structure.2 But they do not, however,

2This does not, actually, hold for quite all categories. In a construct, i.e. a category which
is concrete over Set, all mappings with injective underlying functions are monics, but even
then the converse does not hold unless the category contains a free object [1, p. 143].
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have to reflect structure. As in our example with preordered sets, relations may
hold in the image of a monic which did not hold in the preimage.

The natural reaction is to search for some stronger notion of monic, which
gives us a necessary and sufficient criterion for a morphism being an embed-
ding. And there is a large number of such strengthenings available: in order of
increasing strength, we have extremal, strong, swell, strict, and regular monics,
and at the top, the section, or split monic, which is a morphism f ∶ A→ B with
has a left inverse, i.e. for which there exists a morphism g ∶ B → A such that
g ○ f = 1A.

In Set the question is moot. Here, any monomormism from a non-empty set
is also a section, so all the variants more or less collapse into one. In categories
similar to Set, such as pretoposes, monics coincide with every variant up to the
regular one. But requiring every embedding to be a regular monic is too much.
In Haus, the category of Hausdorff spaces, only embeddings of closed subspaces
are regular monics, and in Rng, the category of rings, some embeddings (such
as that of Z in Q) are non-regular [1, p. 116].

So we had better look for something weaker. Taking a look at the other end of
the spectrum, let us consider the extremal monics. A monomorphism m is called
extremal iff, whenever m factors as m = f ○ e with e being an epimorphism, e is
an isomorphism. This is, in many cases, a rather sensible expression of what it
means to be an embedding. Consider the category Ord, and any monomorphic
non-embedding f ∶ A → B where B has all elements equivalent, but A contains
at least two elements a, b such that a ≰ b. Suppose that f factors as g ○ e, with
g being a simple insertion into B, i.e. an identity function on f[A]. Then e is
epic, but it cannot be an isormorphism, because that would have meant that
a ⩽ b would have held, and thus f is not extremal.

Conversely, let m ∶ A → B be an order embedding, factorized as f ○ e with
e epic. Since e is the first factor of a monic, it has to be monic as well, so set-
theoretically it has an inverse. Now assume that e(a) ⩽ e(b) but a ≰ b. Because
f is a morphism, i.e. monotone, we must then have that f(e(a)) ⩽ f(e(b)).
But this contradicts the facct that m is an embedding, so not only is e−1 a
well-defined function, but an isomorphism as well.

There are three main problems with taking embeddings to be exactly the
extremal monomorphisms. The first concerns their logical properties, the second
that they in some cases are too weak, and the third that they are sometimes
too strong.

As for the logical problem, it concerns the fact that it is quite possible
for the composition of two extremal monics to not itself be extremal. This is
different from embeddings, since the composition of two embeddings is always
an embedding itself. This may be handled by explicitly requiring transitivity,
e.g. by letting an embedding be an extremal monic m ∶ A → B such that, for
any extremal monics f, g such that cod f = A and dom g = B, both m ○ f and
g○m are extremal. One could also use the next strengthening of monics—strong
monics—instead, as these are closed under composition.

In addition to reinstating closure under composition, taking strong rather
than extremal monics to be embeddings may be thought to somewhat lessen
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the force of the second problem, since it consists in extemal monics sometimes
being too weak to be able to capture the notion of embedding. But consider the
full subcategory of Top which consists of only the set {a, b} with the discrete
topology, and the set {a, b, c} with the indiscrete topology. The insertion of A
into B is continuous, and thus a morphism, and it is quickly checked to be a
strong monic, but it is still not an embedding in the topological sense.

However, the largest problem is not that of weakness. The known examples
of categories in which extremal or strong monics are weaker than embeddings
often quite unnatural or, like the one we gave, arbitrary limitations of other
categories (cf. [1, p. 135]). Much worse is the fact that in several important
categories, embeddings are strictly weaker than extremal monics, and ipso facto
also strictly weaker than the isomorphically extremal version.

For an example, consider the category of rings, and the insertion h of N into
Z. This is a classic example of a monomorphic epimorphism that is still not
an isomorphism, and it is also an embedding. But take the factorisation of h
as 1Z ○ h; this gives a diagram of the type used in the definition of extremal
monics, but h is not an isomorphism. More generally, such a problem appears
in any category which is not balanced, i.e. in which an arrow can be monomor-
phic and epimorphic without being an isomorphism. Conversely, in a balanced
category, every monomorphism is extremal, and since monos are closed under
composition, so are the extremal monos in such a category.

We could thus try to bite the bullet and say that the notion of embed-
ding strictly only applies in balanced categories, and that in such a category,
the monomorphisms are exactly the embeddings. But this is not an attractive
limitation, since we would exclude many important categories, such as that of
rings, that of Hausdorff spaces, and also the categories Ord, Top and ModΣ
we described above. Cannot the objects of these categories be embedded in one
another?

It is reasonable to object that the notion of embedding has been used in-
formally for a long time, and perhaps we should not expect to find a proper
definition exactly coextensive with the class of everything that has been called
embeddings. Perhaps (unlike the case of isomorphism) there is no single notion
of embedding, but a Wittgensteinian family of them? If that is the case, maybe
we should settle on one or more explications, in the Carnapian sense?

As it turns out such a pessimistic reaction is premature. There is a uniform
way to treat embeddings by using category theory, although it departs slightly
from our requirement of only relying on equations among arrows. To this method
wenow turn.

4 Substance and Structure

We have discussed the concepts of preservation and reflection of ontology and
structure, and noted that a morphism is a structure-preserving, identity-preserving
map, a monomorphism is often also identity-reflecting, and an embedding should
be all four. What we should not require is that an embedding should cover all

8



of its codomain; that is what isomorphisms are for. The difficult part is to
strengthen the monomorphism concept while avoiding ending up in isomor-
phism.

There is, however, a known way to expand category theory in order to go
around these problems, which is embodied in the concept of a concrete category.
Formally, we say that a concrete category is a pair C, F , where C is a category
and F ∶ C → B is a failthful functor to a category we refer to as the base category.
Historically, the most well-studied concrete categories have been those in which
F ’s codomain is Set. Such conrete categories are called constructs.3

In a concrete category, the base category B can as the ontology, i.e. a de-
scription of what the objects in the category and their transformations are. The
category C itself determines a structure relative to this ontology. This deter-
mination consists in singling out which objects in the ontology have the kind
of structure that C describes, and which of the transformations described in B
preserve this kind of structure.

It is important to note that this division into structure and ontology is not
absolute. The category TopGrp of topological groups can be considered as
concrete over Grp, over Top, or over Set. A preordered set can be taken to be
concrete over Set or over the trivial category 1, but not over both (since there
is no category that both 1 and Set are concrete over). We can also have that
two categories, e.g. Cat and Set can be taken to be concrete over one another,
without being equivalent. In such a case, it is a purely conventional matter
which of them we consider to be ontology, and which we take to be structure.

Given the notion of a concrete category, there is indeed a working concrete-
categorical definition of embedding. In a concrete category C, F , an initial
morphism f ∶ A → B is morphism such that, for each C-object C and each
B-morphism g ∶ F (C)→ F (A) is in the image of F whenever F (f) ○ g is.

C

F−1
(g)

��

h

��

F (C)

g

��

F (f)○g=F (h)

##
A

f
// B

F
+3

F (A)
F (f)

// F (B)

That F is faithful guarantees that F −1
(g) is unique if it exists. A concrete

embedding (usually just called an embedding) is an initial morphism m such that
F (m) is monomorphic in B. Since faithful functors reflect monomorphisms, this
also entails that m itself must be mono.

A quick informal explanation of why initial morphisms with monic under-
lying functions are reasonable to take to be embeddings might go as follows,
taking B to be Set. Suppose that there is a B-morphism g such that the right-
hand side diagram commutes. Then the image of F (f)○g = F (h) must lie inside

3It is actually common to use the expression ‘concrete category’ for what we have called
constructs, and disregard the possibility to use other categories as bases. However, this seems
to reflect nothing more than a common prejudice in favor of set-theoretic ontology, and the
general case deserves far more attention than it has received so far. Our usage follows that of
[1].
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the image of F (f), and since F (f) is injective (B-monic), there has to be an
inverse B-morphism i ∶ B′

→ F (A), where B′ is the subset of B on which F (f)
is onto. Composing, we get that g = i ○ F (h). For f to be structure-reflecting,
we need g to be a morphism, and this is what the existence of F −1

(g) asserts.
The important property of concrete embeddings is that, in constructs, they

correspond in more or less all cases precisely to what the embeddings of these
structures are usually taken to be, which is a much better result than can be
obtained for abstract categories by just using different kinds of monomorphism.
As put by [1, p. 114]:

Orgininally it was believed that monomorphisms would constitute
the correct catgorical abstraction of the notion “embeddings of sub-
structures” that exists in various constructs. However, in many
instances the concept of monomorphism is too weak; e.g. in Top
monomorphisms are just injective continuous maps and thus need
not be embeddings. Below we introduce two stronger notions (and
there are several others in current use [. . . ]) that more frequently
correspond with embeddings in categories. However, a satisfactory
concept of “embeddings” seems to be possible only in the setting of
constructs [. . . ]

The same also holds for many other forms of concrete category, such as
TopGrp, which we mentioned above. By imposing the functor F to a base
category B, we achieve a universal explanation of what an embedding is. Initial
morphisms are, fundamentally, a concept that was introduced by Bourbaki in
their theory of structure [6]. They were inspired by the topological concept of
initial topology, and it may of course be just a lucky guess that this should prove
to be the right way to generalize the notion of embedding. But perhaps there
is some philosophical reason as well?

Bourbaki’s theory of structure was indeed very much a type of concrete
category theory, with certain sets as objects, and certain classes of functions as
morphisms. As such, it is a two-part description: what is structured (the sets)
is different from what the structure is like, which is determined by which classes
of functions are to be counted as morphisms. As an Aristotelian might have
said, we have a substance (the base category) which is imbued with a form (the
category C).

Plain category theory, however, makes no such separation between form
and substance, between structure and ontology. If the arrows are structure-
preserving mappings, there is no way to define a non-structure-preserving map-
ping, for instance. If there is no epimorphism from A to B, we cannot know if
this is because B is simply “bigger” than A, or because B’s structure is incom-
patible with A’s.

It is well known that ‘monomorphic’ does not correspond exactly to ‘in-
jective’, and that ‘epimorphic’ is not the same as ‘surjective’. But by giving
a concrete interpretation of a category in an underlying category where this
does hold (such as Set), we can go around this limitation. This also indicates
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that, when it comes to concrete embeddings, we should get the right concept
whenever U shares these interpretative properties.

Why would a distinction between structure and ontology necessary in order
to describe purely structural relationships, such as embedding or substructure?
I do not have a definite answer, other than that without such a distinction,
these properties appear hard to define. One thing this could indicate is that
structure cannot logically stand on its own: we always need to make reference to
something which is structured. This may at first remind one of the ‘no relations
without relata’ argument against structuralism (cf. [9, 16]). However, our point
is quite different. It is not based on intuitions about the concept of relation,
but on the suggested difficulty of giving a comprehensive mathematical theory
of structure that does not make the distinction. It can be refuted by showing
that this is indeed possible, and this is partly a mathematical question, rather
than a philosophical one. Indeed, we will attempt to show how it may be solved
in the latter half of this paper.

One might also ask if the concrete version still should be counted as a
category-theoretical characterisation of embeddings. To some part, of course,
this is a question of terminology. The notions that are involved (category, func-
tor) are certainly category-theoretical. However, we are no longer talking about
objects in Cat (or any other general category of categories). Even if m is an
embedding in the concrete category C, F , and D,G is a concrete category which
is equivalent to C, F under the functor H, we do not need to have that H(m) is
an embedding in D,G. For that, we need a stronger notion of functor (a concrete
functor) to serve as arrows. So a concrete category is not just a category.

It is also the case that even if we accept the concrete embedding as a
category-theoretical solution, it is a thoroughly unsatisfactory solution. Pic-
ture a mathematician wanting to describe what a subgroup is, and coming up
with a definition like ‘H is a subgroup of G iff the linear transformations rep-
resenting H in the vector space V make up a subset of those representing G.’
The definition of a construction in a kind of structure should, ideally, use only
concepts intrinsic to the structure itself.

5 Going Relational

That the ontology–structure split may be necessary does not mean that it has
to be treated just as explicitly as in concrete category theory.4 What it seems
like we would need to say is that an embedding is a morphism that has an
inverse, but that the inverse in question does not have to be defined on the
whole codomain. Category theory is a generalization of the concept of mapping
between mathematical structures, and such mappings are always expected to

4Another “explicit” fix would be to add embeddings or subobjects as primitives, for instance
through a functor C → Set that gives the hom-set of embeddings into each object of C. A
very well-developed explicit fix is the theory of model categories of Quillen, which relies on
an explicit specification of classes of fibrations, cofibrations, and weak equivalences. The
cofibrations in a model category are often, but not always, interpretable as embeddings.
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be defined on the whole of their domain. So it may not be very strange that
category theory, as it is, cannot handle embeddings.5

To get an overview of the available obtions, let us expand our earlier tax-
onomy of function types. We mentioned structure preservation and structure
reflection, as well as identity reflection. But if we consider the the most general
link that can hold between two sets—a relation—then there is, of course also
identity preservation, i.e. that if x = x′, xRy, and x′Ry′, then y = y′. It is just
that, as we mentioned before, this is part of the defining characteristics of what
it is to be a function.

Somewhat graphically picturing the domain of a binary relation as left and
the codomain as right, relations in general can thus have structure preservation
and identity preservation in both left-to-right and right-to-left vairants. But
there are also other properties of interest, which become more important as
we expand our view from functions to relations. For one thing, we have left
and right totality : the conditions that for all x ∈ domR (respectively all x ∈

codR), there is some y ∈ codR (respecively some y ∈ domR) such that xRy. All
mappings are left-total, and right-totality is the property usually referred to as
surjectivity.

There is also a more general type of property, which I think will be useful
to identify. We say, informally, that R is left substantial iff the preimage of R
makes up a self-subsistent object, and right substantial if its image does. Now,
what does ‘make up a self-subsistent object’ mean here? Roughly, that the
preimage or image is itself a subobject of the domain or codomain. Because any
subset of a set is a set, all relations between sets should be both left and right
substantial.

The same does not hold for richer structures. Consider a class of groups, with
relations between them. According to the intended interpretation, a relation
between groups g and h is left substantial iff its preimage is a subgroup of g,
and right substantial iff its image is a subgroup of h. Or, consider the functor
F ∶ C → D below:

A

f

��

F (A)

F (f)

��
B B′

g

��

F
+3 F (B) = F (B′

)

F (g)

��
C F (C)

As a functor, F is of course left total and thereby also left substantial. But
it is not right substantial, because the arrows in the image of F are not closed
under composition, so its image is not a category. As this example shows, not
everything that is traditionally seen as a mapping is right-substantial.

5To be sure, there are notions of partial function available to a category theorist. However,
these are special versions of category-theoretic relations, and, as such, share the problems of
these which we identify below.
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Since set-theoretic functions are defined on whole sets, they are left substan-
tial, and since the image of any function is a set, they are also right substantial.
The case is somewhat more complex for functional predicates in formal set
theory; these are reasonably interpretable as neither left nor right substantial,
since they are defined on the whole universe, and can take values in the whole
universe. On the other hand, the axiom of replacement guarantees that if a
functional predicate F is left-substantial, then it is also right-substantial. This
axiom can then be seen as a kind of left-to-right preservation of substantiality.

Generalizing this example, many of the axioms of various set theories can be
seen as conditions on what relations are substantial. The axiom of separation,
for instance, can be expressed as the condition that any symmetric and tran-
sitive functional relation F on a set A is left- (or right-) substantial: from the
conditions of symmetry and transitivity it follows that if F (a, b), then F (a, a),
and so by functionality, a = b, so F is a subrelation of the identity relation
on A. Saying that such an identity relation is substantial is, according to our
interpretation, the same as saying that its image (or preimage) is a set.

We can also apply the same reasoning to other types of structure. Let us call
a (left- or right-)substantial subrelation of the identity relation a subidentity.
Subidentities of groups correspond one-to-one to subgroups, and likewise for
categories, vector spaces, and any other kind of mathematical structure. They
are therefore ideally suited to play the role of substructure, and thus also of
determining what an embedding might be. The problem with category theory
is that the only left-substantial relations that it straightforwardly allows are
those that are total, so we would need to consider some other kind of structure;
preferably one that abstracts from the notion of relation rather than from that
of function.

Category theory itself does provide us with a notion of relation [12, p. 38].
We say that m1 ∶ A→ B,m2 ∶ A→ C are joint monics if, for any two morphisms
f, g ∶ X → A such that m1 ○ f =m1 ○ g and m2 ○ f =m2 ○ g, we have that f = g.
A binary relation on the objects A,B, category-theoretically, is an isomorphism
class of objects R together with joint monics mdom ∶ R → A, mcod ∶ R → B:

R
mdom

��

mcod

��
A B

In a category with products, we can also (and equivalently) say that a rela-
tion between A and B is a subobject of of the product A ×B. The characteri-
zation through subobjects may, however, make us somewhat skeptical. Indeed,
the relation construct given here is a straight generalization of that of subobject,
and it faces the same difficulties. Consider the topological spaces R, A and B,
with two continuous injective maps f ∶R→ A and g ∶R→ A. This does induce
a relation on the underlying sets A,B, definable by the equivalence that R(a, b)
iff there is an r ∈ R such that f(r) = a and g(r) = b. But such a relation pays no
respect at all to the topologies in question. For any two topological spaces A
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and B, and any subsets of their underlying sets A and B of the same cardinality,
we can find a relation in this sense which is total on A and B. Just take R to
have some set of A’s and B’s cardinality as underlying set, and the discrete
topology. If we take homeomorphism to be defined in terms of a one-to-one
relations, the result is that all topological spaces with underlying sets of equal
cardinality come out as homeomorphic.

Even if the notion of monic as subobject only captures identity reflection,
and not structure reflection, it at least captures structure preservation, since a
monic is a morphism. In contrast, the categorical definition of relation does not
even capture structure preservation: from the structure on the image and the
existence of a relation to B, we can say nothing at all about the structure of
the preimage. Perhaps all structure-preserving or structure-reflecting relations
should be relations in the categorical sense, but not every categorical relation is
structure-preserving or structure-reflecting.6

A way to treat relations primitively, while still being compatible with stan-
dard category theory, is Freyd’s [12] concept of allegory. Just as a category can
be seen as a generalization of a monoid of functions on a set, an allegory can
be viewed as a generalization of a relation algebra. In an allegory, the objects
are domains and codomains of relations, and the morphisms are the relations.
Formally, such an allegory is a category A with two operations:

• a unary operation ○ on morphisms called reciprocation, which gives the
converse of any relation, and

• a binary partial operation ∩ on morphisms called intersection, defined for
any two morphisms with the same domains and codomains.

Composition of relations is just the regular composition of morphisms in
category theory. Freyd gives a set of axioms for the behavior of ○ and ∩, which
imply, among other things, that reciprocation is an involution, and that ∩ gives
rise to a modular lattice through the order R ⩽ S ≡df. R = S ∩ R. The list of
axioms is, however, rather long, and we will not study it in detail here.

The category Rel of sets and set-theoretical relations, with ○ interpreted
as relation converse, and ∩ as intersection, is an allegory. So, as Freyd shows,
is the category of categorical relations of any regular7 category C, where the
composition RS of the relations (R,fdom, fcod), (S, gdom, gcod) is defined as in
the diagram

6Actually, even the first condition is questionable: why, when describing a relation between
A and B, does the relation itself have to be an object (such as R)? We do not require this
for morphisms. It holds when the category has exponentials, but categories with exponentials
are a special case.

7A regular category is a category in which (i) every arrow is an equalizer (i.e. a regular
monic), (ii) every two arrows that have an equalizer also have a coequalizer, and (iii) pullbacks
of regular epics exist, and are themselves epic [5, p. 90]. Being a regular category is strictly
weaker than being an abelian category, but many categories that interest us still do not
fulfill this criterion. Some examples are Top, ModΣ, and Cat. This should not surprise
us, since the problems we are concerned with appear mainly in categories in which some
monomorphisms are not regular.
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RS
hdom

}}

hcod

  
R

fdom

��

fcod

!!

S
gdom

~~

gcod

��
A B C

with all pairs of shown morphisms from the same objects being jointy monic.
It is certainly the case that allegories give us a nice generalization of relation

algebras, and the fact that each allegory is a kind of category means that the
powerful tools of category theory are applicable in allegories as well. But a
category is not just a generalization of a monoid of endofunctions, but rather of
a monoid of structure-preserving endofunctions. Likewise, we want our theory
of relations to not presuppose that every set-theoretically definable relation
preserves or reflects the kind of structure we are after.

The inability of allegory theory to do this rests on its requirement that the
converse of a morphism should always itself be a morphism. This does not hold
even for constructs in which the morphisms are one-to-one mappings between
the underlying sets. As we have noted several times, the fact that a continuous
function has an inverse does not guarantee that this inverse is itself continuous.
Just as the usual categorical notion of subobject only works for categories close
to Set, the allegory concept only works properly for categories very close to
Rel.

The same holds for the (at least) two other versions of a categorical theory of
relations that have been proposed: bicategories of relations [8] and 1-categories
equipped with relations [7]. Both of these attempt to capture an unrestricted
calculus of relations which allows any relation to have a converse. As such,
they have also turned out to be equivalent to the theory of allegories [17]. But
the problem with allegories as well as these, in a nutshell, is that they are too
liberal: a morphism in an allegory can be properly taken to involve neither of
the 8 conditions we mentioned. What we need is a concept that still implies
left-to-right structure preservation, and possibly also left or right substantiality.
To such a concept we now turn.

6 A Quick Sketch of Relator Theory

From a philosophical point of view, allegory theory may also seem to be some-
what lacking as a foundation for structuralism. The concept of allegory depends
on that of function, and defines relation, but relations are logically prior to
functions. This follows from the fact that we can have predicate logics with-
out function symbols, but there is no such thing as a functional logic without
relations: even simple term calculi tend to, at least, need an equality relation
in order to be useful. Those that do not still have the relation of a term being
of type, and this includes untyped lambda calculi as well, since these are just
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typed lambda calculi with a single type (cf. [14, pp.146–157]). Furthermore,
given relations, all we need is an identity predicate in order to express functions
as well. In contrast, defining relations given functions requires the addition of
something like a subobject classifier, with all its accompanying structure.

The upshot is that instead of, as allegory theory does, considering a kind of
category, we should consider structures of which categories are a kind. Here I
will sketch a theory of such structures. As a preliminary, let us generalize the
category concept. We say that the disjoint collections obj, hom together with
the mappings dom ∶ hom → obj, cod ∶ hom → obj, id∶ obj → hom and the partial
operation ○ ∶ hom×hom→ hom form a categoroid iff

(i) dom(id (a)) = cod(id (a)) = a, and id (a) ○ f = f for all f such that
cod(f) = a, and f○ id (a) = f for all f such that dom(f) = a,

(ii) if g ○ f is defined, then cod f = dom(g), and

(iii) if both h ○ (g ○ f) and (h ○ g) ○ f are defined, they are equal.

A categoroid is thus exactly like a category, except that composition does
not have to be defined even when arrows share domains and codomains. The
reason for this is that we want to be able to differentiate left substantial arrows
from non-substantial ones, and substantiality is not in general conserved in
composition. Take, for instance, the following graphical example of a categoroid
of discs in R2, where the morphisms are partial functions, and composition is
defined as usual for these. Consider the following composition of morphisms:

f

g

g ○ f

Figure 1: Failure of Composition

Here, both f and g take a subdisc of their domains to a subdisc of their
codomains, so they are both left and right substantial. But g ○f is not substan-
tial, since neither its image nor its preimage is a disc.

We noted in the last section that substantial subrelations of identity corre-
spond one-to-one to substructures of an object, so every left substantial relation
should have such a subrelation of identity corresponding to its preimage. The
following is intended to capture this fact: let a preimage operator on a categoroid
be a mapping ( ⋅ )

⊲
∶ hom→ hom which fulfills the following axioms:
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Composition: f⊲ ○ g is defined iff f ○ g is.
Domain: dom(f⊲) = cod(f⊲) = dom(f).

Left identity : f ○ f⊲ is always defined and f ○ f⊲ = f .
Commutativity : f⊲ ○ g⊲ = g⊲ ○ f⊲ if f⊲ ○ g⊲ or g⊲ ○ f⊲ is defined.

Minimality : If f ○ g⊲ = f , then f⊲ ○ g⊲ = f⊲.

An image operator ( ⋅ )
⊳ can be defined symmetrically, but since we will

mainly be interested in left substantiality, we will only concern ourselves with
⊲. Now, left substantiality can be interpreted straightforwardly as the condition
that every morphism must have a preimage. Thus we define a form to be a
categoroid with a preimage operator.8

Since we intend to use forms to describe relations rather than mappings, we
will now adopt a slightly different symbolism. Let us use the terminology

rel as a synonym for hom
R,S,T, . . . for elements of rel,
a, b, c, . . . for elements of obj,

RS for S ○R (note the change of order), and
Ia for id (a).

We will, indeed, often use this terminology when discussing categories as
well, since these are categoroids. We will commonly refer to the elements of
rel as relations, and throughout we assume that ⊲ binds tighter than relation
composition. Thus from now on, the word ‘relation’ will refer to an element of
rel, and we will use ‘set-theoretic relation’ for the set-theoretic variant, i.e. a
subset of the Cartesian product of two sets.

Some further definitions are useful. We say that an endorelation R ∶ a → a
is commutative iff for all endorelations S ∶ a → a such that either RS or SR is
defined, RS = SR. We say that R is a left identity for S iff RS = S, and a right
identity for S iff SR = S. We call the relation Ix, asserted to exist in the third
of the identity axioms, the identity relation on x. It can be shown to be unique
by the same reasoning as is used in category theory.

Proposition 1. The preimage operation in a form has the following properties:

(i) R⊲R⊲
= R⊲.

(ii) If R = S⊲ and S = R⊲, then S = R.

(iii) R⊲⊲
= R⊲.

Proof. (i) R⊲R⊲R = R⊲
(R⊲R) = R⊲

(R) = R, so by minimality R⊲R⊲
= R⊲.

8The name seems reasonable, and is adopted in the spirit of MacLane’s “pleasure of pur-
loining words from the philosophers” [15, p. 29]. At least in on the Kantian interpretation of
the words, categories are among the forms, and that is what we are aiming for here as well.
If we were to be more careful, we would use the word left-form instead, to indicate that it
is the preimage operator which is defined. A right-form would then be a categoroid with an
image operator, and we could perhaps call a categoroid which is both a left- and a right-form
a biform. Alas, there is no direct connection to the notion of differential form already in use
in mathematics. I hope that no confusion will ensue.
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(ii) By assumtion, we have that RS = S and SR = R, so SRS = RS = S. But,
by minimality, this means that S(SR) = SR = S, so S = R.

(iii) By left identity, R⊲⊲R ⊲= R⊲ and R⊲R = R, which implies that R⊲⊲R = R.
By minimality we thus get that R⊲⊲R⊲

= R⊲. But we also have R⊲R⊲
= R⊲,

so, again by minimality, we get R⊲R⊲⊲
= R⊲⊲. Commutativity then gives

that R⊲R⊲⊲
= R⊲⊲R⊲, so R⊲

= R⊲⊲.

For the identity relation Ia, we have that I⊲a = Ia. This means that it is
reasonable to, more generally, count each relation R ∶ a → a such that R⊲

= R
as a subidentity relation, in the sense of section 5. We call the class of a’s
subidentities I(a), and among these we write R ⩽a S iff RS = R. Instead of
R,S,T . . ., we will often use A,B,C, . . . for relations that are subidentities.

Lemma 1. When both A and B are subidentities such that AB (or BA) is
defined, then AB is a subidentity.

Proof. For AB to be a subidentity, we need to show that (AB)
⊲
= AB. But by

definition (AB)
⊲AB = AB, and by symmetry and idempotence ABAB = AB,

so minimality gives that (AB)
⊲AB = (AB)

⊲.

Proposition 2. (I(a),⩽a) is a partial order with top Ia.

Proof. Reflexivity follows directly from A2
= A. For transitivity, assume A ⩽a B

and B ⩽a C. We then have that ABC = (AB)C = AC, and ABC = A(BC) =

AB, but since AB = A, we get that AC = A, i.e. A ⩽a C. For antisymmetry,
assume that A ⩽a B and B ⩽a A, so that A = AB and BA = B. By the
commutativity of subidentities, AB = BA, so A = B.

That I⊲a = Ia is trivial, so Ia is a subidentity. Its status as top follows from
the fact that it acts as an identity for all relations, and thus also all other
subidentities.

Subidentities, or coreflexive relations as Freyd [12, p. 198] calls them, will
play the role of substructure. To connect them with embeddings, however, we
also need a concept of inverse. As expected, such a concept can be obtained by
generalizing from the category-theoretic case: we say that S is a left subinverse
of R iff SR = S⊲, a right subinverse of R iff RS = R⊲, and a subinverse if it is
both a left and a right subinverse.

Proposition 3. The subinverse of R is uniquely determined whenever it exists.

Proof. Assume that both S and T are inverses for R, which means that RS =

R⊲
= RT , SR = S⊲, and TR = T ⊲. We then have that

S = S⊲S = SRS = SR⊲
= SRT = S⊲T

and, by symmetric reasoning, that T = T ⊲S. Putting it together, we get

S = S⊲T ⊲S = T ⊲S⊲S = T ⊲S = T
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In view of this theorem, we often write the inverse of R as R−1. A relation
having an inverse is called a subisomorphism. A subisomorphism R ∶ a → b is
called

• an embedding iff R⊲
= Ia,

• an extraction iff R−1⊲
= Ib, and

• an isomorphism iff it is both an embedding and an extraction.

We will show why this concept of embedding indeed is the right one in the
next section, by looking at its applications. We should note, however, that
it only relies on the notions of subinverse and preimage, so we have sofar not
made any use of the relational notion of converse. And in fact, the question
of converses is orthogonal to that of embeddings. If we want to, a converse of
R ∶ a → b can be introduced definitionally as the relation Rc

∶ b → a such that
Rc

⊲ is the right identity for R, and for all A ⩽a R
⊲ and all B ⩽b R

c⊲, we have
that

A = (RB)
⊲
⇔ B = (RcA)

⊲

Proving this relation to be unique if it exists is left as an exercise for the
reader. It does exemplify an interesting feature of forms, however: in many
cases, what would in set theory be expressed as a condition on elements of
the domain or codomain can instead be expressed through equations between
relations composed with subidentities.

As in the introduction of any mathematical structure, we should also in-
troduce transformations between forms. If we want the class of forms to itself
be a form, these should have more in common with relations than functors.
In category theory, such an entity is sometimes called a distributor (cf. [4, p.
308]), but we will stick to following MacLane’s example of purloining a word
from Carnap, and call it a relator. Formally, a relator R ∶ A→ B is

(i) a relation R from obj(A) to obj(B), together with

(ii) for every pair of rel-sets rel(a, a′) and rel(b, b′) with a, a′ ∈ obj(A) and

b, b′ ∈ obj(B) such that aRb, a relation Rbb′

aa′ from rel(a, a′) to rel(b, b′),

such that, for all R ∈ rel(a, a′) and all S ∈ rel(b, b) for which RRbb′

aa′S, we
have

(a) for all A ∈ a′ and B ∈ b′ such that ARbb
aaB, A = R̄⇒ B = S̄, and

(b) for all U ∈ rel(a′, a′′) and V ∈ rel(b′, b′′) with a′′ ∈ obj(A) and b′′ ∈

obj(B) such that a′′Rb′′ and such that AU is defined, URb′b′′

a′a′′V entails

that AURbb′′

aa′′BV .

The definition may perhaps look complicated, but it provides a rather straight-
forward generalization of the categorical functor concept. A relator between A
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and B is, informally, a relation from A to B such that whenever an equation us-
ing composition, identity, and preimaging holds on the left-hand side, the same
equation holds on the right-hand side. When A and B are categories, i.e. when
all arrows are left-total and functional (see thm. 3), and R is also left-total and
functional, it is the same as a functor.

In the interest of brevity, we will not go into how to define relator-theoretic
versions of natural transformations and adjoints.

7 Embeddings in Specific Forms

In this section, we give a number of theorems correlating the abstract form
concept outlined above to specific concrete structures. As the first example, we
have

Theorem 1. The categoroid Rel, with R⊲, for R ∶ a→ b given by

R⊲
= {(ξ, ξ) ∈ a × a ∣ (∃ζ ∈ b)ξRζ}

is a form. A relation is R is an embedding iff it is injective, functional and left
total.

Proof. That Rel satisfies composition, associativity, and identity follows di-
rectly from the fact that it does so as a category, and that all of these are
equivalent to or weakenings of the corresponding category-theoretical axioms.
For left substantiality, let R⊲ be defined as in the statement of the theorem. Only
the minimality condition is not trivial to show. Assume that that S ∶ a→ a and
R ∶ a → b are such that SR = R, and, for contradiction, that there are elements
α,α′ ∈ a such that αSα′ and α ≠ α′. Define the relation T ∶ a → a to hold only
for the pair (α′, α). Then ST = {(α,α)}, but TS is a set of pairs of the form
(α′, β) for some β ∈ a. Since α ≠ β, ST ≠ TS, so S cannot be commutative.

Contrapositively, a commutative relation is always an identity relation. We
now show that, given such a relation S such that SR = R, SR⊲

= R⊲. But
SR = R can hold only if the preimage of R (and thus of R⊲) is contained in the
image (and preimage) of S, and since, for subrelations of identity relations S
and R⊲, SR⊲

= S ∩R⊲, it follows directly that SR⊲
= R⊲.

Now assume that R ∶ a → b is injective, functional, and left total. We want
to show that there is an inverse relation R−1 such that R⊲

= Ia. But such a
relation is given by the converse of R, as is quickly checked. Conversely, assume
that R is left total and has an inverse. Assume, for contradiction, that there
are α,α′ such that αRβ and α′Rβ. We know that RR−1

= R⊲, so if α ≠ α′, then
αRR−1α′ cannot hold, which means that R has to be injective. Functionality is
proved in a similar way.

Theorem 2. The category pfSet of sets with partial functions as arrows is
the subform of Rel containing the same objects, but with only those relations
R ∶ a→ b for which RS = RT entails RS⊲ = RT ⊲, for all S,T ∶ b→ c.
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Proof. Set-theoretically, every partial function is of course a relation. What we
need to show is that R ∶ a → b is a partial function iff RS = RT → RS⊲ = RT ⊲.
For the left-to-right direction, assume that for all α ∈ a and β,β′ ∈ b, that if
αRβ and αRβ′, then β = β′, and let S,T be arbitrary relations from b to a set
c. Assume that αRS⊲β, from which it follows that there is some γ ∈ c such that
αRSγ. Because RS = RT , we have that, for all such γ, there is an element β′ ∈ b
such that αRβ′ and β′Tγ, so αRS⊲β entails that αRT ⊲β′. The functionality of
R then gives that β = β′, and reversing the argument gives that

αRS⊲β⇔ αRT ⊲β

For the converse, assume that R is not functional, i.e. that there are α,β, β′

such that αRβ, αRβ′, and β ≠ β′. Let c be a set and γ ∈ c, and let the relations
S, T be defined as

S =df. {(β, γ)} T =df. {(β
′, γ)}

Then we have that RS = RT (both are the relation that hold only between
α and γ), but RS⊲ = {(α,β)}, and RT ⊲

= {(α,β′)}.

Corollary 1. The category Set is the subform of the category pfSet such that
R⊲

= Ia for all R ∶ a→ b.

Thm. 2 indicates that we might be able to take the condition

(∀S,T ∶ b→ c)(RS = RT → RS⊲ = RT ⊲
)

as a definition for what it means for a relation R to be functional. We shall,
however, not pursue this line of thought farther in this text.

Equally important as capturing Rel and Set is our intention to give a gen-
eralization of the category concept, rather than a specialization of it. This is
shown in the next theorem.

Theorem 3. Let C be a category, and for any arrow R ∶ a → b, let R⊲
= 1a.

Then C is a form. Conversely, any form F for which this holds becomes a
category when we disregard the preimage operator.

Proof. All the categoroid axioms are straightforward weakenings of the category
axioms, so they are naturally satisfied. For the axiom of preimages, we need
to show that R⊲

= Idom(R) is a preimage operator. The only condition which is
not trivial, however, is the minimality one, which follows from the uniqueness
of identity arrows in a category.

Conversely, let F be a form. All we have to do to show that its underlying
categoroid is a category is to show that composition is always defined whenever
the domains and codomains match up. So consider R ∶ a → b and S ∶ b → c.
By the composition axiom of the preimage operator, RS is defined iff RS⊲, but
since S⊲ = Ib, and since RIb is always defined, so is RS.
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The form given from C in this theorem is often not very interesting, since it
explicitly treats all relations as left total, which means that only isomorphisms
end up being counted as embeddings. In order to represent some larger class
E of arrows in C as embeddings, we have to add images and subinverses for
the arrows in E. Identifying E is, moreover, made more difficult by the fact
that if we do not assume all arrows to be left total, monicity is not sufficient to
guarantee injectivity: we can have that m ○ f =m ○ g even though f ≠ g, as long
as the parts of domm where f and g differ are not in the preimage of m.

On the other hand, we may also take another route, and represent categorical
relations in terms of a form, in which case we get that relator theory is a
generalization of allegory theory, albeit in a slightly different way than it is
a generalisation of category theory. The following theorem, given here without
proof, indicates how.

Theorem 4. Let C be a category. Then there is a form F with

(i) obj(F) consisting of the subobjects in C, i.e. classes of pairs(A,f), where f
is a monic with domain A, closed under the existence of mutual monomor-
phisms.

(ii) rel(F) consisting of the categorical binary relations of C, i.e classes of
triples (Ak, dk, ck), where Ak ∈ objC, dk and ck are jointly monic with
domain Ak, such that for each R ∈ rel, if (Ak, dk, ck) ∈ R and there is an
isomorphism ι ∶ Ak → Al such that Al has joint monics dl and cl with
dl ○ ι = dk and cl ○ ι = ck, then (Al, dl, cl) ∈ R.

(iii) RS is defined iff (AR, dR, cR) ∈ R, (AS , dS , cS) ∈ S, D = cod cR = dom cS,
and dR, cS have a pullback

P cP
//

dP

��

AS

dS

��
AR cR

// D

In that case, RS is the class of triples containing (P, cR ○ dP , dS ○ dP ).

(iv) R⊲, where R contains the triple (A,d, c), is the subobject that contains
(A,d).

(v) 1x, for each subobject x containing (A,f), is the categorical relation that
contains the triple (A,f, f).

It is now time to move on to our philosophically motivating cases: Top,
ModΣ, and Ord. In all of these, it does not matter if we take the relations
to be set-theoretic relations or to be partial functions, but in the interest of
generality, we will do the former. This, however, requires us to say which the
relations in question are.
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Given topological spaces a = (X,T ), b = (Y,T ′), a continuous relation R ∶

a→ b is a relation from X to Y such that R−1
[Z] is open for all open Z ⊆ Y . A

continuous relation which is left total and functional is easily seen to be exactly
a continuous function. Let rTop be the the category with all topological spaces
as objects, and continuous relations as relations.

Theorem 5. rTop, with R⊲ defined as in thm. 1, is a form. The embeddings
are the topological embeddings.

Proof. For the left-to-right direction, we only need to show that the composition
of two continuous relations is a continuous relation; the other form axioms then
follow directly from thm. 1 But if x is an open subset of c, and R ∶ a → b
and S ∶ b → c are continuous, S−1[x] is open, and therefore also S−1R−1

(x) =
(RS)−1(x).

Assume now that R ∶ a→ b is a topological embedding, i.e. R is an injective
continuous total function with a continuous inverse S ∶ b′ → a, where b′ is the
image of R. Let S′ be the partial function from b to a that is defined, and equal
to S, in the whole of b′. S′ easily checked to be a subinverse of R, and since
R⊲

= Ia, R is an embedding.
Conversely, assume that R has a subinverse R−1, and that R⊲

= Ia. We need
to show that R is a left total injective function, and that its set-theoretic inverse
is its subinverse. First, assume for contradiction that α ∈ a, and that there are
β,β′ ∈ b such that β ≠ β′, αRβ, and αRβ′. Let c be a two-element set {γ, γ′}
with the indiscrete topology, and let S ∶ b→ c and T ∶ b→ c be the relations

S =df. {(β, γ)} T =df. {(β
′, γ)}

These are trivially continuous, and we also have that RS = RT . Applying
R−1 to the left, we get R−1RS = R−1RT , so R⊳S = R⊳T . But, as is easily shown
though the method used in theorem 1,

R⊳
= {(ξ, ξ) ∣ ∃ζ ∈ a (ζRξ)}

so R⊳S can hold only between β and γ, and R⊳T only between β′ and γ. Hence
R⊳S ≠ R⊳T , and we have our contradiction.

That R is left total is easily shown from R⊲
= Ia since Ia is the identity

relation on a. The identity of R−1 with the set-theoretic inverse follows from
the uniqueness of subinverses, and its continuity from the definition of relations
on rTop.

For ModΣ, let a homomorphic relation R between models M and N, with
domains D and E, be a relation from D to E such that for any n-tuples σ =

(s1, . . . , sn), τ = (t1, . . . , tn) such that sk ∈ D and tk ∈ E, and all predicates
Pn in Σ, if σ ∈ (Pn

)
M, then τ ∈ (Pn

)
N. In other words, if a certain predicate

holds in the preimage of the relation, then the same predicate holds in the
image. A model homomorphism is a homomorphic relation which is left total
and functional. Let rModΣ be the categoroid with all first-order models of
signature Σ as objects, homomorphic relations as relations, and composition
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RS defined as usual for set-theoretic relations, but undefined whenever R’s
image and S’s preimage are disjoint.

Theorem 6. rModΣ, with R⊲ defined as in thm. 1, is a form. The embeddings
are the model embeddings.

Proof. Checking that homomorphic relations are closed under composition, and
that the identity relation is homomorphic, is trivial. The only slightly tricky
part is that, since a domain cannot be empty, a composition RS is defined only
if the image of R and the preimage of S overlap. When they do, however,
the result is always a homomorphic relation. Checking that the preimage of a
homomorphic relation is a homomorphic relation is also routine.

We now wish to show that a model embedding R’s set-theoretic inverse R−1

is a subinverse of R. But this follows directly from the fact that R, as a model
embedding, preserves and reflects relations in its preimage, so of course R−1

must do so as well, and therefore be a homomorphic relation. That it is the
set-theoretic inverse of R is then enough to make it a subinverse.

Now assume that R ∶ a → b is a homomorphic relation, and that R−1
∶ b → a

is its subinverse. Showing that R is functional can be done the same way as in
the last theorem, although we need to consider relations S,T ∶ b → c with c as
a one-element domain with all predicates holding of its element, rather than a
two-element topological space with the indiscrete topology. Likewise, showing
totality and injectivity proceeds as in the topological case.

Finally, we come to the form of rOrd of preordered sets with monotone
relations. This is, however, a rather trivial in light of the previous result, since
preordered sets are models of a first-order theory with a single binary predicate
⩽, and monotone relations between them are just homomorphic relations. All
that needs to be done is to make sure that the models involved in the proof are
all preorders, so that the proof goes through. We leave this as an exercise for
the reader.

8 Conclusions and Further Work

We have now dwelt in some detail on the problem of defining embeddings
category-theoretically, and studied several ways to address it. While we have
not proved it impossible to do so, strengthening the monic concept in order to
capture that of embedding properly seems almost hopeless. Ideally, we would
like to have such a proof, but since this would require a deep and careful dive into
the model theory of category theory, we leave it as an open research problem.

Concrete categories give the most straightforward solution: split the struc-
ture into a basis, and another category “on top of” that. The split, however,
incurs a certain amount of arbitrariness. In this, it is reminiscent of philosoph-
ical splits between particulars and property instances, forms and substances,
or essential and accidental properties. Maybe such arbitrariness, and the split
itself, is necessary. But it seems worth the attempt to avoid it, and one way to
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do so is to found structuralism on a theory of relations rather than a theory of
transformations.

The first such theory we looked at was that of allegories. As a foundation for
structuralism, however, it has certain drawbacks. The first is that it presupposes
category theory, and indeed category theory with quite a lot of extra structure
(i.e. regular categories). The second is that, in it, all relations have converses.
This is not something we want if we wish to be able to distinguish between
structure-preservation and structure-reflection.

The method I advocate is to instead start with a kind of structure which is
more primitive than a category, and I give a brief overview of these structures,
which I call forms. The theory of forms (or relator theory) does solve the
problem of defining embeddings. As a conjecture, I would guess that it may
also solve the dual problem, i.e. that of defining quotient objects in purely
structural terms. One of the deep insights of category theory is just this duality,
and indeed it seems to be equally difficult to characterize what a quotient is,
without giving a separate definiton for each category. For such an application,
however, it seems likely that we would need to use right-forms rather than left-
forms. A theory of biforms could be used to characterize both embeddings and
quotients in parallel.

Much more speculatively, forms could also turn out to be useful for the treat-
ment of weak ∞-categories, where the classical theory of identity has sometimes
been held to be problematic. As we noted, the notions of function, operator,
and mapping, on which category theory is based philosophically, are intimately
bound up with identity. In order to preserve the similarities between categories
and forms, we have presented the latter in terms of functions such as composi-
tion or identity. But it is a rather simple matter to frame relator theory using
just relations, and convert identities into coherence axioms. When this is done,
generalization to higher forms, i.e. forms in which the rel-sets are themselves
object-classes of forms, should be possible. But of course, we will not know if
this actually works until the program has been carried out.

There is still one nagging issue, however: given the complications we have
encountered here already, one might ask if we have not headed off in the wrong
direction already at the start. In specific constructs, both embeddings and
quotients are easily identified in set-theoretical terms. Could this be made
into an argument that set theory is, after all, necessary in a foundation for
structuralism, and that our problems stem from trying to use category theory,
or form theory, without a set-theoretical interpretation? For category theory,
such an interpretation is given precisely by a faithful functor to the category of
sets. A closely related strategy would be to use Bourbaki’s theory of structures,
which were, after all, designed for this very purpose.

What would certainly not be adequate as a theory of structure is the model
theory of first-order logic. At the very least, we will need models of higher-order
logics in order to capture structures such as topologies, and we also need to
disentangle the notion of morphism from that of model homomorphism in order
to be able to separate, say, topologies with continuous functions from topologies
with open maps as morphisms, or Hilbert spaces with linear maps from Hilbert
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spaces with isometries as morphisms. But making both these changes more
or less lands us in a theory equivalent to Bourbaki’s. However, as one of the
Bourbakians himself noted, “this notion has since been superseded by that of
category and functor, which includes it in a more general and convenient form.”
[10, quoted in [2]]

There are, however, many reasons beyond convenience and generality for
the superiority of category theory to Bourbakian structure theory. One of these
is the dualities that emerge—in our case, between embeddings and quotients.
Another is the possibility of giving invariant descriptions of structures, i.e.
without reference to specific instantiations of them, much as group theory gives
us a way to study symmetries without reference to a specific representation. In
this, the categorical approach is clearly preferable to a set-theoretic one.

The theory of forms, as it has been outlined here, is not intended to be a
replacement for category theory, but only a slight generalization which can be
employed when category theory on its own gives insufficient descriptive power.
Since all categories can be interpreted as forms, it should be fairly straightfor-
ward to combine the theories, and use which one is the more convenient for any
specific task.

References
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