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Abstract
Dispersion of electromagnetic waves is usually described in terms of an

integro-differential equation. In this paper we show that whenever a dif-
ferential operator can be found that annihilates the susceptibility kernel of
the medium, then dispersion can be modeled by a partial differential equation
without nonlocal operators.

1 Introduction

It is well-known [7] that dispersion can be modeled by using local partial differential
equations of the form(

∂

∂t
+ c1

∂

∂x

)
· · ·

(
∂

∂t
+ cn

∂

∂x

)
φ+

(
∂

∂t
+ a1

∂

∂x

)
· · ·

(
∂

∂t
+ am

∂

∂x

)
φ = 0

where m < n. The solutions of such equations are decomposed into a hierachy of
waves with the “higher order waves” characterized by the phase velocities c1, . . . , cn

and the “lower order waves” by the velocities a1, . . . , am.
The dispersion of electromagnetic waves in dielectric media is described in most

of the texts by an integro-differential equation of the form [1](
∂

∂t
+ c

∂

∂x

) (
∂

∂t
− c

∂

∂x

)
φ+

∫ t

0

χ(t− t′)φ(x, t′) dt′ = 0

which involves an integral operator (with χ being proportional to the so-called sus-
ceptibility kernel) that is nonlocal in time. While this is not inordinately difficult
to deal with, it is frequently simpler in numerical and analytical computations to
use equations containing only local partial differential operators, as in the first para-
graph.

Recently a paper [6] has appeared which uses just such a local differential equa-
tion to describe wave propagation in a Debye medium. The Debye model is an
effective description of electromagnetic wave propagation in polar liquids, such as
water, for a wide range of frequencies.

In this paper, we show that whenever one is able to find a differential operator P
that annihilates the susceptibility kernel χ appearing in the above integro-differential
equation, then it is possible to derive a local differential operator to replace the
nonlocal integro-differential operator. This enables us to derive partial differential
equations describing wave propagation in Lorentz and chiral media in addition to
the Debye medium mentioned above. We then use well-known asymptotic methods
to derive the behavior of both the higher and lower order waves for each of these
media.

Section 2 contains a general description of the derivation of local differential equa-
tions appropriate for Debye and Lorentz media. The hyperbolicity of the resulting
differential operators is proven in Section 3. Sections 4 and 5 contain symptotic
analyses for Debye and Lorentz media, respectively. Finally, a matrix extension of
the procedure used in Section 2 is presented in Section 6 and applied to the Condon
model of a chiral medium.
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2 Derivation of Local Differential Operators

Consider a homogeneous, dispersive dielectric medium occupying the half-space
z > 0. The medium is assumed to be quiescent for time t < 0 and is character-
ized by the constitutive relations

D(r, t) = ε0

[
E(r, t) +

∫ t

0

E(r, t− t′)χ(t′) dt′
]

H(r, t) =
1

µ0

B(r, t)

(2.1)

We consider two specific models of dispersion.
In the relaxation or Debye model (α ≥ 0, τ > 0),

χ(t) = αe−t/τ

Here χ is the unique solution of the problem{
{L1(χ)}(t) := τχt(t) + χ(t) = 0, t > 0

χ(0) = α
(2.2)

In the resonance or Lorentz model (ωp ≥ 0, ω0 ≥ 0, ν ≥ 0),

χ(t) = ω2
pe

− νt
2

sin ν0t

ν0

, ν2
0 = ω2

0 −
ν2

4

In this case χ is the unique solution of the problem
{L2(χ)}(t) := χtt(t) + νχt(t) + ω2

0χ(t) = 0, t > 0

χ(0) = 0

χt(0) = ω2
p

(2.3)

We now assume that the dielectric is illuminated by a normally incident plane
wave which we assume, without loss of generality, to be linearly polarized. Then
using Maxwell’s equations and the constitutive relation (2.1) it can be shown that
the electric field is the solution of the following problem:

{M(E)}(z, t) := Ezz(z, t) −
1

c2

[
Ett(z, t) +

∫ t

0

χ(t− t′)Ett(z, t
′) dt′

]
= 0, z > 0, t > 0

E(z, 0) = 0, Et(z, 0) = 0, z > 0

E(0, t) = f(t), t > 0

(2.4)

Applying the operator L1 defined in problem (2.2) to M(E) defined in prob-
lem (2.4) for a Debye medium yields an operator without a time convolution and
consisting entirely of local space and time derivatives:
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{L1(M(E))}(z, t) = τ
∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ Ezz(z, t) −

1

a2
Ett(z, t)

where

a2 :=
c2

ατ + 1
< c2

A local operator such as this arises naturally because L1 annihilates the susceptibility
kernel χ.

Since the solution to problem (2.2) is unique, the conditions{
{L1(M(E))}(z, t) = 0, z > 0, t > 0

{M(E)}(z, 0) = 0, z > 0

imply that

{M(E)}(z, t) = 0, z > 0, t > 0

Of course

{M(E)}(z, 0) = Ezz(z, 0) − 1

c2
Ett(z, 0) = 0, z > 0

Since the medium is assumed to be quiescent for z > 0, t ≤ 0, we have

E(z, 0) = 0, z > 0

so

Ett(z, 0) = 0, z > 0

Hence, for a Debye medium, problem (2.4) is equivalent to the problem
τ
∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ Ezz(z, t) −

1

a2
Ett(z, t) = 0, z > 0, t > 0

E(z, 0) = 0, Et(z, 0) = 0, Ett(z, 0) = 0, z > 0

E(0, t) = f(t), t > 0

(2.5)

Applying the operator L2 defined in problem (2.3) to M(E) for a Lorentz medium
yields another local differential operator:

{L2(M(E))}(z, t) =
∂2

∂t2

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ν

∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ω2

0

[
Ezz(z, t) −

1

a2
Ett(z, t)

]
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where

a2 :=
c2ω2

0

ω2
p + ω2

0

< c2

One can then show in the same way as above that, for a Lorentz medium, problem
(2.4) is equivalent to the problem

∂2

∂t2

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ν

∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ω2

0

[
Ezz(z, t) −

1

a2
Ett(z, t)

]
= 0, z > 0, t > 0

E(z, 0) = 0, Et(z, 0) = 0, Ett(z, 0) = 0, Ettt(z, 0) = 0, z > 0

E(0, t) = f(t), t > 0

(2.6)

In the following sections we investigate the properties of solutions of problems
(2.5) and (2.6) and the operators appearing in these problems.

3 Hyperbolicity of Differential Operators

Define the differential operator K1 by

{K1(E)}(z, t) :={L1(M(E))}(z, t)

=τ
∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ Ezz(z, t) −

1

a2
Ett(z, t)

Replace the z− and t− derivatives by ix and iy, respectively, to get the polynomial
(the symbol for the PDE)

P (x, y) := iτy(−x2 +
y2

c2
) + (−x2 +

y2

a2
)

The polynomial corresponding to the principal part of K1 is

P3(x, y) := iτy(−x2 +
y2

c2
)

The normal n̂ = nxî+ny ĵ to the characteristic curves of K1 satisfies P3(nx, ny) = 0,
i.e.,

ny = 0 and nx = ± ny

c

corresponding, respectively, to the characteristics

z = constant and t = ± z

c
+ constant

The differential operator K1 is said to be hyperbolic [2] in the n̂ direction if:
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1. the complex roots of P (x + nxλ, y + nyλ) = 0 satisfy Imλ ≥ γ for all real x
and y and some constant γ,

2. P3(nx, ny) 	= 0.

For n̂ = î = (1, 0), corresponding to Cauchy data given on the line z = constant,
P3(1, 0) = 0. So K1 is not hyperbolic in the (1,0) direction. For n̂ = ĵ = (0, 1),
corresponding to Cauchy data given on the line t = constant, P3(0, 1) = iτ

c2
	= 0.

Moreover

P (x, y + λ) =
iτ

c2
(y + λ)3 +

1

a2
(y + λ)2 − iτx2(y + λ) − x2 = 0 (3.1)

Let z = i(y + λ) + γ, where γ ∈ R, in (3.1) to get the real polynomial

p(z) :=
τ

c2
(z − γ)3 +

1

a2
(z − γ)2 + τx2(z − γ) + x2 = 0 (3.2)

We show that the roots of (3.1) satisfy Imλ ≥ 0 by investigating the stability of the
polynomial p(z) defined in (3.2).

Recall that a real polynomial p(z) is stable [3] if all of its zeros have negative real
part. It can be shown [3] that the real polynomial p(z) = α3z

3 + α2z
2 + α1z + α0,

where α3 > 0, is stable if and only if α2 > 0, α0 > 0 and α1α2 −α0α3 > 0. For our
polynomial p(z)

α3 =
τ

c2

α1 = 3
τ

c2
γ2 − 2

γ

a2
+ τx2

α2 = −3
τ

c2
γ +

1

α2

α0 = − τ

c2
γ3 +

γ2

a2
− τx2γ + x2

Clearly, if γ < 0, then

α3 > 0, α2 > 0 and α0 > 0

Moreover,

α1α2 − α0α3 = −8
τ 2

c4
γ3 + 8

τ

c2a2
γ2 −

(
2

a4
+

2τ 2x2

c2

)
γ +

ατ 2

c2
x2 > 0

if γ < 0. Thus p(z) is stable if γ < 0. So the roots of (3.1) satisfy

Imλ = Im(y + λ) = −Re z + γ > γ

for all real x and y and any negative constant γ. So K1 is hyperbolic in the n̂ = (0, 1)
direction.

We can prove the hyperbolicity of the differential operator K2 defined by

{K2(E)}(z, t) :={L2(M(E))}(z, t) =
∂2

∂t2

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ν

∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ω2

0

[
Ezz(z, t) −

1

a2
Ett(z, t)

]
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in the (0,1) direction in the same way by considering the polynomials

P (x, y) = −y2

(
−x2 +

y2

c2

)
+ iνy

(
−x2 +

y2

c2

)
+ ω2

0

(
−x2 +

y2

a2

)
P4(x, y) = −y2

(
−x2 +

y2

c2

)
The characteristics of K2 are

z = constant and t = ± z

c
+ constant

So the differential operator K2 is not hyperbolic in the (1,0) direction. To show
hyperbolicity in the (0,1) direction, we again let z = i(y+λ)+γ, γ ∈ R, in P (x, y+
λ) = 0 to get the real polynomial

p(z) := (z − γ)4 + ν(z − γ)3 + c2
(
x2 +

ω2
0

a2

)
(z − γ)2 + νc2x2(z − γ) + ω2

0 c
2 x2 = 0

(3.3)

By using the result [3] that a real polynomial p(z) = α4z
4 +α3z

3 +α2z
2 +α1z+α0,

where α4 > 0, is stable if and only if α3 > 0, α0 > 0, α3α2 − α4α1 > 0, α1(α3α2 −
α4α1) − α0α

2
3 > 0, we can show that p(z) in (3.3) is stable if γ < 0. So K2 is

hyperbolic in the n̂ = (0, 1) direction.

4 Asymptotic Analysis—Debye Model

The equations describing dispersion expressed in terms of local differential operators
can be used as a launching point for asymptotic analysis [6]. We follow the analysis
of Whitham [7] for a different differential equation.

The partial differential equation in problem (2.5) appropriate for a Debye medi-
um can be rewritten in the form

η

(
∂

∂t
+ c

∂

∂z

)
∂

∂t

(
∂

∂t
− c

∂

∂z

)
E(z, t) +

(
∂

∂t
+ a

∂

∂z

) (
∂

∂t
− a

∂

∂z

)
E(z, t) = 0

(4.1)

where

η =
a2

c2
τ =

τ

ατ + 1

For water at microwave frequencies, τ ≈ 8 p sec. and ατ ≈ 80 [6]. Equation (4.1)
can be solved using Laplace transforms in the t variable. Write E(z, t) in terms of

its Laplace transform Ẽ(z, p),

E(z, t) =
1

2πi

∫
B
Ẽ(z, p)eptdp, t > 0 (4.2)
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where B is a Bromwich contour Re p = constant. Substitution of (4.2) into (4.1)

yields an equation for Ẽ which has solution

Ẽ(z, p) = F (p)ezP1(p) +G(p)ezP2(p)

where

P1(p) = −p

c

√
1 + ηp

ηp+ a2/c2
and P2(p) =

p

c

√
1 + ηp

ηp+ a2/c2

As Re p → ∞, P1 and P2 behave as

P1(p) = −p

c
− α

2c
+ 0(p−1) and P2(p) =

p

c
+

α

2c
+ 0(p−1) (4.3)

Hence we must choose G(p) = 0. So

E(z, t) =
1

2πi

∫
B
F (p)ept+P1(p)zdp (4.4)

At z = 0,

f(t) = E(0, t) =
1

2πi

∫
B
F (p)eptdp

so

F (p) =

∫ ∞

0

f(t)e−ptdt (4.5)

By choosing B far enough to the right in the complex p-plane, we can substitute
(4.3) in (4.4) to conclude that asymptotically

E(z, t) ∼ f(t− z

c
) exp(

−αz
2c

)

along the characteristic t = z/c.
A perturbation procedure can be used to deduce this result. By substituting

E(z, t) =
∞∑

n=0

ηnEn(ξ, σ)

where

ξ = η−2(z − ct) and σ = η−1t

into problem (2.5), we find that E0 is the solution of the problem
(
∂

∂t
+ c

∂

∂t

)
E0(z, t) +

1

η

c2 − a2

2c2
E0(z, t) = 0, z > 0, t > 0

E0(z, 0) = 0, z > 0

E0(0, t) = f(t), t > 0
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This problem is easily solved to yield

E0(z, t) = f(t− z

c
) exp

(
−αz

2c

)
The behavior of the electric field along the line z = at can be deduced by applying

the method of steepest descent to the representation of E given in (4.4) and (4.5).
The saddle points of g(p) = pt+ P1(p)z occur at those p = p̂ for which

0 =
d

dp
[pt+ P1(p)z] = t+ zP ′

1(p̂) (4.6)

This equation determines p̂ as a function of z and t. To get the first term in the
asymptotic expansion, we expand g(p) up to quadratic terms in p− p̂ and deform
the contour of integration into the curve of steepest descent C through p = p̂. Hence

E(z, t) ∼ exp[tp̂+ zP1(p̂)]
1

2πi

∫
C
F (p) exp

[
1

2
zP ′′

1 (p̂)(p− p̂)2

]
dp

To simplify the analysis we assume that
∫ ∞

0
|f(t)|dt < ∞ so that F (p) has no

singularity at p = 0.
The exponential outside the integral is stationary in z when P1(p̂) = 0, that is

p̂ = 0 or p̂ = −1

η

The point p = −1/η is a branch point of P1, and P1 has another singularity at
p = −a2/c2η. So p̂ = 0 is the appropriate point through which to pass the contour
C. Returning to (4.6), we find that those z and t for which p̂ = 0 is a saddle point
satisfy z = at. Moreover the exponential factor is easily shown to be maximized at
p̂ = 0, i.e., along z = at.

Near p = 0,

P1(p) = −p

a
+
η

2

c2 − a2

a3
p2 + 0(p3)

so, upon substitution in (4.4),

E(z, t) ∼ 1

2πi

∫
C
F (p) exp

[
p(t− z

a
) +

p2η(c2 − a2)

2a3
z

]
dp (4.7)

To a first approximation

E(z, t) ∼ f(t− z/a)

So the electric field is exponentially small except in the neightborhood of z = at
along which the main part of the signal travels [7]. The effect of the quadratic term
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in (4.7) can be evaluated by noting that (4.7) is a solution, at least symbolically, of
the ill-posed problem

(
∂

∂t
+ a

∂

∂z

)
φ(z, t) =

η(c2 − a2)

2a2

∂2

∂t2
φ(z, t), z > 0, t > 0

φ(z, 0) = 0, φt(z, 0) = 0, z > 0

φ(0, t) = f(t), t > 0

Noting that η(c2−a2)
2a2 φtt is of order η/T compared with φt and aφz, where T is a

time characteristic of variations in f(t), it is consistent to replace ∂
∂t

by a ∂
∂z

in the
second derivative term of the above partial differential equation to get the well-posed
problem 

(
∂

∂t
+ a

∂

∂z

)
φ(z, t) =

η

2
(c2 − a2)

∂2

∂z2
φ(z, t), z > 0, t > 0

φ(z, 0) = 0, z > 0

φ(0, t) = f(t), t > 0

(4.8)

This problem has the solution

φ(z, t) =
z√
4πd

∫ t

0

f(τ)√
(t− τ)3

exp

(
− 1

4d

[z − a(t− τ)]2

t− τ

)
dτ ∼ f(t− z

a
)

where

d =
η

2
(c2 − a2)

Contrary to results presented in reference [6], we do not replace f(t) = E(0, t) in
this equation for φ(z, t) by

f(t− z0/c) exp
(
−αz0

2c

)
for z0 ∼ 2c/α since the asymptotic result obtained immediately after (4.5) is valid
only along the characteristic t = z/c. This is indicated by the Tauberian theorems
for the Laplace transform.

Again, this result can be derived by using a perturbation procedure. By substi-
tuting

E =
∞∑

n=0

ηn/2En(ξ, t)

where

ξ = η−1/2(z − at)

into problem (2.5), one finds that E0 solves the problem (4.8) above. So

E0(z, t) =
z√
4πd

∫ t

0

f(τ)√
(t− τ)3

exp

(
− 1

4d

[z − a(t− τ)]2

t− τ

)
dτ
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5 Asymptotic Analysis—Lorentz Model

A similar analysis can be performed for a Lorentz medium via the partial differential
equation appearing in problem (2.6), which we rewrite as

η

(
∂2

∂t2
+ ν

∂

∂t

) (
∂

∂t
+ c

∂

∂z

) (
∂

∂t
− c

∂

∂z

)
E(z, t)

+

(
∂

∂t
+ a

∂

∂t

) (
∂

∂t
− a

∂

∂z

)
E(z, t) = 0

(5.1)

where

η =
a2

c2ω2
0

=
1

ω2
p + ω2

0

For valence electrons ω0 ≈ 1015 sec.−1, and in a liquid or solid ωp ≈ ω0 [4].

Writing E(z, t) in terms of its Laplace transform Ẽ(z, p) as in (4.2) and substi-
tuting into (5.1) yields

Ẽ(z, p) = F (p)ezP1(p) +G(p)ezP2(p)

where

P1(p) = −p

c

√
1 + ηνp+ ηp2

a2/c2 + ηνp+ ηp2
and P2(p) =

p

c

√
1 + ηνp+ ηp2

a2/c2 + ηνp+ ηp2

As Re p → ∞, P1 and P2 behave as

P1(p) = −p

c
−

(
c2 − a2

2ηc3

)
1

p
+ 0(p−2) and P2(p) =

p

c
+

(
c2 − a2

2ηc3

)
1

p
+ 0(p−2)

(5.2)

Again, we must choose G(p) = 0. So

E(z, t) =
1

2πi

∫
B
F (p)ept+P1(p)zdp (5.3)

where F (p) is the Laplace transform of f(t), the boundary condition in problem
(2.6).

By choosing B far enough to the right, we can substitute the expansion (5.2)
into (5.3) and conclude that asymptotically, along the characteristic z = ct,

E(z, t) ∼ 1

2πi

∫
B
F (p) exp

[
p(t− z/c) −

(
c2 − a2

2ηc3

)
z

p

]
dp

= f(t− z/c) −
√(

c2 − a2

2ηc3

)
z

∫ t

0

f(t− s− z/c)√
s

J1

(
2

√(
c2 − a2

2ηc3

)
zs

)
ds

(5.4)
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Letting

f(t) = (sinωt)H(t) ≈ ωtH(t) for 0 < t � 1

ω

we get

E(z, t) ∼ ω

√
t− z/c

γz
J1

(
2
√
γz(t− z/c)

)
(5.5)

where

γ =
c2 − a2

2ηc3
=
ω2

p

2c

Equation (5.5) is known as Sommerfeld’s first precursor.
A perturbation procedure can be used to deduce (5.4). By substituting

E(z, t) =
∞∑

n=0

ηnEn(ξ, t)

where

ξ = η−1(z − ct)

into problem (2.6), it can be shown that E0 is the solution of the problem
∂

∂z

(
∂

∂t
+ c

∂

∂z

)
E0(z, t) −

c2 − a2

2ηc3
E0(z, t) = 0, z > 0, t > 0

E0(z, 0) = 0, z > 0

E0(0, t) = f(t), t > 0

Moreover,

E0(z, t) ∼
1

2πi

∫
B
F (p) exp

[
p(t− z/c) −

(
c2 − a2

2ηc3

)
z

p

]
dp

Applying the method of steepest descent yields the behavior of E(z, t) along the
line z = at. Equation (4.6) determines the saddle points p̂ of g(p) = pt+ P1(p)z as
functions of z and t, and

E(z, t) ∼ exp[tp̂+ zP1(p̂)]
1

2πi

∫
C
F (p) exp

[
1

2
zP ′′

1 (p̂)(p− p̂)2

]
dp

where C is the curve of steepest descent through p̂. So that F (p) has no singularity
at p = 0, we assume that

∫ ∞
0

|f(t)| dt < ∞.
The exponential factor outside the integral is stationary in z when P1(p̂) = 0,

that is

p̂ = 0 or p̂ = −ν

2
± i

√
1

η
− ν2

4
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As with the Debye case, p̂ = 0 is the appropriate point through which to pass the
contour C. Using (4.6), we find that those z and t for which p̂ = 0 is a saddle
point lie along the line z = at. The exponential factor is again easily shown to be
maximized.

Near p = 0,

P1(p) = −p

a
+
ην

2

(
c2 − a2

a3

)
p2 + 0(p3)

so

E(z, t) ∼ 1

2πi

∫
C
F (p) exp

[
p(t− z/a) +

p2ην(c2 − a2)

2a3
z

]
dp

Similarly to the Debye case this will be asymptotic to the solution of the problem
(
∂

∂t
+ a

∂

∂z

)
φ(a, t) =

ην

2
(c2 − a2)

∂2

∂z2
φ(z, t), z > 0, t > 0

φ(z, 0) = 0, t > 0

φ(0, t) = f(t), t > 0

Letting d = ην(c2 − a2)/2, this problem has solution

φ(z, t) =
z√
4πd

∫ t

0

f(τ)√
(t− τ)3

exp

(
− 1

4d

[z − a(t− τ)]2

t− τ

)
dτ ∼ f(t− z/a)

So, as with a Debye medium, the main signal arrives with speed a and appears
asymptotically as

E(z, t) ∼ f(t− z/a) (5.6)

with broadening due to dispersion.
The result (5.6) can be derived using a perturbation procedure by substituting

E(z, t) =
∞∑

n=0

ηνEn(z, t)

into problem (2.6). One readily finds that

E0(z, t) = f(t− z/a)

6 Matrix Extension—Condon Model

The procedure described in section II for deriving equivalent local differential equa-
tions for dispersion has a matrix extension that allows one to deduce local differential
equations describing chiral media. Consider a homogeneous, dissipative, reciprocal,
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bi-isotropic medium [5] filling the half-space z > 0 that is assumed to be quiescent
for time t < 0. Such a medium is characterized by constitutive relations for the form

D(r, t) = ε0

[
E(r, t) +

∫ t

0

E(r, t− t′)G(t′) dt′ + c

∫ t

0

B(r, t− t′)K(t′) dt′
]

H(r, t) = ε0

[
c

∫ t

0

E(r, t− t′)K(t′) dt′ + c2B(r, t′)

]
, c2 =

1

ε0µo

(6.1)

where, in the Condon model,
G(t) = ω2

pe
− νt

2
sin ν0t

ν0

, ν2
0 = ω2

0 −
ν2

4

K(t) =
ω2

p

fν0

e−
νt
2 (ν0 cos ν0t−

ν

2
sin ν0t)

The functions G and K are the unique solutions of the problems
{L2(G)}(t) := Gtt(t) + ν Gt(t) + ω2

0G(t) = 0, t > 0

G(0) = 0

Gt(0) = ω2
p

(6.2)

and 
{L2(K)} (t) = 0, t > 0

K(0) = ω2
p/f

Kt(0) = −ω2
pν/f

Assume that the medium is illuminated by a normally incident plane wave.
Letting x̂1 and x̂2 be orthogonal unit vectors perpendicular to the z-axis, we write
the electric field in column matrix form as

E(z, t) = x̂1E1(z, t) + x̂2E2(z, t) =

(
E1(z, t)
E2(z, t)

)
Using the functions G and K above, form the matrices

G(t) =

(
G(t) 0

0 G(t)

)
, K(t) =

(
0 −K(t)

K(t) 0

)
Applying Maxwell’s equations and the constitutive relations (6.1), we find that the
electric field E solves the following problem:

{T (E)}(z, t) := Ett(z, t) −
1

c2
Ettz, t−

1

c2

∫ t

0

G(t− t′)Ett(z, t
′)dt′

+
2

c

∫ t

0

K(t− t′)Ezt(z, t
′)dt′ = 0, z > 0, t > 0

E(z, 0) = 0, z > 0

Et(z, 0) = 0, z > 0

E(0, t) = f(t), t > 0

(6.3)
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As before, we now apply the operator L2 of problem (6.2) to T (E) defined in
problem (6.3) to get an operator consisting entirely of space and time derivatives:

{L2(T (E))}(z, t) =
∂2

∂t2

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ν

∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ω2

0

[
Ezz(z, t) −

1

a2
Ett(z, t)

]
− 2

c

ω2
p

f
JEztt(z, t)

where

a2 =
c2ω2

0

ω2
p + ω2

0

and J =

(
0 −1
1 0

)
Since the solution to problem (6.2) is unique, the conditions

{L2(T (E))}(z, t) = 0, z > 0, t > 0

{T (E)}(z, 0) = 0, z > 0

∂

∂t
{T (E)}(z, 0) = 0, z > 0

imply that

{T (E)}(z, t) = 0, z > 0, t > 0

Here

{T (E)}(z, 0) = Ezz(z, 0) − 1

c2
Ett(z, 0) = 0, z > 0

and

∂

∂t
{T (E)}(z, 0) = Ezzt(z, 0) − 1

c2
Ettt(z, 0) +

2

c
K(0)Ezt(z, 0) = 0, z > 0

If

E(z, 0) = 0 and Et(z, 0), z > 0

then clearly

Ett(z, 0) = 0 and Ettt(z, 0) = 0, z > 0

Hence problem (6.3) is equivalent to

∂2

∂t2

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ν

∂

∂t

[
Ezz(z, t) −

1

c2
Ett(z, t)

]
+ ω2

0

[
Ezz(z, t) −

1

a2
Ett(z, t)

]
+

2

c

ω2
p

f
JEztt(z, t) = 0, z > 0, t > 0

E(z, 0) = 0, Et(z, 0) = 0, Ett(z, 0) = 0, Ettt(z, 0) = 0, z > 0

E(0, t) = f(t), t > 0

We have assumed for simplicity that the medium is homogeneous, but there is no
obstacle to prevent one from deriving more complicated local differential operators
in the case when the material parameters depend on position.
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