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A New Model for Control of Systems with Friction

C. Canudas de Wit, Associate, IEEE, H. Olsson, Student Member, IEEE, K. J. Astrom, Fellow, IEEE, and P. Lischinsky

Abstract—In this paper we propose a new dynamic model for
friction. The model captures most of the friction behavior that has
been observed experimentally. This includes the Stribeck effect,
hysteresis, spring-like characteristics for stiction, and varying
break-away force. Properties of the model that are relevant to
control design are investigated by analysis and simulation. New
control strategies, including a friction observer, are explored, and
stability results are presented.

I. INTRODUCTION

RICTION is an important aspect of many control sys-

tems both for high quality servo mechanisms and simple
pneumatic and hydraulic systems. Friction can lead to tracking
errors, limit cycles, and undesired stick-slip motion. Control
strategies that attempt to compensate for the effects of friction,
without resorting to high gain control loops, inherently require
a suitable friction model to predict and to compensate for
the friction. These types of schemes are therefore named
model-based friction compensation techniques. A good friction
model is also necessary to analyze stability, predict limit
cycles, find controller gains, perform simulations, etc. Most
of the existing model-based friction compensation schemes
use classical friction models, such as Coulomb and viscous
friction. In applications with high precision positioning and
with low velocity tracking, the results are not always satis-
factory. A better description of the friction phenomena for
low velocities and especially when crossing zero velocity
is necessary. Friction is a natural phenomenon that is quite
hard to model, and it is not yet completely understood. The
classical friction models used are described by static maps
between velocity and friction force. Typical examples are
different combinations of Coulomb friction, viscous friction,
and Stribeck effect [1]. The latter is recognized to produce a
destabilizing effect at very low velocities. The classical models
explain neither hysteretic behavior when studying friction
for nonstationary velocities nor variations in the break-away
force with the experimental condition nor small displacements
that occur at the contact interface during stiction. The latter
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very much resembles that of a connection with a stiff spring
with damper and is sometimes referred to as the Dahl effect.
Later studies (see, e.g., [1], [2]) have shown that a friction
model involving dynamics is necessary to describe the friction
phenomena accurately.

A dynamic model describing the spring-like behavior during
stiction was proposed by Dahl [3]. The Dahl model is essen-
tially Coulomb friction with a lag in the change of friction
force when the direction of motion is changed. The model has
many nice features, and it is also well understood theoretically.
Questions such as existence and uniqueness of solutions and
hysteresis effects were studied in an interesting paper by
Bliman [4]. The Dahl model does not, however, include the
Stribeck effect. An attempt to incorporate this into the Dahl
model was done in [5] where the authors introduced a second-
order Dahl model using linear space invariant descriptions. The
Stribeck effect in this model is only transient, however, after a
velocity reversal and is not present in the steady-state friction
characteristics. The Dahl model ha$ been used for adaptive
friction compensation [6], [7], with improved performance as
the result. There are also other models for dynamic friction.
Armstrong-Hélouvry proposed a seven parameter model in [1].
This model does not combine the different friction phenomena
but is in fact one model for stiction and another for sliding
friction. Another dynamic model suggested by Rice and Ruina
[8] has been used in connection with control by Dupont [9].
This model is not defined at zero velocity. In this paper we
will propose a new dynamic friction model that combines the
stiction behavior, i.e., the Dahl effect, with arbitrary steady-
state friction characteristics which can include the Stribeck
effect. We also show that this model is useful for various
control tasks.

II. A NEw FRICTION MODEL

The qualitative mechanisms of friction are fairly well un-
derstood (see, e.g., [1]). Surfaces are very irregular at the
microscopic level and two surfaces therefore make contact at
a number of asperities. We visualize this as two rigid bodies
that make contact through elastic bristles. When a tangential
force is applied, the bristles will deflect like springs which
gives rise to the friction force; see Fig. 1.

If the force is sufficiently large some of the bristles deflect
so much that they will slip. The phenomenon is highly
random due to the irregular forms of the surfaces. Haessig
and Friedland [10] proposed a bristle model where the random
behavior was captured and a simpler reset-integrator model
which describes the aggregated behavior of the bristles. The
model we propose is also based on the average behavior of

0018-9286/95%04.00 © 1995 IEEE
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Fig. 1. The friction interface between two surfaces is thought of as a contact
between bristles. For simplicity the bristles on the lower part are shown as
being rigid.

the bristles. The average deflection of the bristles is denoted
by z and is modeled by

dz v

— =1 - —=z 1

dt 9(v) W
where v is the relative velocity between the two surfaces.
The first term gives a deflection that is proportional to the
integral of the relative velocity. The second term asserts that
the deflection z approaches the value

Zss = ]jj—,gw = g(v)sgn(v) @

in steady state, i.e., when v is constant. The function g is
positive and depends on many factors such as material prop-
erties, lubrication, temperature. It need not be symmetrical.
Direction dependent behavior can therefore be captured. For
typical bearing friction, g(v) will decrease monotonically from
g(0) when v increases. This corresponds to the Stribeck effect.
The friction force generated from the bending of the bristles
is described as

F=00z+01£;—§

where oo is the stiffness and o; a damping coefficient. A
term proportional to the relative velocity could be added to
the friction force to account for viscous friction so that

d
F= 00Z+01d—i+<72v- 3)

The model given by (1) and (3) is characterized by the
function g and the parameters og, oy and os. The function
oog(v) + o2v can be determined by measuring the steady-
state friction force when the velocity is held constant. A
parameterization of g that has been proposed to describe the
Stribeck effect is

o09(v) = Fo + (Fs — Fe)e~@/v) (4)

where F is the Coulomb friction level, Fs is the level of the
stiction force, and v, is the Stribeck velocity; see [1]. With
this description the model is characterized by six parameters
09, 01, 02, Fe, Fs, and v,. It follows from (2)—(4) that for
steady-state motion the relation between velocity and friction
force is given by

Fys(v) = oog(v)sgn(v) + ozv

= Fosen(v) + (Fs — Fo)e™ /") sgn(v) + oyv.

Note, however, that when velocity is not constant, the dy-
namics of the model will be very important and give rise
to different types of phenomena. This will be discussed in
Section IV.

Relation ro the Dahl Model

The model reduces to the Dahl model if g(v) = F¢/oo,
and o1 = o2 = 0. Equations (1) and (3) then give

dF dz F
— = 00 = oo (l - Fc—sgn(v)) &)

Dahl actually suggested the more general model

dF

F ) F
== aov|l — Fc-sgn(v)} sgn(l - nggn(v))

see [11]. Most references to Dahl’s work, however, do use
the simpler model (5). Dahl’s model accounts for Coulomb
friction but it does not describe the Stribeck effect.

An Extension of the Dahl Model

An attempt to extend Dahl’s model to include the Stribeck
effect was made by Bliman and Sorine [5]. They replaced the
time variable ¢ by a space variable s through the transformation

s = /Ot [v(7)|dr.

Equation (5) then becomes

ar

F
T + oosgn(v) (6)

F,

= —0p—

which is a linear first-order system if sgn(v) is regarded as an
input. Bliman and Sorine then replaced (6) by the second-order
model

d*F
ds?
to imitate the Stribeck effect with an overshoot in the response
to sign changes in the velocity. This model, however, will only
give a spatially transient Stribeck effect after a change of the

direction of motion. The Stribeck effect is not present in the
steady-state relation between velocity and friction force.

+ 2(w E + w?F = w?Feosgn(v)

JII. MODEL PROPERTIES

The properties of the model given by (1) and (3) will now
be explored. To capture the intuitive properties of the bristle
model in Fig. 1, the deflection z should be finite. This is indeed
the case because we have the following property.

Property 1: Assume that 0 < g(v) < a. If |2(0)] < a then
[z(t)] < aVit>0.

Proof: Let V. = 2% /2, then the time derivative of V
evaluated along the solution of (1) is

av |v]
T = )

= = llel (s — sen(u)senta)
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TABLE 1
PARAMETER VALUES USED IN ALL SIMULATIONS

Parameter Value Unit
ao 10° [N/m]
o1 V103 [Ns/m]
o2 0.4 [Ns/m]
Fe 1 [N]
Fs 15 [N]
v 0.001 [m/s]

dv

The derivative < is negative when |z| > g¢(v). Since g(v)
is strictly positive and bounded by a, we see that the set
Q = {z: |z| £ a} is an invariant set for the solutions of
(1), i.e., all the solutions of z(¢) starting in 2 remain there.

Dissipativity

Intuitively we may expect that friction will dissipate energy.
Since our model given by (1) and (3) is dynamic, there may be
phases where friction stores energy and others where it gives
energy back. It can be proven that the map ¢ : v +— z is
dissipative for our model. For more details on the concepts
and definitions concerning dissipative systems, see [12].

Property 2: The map ¢ : v — z, as defined by (1), is
dissipative with respect to the function V (t) = $22(2), ie.,

/(; z(T)v(T) dr > V(t) ~ V(0).

Proof: Tt follows from (1) that

zv—z%-i--ﬁ}!— 2
AN
dz
> z—.
=

Hence

¢ t dz(T)
/0 2(r)o(r) dr > /0 S dr > V(1) - V(0).

Linearization in Stiction Regime

To get some insight into the behavior of the model in the
stiction regime we will consider a mass m in contact with a
fixed horizontal surface. Let = be the coordinate of the mass,
i.e., v = dz/dt. The equation of motion becomes

d’z 7 dz dz

Mm—s =~—~F=—0pz— 01— — 09—

di? R

where z is given by (1). Linearizing (1) around z = 0 and
v = 0 we get

O

dr _do .
dt — dt’ ®
Inserting (8) into (7) gives

d*z dz
m—gt-2—+(0'1+0'2)E+00$=0. €))

This shows that the system behaves like a damped second-
order system. Notice that the bristle stiffness, o, is usually
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Friction force [N]
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Displacement [m]

T

0 2107 4107

Fig. 2. Presliding displacement as described by the model. The simulation
was started with zero initial conditions.

very large, and therefore it is essential to have o; # 0 to have
a sufficiently damped motion. The viscous friction coefficient,
o2, is normally not sufficiently large to provide good damping.

IV. DYNAMICAL MODEL BEHAVIOR

As a preliminary assessment of the model we will inves-
tigate its behavior in some typical cases. They correspond
to standard experiments that have been performed. In all the
simulations the function g has been parameterized according
to (4) and the parameter values in Table I have been used.
The parameter values have to some extent been based on
experimental results [1]. The stiffness oy was chosen to give
a presliding displacement of the same magnitude as reported
in various experiments. The value of the damping coefficient
o3 was chosen to give a damping of ¢ = 0.5 for the linearized
equation (9) with a unit mass. The Coulomb friction level Fo
corresponds to a friction coefficient u ~ 0.1 for a unit mass,
and Fs gives a 50% higher friction for very low velocities.
The viscous friction o9 and the Stribeck velocity v are also
of the same order of magnitude as given in [1].

The different behaviors shown in the following subsections
cannot be attributed to single parameters but rather to the
behavior of the nonlinear differential equation (1) and the
shape of the function g. The presliding displacement and
the varying break-away force are due to the dynamics. This
behavior is also present in the Dahl model. The Stribeck shape
of g together with the dynamics give rise to the type of
hysteresis observed in the subsection on frictional lag.

A. Presliding Displacement

Courtney-Pratt and Eisner have shown that friction behaves
like a spring if the applied force is less than the break-away
force. If a force is applied to two surfaces in contact there will
be a displacement. A simulation was performed to investigate
if our model captures this phenomenon. An external force was
applied to a unit mass subjected to friction. The applied force
was slowly ramped up to 1.425 N which is 95% of Fg. The
force was then kept constant for a while and later ramped down
to the value —1.425 N, where it was kept constant and then
ramped up to 1.425 N again. The results of the simulation
are shown in Fig. 2 where the friction force is shown as a
function of displacement. The behavior shown in Fig. 2 agrees
qualitatively with the experimental results in [13].
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Friction force [N]

w = 25 [rad/s]
w = 10 [rad/s]
w = 1 [rad/s]

Velocity [m/s]
0 1107 2107 3107

Fig. 3. Hysteresis in friction force with varying velocity. The velocity
variation with the highest frequency shows the widest hysteresis loop.
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Fig. 4. Relation between break-away force and rate of increase of the applied
force.

B. Frictional Lag

Hess and Soom [14] studied the dynamic behavior of fric-
tion when velocity is varied during unidirectional motion. They
showed that there is hysteresis in the relation between friction
and velocity. The friction force is lower for decreasing veloci-
ties than for increasing velocities. The hysteresis loop becomes
wider at higher rates of the velocity changes. Hess and Soom
explained their experimental results by a pure time delay in
the relation between velocity and friction force. Fig. 3 shows
a simulation of the Hess—Soom experiment using our friction
model. The input to the friction model was the velocity which
was changed sinusoidally around an equilibrium. The resulting
friction force is given as a function of velocity in Fig. 3. Our
model clearly exhibits hysteresis. The width of the hysteresis
loop also increases with frequency. Our model thus captures
the hysteretic behavior of real friction described in [14].

C. Varying Break-Away Force

The break-away force can be investigated through exper-
iments with stick-slip motion. In [15] it is pointed out that
in such experiments the dwell-time when sticking and the
rate of increase of the applied force are always related and
hence the effects of these factors cannot be separated. The
experiment was therefore redesigned so that the time in stiction
and the rate of increase of the applied force could be varied
independently. The results showed that the break-away force

Fig. 5. Experimental setup for stick-slip motion.

Position [m]

Time [s]

0 10 2
2 Friction force {N]
Velocity [m/s] F

/‘\Time [s]
0 10 20

Fig. 6. Simulation of stick-slip motion.

did depend on the rate of increase of the force but not on the
dwell-time; see also [16]. Simulations were performed using
our model to determine the break-away force for different rates
of force application. Since the model is dynamic, a varying
break-away force can be expected. A force applied to a unit
mass was ramped up at different rates, ahd the friction force
when the mass started to slide was determined. Note that since
the model behavior in stiction is essentially that of a spring,
there will be microscopic motion, i.e., velocity different from
zero, as soon as a force is applied. The break-away force was
therefore determined at the time where a sharp increase in the
velocity could be observed. Fig. 4 shows the force at break-
away as a function of the rate of increase of the applied force.
The results agree qualitatively with the experimental results
in [15] and [16].

D. Stick-Slip Motion

Stick-slip motion is a typical behavior for systems with
friction. It is caused by the fact that friction is larger at rest than
during motion. A typical experiment that may give stick-slip
motion is shown in Fig. 5. A unit mass is attached to a spring
with stiffness & = 2 N/m. The end of the spring is pulled
with constant velocity, i.e., dy/dt = 0.1 m/s. Fig. 6 shows
results of a simulation of the system based on the friction
model in Section II. The mass is originally at rest and the
force from the spring increases linearly. The friction force
counteracts the spring force, and there is a small displacement.
When the applied force reaches the break-away force, in this
case approximately 00g(0), the mass starts to slide and the
friction decreases rapidly due to the Stribeck effect. The spring
contracts, and the spring force decreases. The mass slows
down and the friction force increases because of the Stribeck
effect and the motion stops. The phenomenon then repeats
itself. In Fig. 6 we show the positions of the mass and the
spring, the friction force and the velocity. Notice the highly
jrregular behavior of the friction force around the region where
the mass stops.

S
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Fig. 7. Block diagram for the servo problem with PID controller
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Fig. 8. Simulation of the PID position control problem in Fig. 7.

V. FEEDBACK CONTROL

To further illustrate the properties of our friction model we
will investigate its application to some typical servo problems.
First we will use it to show that it predicts limit cycle
oscillations in servos with PID control. We will then use it
to design observer based friction compensators.

A. Limit Cycles Caused by Friction

It has been observed experimentally that friction may give
rise to limit cycles in servo drives where the controller has
integral action; for references see [2]. This phenomenon is
often referred to as hunting.

Consider the linear motion of a mass m at position x. The
equation of motion is

d’z
m— =u—F 10
dt? (10)
where dz/dt = v is the velocity, F’ the friction force given by
(3) and u the control force which is given by the PID controller

u=-Kyv— Ky(z—zq) — K; /(x —Iq)- (1

A block diagram of the system is shown in Fig. 7. In Fig. 8
we show the results of a simulation of the system. The friction
parameters are given by Table I, m = 1 and the controller
parameters are K, = 6, K, = 3, and K; = 4. The reference
position is chosen as z4 = 1. The model clearly predicts limit
cycles as have been observed experimentally in systems of
this type.

B. Friction Compensation

Only linear feedback from the position was used in the PID
control law (11). Knowledge about friction was not used. It
is of course more appealing to make a model-based control
that uses the model to predict the friction to compensate for
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Fig. 9. Block diagram for the position control problem using a friction
observer.

it. Since the model is dynamic and has an unmeasurable state,
some kind of observer is necessary. This will be discussed
next.

Position Control with a Friction Observer: Consider the
problem of position tracking for the process (10). Assume that
the parameters og, 01, and o2, and the function g in the friction
model are known. The state z is, however, not measurable and
hence has to be observed to estimate the friction force. For this
we use a nonlinear friction observer given by

dz v
=y ———2—ke, k>0 12
7 v g(v)z e, > (12)
L dz
F=002+01£+O’2’U 13)
and the following control law
. d?
u= —H(s)e-l—F-%—m?? (14)

where ¢ = z — x4 is the position error and z4 is the desired
reference which is assumed to be twice differentiable. The term
ke in the observer is a correction term from the position error.
The closed-loop system is represented by the block diagram
in Fig. 9. With the observer based friction compensation, we
achieve position tracking as shown in the following theorem.

Theorem 1: Consider system (10) together with the friction
model (1) and (3), friction observer (12) and (13), and control

law (14). If H(s) is chosen such that

018+ 0g

G(s) = ———5—
() ms? + H(s)

is strictly positive real (SPR) then the observer error, F-F ,

and the position error, e, will asymptotically go to zero.

Proof: The control law yields the following equations

1 ~ o158+ 09 - .
= (-FV= ———(~2) = -G
¢ m52+H(s)( ) m52+H(5)( ?) (5)2
dz Jv| .
b bl k
T Oy S
where F = F — F and 7 = z — 2. Now introduce
52
vV =¢TPe+ E;?
as a Lyapunov function and
d¢ 3
5 - B(~
= = ¢+ B(~2)
e=C¢
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~G(s)
z 7 e
dz vl .
FT g(v)z + ke

Fig. 10. The block diagram in Fig. 9 redrawn with e and Z as outputs of a
linear and a nonlinear block, respectively.

which is a state-space representation of G(s). Since G(s) is
SPR [17] it follows from the Kalman—Yakubovitch Lemma
[17] that there exist matrices P = PT > 0and Q = QT > 0
such that

ATP+PA=-Q

PB=CT.
Now
WV _ _roe — o pps 4 255
—r=—€TQE -2 PBi+ - —
Qe pes s 2y L
=-{ Q¢ 2€Z+k2( g(v)z+ke)
— _¢Toe_ 210 o
=-dw kg(v)”
< -£rqe.

The radial unboundedness of V together with the semi-
definiteness of dV/dt implies that the states are bounded. We
can now apply LaSalle’s theorem to see that § — 0 and Z — 0
which means that both e and F tends to zero and the theorem
is proven.

The theorem can also be understood from the following
observations. By introducing the observer we get a dissipative
map from e to Z and by adding the friction estimate to
the control signal, the position error will be the output of
a linear system operating on Z. This means that we have
an interconnection of a dissipative system and a linear SPR
system as seen in Fig. 10. Such a system is known to be
asymptotically stable.

Velocity Control: The same type of observer-based control
can be used for velocity control. For this control problem the
controller is changed to

d’Ud
=-H F+m=2
(s)e+F+m 5
dz lv]
E—v——(~—)—z~k(v—vd), k>0 (15)
= + ——dé +
= gz (25} di g2v

where v — vq is the velocity error and vg the desired velocity
which is assumed to be differentiable. Velocity tracking is
achieved as shown in the following theorem.

Theorem 2: Consider system (10) together with friction
model (1) and (3) and observer based control law (15). If
H(s) is chosen such that

18 + 0y

G = T HG)

is strictly positive real, then the observer error, I’ — 13’, and
the velocity error will asymptotically go to zero.

Proof: The theorem is proven in the same way as Theo-
rem ! after observing that the control law yields the following
error equations

1 ~ 018+ 09 . .
v = e CF) = ey (A = 6l
dz || |
ZE = —‘;—(U—)Z'i'k‘(v—’l)d)-

This is again an interconnection of a dissipative system with Z
as its output and a linear SPR system with v — v, as its output.

To assume that the friction model and its parameters are
known exactly is of course a strong assumption. Investigation
of the sensitivity of the results to these assumptions is an
interesting problem that is outside the scope of this paper. The
accuracy required in the velocity measurement is a similar
problem.

VI. CONCLUSIONS

A new dynamic model for friction has been presented. The
model is simple yet captures most friction phenomena that
are of interest for feedback control. The low velocity friction
characteristics are particularly important for high performance
pointing and tracking. The model can describe arbitrary steady-
state friction characteristics. It supports hysteretic behavior due
to frictional lag, spring-like behavior in stiction and gives a
varying break-away force depending on the rate of change of
the applied force. All these phenomena are unified into a first-
order nonlinear differential equation. The model can readily
be used in simulations of systems with friction.

Some relevant properties of the model have been investi-
gated. The model was used to simulate position control of a
servo with a PID controller. The simulations predict hunting
as has been observed in applications of position control with
integral action. The model has also been used to construct
a friction observer and to perform friction compensation for
position and velocity tracking. When the parameters are known
the observer error and the control error will asymptotically go
to zero. Sensitivity studies, parameter estimation and adapta-
tion are natural extensions of this work.
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