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Abstract
In this paper, spherical vector waves are used to analyze MIMO antennas. An
expansion of the far-�eld pattern in spherical vector waves gives the correla-
tion matrix and correlation loss of the MIMO antenna in uniform multi-path
channels. Numerical examples of a MIMO tetrahedron and a MIMO cube are
presented.

1 Introduction
Multiple-input multiple-output (MIMO) systems use multiple antennas at each end
of the communication link in environments with rich multipath propagation. Re-
cently, the MIMO systems have received much interest due to their ability to increase
the spectral e�ciency in wireless communication systems [5, 13, 15, 17, 18].

The tripole antenna is probably the simplest MIMO antenna. It consists of three
orthogonal electric dipoles [1, 4]. To avoid the problem of feeding the dipoles at the
same point in space and at the same time utilize the magnetic dipoles, a MIMO
cube [6] or a MIMO tetrahedron can be used. These antennas consist of 12 and 6
electrical dipoles centered on the edges of a cube and a tetrahedron, respectively.

In this paper, spherical vector waves are used to analyze MIMO antennas. A
mode expansion of the far �eld gives a natural expression of the polarization, angle,
and spatial diversity that is utilized in MIMO systems [5, 7, 15, 17, 18]. This map
gives a correlation matrix of the antenna in uniform multi-path environments and
it o�ers a simple interpretation of the antenna radiation properties. Although this
mode expansion is in�nite, it is in practice su�cient to consider a �nite set of modes
due to the high Q-factors (strong reactive near �eld), and hence high losses and low
bandwidth, associated with high order modes [7�10].

2 Antenna scattering matrix
We consider an antenna system with N local ports with incoming waves v and
outgoing waves w. The incoming and outgoing waves are power normalized, i.e.,
the power in the incoming and outgoing waves are ‖v‖2 =

∑N
n |vn|2 and ‖w‖2,

respectively. The electromagnetic �eld is expanded in incoming, u(3)
α , and outgoing,

u(4)
α , spherical vector waves [8] or modes

E(r) = k
√

2η
∑

α

aα u(3)
α (kr) + bα u(4)

α (kr), (2.1)

where r is the spatial coordinate, k the wavenumber, and η the impedance, see
appendix. This expansion is valid in the region outside a sphere surrounding the
antenna. We use a power normalization of the expansion coe�cients such that
the power of the incoming and the outgoing waves are ‖a‖2 =

∑
α |aα|2 and ‖b‖2,

respectively. The multi index α = {τ, s,m, l} for l = 1, 2, . . ., s = 1, 2, m =
0, 1, . . . , l, and τ = 1, 2 is introduced to simplify the notation. The index, α, is also
ordered such that α = 2(l2 + l − 1 + (−1)sm) + τ .
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There are a few common versions of the spherical vector waves in the literature [2,
3, 8, 10, 11]. Here, we follow [3, 10] and use cos mφ and sin mφ as basis functions in
the azimuthal coordinate. This choice is motivated by the interpretation of the
�eld related to the �rst 6 modes as the �eld from di�erent elementary dipoles. The
modes labeled by τ = 1 (odd α) identify magnetic 2l-poles and the terms labeled by
τ = 2 (even α) correspond to electric 2l-poles. Moreover, the dipoles corresponding
to α = 1, 2 are directed in the y-direction, α = 3, 4 in the z-direction, and α = 5, 6
in the x-direction.

The scattering matrix of an antenna relates the incoming waves with the outgoing
waves [8]. The antenna scattering matrix is

(
Γ R
T S

) (
v
a

)
=

(
w
b

)
, (2.2)

where Γ is an N × N matrix, R is an N ×∞ matrix with elements Rn,α, T is an
∞× N matrix with elements Tα,n, and S is an ∞×∞ matrix. The transmission
matrix, T, is determined by a projection of the far �eld on the spherical vector
harmonics, Aα, i.e., the far �eld of port n is

F n(r̂) = k
√

2η
∑

α

il+2−τTα,n Aα(r̂)vn, (2.3)

where Aα is de�ned in (A.2) and r̂ = r/|r|. The Lorentz reciprocity theorem [8]
gives Rn,α = (−1)sTα,n for reciprocal antennas.

The receiving antenna is characterized by v = 0 giving the received signal
w = Ra. This can be interpreted as a receiving antenna channel, i.e., it maps
the incoming spherical vector waves, a, to the received signals, w. The power of the
incoming wave is ‖a‖2 and the received power is ‖w‖2 ≤ ‖a‖2 as the antenna is pas-
sive. The properties of the channel is analyzed with a singular value decomposition
(SVD) of the channel matrix R = UΣVH, giving

w̃ = UHw = ΣVHa = Σã, (2.4)

where Σ has at most N non-zero singular values σn.

3 Rayleigh channel
The Rayleigh channel is de�ned as a channel with uncorrelated and zero mean entries
having complex Gaussian distribution and the amplitudes thus being Rayleigh dis-
tributed [14�16, 18], i.e., H = Hw, where E {Hw} = 0 and E {Hw|ijH∗

w|mn} = δimδjn.
It is customary to interpret the scalar Rayleigh channel as the channel resulting from
a large number of independent and uniformly distributed scattered waves impinging
on the receiver [12]. Similar arguments show that a large number of uniformly dis-
tributed and independent scattered plane wave components impinging on an antenna
can be represented as a Rayleigh channel in the spherical vector waves [7].

In this paper, we consider the limitations imposed by the antenna in uniform
multi-path environments. The multi-path environment is modeled with a Rayleigh
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channel Hw, giving the random channel RHw. It is observed that R can be inter-
preted as the square root of the correlation matrix on the receiver side [15]. We
assume that the transmitter side consists of Ns uncorrelated ports with signals s.
The received signal is corrupted with noise, y = RHws + n, where the noise is as-
sumed to be uncorrelated complex Gaussian noise [14, 15, 18] with spectral density
N0. The SVD of R in (2.4) gives the equivalent channel

ỹ = ΣH̃ws + ñ, (3.1)

where Σ and H̃w are a diagonal N × N matrix with elements σn and an N × Ns

Rayleigh channel, respectively. The ergodic capacity (in b s−1Hz−1) of this channel
is given by

CΣ = E
{

max
TrRss=Ns

log2 det

(
I +

P

N0Ns

ΣH̃wRssH̃
H
wΣ

)}
, (3.2)

where Rss is the power normalized covariance matrix for the input signal [15], I
is the N × N identity matrix, and P/N0 represents the signal-to-noise ratio. The
optimal energy allocation is given by the water-�lling solution [15]. The correlation
loss (assuming = 0Γ = 0) of the antenna channel, Σ, is given by

∆C = CΣ − CΣ=I. (3.3)

The correlation loss [15] at high SNR, i.e., neglect the identity matrix, I, in (3.2),
of this channel is given by

∆C∞ = log2 det(Σ2) =
N∑

n=1

log2 σ2
n. (3.4)

4 Numerical examples
4.1 MIMO tetrahedron
The MIMO tetrahedron consists of six electric dipoles centered on the edges of a
tetrahedron (see Fig. 1a). This gives a maximum of six ports for the antenna,
i.e., N = 6. The antenna channel T is determined by a projection of the far-�eld
patterns of each dipole on the spherical vector harmonics. The antenna is assumed
be matched (Γ = 0) at the considered frequency and to conserve power. This gives
a total channel gain ‖T‖2

F =
∑

σ2
n = 6. For a mismatched antenna (Γ 6= 0),

the total channel gain is less than 6. In Fig. 1b, the mode representation of the
MIMO tetrahedron contained in a sphere with radius of 0.3 wavelengths is depicted.
The �gure contains 6 graphs, where graph number n contains the amplitudes of
the column number n of T, i.e., the far �eld of dipole number n (see Fig. 1a).
The amplitude of bar indexed α corresponds to the magnitude of the α-th mode.
As seen by the mode representation, both electric dipoles (α even) and magnetic
dipoles (α odd) are included in the representation. It is also observed that each
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Figure 1: a) MIMO tetrahedron. b) Mode representation of each dipole on a
MIMO tetrahedron with size 0.3λ, i.e., each graph represents one column of T and
the mode numbers represent the rows of T.

dipole excites several modes and that the amplitude decreases for large values of the
l index. Observe that l = 1 and l = 2 correspond to 1 ≤ α ≤ 6 and 7 ≤ α ≤ 16,
respectively.

The singular value decomposition (2.4) is used to rewrite the antenna channel
into a sum of orthogonal channels. In Fig. 2a, the 6 orthogonal channels, i.e.,
the columns of ΣUH, are depicted. Each graph shows one column and they are
ordered from top to bottom. It is observed that the �rst three singular values σi,
i = 1, 2, 3 correspond to three orthogonal dipoles plus a small contribution from
higher order modes. The next three singular values σi, i = 4, 5, 6 correspond to
the three orthogonal magnetic dipoles plus a small contribution from higher order
modes.

In Fig. 2b, the magnitude of the singular values are plotted in decibel as a func-
tion of the size of the tetrahedron. Here, it is seen that the electric dipoles dominate
the radiated �eld if the tetrahedron is small, e.g., smaller than 0.3 wavelengths.
As the size of the tetrahedron increases the in�uence of the magnetic dipoles and
higher order modes increases. For a size of 0.5 wavelengths the contribution from the
electric dipoles and the magnetic dipoles are of the same magnitude. Observe, that
there are only two di�erent singular values, i.e., σ1 = σ2 = σ3 and σ4 = σ5 = σ6.

In Fig. 3a, the ergodic capacity, given by (3.2), for Ns = 6 and the SNR values
of 100, 10, 1, and 0.1 is compared between the MIMO tetrahedron, CΣ, (solid lines),
the uncorrelated cases (dotted lines), CI, and the high SNR approximation, CI + ∆
(dashed lines). The ergodic capacity is determined with the water-�lling solution [15]
over 1000 realization. The ergodic capacity increases up to its maximum at r ≈ λ/2,
i.e., where the antenna channel is uncorrelated (Σ = I).

The limitations imposed by the antenna is better illustrated with the correlation
loss (3.3), i.e., the di�erence between the solid and dotted lines in Fig. 3a. The
correlation loss is shown by the solid curves in Fig. 3b. The correlation loss is
negligible for small SNRs where the spatial diversity is not utilized. The correlation
loss increases up to the asymptotic value (3.4) for higher SNRs. The singular values,
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Figure 2: Characteristics of the MIMO tetrahedron after a SVD. a) The mode
representation of the orthogonal channels i.e., the columns and rows of ΣUH. The
channels are dominated by electrical dipoles (even numbers) and magnetic dipoles
(odd numbers), respectively. b) the solid lines show the singular value distribution,
i.e., the channel gain, as a function of the tetrahedron size where each line correspond
to three singular values. The dashed and dashed dotted lines show the projection
on electric (α = 2, 4, 6) and magnetic (α = 1, 3, 5) dipoles, respectively.

σ2
i , from Fig. 3b are redrawn in log2 scale in the �gure to clarify their relation to the

correlation loss (3.4). The log2 scale is used for a direct comparison with the loss
in ergodic capacity given in b s−1Hz−1. Observe that 10 log10 σ2

i ≈ 3 log2 σ2
i . The

corresponding average number of used channels are shown in Fig. 3c.

4.2 MIMO cube
The MIMO cube consists of 12 electric dipoles centered on the edges of a cube, see
Fig. 4a. It is easily understood that the antenna channel of a small MIMO cube
is dominated by the three orthogonal electric dipoles as four closely spaced dipoles
oriented in the same direction are indistinguishable. This is also observed in Fig. 4b
where the gain of each orthogonal channel is plotted as a function of the radius of
the smallest sphere containing the antenna. In the �gure, it is seen that a small
cube is dominated by �rst three channels. The radiation patterns of these �rst
three channels correspond to the radiation pattern of three orthogonal dipoles. As
the sphere radius increases the contribution from magnetic dipoles and higher order
modes increases and at r ≈ λ/2, there are 12 orthogonal modes of almost equal
gain.

The ergodic capacity, the correlation loss, and the average number of used chan-
nels are shown in Fig. 5 for Ns = 12. It is seen that the MIMO cube has an average
of approximately 11 independent channels for an SNR of 100 if the cube is close to
λ/2, cf., [6]. The results are similar as for the tetrahedron. The ergodic capacity of
the cube is approximately two times the capacity of the tetrahedron for the approx-
imately uncorrelated cases, Σ ≈ I. However, the correlation loss is much higher for
the cube than the tetrahedron for small antennas. This is easily understood by the
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Figure 3: Properties of the MIMO tetrahedron as a function of the antenna radius
for SNR values of 100, 10, 1, and 0.1. a) The ergodic capacity. The solid and dotted
lines show the ergodic capacity using (3.2) for the MIMO tetrahedron, CΣ, and the
uncorrelated case, CI, respectively. The dashed lines show the ergodic capacity in
the high SNR approximation, CI + ∆C, using (3.4). b) The solid lines show the
correlation loss, (3.3), for the SNR values above. The dashed line shows the high
SNR case (3.4). The channel gain from Fig. 2b are shown in log2 scale by the dotted
lines. c) Comparison between the average number of used channels of the MIMO
tetrahedron case (solid lines) and the uncorrelated case (dotted lines).

distribution of the singular values and physically understood from the di�culty to
generate higher order modes in small antennas.

5 Discussion and conclusions
In this paper, spherical vector waves are used to analyze MIMO antennas. The
correlation matrix of the antenna is obtained from the mode expansion of the far
�eld. A singular value decomposition of the correlation matrix gives an equivalent
representation of the antenna in terms of electric and magnetic 2l poles. For future
research, we will consider more realistic channel models and improve the models of
the MIMO antenna by including mutual coupling between the antenna ports and
by considering a realistic feed model.
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Appendix A Spherical vector waves
The incoming, u(3)

α , and outgoing, u(4)
α , spherical vector waves are given by

u(p)
1sml(kr) = h

(p−2)
l (kr)A1sml(r̂) (A.1)

and u(p)
2sml = k−1∇ × u(p)

1sml where h
(p−2)
l , p = 3, 4 denote the spherical Hankel func-

tions, Aα denote the spherical vector harmonics, r = |r|, and time convention eiωt

is used. The cases p = 1, 2 are used to denote standing spherical vector waves [8].
There are several common de�nitions of the spherical vector harmonics [2, 3, 8, 11].
For τ = 1, 2, we use

A1sml(r̂) =
1√

l(l + 1)
∇× (r Ysml(r̂)) (A.2)

and A2sml(r̂) = r̂ ×A1sml(r̂) where Ysml denotes the spherical harmonics [3]. The
spherical vector waves (A.1) are trivially related to the spherical vector waves de�ned
in [8] through

u(p)
τ,s,m,l =

F
(p)
τ,m,l + (−1)m+sF

(p)
τ,−m,l

−√2(−i)s
(A.3)

and u(p)
τ,2,0,l = F

(p)
τ,0,l. Observe that m ≥ 1 for s = 1 and that s = 1 and s = 2

correspond to odd, o, and even, e, modes, respectively.
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