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Abstract—Length and area regularization are common-
place for inverse problems today. It has however turned
out to be much more difficult to incorporate a curvature
prior. In this paper we propose two improvements to a
recently proposed framework based on global optimization.
The mesh geometry is analyzed both from a theoretical and
experimental viewpoint and hexagonal meshes are shown to
be superior. Our second contribution is that we generalize
the framework to handle mean curvature regularization for
3D surface completion and segmentation.

I. CURVATURE IN VISION

The problem we are interested in solving amounts to
minimizing the following energy functional:

E(R) =

∫
R

g(x) dx+

∫
∂R

(
λ+ γκ(x)2

)
dA(x), (1)

where R is the 2D (or 3D) foreground region with
boundary ∂R. Here g(x) is the data term, which may take
many forms depending on the application, λ is a positive
weighting factor for length (or area) regularization, and γ
controls the amount of curvature regularization, denoted
κ. Note that the domain may be a 2D image region or a
3D region. In the former case, the boundary is a curve
and the notion of curvature is the usual one, while in the
latter, the boundary is a surface and κ refers to the mean
curvature.

Second order priors like curvature are important for
many vision applications, such as stereo [1]. In image
segmentation, experiments have shown that curvature
regularization is able to capture thin, elongated structures
[2], [3] where standard length-based regulators would fail,
c.f. Fig 1. Curvature has also been identified as a key factor
in human perception based on psychophysical experiments
on contour completion [4]. Still, most segmentation-based
approaches in computer vision do not use curvature
information. This is contrast to length or area regularity
which do play an important role. One of the reasons for
this fact is that curvature regularity is harder to incorporate
in a global optimization framework. Note that curvature
regularity is fundamentally different from length or area
regularity. While, for example, length regularization prefers
shorter boundaries, there is no such bias in curvature
regularization. In fact, due to a famous theorem of Werner
Fenchel, we know that the integral of the absolute curvature
for any closed convex plane curve is equal to 2π.

In differential geometry, energy functionals of the type
in (1) have been studied for a long time. In the surface
case, the functional is known as the Willmore energy [5]. It
gives a quantitative measure of how much a given surface
deviates from a round sphere. Local descent techniques

(a) Thresholded data term (b) Curvature regularization

Fig. 1: Curvature regularization preserves long, thin objects.

have been derived for minimizing (1), cf. [6], but they are
very dependent on a good initialization.

We propose an improvement to the current state-of-the-
art of curvature regularization. This results smaller memory
requirements, and hence important steps are taken to make
curvature regularization more practical. More specifically,
we show how to obtain better suited tessellations of
the domain. We also show how to apply curvature
regularization for surfaces in R3. To our knowledge, this
is the first work that has been able to globally optimize
functionals of squared mean curvature.

II. LENGTH AND AREA REGULARIZATION

The basis for our work is the discrete differential
geometry framework developed by Sullivan in [7] and
Grady in [8] for computing minimal surfaces and shortest
paths. The goal is to compute a discrete approximation of
the continuous functional in (1). We will recast the problem
as an integer linear program and solve it via a linear
programming (LP) relaxation. In this section we limit the
exposition to the standard case without the curvature term
(corresponding to γ = 0). Interestingly, this integer linear
program can be shown to be totally unimodular and hence
the LP relaxation will be tight.

The method is based on tessellating the domain of
interest into a so-called cell complex, a collection of
non-overlapping basic regions whose union gives the
original domain. Several types of tessellations are possible.
Some examples are given in Fig. 2 for 2D and Fig. 3
for 3D meshes. Typical choices are square meshes (2D),
resulting in 4-connectivity and cube meshes (3D) giving
6-connectivity. To mimic 8-connectivity, pixels are subdi-
vided into four triangular regions each. We will elaborate
more on this issue in Section IV.

The boundaries of 2D regions are called edges, and the
boundaries of 3D regions are called facets. To make this
approach work, it is necessary to consider both possible
orientations of each edge and facet.



In the integer linear program, there are two sets of binary
variables, one reflecting regions and the other related
to boundaries. For each basic region, a binary variable
reflects whether the region belongs to the foreground or
the background. Let xi, i = 1, . . . ,m denote these binary
variables, where m is the number of basic regions. The
region integral in (1) is now easily approximated by a
linear objective function of the form

m∑
i=1

gixi. (2)

In this paper we let xi denote region variables and yi
boundary variables (lines in 2D and facets in 3D). The
length area term in (1) is then represented with

λ
∑
i

`iyi, (3)

where `i denotes the length of edge i, and similarly in 3D
with areas ai. To enforce consistency between the region
and boundary variables, surface continuation constraints
[3] are used in the 2D case. We use completely analogous
constrains (9) in three dimensions.

When considering surface completion, region variables
are not needed and linear constraints of the type (6) may
be used to enforce consistency of the surface [8].

III. CURVATURE REGULARIZATION

A. Curvature in the Plane

To be able to handle curvature regularization, pairs
of boundary variables are introduced. We denote these
pairs by yij . Schoenemann et al. [3] described how to
introduce boundary continuation constraints to ensure
that an actual boundary curve is formed. Without the latter
constraint, only straight line pairs would be used.

Having introduced the line pair variables, the last term
in (1) may also be represented as a linear function:

γ
∑
i,j

bijyij . (4)

The coefficients bij used by [9], [3] were

bij = min{`i, `j}
(

α

min{`i, `j}

)p

, (5)

where α is the angle difference between the two lines. We
use p = 2 exclusively in this paper.

B. Curvature of Surfaces

Each facet in our 3D mesh is associated with a variable
y = (y1, . . . , y2n) of areas a = (a1, . . . , a2n). There are
twice as many variables as facets, because each facet is
associated with two variables, one for each orientation. The
two are distinguished by (arbitrarily) assigning a normal
to each face in the mesh. With the matrix B as defined in
[8], the optimization problem for surface completion with
area regularization is

minimize
y

λaTy

subject to By = 0; y ∈ {0, 1}2n; yk = 1, k ∈ K.
(6)

Be,yi
=


+1, if edge e borders yi with coherent orientation

−1, if edge e borders yi with coherent orientation

0, otherwise

K is the set of facets that are supposed to be part
of the minimal surface a priori. We now extend this
formulation to support curvature by introducing face
pairs. Each pair of facets in the mesh with an edge in
common are associated with two variables {yij} (one for
each orientation). Enforcing consistency between the face
variables and the variables corresponding to the pairs of
faces can be done with linear constraints:

Surface continuation constraints. For each oriented facet
k and each one of its edges e we add the following
constraint:

yk =
∑

ij with edge e

dk,ijyij . (7)

The sum is over all pairs ij with edge e in common. The
indicator dk,ij is 1 if facet k is part of the pair ij.

Having introduced the facet pairs, we follow [10] and
associate them with a cost bi,j , approximating the mean
curvature (compare with (5) on page 2):

bi,j =
3||ei,j ||2

2(ai + aj)

(
2 cos

θi,j
2

)2

, (8)

where θi,j is the dihedral angle between the two facets in
the pair. ||ei,j || is the length of their common edge. The
objective function we are minimizing is then ρ

∑
i aiyi +

σ
∑

i,j bi,jyi,j , subject to the constraints in (6) and (7).
This approximation is not perfect; for example, it will not
give the correct approximation for saddle points. However,
it measures how much the surface bends and fulfills a
couple of requirements listed by [10].

Segmentation, as opposed to surface completion, require
variables for each volume element in order to incorporate
the data term. Additional consistency constraints are then
required:

Volume continuation constraints. For each facet k,∑
i

bk,iyi +
∑
i

gk,ixi = 0, (9)

where bk indicates whether the facet yk is positively or
negatively incident w.r.t. the chosen face normal. gk,i is 1 if
the volume element xi is positive incident (the face normal
points towards its center), -1 if it is negative incident and
0 otherwise. Both sums have two non-zero terms.

IV. TESSELLATIONS

A. Hexagonal Meshes

Hexagonal meshes have long been studied for image
processing.[11] One characterizing fact of hexagons is that
they are the optimal way of subdividing a surface into
regions of equal area while minimizing the sum of the
boundary lengths.[12] The fact that is more important
to us is the neighborhood structure. In a hexagonal
lattice every region has 6 equidistant neighbors. When
approximating curvature we would like to represent as



(a) Square mesh with
4-connectivity. Each
cell has 1 region and
2 lines (on average).

(b) Hexagonal mesh
with 6-connectivity.
Each cell has 6 re-
gions and 9 lines.

(c) Square mesh
with 8-connectivity.
Each cell has 4
regions and 6 lines.

(d) Square mesh
with 16-connectivity.
Each cell has 32
regions and 52
lines.

(e) Square mesh
with 12-connectivity.
Each cell has 25
regions and 44
lines.

(f) Hexagonal mesh
with 12-connectivity.
Each cell has 12 re-
gions and 18 lines.

Fig. 2: Different types of grids. The maximum angle between
the possible straight lines is 90◦ in (a), 60◦ in (b) and 45◦ in
(c). Meshes (d), (e) and (f) have about 27◦, 37◦ and 30◦ as their
maximum angle, respectively.

(a) One unit cube. (b) Eight unit cubes in
a 2 × 2 × 2 mesh.

Fig. 3: Interactive figure. Each unit cube is split into 5
tetrahedrons. This is the type of mesh used for our experiments in
3D. When stacking several, every other cube has to be mirrored
in order to fit.

many different straight lines as possible and we would
like the maximum angle between them to be small, as that
gives us a better approximation of a smooth curve.[9] The
neighborhood structure of the hexagonal mesh allows for
similar performance (number of lines and angle between
them) while using fewer regions. This is illustrated in
Fig. 2, where three crude meshes and three finer meshes
are shown. The meshes in Figs. 2d and 2f have similar
maximal angle between the possible straight lines, but the
hexagonal mesh achieves this with fewer regions due to the
favorable intersection pattern of the lines. This suggests
that hexagonal meshes can achieve the same accuracy as
the meshes (c) and (d) used in [3] with a significantly
smaller linear program.

B. Tetrahedrons

The mesh used for the segmentation can be created in
a number of ways. [13] The quality of the approximation
depend on how many different possible straight lines that
can be represented by the mesh, since a larger possible

4 6 8 10 12 14

x 10
4

2

2.005

2.01

2.015

2.02

2.025

2.03
x 10

8

Number of regions

E
n

e
rg

y

 

 

Hexagonal mesh (12−connectivity)

Square mesh (16−connectivity)

Square mesh (8−connectivity)

Fig. 4: Optimal energy vs. the total number of regions. The
best accuracy obtained by the square mesh was achieved by the
hexagonal mesh with about half the number of regions. This
experiment used λ = γ = 10000. The energy difference might
seem small, but differences of these magnitudes often correspond
to significant changes in segmentation.

choice of line slopes allows the mesh to approximate a
continuous surface more closely.

There are many choices of tessellations in three di-
mensions. We have taken a quite simple approach and
divided each unit cube into five tetrahedrons, as shown in
Fig. 3. This allowed us to be enough different planes to
demonstrate the global optimization of mean curvature.

V. EXPERIMENTAL RESULTS

This paper does not focus on how to model the data
term and we will use a simple, two-phase version for all
our segmentation experiments:

g(x) = (I(x)− µ1)
2 − (I(x)− µ0)

2, (10)

where µ0 and µ1 are two fixed mean values and I is the
image.

A. Hexagonal Meshes

In our first experiment we evaluate hexagonal vs. square
meshes. We are comparing three types of meshes, the
8- and 16-connected square mesh and the 12-connected
hexagonal mesh, shown in Fig. 2 (c), (d) and (f). We
fixed a data term of a 256× 256 image (cameraman) and
lay meshes of various types and sizes on top of it and
calculated the optimal energy.

The result is shown in Fig. 4, where the optimal energy
is plotted as a function of the number of regions used.
This is reasonable, since the number of regions is a good
indicator of the total size of the linear program. The
analogous plots using the number of line pairs or edges
look the same. We see that the 8-connected grid converges
quickly, but to a suboptimal energy. The hexagonal mesh
consistently outperforms the 16-connected grid. If we
were to let the number of regions grow very large, the
16-connected grid would probably achieve a lower energy



(a) Area regularization (40 × 40 × 15 mesh, 447 seconds)

(b) Curvature regularization (25 × 25 × 7 mesh, 178 seconds)

Fig. 5: Interactive figure. Surface completion with area and
curvature regularization. Two flat, circular surfaces at the top
and bottom were fixed. The surface in (a) bends inwards to
approximate a catenoid and in (b) it correctly bends outwards
to minimize the squared mean curvature.

than the hexagonal, due to it having 2 more possible
straight lines. We have not been able to observe this in
practice, though, due to the memory requirements.

B. The Wilmore Functional

For our experiments in three dimensions we generated
a mesh where each unit cube was split into 5 tetrahedrons,
see Fig. 3. We then created the set K as two circular
surfaces at z = 0 and z = zmax, with nothing in between.
The analytic solution with area penalty is the catenoid,
one of the first minimal surfaces found. Fig. 5a show
the discrete version obtained with λ = 1 and γ = 0. If
instead the mean curvature is chosen as the regularizer,
the optimal surface instead bends outwards. The solution
to this problem is shown in Fig. 5b and is the global
optimum, since all variables ended up integral in the LP
relaxation of (6). We used Clp as our LP solver.

In another experiment we also used variables for the
volume elements. The data term was a 3D ‘cross’ where
the volume elements were forced to be equal to 1, whereas
the volume elements at the boundary were forced to be 0.
The optimal segmentation when the area was minimized
coincided with the data term and is shown in Fig. 6a. When
instead minimizing the curvature the optimal segmentation
should resemble a sphere, which is observed in Fig. 6b.

VI. CONCLUSIONS

We have introduced constraints for 3D surface com-
pletion and segmentation. Experiments are encouraging
(Figs. 5 and 6) with exclusively globally optimal solutions.
To our knowledge, this is the first time the mean curvature

(a) Area regularization (b) Curvature regularization

Fig. 6: Interactive figure. Surface completion on a 16× 16×
16 mesh with area and curvature regularization and volume
element variables. The data term and the optimal surface using
area regularization coincide. The radius of the volume in (b)
is constrained by the mesh size. Otherwise, a minimal surface
would not exist for the continuous problem.

of surfaces has been optimized globally. The next step
would be to apply this method to e.g. the partial surfaces
obtained by stereo estimation algorithms. Another line of
further research is how to be able to cope with a finer
discretization of the 3D volume.
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