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Abstract

Computer control is entering all facets of life from home electronics to produc-
tion of different products and material. Many of the computers are embedded
and thus “hidden” for the user. In many situations it is not necessary to know
anything about computer control or real-time systems to implement a simple
controller. There are, however, many situations where the result will be much
better when the sampled-data aspects of the system are taken into consideration
when the controller is designed. Also, it is very important that the real-time as-
pects are regarded. The real-time system influences the timing in the computer
and can thus minimize latency and delays in the feedback controller.

The paper introduces different aspects of computer-controlled systems from
simple approximation of continuous time controllers to design aspects of optimal
sampled-data controllers. We also point out some of the pitfalls of computer
control and discusses the practical aspects as well as the implementation issues
of computer control.
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1. Introduction

Computers are today essential for implementing controllers in many different
situations. The computers are often used in embedded systems. An embedded
system is a built-in computer/microprocessor that is a part of a larger system.
Many of these computers implement control functions of different physical pro-
cesses, for example, vehicles, home electronics, cellular telephones, and stand-
alone controllers. The computers are often hidden for the end-user, but it is
essential that the whole system is designed in an effective way.

Using computers has many advantages. Many problems with analog imple-
mentation can be avoided by using a computer, for instance, there are no prob-
lems with the accuracy or drift of the components. The computations are per-
formed identically day after day. It is also possible to make much more compli-
cated computations, such as iterations and solution of system of equations, using
a computer. All nonlinear, and also many linear operations, using analog tech-
nique are subject to errors, while they are much more accurately made using a
computer. Logic for alarms, start-up, and shut-down is easy to include in a com-
puter. Finally, it is possible to construct good graphical user interfaces. However,
sometimes the full advantages of the computers are not utilized. One situation
is when the computer is only used to approximately implement an analog con-
troller. The full potential of a computer-controlled system is only obtained when
also the design process is regarded from a sampled-data point of view. The the-
ory presented in this paper is essentially for linear deterministic systems. Even
if the control algorithms give the same result for identical input data the per-
formance of the closed-loop system crucially depends on the timing given by the
real-time operating system. This paper gives a brief review of some of the tools
that are important for understanding, analyzing, designing, and implementing
sampled-data control systems.

Computer-controlled Systems
A schematic diagram of a computer-controlled system is shown in Figure 1. The
system consists of

• Process

• Sampler together with Analog-to-Digital (A-D) converter

• Digital-to-Analog (D-A) converter with a hold circuit

• Computer with a clock, software for real-time applications, and control
algorithms

• Communication network

The process is a continuous-time physical system to be controlled. The input
and the output of the process are continuous-time signals. The A-D converter is
converting the analog output signal of the process into a finite precision digital
number depending on how many bits or levels that are used in the conversion.
The conversion is also quantized in time determined by the clock. This is called
the sampling process. The control algorithm thus receives data that are quan-
tized both in time and in level. The control algorithm consists of a computer
program that transforms the measurements into a desired control signal. The
control signal is transfered to the D-A converter, which with finite precision con-
verts the number in the computer into a continuous-time signal. This implies
that the D-A converter contains both a conversion unit and a hold unit that
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Figure 1 Schematic diagram of a computer-controlled system.

translates a number into a physical variable that is applied to the process. The
communication between the process, or more accurately the A-D and D-A con-
verters, and the computer is done over a communication link or network. All the
activities in the computer-controlled system are controlled by the clock with the
requirement that all the computations have to be performed within a given time.
In a distributed system there are several clocks that have to be synchronized.
The total system is thus a real-time system with hard time constraints.

The system in Figure 1 contains a continuous-time part and a sampled-data
part. It is this mixture of different classes of signals that causes some of the prob-
lems and confusion when discussing computer-controlled systems. The problem
is even more pronounced when using decentralized control where the control
system is shared between several computers. Many of the problems are avoided
if only considering the sampled-data part of the system. It is, however, impor-
tant to understand where the difficulties arise and how to avoid some of these
problems.

The Sampling Process
The times when the measured physical variables are converted into digital form
are called the sampling instants. The time between two sampling instants is the
sampling period and is denoted h. Periodic sampling is normally used, implying
that the sampling period is constant, i.e. the output is measured and the control
signal is applied each hth time unit. The sampling frequency is ω s = 2π/h.
In larger plants it may also be necessary to have control loops with different
sampling periods, giving rise to multi-rate sampling or multi-rate systems.

Time Dependence
The mixture of continuous-time and discrete-time signals makes the sampled-
data systems time dependent. This can be understood from Figure 1. Assume
that there is a disturbance added at the output of the process. Time invariance
implies that a shift of the input signal to the system should result in a similar
shift in the response of the system. Since the A-D conversion is governed by a
clock the system will react differently when the disturbance is shifted in time.
The system will, however, remain time independent provided that all changes
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Figure 2 Two signals with different frequencies, 0.1 Hz (dashed) and 0.9 Hz (full), have
the same values at all sampling instants (dots) when h = 1.

in the system, inputs and disturbances, are synchronized with the sampling
instants.

Aliasing and New Frequencies
The A-D and D-A converters are the interface between the continuous-time re-
ality and the digital world inside the computer. A natural question to ask is: Do
we loose any information by sampling a continuous-time signal?

EXAMPLE 1—ALIASING

Consider the two sinusoidal signals sin((1.8t− 1)π ) and sin 0.2π t shown in Fig-
ure 2. The sampling of these signals with the sampling period h = 1 is shown
with the dots in the figure. From the sampled values there is thus no possibil-
ity to distinguish between the two signals. It is not possible to determine if the
sampled values are obtained from a low frequency signal or a high frequency sig-
nal. This implies that the continuous-time signal cannot be recovered from the
sampled-data signal, i.e. information is lost through the sampling procedure.

The sampling procedure does not only introduce loss of information but may also
introduce new frequencies. The new frequencies are due to interference between
the sampled continuous-time signal and the sampling frequency ω s = 2π/h. The
interference can introduce fading or beating in the sampled-data signal.

Approximation of Continuous-time Controllers
One way to design a sampled-data control system is to make a continuous-
time design and then make a discrete-time approximation of this controller. The
computer-controlled system should now behave as the continuous-time system
provided the sampling period is sufficiently small. An example is used to illus-
trate this procedure.

EXAMPLE 2—DISK-DRIVE POSITIONING SYSTEM

A disk-drive positioning system will be used throughout the paper to illustrate
different concepts. A schematic diagram is shown in Figure 3. Neglecting reso-

u yuc

Controller Amplifier Arm

Figure 3 A system for controlling the position of the arm of a disk drive.
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nances the dynamics relating the position y of the arm to the voltage u of the
drive amplifier is approximately described by a double integrator process

G(s) = k
Js2 (1)

where k is the gain in the amplifier and J is the moment of inertia of the arm.
The purpose of the control system is to control the position of the arm so that
the head follows a given track and that it can be rapidly moved to a different
track. Let uc be the command signal and denote Laplace transforms with capital
letters. A simple continuous-time servo controller can be described by

U(s) = bK
a

Uc(s) − K
s+ b
s+ a

Y(s) (2)

This controller is a two-degrees-of-freedom controller. Choosing the controller
parameters as

a = 2ω0

b = ω0/2

K = 2Jω 2
0

k
gives a closed system with the characteristic polynomial

P(s) = (s2 +ω0s+ω 2
0)(s+ω0) = s3 + 2ω0s2 + 2ω 2

0s+ω 3
0

where the parameter ω0 is used to determine the speed of the closed-loop sys-
tem. The step response when controlling the process with the continuous-time
controller (2) is shown as the dashed line in Figure 4. The control law given by
(2) can be written as

U(s) = bK
a

Uc(s) − KY(s) + K
a− b
s+ a

Y(s) = K
(

b
a

Uc(s) − Y(s) + X (s)
)
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or in the time-domain as

u(t) = K
(

b
a

uc(t) − y(t) + x(t)
)

dx(t)
dt

= −ax(t) + (a− b)y(t)

The first of these equations can be implemented directly on a computer. To find
an algorithm for the second equation the derivative dx/dt at time kh is approx-
imated with a forward difference. This gives

x(kh + h) − x(kh)
h

= −ax(kh) + (a− b)y(kh)

The following approximation of the continuous algorithm (2) is then obtained:

u(kh) = K
(

b
a

uc(kh) − y(kh) + x(kh)
)

x(kh + h) = x(kh) + h
(
(a− b)y(kh) − ax(kh)

) (3)

where y(kh) is the sampled output, u(kh) is the signal sent to the D-A converter,
and x(kh) is the internal state of the controller. This difference equation is up-
dated at each sampling instant. Since the approximation of the derivative by a
difference is good if the interval h is small, we can expect the behavior of the
computer-controlled system to be close to the continuous-time system. Figure 4
shows the arm position and the control signal for the system when ω0 = 1 and
h = 0.3. Notice that the control signal for the computer-controlled system is con-
stant between the sampling instants due to the hold circuit in the D-A converter.
Also notice that the difference between the outputs of the two simulations is very
small. The difference in the outputs is negligible if h is less than 0.1/ω0.

The computer-controlled system has slightly higher overshoot and the settling
time is a little longer. The difference between the systems decreases when the
sampling period decreases. When the sampling period increases the computer-
controlled system will, however, deteriorate and the closed-loop system becomes
unstable for long sampling periods.

The example shows that it is straightforward to obtain an algorithm for com-
puter control simply by writing the continuous-time control law as a differential
equation and approximating the derivatives by differences. The example also
indicates that the procedure seems to work well if the sampling period is suffi-
ciently small. The overshoot and the settling time are, however, a little larger
for the computer-controlled system, i.e. there is a deterioration due to the ap-
proximation.

Is There a Need for Special Design Methods?
The approximation of a continuous-time controller discussed above shows that it
is possible to derive a discrete-time controller based on continuous-time design.
There are many different approximations methods that can be used. Normally,
they are crucially dependent on choosing fairly short sampling periods. The ap-
proximation methods are possible to use also for nonlinear continuous-time con-
trollers. Deriving a sampled-data description of the process makes it possible to
utilize the full potential of a sampled-data systems and to derive other classes

8



0 5 10
0

1

P
os

it
io

n

0 5 10

0

0.5

V
el

oc
it

y

0 5 10
−0.5

0

0.5

In
pu

t

Time (ω
0
t)

Figure 5 The step response when simulating the disk arm servo using the analog con-
troller (3) (dashed/red) and the deadbeat controller (solid/blue). The sampling period is
h = 1.4.

of controllers that are not possible to use in continuous-time. The sampled-data
theory is also needed to explain the inter-sample and periodic behavior of the
sampled-data systems. Notice that the theory for sampled-data systems is de-
rived mainly for linear systems.

EXAMPLE 3—DEADBEAT CONTROL

Consider the disk drive in the previous example. Using a sampling interval of
h = 1.4 with ω0 = 1 gives an unstable closed-loop system if the controller (3) is
used. However, designing a discrete-time controller with the same structure as
(3) gives the performance shown in Figure 5 when h = 1.4. The controller can
be written as

u(kh) = t0uc(kh) + t1uc(kh − h) − s0 y(kh) − s1 y(kh− h) − r1u(kh − h)

where the coefficients now are chosen such that the output of the system will
reach the reference value after two samples. This is called a deadbeat controller
and it has not a continuous-time counterpart. The design parameter of the dead-
beat controller is the sampling period h, which here is chosen such that the max-
imum control signal is the same when the continuous-time and the sampled-data
controllers are used.

Summary
The examples in this chapter clearly show that there are some important issues
that are specific for sampled-data systems.

• Sampling makes the system time-varying.

9



• Information may be lost through sampling.

• Sampled controller have behaviors that are not achievable with continuous-
time controllers.

This requires an understanding of the interplay between the continuous-time sig-
nals and the discrete-time signals. The rest of the paper gives a brief overview of
some of the tools that are important for the analysis, design, and implementation
of sampled-data control system.
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2. Sampling and Reconstruction

A sampler is a device, driven by the clock in the system, that is converting a
continuous-time signal into a sequence of numbers. Normally, the sampler is
combined into the A-D converter, which also quantizes the sequence of numbers
into a finite, although it may be a high, precision number that is then stored in
the computer. Typically the A-D converter has 8–16 bits resolution giving 28–
216 levels of quantization. This is normally a much higher resolution than the
precision of the physical sensor. The input to the process is reconstructed from
the sequence of numbers from the computer using a D-A converter combined
with a hold circuit that is determining the input to the process until a new
number is delivered from the computer. The hold circuit can be of different kinds.
Most common is the zero-order-hold, which holds the input constant over the
sampling period. Another type of hold device that will be discussed is the first-
order-hold, where the input is computed from current and previous outputs from
the computer using a first order polynomial in time.

Shannon’s Sampling Theorem
It is clear that if the signal to be sampled is not changing very fast and if the
sampling is done sufficiently often very little should be lost in the sampling proce-
dure. This intuition was formalized by Claude E. Shannon in 1949 in his famous
sampling theorem. Shannon proved that if the signal contains no frequencies
above ω0 then the continuous-time signal can be uniquely reconstructed from a
periodically sampled sequence provided the sampling frequency is higher than
2ω0.

In Figure 2 the sinusoidal signals has the frequencies 0.1 Hz and 0.9 Hz,
respectively, while the sampling frequency is 1 Hz. From Shannon’s sampling
theorem it follows that the slow 0.1 Hz signal can be uniquely reconstructed
from its sampled values. To be able to reconstruct the 0.9 Hz signal the sampling
frequency must be higher than 1.8 Hz.

The Shannon reconstruction of the continuous-time signal from the sampled
values is characterized by the filter

h(t) = sin(ω st/2)
ω st/2

The impulse response of this filter is given in Figure 6. The frequency ω N =
ω s/2 plays an important role and is called the Nyquist frequency. The filter for
the Shannon reconstruction is not causal, which makes it impossible to use in
practice and simpler and less accurate reconstructions, such as the zero-order
hold, are therefore used.

−10 0 10

0

1

Time

h
(t

)

Figure 6 The impulse response of the Shannon reconstruction when h = 1.
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Aliasing and Antialiasing Filters
The phenomenon shown in Figure 2 that a high frequency signal will be inter-
preted as a low frequency signal when sampled is called aliasing or frequency
folding. The fundamental alias for a frequency ω1 is given by

ω = h(ω1 +ω N) mod (ω s) −ω N h (4)

Equation (4) implies that the signal ω1 has an alias in the interval [0 ω N) and
that the signal above the Nyquist frequency cannot be reconstructed after the
sampling. Equation (4) gives that 0.9 Hz has the alias frequency 0.1 Hz when
the sampling frequency is 1 Hz as could be seen in Figure 2.

The implication of the aliasing is that we need to remove all frequencies
above the Nyquist frequency before sampling the signal. The simplest way of
doing this is to use an analog filter. This type of filters are called antialiasing
filters. The bandwidth of the filter must be such that the attenuation above the
Nyquist frequency is sufficiently high. Bessel filters of orders 2–6 are in practice
sufficient to eliminate most of the influence of higher frequencies. A second order
Bessel filter with bandwidth ω B has the transfer function

ω 2

(s/ω B)2 + 2ζ ω (s/ω B) +ω 2

with ω = 1.27 and ζ = 0.87. Other filters such as Butterworth or ITAE can also
be used. The Bessel filters has the property that they can be well approximated
by a time delay. This is an advantage in the design of the controller since the
dynamics of the antialiasing filter normally has to be included in the design of
the sampled-data controller.

EXAMPLE 4—PREFILTERING

The influence of a prefilter is shown in Figure 7. An analog signal consisting of a
square-wave and a superimposed sinusoidal disturbance with frequency 0.9 Hz
is shown in (a). In (c) the signal in (a) is sampled using a sampling frequency
of 1 Hz. This gives rise to an alias frequency of 0.1 that is seen in the sampled
signal. The result of filtering the signal in (a) using a sixth-order Bessel filter

0 10 20 30

−1

0

1(a)

0 10 20 30

−1

0

1(b)

0 10 20 30

−1

0

1

Time

(c)

0 10 20 30

−1

0

1

Time

(d)

Figure 7 (a) Signal plus sinusoidal disturbance. (b) The signal filtered through a sixth-
order Bessel-filter. (c) Sampling of the signal in (a). (d) Sampling of the signal in (b).
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with a bandwidth of 0.25 Hz is shown in (b) and the sampling of this signal is
given in (d). The disturbance signal is eliminated in (b), but the filter also has
an influence on the “useful” signal, i.e. the square-wave is transformed into a
smoother signal, which is sampled.

Zero-order Hold (ZOH)
The simplest and the most common way to make a reconstruction of a sampled-
data signal is to let the output of the hold circuit be constant until the next
sampled value is obtained. This is called zero-order hold, since the continuous
time signal is a zeroth order polynomial between the sampling points. The re-
constructed signal f (t) is given by

f (t) = f (kh) kh ≤ t < kh+ h

Standard D-A converters are usually constructed such that the output is constant
until a new conversion is ordered. The zero-order hold circuit can easily also be
used for non-periodic sampling.

First-order Hold
The hold circuit can be made more sophisticated by allowing the continuous-time
signal to be a higher-order polynomial between the sampling points. A drawback
of the zero-order hold is that the output of the hold circuit is discontinuous.
The discontinuities can excite poorly damped mechanical modes of the physical
process and also cause wear in the actuators of the system. One way to make the
output continuous is to use a first-order hold. The signal between the sampling
points is now a linear interpolation. The reconstructed signal can be expressed
as

f (t) = f (kh) + t− kh
h

( f (kh+ h) − f (kh)) kh ≤ t < kh+ h

Notice that this is not a causal reconstruction since f (kh+ h) must be available
at time kh. The value f (kh + h) can be replaced by a prediction, which easily
can be done in a feedback loop.
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Figure 8 Sampling and reconstruction (solid/blue) of a sinusoidal signal (dashed/red)
using a zero-order hold and first-order hold for the sampling period h = 1. The sampling
times are indicated by dots.
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Figure 8 gives a comparison of reconstruction of a sampled sinusoidal signal
when using zero-order hold and first-order hold circuits. The figure shows clearly
the advantage of using first-order hold when the input signal is smooth.

Summary
• Information can be lost through sampling if the signal contains frequencies

higher than the Nyquist frequency.

• Sampling creates new frequencies (aliases).
• Aliasing or frequency folding makes it necessary to filter the signals before

they are sampled.

• The dynamics of the antialiasing filters must be considered when designing
the sampled-data controller. The dynamics can be neglected if the sampling
period is sufficiently short.

• A standard D-A converter can be described as a zero-order hold. There are
special converters that give first-order hold. They give a smoother control
signal.
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3. Mathematical Models

The problem of having a mixture of continuous-time and discrete-time signals can
be avoided by observing the sampled-data system only at the sampling points tk.
This implies that the process is looked upon from the view of the computer, i.e. by
considering the sampled or discrete-time sequences u(tk) and y(tk). This results
in a simple description of the sampled-data system, which is sometimes called the
stroboscopic model. It should, however, be emphasized that the physical process
is still a continuous-time system and that we are not getting any information
about what is happening between the sampling points. By using the stroboscopic
model it is straightforward to derive a system description of the sampled-data
system either as a state-space system or as an input-output system.

For simplicity, we assume that periodic sampling is used, i.e. that the sam-
pling instances are tk = kh, and that a zero-order hold is used at the input of
the process.

Zero-order Hold Sampling of a Continuous-time System
Assume that the physical process is described by the time-invariant state-space
system

dx
dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5)

The system has n states, r inputs, and p outputs. Assume that at time kh the
state x(kh) is available and that the constant input is applied to the system over
the time kh ≤ t < kh+ h. On this interval the state is described by

x(t) = eA(t−kh)x(kh) +
∫ t

kh
eA(t−s′)Bu(s′) ds′

= eA(t−kh)x(kh) +
∫ t

kh
eA(t−s′)ds′ Bu(kh)

= eA(t−kh)x(kh) +
∫ t−kh

0
eAs ds Bu(kh)

= Φ(t, kh)x(kh) + Γ(t, kh)u(kh)

(6)

The second equality follows since u(t) is constant over the sampling interval. No-
tice that (6) give the change of the state over the sampling period. By considering
the situation at the next sampling instance we get

x(kh + h) = Φx(kh) + Γu(kh)
y(kh) = Cx(kh) + Du(kh) (7)

where
Φ = Φ(kh + h, kh) = eAh

Γ = Γ(kh + h, kh) =
∫ h

0
eAs dsB

(8)

At the sampling times the system is described by a linear time-invariant dif-
ference equation. The simplification is obtained without any approximations by
regarding the system only at the sampling points and by assuming that the in-
put is piece-wise constant and is changed synchronized with the sampling of the
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signals. The model (7) is called a zero-order hold (ZOH) sampling of the system
(5). Since the output y(kh) in most cases is measured before the control signal
u(kh) is applied to the system it then follows that D = 0. The zero-order hold
sampling can also be done for processes containing time-delays.

It follows from (8) that Φ and Γ satisfy the equation

d
dt

[Φ(t) Γ(t)
0 I

]
=
[Φ(t) Γ(t)

0 I

][
A B

0 0

]
where I is a unit matrix of the same dimension as the number of inputs. To
sample the system we have to calculate a matrix exponential[

Φ(h) Γ(h)
0 I

]
= exp

([
A B

0 0

]
h
)

The matrix exponential is defined as a series expansion, but there are commands
in scientific computational programs such as Matlab that directly calculates the
sampling of a continuous-time system when using different hold devices.

EXAMPLE 5—SAMPLING THE DISK DRIVE SYSTEM

The disk drive system (1) can be written in the state-space form

dx
dt
=
[

0 1

0 0

]
x + k

J

[
0

1

]
u

y = [ 1 0 ] x

This gives

Φ = eAh = I + Ah+ A2h2/2+ ⋅ ⋅ ⋅ =
[

1 0

0 1

]
+
[

0 h

0 0

]
=
[

1 h

0 1

]
Γ =

∫ h

0
eAs B ds = k

J

∫ h

0

[
s

1

]
ds = k

J

[
h2/2

h

]

First-order Hold Sampling
A difference equation for the state at the sampling instants can be obtained when
the control signal has a specified form over the sampling interval. To illustrate
this we will give formulas equivalent to (7) when the input signal is piecewise
affine instead of piecewise constant.

Consider a continuous-time system described by (5). Assume that the input
signal is linear between the sampling instants. Integration of (5) over one sam-
pling period gives

x(kh + h) = eAhx(kh)

+
∫ kh+h

kh
eA(kh+h−s′)B

[
u(kh) + s′ − kh

h

(
u(kh + h) − u(kh)

)]
ds′

16



Hence
x(kh + h) = Φx(kh) + Γu(kh) + 1

h
Γ1

(
u(kh + h) − u(kh)

)
= Φx(kh) + 1

h
Γ1u(kh + h) +

(
Γ − 1

h
Γ1

)
u(kh)

y(kh) = Cx(kh) + Du(kh)

(9)

where
Φ = eAh

Γ =
∫ h

0
eAs ds B

Γ1 =
∫ h

0
eAs(h− s) ds B

(10)

The matrices Φ, Γ and Γ1 are also given by

Φ Γ Γ1

 =  I 0 0
 exp


A B 0

0 0 I

0 0 0

 h


The discrete system given by (9) is not a standard state-model. Replacing the
coordinates in (9) by ξ = x − Γ1u(kh + h)/h, we obtain the standard model

ξ (kh+ h) = Φx(kh) +
(

Γ + 1
h
(Φ − I)Γ1

)
u(kh)

y(kh) = Cξ (kh) + (D + 1
h

CΓ1)u(kh)
(11)

Notice that the sampled-data system has a direct term even if D = 0. First-order
hold sampling is particularly useful when approximating continuous transfer
functions by sampled systems, because a piecewise affine curve is a good ap-
proximation to a continuous function, see Figure 8.

Solution of the System Equation
Assume that the input sequence u(k0), u(k0 + 1), . . . and the initial condition
x(k0) are given. The solution to the system equation (7) is then obtained through
iterations

x(k0 + 1) = Φx(k0) + Γu(k0)
x(k0 + 2) = Φx(k0 + 1) + Γu(k0 + 1)

= Φ2x(k0) + ΦΓu(k0) + Γu(k0 + 1)
...

x(k) = Φk−k0x(k0) + Φk−k0−1Γu(k0) + ⋅ ⋅ ⋅ + Γu(k− 1)

= Φk−k0x(k0) +
k−1∑
j=k0

Φk− j−1Γu( j)

(12)

The solution consists of two parts, one depending on the initial condition x(k0)
and the other is a weighted sum of the inputs over the interval [k0, k − 1].
The solution shows that the eigenvalues of Φ play an important role for the
development of the states. The influence of the initial condition will decay if the
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magnitude of all the eigenvalues of Φ are strictly less than unity, i.e. that they
are inside the unit circle. This is thus the condition for stability of the discrete
time system (7). The eigenvalues are obtained from the characteristic equation

det(λ I − Φ) = 0

Operator Calculus and Input-output Descriptions
The discrete-time system (7) is given in state-space form. To derive the input-
output description of the system we will use the forward shift operator q defined
in the following way

qf (k) = f (k+ 1)
For convenience the sampling period is chosen as the time unit. The argument of
a signal is thus not real time but instead the number of sampling intervals. We
call this the sampling-time convention. The q should be interpreted as an opera-
tor acting on time-functions in the same way as the differential operator is used
for continuous-time signals. In shift-operator calculus, all signals are considered
as doubly infinite sequences { f (k) : k = ⋅ ⋅ ⋅ − 1, 0, 1, . . .}. Multiplying a time-
sequence by q implies that the sequence is shifted one step ahead. Multiplying
with qn implies a shift of n steps forward. In the same way multiplying with q−n

means a backward shift of n steps. The operator q−1 is called the backward shift
operator.

To simplify the notation it is assumed that the system is a SISO system, i.e.
that it has one input and one output. Using the forward shift operator in (7)
gives

x(k+ 1) = qx(k) = Φx(k) + Γu(k)
y(k) = Cx(k) + Du(k)

Solving for x(k) in the first equation and using that in the second equation gives
an elimination of the state variables

y(k) = Cx(k) + Du(k) = C(qI − Φ)−1 Bu(k) + Du(k)

= [C(qI − Φ)−1 B + D
]

u(k) = H(q)u(k) = B(q)
A(q)u(k) (13)

H(q) is the pulse-transfer operator of the system (7) and describes how the input
and output are related. The polynomials A(q) and B(q) are defined as

A(q) = qn + a1qn−1+ ⋅ ⋅ ⋅ + an

B(q) = b0qnb+ b1qnb−1+ ⋅ ⋅ ⋅ + bnb

with deg A = n and deg B = nb ≤ n, where n is the number of states in the
system. The solution to A(q) = 0 gives the poles and B(q) = 0 the zeros of the
system. From (13) it follows that

A(q) = det(qI − Φ)

which is the characteristic polynomial of the matrix Φ. Stability of the system
then requires that all the poles should be strictly inside the unit circle.

The system (13) can be written as

A(q)y(k) = B(q)u(k)
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or
(qn + a1qn−1 + ⋅ ⋅ ⋅ + an)y(k) = (b0qnb+ ⋅ ⋅ ⋅ + bnb)u(k)

which should be interpreted as

y(k+ n) + a1 y(k+ n− 1) + ⋅ ⋅ ⋅ + an y(k)
= b0u(k+ nb) + ⋅ ⋅ ⋅ + bnbu(k)

where n ≥ nb. The input-output relation is thus a higher order difference equa-
tion.

EXAMPLE 6—DISK ARM DRIVE

Consider the sampled-data description of the disk arm drive from Example 5
with h = 1 and k/J = 1. From (13)

H(q) = [ 1 0 ]
[

q− 1 −1

0 q− 1

]−1 [ 0.5
1

]
= 0.5(q+ 1)

(q− 1)2 = 0.5(q−1 + q−2)
1− 2q−1 + q−2 (14)

The system has two poles in 1 and one zero in −1.

Z-transform
The Laplace transform is important in the input-output analysis of continuous-
time systems. The z-transform was introduced to play a similar role for sampled-
data systems and is a convenient tool to handle linear difference equations with
or without initial values.

Consider the discrete-time signal { f (kh) : k = 0, 1, . . .}. The z-transform of
f (kh) is defined as

Z{ f (kh)} = F(z) =
∞∑

k=0

f (kh)z−k

where z is a complex variable. The inverse transform is given by

f (kh) = 1
2π i

∮
F(z)zk−1 dz

where the contour of integration encloses all singularities of F(z). Some prop-
erties of the z-transform are collected in Table 1. The z-transform maps semi-
infinite time sequences into a function of the complex variable z. It should be
remarked that this is a difference with respect to the shift operator which acts
on infinite time sequences.

EXAMPLE 7—Z-TRANSFORM OF A RAMP

Consider a ramp signal defined by y(kh) = kh for k ≥ 0, which has the Laplace
transform Y(s) = 1/s2, then

Y(z) = 0+ hz−1 + 2hz−2 + ⋅ ⋅ ⋅ = h(z−1 + 2z−2 + ⋅ ⋅ ⋅ ) = hz
(z− 1)2
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Table 1 Some properties of the z-transform.

1. Definition

F(z) =
∞∑

k=0

f (kh)z−k

2. Inversion
f (kh) = 1

2π i

∮
F(z)zk−1 dz

3. Linearity
Z{af + βn} = aZ f + βZn

4. Time shift
Z{q−n f } = z−n F
Z{qn f } = zn(F − F1) where F1(z) =

∑n−1
j=0 f ( jh)z− j

5. Initial-value theorem
f (0) = lim

z→∞ F(z)

6. Final-value theorem
If (1− z−1)F(z) does not have any poles on or outside the unit circle, then
lim
k→∞

f (kh) = lim
z→1
(1− z−1)F(z).

7. Convolution

Z{ f ∗ n} =Z
{

k∑
n=0

f (n)n(k− n)
}
= (Z f )(Zn)

The Pulse-transfer Function
Consider the system in Figure 9, where there is a zero-order sample-and-hold at
the input of the system and a sampler at the output of the process. We now would
like to derive the relation between the z-transforms of the sequences {u(kh)} and
{y(kh)}. This will be the pulse-transfer function H(z) of the sampled-data sys-
tem, which will correspond to the continuous-time transfer function. The pulse-
transfer function is defined through

Y(z) = H(z)U(z) (15)

where Y(z) and U(z) are the z-transforms of the sequences y(kh) and u(kh),
respectively. The description (15) has the advantage that it separates the trans-
form of the output into one part that depends on the input signal, U(z), and one
part that characterizes the system, H(z). Table 2 gives the pulse-transfer func-
tion H(z) for some continuous-time transfer functions G(s) in Figure 9. Notice

Zero-order   
hold

u t( )u kh( ){ } y t( ) y kh( ){ }
G s( )

  H z( )

Figure 9 Sampling a continuous-time system.

20



that the table does not give the z-transforms of the time functions corresponding
to the Laplace transforms G(s), but that also the zero-order hold is included in
the system.

The z-transform can be used to solve difference equations. Consider (7) for
h = 1 and take the z-transform of both sides, then

∞∑
k=0

z−kx(k+ 1) = z

( ∞∑
k=0

z−kx(k) − x(0)
)
=

∞∑
k=0

Φz−kx(k) +
∞∑

k=0

Γz−ku(k)

Hence
z
(

X (z) − x(0)
)
= Φ X (z) + ΓU(z)

X (z) = (zI − Φ)−1
(

zx(0) + ΓU(z)
)

and
Y(z) = C(zI − Φ)−1 zx(0) +

(
C(zI − Φ)−1Γ + D

)
U(z)

The solution depends on the initial state and the input signal from time k = 0,
compare (12). The pulse-transfer function is thus given by

H(z) = C(zI − Φ)−1Γ + D

which is the same as (13) with q replaced by z. The time sequence y(k) can now
be obtained using the inverse transform.

EXAMPLE 8—PULSE-TRANSFER FUNCTION OF THE DISK ARM DRIVE

The disk arm drive with k/J = 1 is a double integrator, i.e. G(s) = 1/s2. From
Table 2 it follows that the zero-order hold sampling of this system gives the
pulse-transfer function

H(z) = h2(z+ 1)
2(z− 1)2

which is the same as the pulse-transfer operator in (14), but with q replaced
by z. Notice that this differs from the z-transform of the ramp 1/s2 derived in
Example 7. The z-transform tables should thus be used with care if we want to
find the pulse-transfer function/operator.

Zero-order Hold Sampling
The pulse-transfer function H(z) for zero-order-hold sampling can be determined
directly from the continuous-time transfer function G(s) using the formula

Hzoh(z) =
z− 1

z
1

2π i

∫ γ +i∞

γ −i∞

esh

z− esh

G(s)
s

ds

=
∑
s=si

1
z− esh Res

{
esh − 1

s

}
G(s)

(16)

where si are the poles of G(s) and Res denotes the residue. The second equality
requires that the transfer function G(s) goes to zero at least as fast as hsh−1 for
a large s and has distinct poles, none of which are at the origin. If G(s) has
multiple poles or a pole in the origin, the equation must be modified to take
multiple poles into consideration.
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Table 2 Zero-order hold sampling of a continuous-time system with transfer function
G(s). The table gives the pulse-transfer function H(z) that is the zero-order-hold equiva-
lent of the continuous-time system.

G(s) H(z) = b1zn−1 + b2zn−2 + ⋅ ⋅ ⋅+ bn

zn + a1 zn−1 + ⋅ ⋅ ⋅+ an

1
s

h
z− 1

1
s2

h2(z+ 1)
2(z− 1)2

e−sh z−1

a
s+ a

1− exp(−ah)
z− exp(−ah)

a
s(s+ a)

b1 = 1
a
(ah− 1+ e−ah) b2 = 1

a
(1− e−ah − ahe−ah)

a1 = −(1+ e−ah) a2 = e−ah

a2

(s+ a)2
b1 = 1− e−ah(1+ ah) b2 = e−ah(e−ah + ah− 1)
a1 = −2e−ah a2 = e−2ah

s
(s+ a)2

(z− 1)he−ah

(z− e−ah)2

ab
(s+ a)(s+ b)
a �= b

b1 = b(1− e−ah) − a(1− e−bh)
b− a

b2 = a(1− e−bh)e−ah− b(1− e−ah)e−bh

b− a

a1 = −(e−ah + e−bh)
a2 = e−(a+b)h

ω 2
0

s2 + 2ζ ω0s+ω 2
0

b1 = 1−α
(

β + ζ ω0

ω
γ
)

ω = ω0

√
1− ζ 2 ζ < 1

b2 = α 2 + α
(

ζ ω0

ω
γ − β

)
α = e−ζ ω 0h

a1 = −2α β β = cos (ω h)
a2 = α 2 γ = sin(ω h)
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First-Order-Hold Sampling
The pulse-transfer function for first-order-hold sampling of a system with a trans-
fer function G(s) can also be obtained by a direct calculation. Let u be the input
of the system and let y denote the output. The piecewise affine input u can
be generated as the output v(t) of an integrator whose input is the piecewise
constant signal, i.e.

dv(t)
dt

= u(kh + h) − u(kh)
h

(17)
Because the signal at the right hand side of (17) is constant over the sampling
intervals, the results of zero-order hold sampling can be applied and we find that
the z-transform of the output is given by

Y(z) = Szoh

(
G(s)

s

)
V (z) (18)

where Szoh denotes the map of transfer functions to pulse-transfer functions
through zero-order-hold sampling. Combining (17) and (18) we get

Y(z) = Szoh

(
G(s)

s

)
z− 1

h
U(z)

We have thus obtained the input-output relation for sampling with a first-order-
hold that can be expressed as follows.

Sfoh
(
G(s)) = z− 1

h
Szoh

(
G(s)

s

)
(19)

By using (16) it follows that the pulse-transfer function obtained by first-order-
hold sampling of a continuous system with the transfer function G(s) can be
expressed by

Hf oh(z) =
(z− 1)2

zh
1

2π i

∫ γ +i∞

γ −i∞

esh

z− esh

G(s)
s2 ds

The pulse-transfer function for first-order-hold sampling can also be determined
by state space methods by sampling the system and taking z-transform. Applying
this to the representations (9) and (11) we get the pulse-transfer function

H(z) = D + C(zI − Φ)−1
(

z
h

Γ1 + Γ − 1
h

Γ1

)
= D + 1

h
CΓ1 + C(zI − Φ)−1

(
Γ + 1

h
(Φ − I)Γ1

)
where the matrices Φ, Γ and Γ1 are given by (10).
EXAMPLE 9—FIRST-ORDER-HOLD SAMPLING OF A DOUBLE INTEGRATOR

A double integrator has the transfer function G(s) = 1/s2. Zero-order-hold sam-
pling of 1/s3 gives

h3

6
z2 + 4z+ 1
(z− 1)3

It then follows from (19) that the first-order-hold sampling of the double inte-
grator is

H(z) = h2

6
z2 + 4z+ 1
(z− 1)2

Notice that the orders of the numerator and denominator polynomials are the
same. This reflects the predictive nature of the first-order-hold.
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Shift-operator Calculus and Z-transforms
In the presentation we have distinguished between the operator q and the com-
plex variable z. The pulse-transfer operator H(q) is the same as the pulse-
transfer function H(z) with z replaced by q. With this similarity it would be
tempting to use the same notation for both the shift operator and z-transform
variable. This is used in many text-books. This is a bad practice because it is
important not to confuse operators with complex variables.

Summary
• Sampled systems are time-varying systems because of the sampling mech-

anism.

• Simple system descriptions are obtained by observing the system at the
sampling instants. This leads to a time-invariant sampled-data system if
the the continuous-time system is time-invariant.

• Operator and transform theory can be used to define input-output descrip-
tions.

• The system is stable if the system matrix Φ has all eigenvalues inside the
unit circle or equivalently that all roots of A(z) are inside the unit circle.
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4. Frequency Response

Many powerful methods for analysis and design of control systems are based on
frequency response. The key idea is to use the fact that a linear time-invariant
system can be completely characterized by its steady-state response to sinusoidal
signals. Frequency response is particularly useful for discussions of robustness.
The frequency response of a discrete-time system is given by H(eiω h), where
H(z) is the pulse-transfer function of the system. The frequency response of a
sampled system is unfortunately much more complicated. The reason is that a
sampled system is a linear periodic system. Such a system is infinite dimensional
even if the continuous system is finite dimensional. We will first investigate the
propagation of sinusoidal signals through a sampled system and we will then
briefly discuss the frequency response of a sampled system.

Propagation of Sinusoidal Signals
Consider the system in Figure 10 consisting of an A-D converter, the computer,
a D-A converter, and the process. It is assumed that the D-A converter holds the
signal constant over the sampling interval. It is also assumed that the calcula-
tions performed by the computer can be expressed by the pulse-transfer function
H(z) and that the process is described by the transfer function G(s).

The actions of the A-D converter can be represented by a sample and hold
mechanism. In continuous time this can be represented by a modulation by an
impulse train followed by the filter

Gh(s) =
1
s

(
1− e−sh) (20)

The impulse response of Gh(s) is a pulse of unit amplitude and length h. Mod-
ulation can be represented by

v∗(t) = v(t)m(t) (21)

where the modulation function m is given by

m(t) =
∞∑

k=−∞
δ (t− kh) = 1

h

(
1+ 2

∞∑
k=1

cos kω st
)

The operation (21) followed by the transfer function (20) is a mathematical model
of sampling and a zero-order hold. If a sinusoid

v(t) = sin(ω t+ϕ ) = Im
(
exp i(ω t+ϕ ))

Process

Clock

A−D D−A
yuv

Algorithm

H( z) G (s)

Figure 10 Open-loop computer-controlled system.
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Figure 11 Frequency content of the sampled input signal v∗ when v = sin(ω t +ϕ).

is applied to the system then the modulated signal is

v∗(t) = v(t)m(t) = 1
h

[
sin(ω t+ϕ ) + 2

∞∑
k=1

cos(kω st) sin(ω t+ϕ )
]

= 1
h

[
sin(ω t+ϕ ) +

∞∑
k=1

(
sin((kω s +ω )t+ϕ ) − sin((kω s −ω )t−ϕ )

)]
The signal v∗ has a component with the frequency ω of the input signal. This
component is multiplied by 1/h because the steady-state gain of a sampler is
1/h. The signal also has components corresponding to the sidebands kω s ± ω .
The frequency content of the output v∗ of the sampler is shown in Figure 11.
The modulation thus creates several frequencies even if a single sinusoid is ap-
plied. The propagation of the sinusoids can then be described by standard linear
methods. The transmission of the fundamental component may be described by
the transfer function

K(iω ) =


1
h

H(eiω h)Gh(iω )G(iω ) ω �= kω N

2
h

H(eiω h)Gh(iω )G(iω )ei(π /2−ϕ) sinϕ ω = kω N

where ω N is the Nyquist frequency. When ω is not a multiple of the Nyquist
frequency, the signal transmission of the fundamental component can be char-
acterized by a transfer function that is a product of four terms: the gain 1/h of
the sampler, the transfer function Gh(s) of the hold circuit, the pulse-transfer
function H(exp(sh)) of the algorithm in the computer, and the transfer func-
tion G(s) of the process. Notice, however, that there are other frequencies in
the output of the system because of the sampling. At the Nyquist frequency the
fundamental component and the lowest sideband coincide. Close to the Nyquist
frequency there will be interference between the fundamental and the side band.
We illustrate what happens with an example.

EXAMPLE 10—FREQUENCY RESPONSE OF A SAMPLED-DATA SYSTEM

Consider a system composed of a sampler and a zero-order hold, given by (20),
followed by a linear system, with the transfer function

G(s) = 1
s+ 1

The sampling period is h = 0.05 s. The Nyquist frequency is π/0.05 = 62.8
rad/s. If a sine wave of frequency ω is applied, the output signal is the sum
of the outputs of the sine wave and all its aliases. This is illustrated in Figure
12, which shows the steady-state outputs for three different frequencies. For
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Figure 12 Steady-state responses to sinusoids with different frequencies for a zero-order
hold followed by a first-order system with a unit time constant. The sampling period is
0.05 s. The frequencies are 5 rad/s in (a), 60 rad/s in (b), and 130 rad/s in (c).

frequencies smaller than the Nyquist frequency (a), the contribution from the
fundamental frequency dominates. At frequencies close to the Nyquist frequency
(b), there is a substantial interaction with the first alias, ω s −ω . Typical beats
are thus obtained. At the Nyquist frequency, the signal and its first alias have the
same frequency and magnitude. The resulting signal then depends on the phase
shift between the signals. For frequencies higher than the Nyquist frequency (c),
the contribution from the alias in the frequency range (0,ω N) dominates.

The example clearly shows how important it is to filter a signal before the sam-
pling, so that the signal transmission above the Nyquist frequency is negligible.
If proper antialiasing filters are used the contributions of the aliases will be
small. Notice, however, that it is often a problem around the Nyquist frequency.
This can to some extent be alleviated by designing the control algorithm so that
H(−1) = 0, which implies that the signal transmission of the controller at the
Nyquist frequency is zero.

Lifting
The notion of lifting is an elegant way to deal with periodically sampled systems.
The idea is to represent a finite-dimensional sampled system as a time-invariant
infinite-dimensional discrete-time system. In this way it is possible to define a
notion of frequency response properly. It is also possible to give a nice description
of inter-sample behavior.

Consider a system described by (5). Assume that the system is sampled with
a period h, and that the input signal and the states are in L2. We introduce the
discrete-time signal uk ∈ L2(0, h) defined by

uk(τ ) = u(kh + τ ) 0 ≤ τ ≤ h
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and the signals xk and yk, which are defined analogously. It follows from (5) that

xk+1(τ ) = ϕ (τ )xk(h) +
∫ τ

0
ψ (τ − s)Buk(s) ds

yk(τ ) = Cxk(τ )
(22)

where

ϕ (τ ) = eAτ

ψ (τ ) = eAτ B

This system is a time-invariant discrete-time system. Equation (22) gives a com-
plete description of the inter-sample behavior because the function yk(τ ), which
is defined for 0 ≤ τ ≤ h, is the output in the interval kh ≤ t ≤ kh + h. The de-
scription thus includes the phenomenon of aliasing. Notice, however, that uk, xk,
and yk are elements of function spaces. Because the system is linear and time-
invariant, the frequency response can be defined as H(eiω h), where H is the
transfer function of the infinite-dimensional system (22). The transfer function
H is, however, not a simple mathematical object. It can be computed numeri-
cally by a finite-dimensional approximation of the state. This can, for example,
be obtained through the discrete-time system obtained by dividing the sampling
interval h into N equal parts. A complete treatment requires functional analysis
and is outside the scope of this paper.

Another way to deal with frequency response of sampled-data systems is
to realize that the output generated by a sinusoid with frequency ω0 contains
the frequencies ω = kω s ± ω0. The system can then be properly characterized
by an infinite matrix that represents the transmission of all sinusoids and the
frequency response can be defined as the norm of that matrix.

Practical Consequences
The fact that sampled systems are time-varying means practically that some
care must be exercised when interpreting frequency responses of sampled-data
systems. The key difficulty is that injection of a sinusoid will result in an out-
put which is the sum of several sinusoids. There is a correct frequency response
obtained by lifting but this is unfortunately quite complicated. The approximate
frequency response obtained by neglecting all frequencies except the injected fre-
quency is simple and straightforward to compute. It may, however, give mislead-
ing results particularly if there are resonances close to the Nyquist frequency.
The maximum sensitivity of the approximate frequency response may be smaller
than the true frequency response resulting in wrong estimates of the robustness
of the closed-loop system. With an ideal antialiasing filter the signal components
with frequencies different from ω0 will not be present and the difficulty disap-
pears. Ideal antialiasing filters cannot be implemented practically. There will
not be much difficulties with plants with good attenuation of high frequencies if
the sampling period and the antialiasing filter are chosen properly. There may,
however, be severe problems if there are resonant modes close to the Nyquist
frequency. In such cases it is necessary to choose sampling rates and antialias-
ing filters very carefully. An additional safeguard is to make control designs so
that the pulse transfer function of the controller has zero gain at the Nyquist
frequency, i.e. H(−1) = 0. In questionable cases it is advisable to use the theory
of lifting to compute the proper frequency responses.
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Summary
• Sampled systems are time-varying systems because of the sampling mech-

anism.

• New frequencies are introduced through the sampling.

• The frequency response of a sampled-data system requires careful inter-
pretation, especially for frequencies close to the Nyquist frequency.
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5. Control Design and Specifications

Control system design is a very rich problem area because there are so many
factors that have to be considered, for example:

• Attenuation of load disturbances

• Reduction of the effect of measurement noise

• Command signal following

• Variations and uncertainties in process behavior

Design of discrete-time systems is very similar to design of continuous-time sys-
tem. In this chapter we will summarize some relevant facts. A block diagram
of a generic control system is shown in Figure 13. The system is influenced
by three external signals: the command signal uc and the disturbances v and
e. The command signal is used to make the system behave in a specified way.
The signal v represents load disturbances that drive the process away from its
desired behavior. The signal e represents measurement noise that corrupts the
information about the process obtained from the sensors. Process disturbances
can enter the system in many different ways. It is convenient to consider them
as if they enter the system in the same way as the control signal; in this way
they will excite all modes of the system. For linear systems it follows from the
principle of superposition that inputs entering the system in different ways can
be represented by equivalent systems at the process input. Measurement noise
is injected into the process by feedback. Load disturbances typically have low
frequencies and measurement noise has high frequencies.

Control problems can broadly speaking be classified into regulation problems
and servo problems. Model uncertainty is essential for both problems. The major
issue in regulation is to compromise between reduction of load disturbances and
injection of measurement noise. The key issue in the servo problem is to make
the output respond to command signals in the desired way.

The key ingredients of a design problem are

• Purpose of the system

• Process model

• Model of disturbances

• Model variations and uncertainties

• Admissible control strategies

• Design parameters

yu
∑

z
∑ ∑

−1

HpHcHff

ev

uc

Figure 13 Block diagram of a typical control system.
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It is difficult to find design methods that consider all aspects of a design problem.
Most design methods focus on one or two aspects of the problem and the control-
system designer then has to check that the other requirements are also satisfied.
To do this it is necessary to consider the signal transmission from command sig-
nals, load disturbances, and measurement noise to process variables, measured
signals, and control signals, see Figure 13. There are today many computer tools
available for design of continuous-time as well as sampled-data controllers. Soft-
ware packages, such as Matlab, have many commands and toolboxes aimed at
analysis and design of control systems. In the following chapters we will give an
overview of several methods for design of sampled-data controllers. It turns out
that all methods result in systems having very similar structure. Before going
into the details of the design methods we will give an overview of the structure
of a controller.

The Process
It is assumed that the process to be controlled can be described by the model

dx
dt
= Ax + Bu (23)

where u represents the control variables, x represents the state vector, and A
and B are constant matrices. Further, only the single-input–single-output case
will be discussed. Because computer control is considered, the control signals
will be constant over sampling periods of constant length. Sampling the system
in (23) gives the discrete-time system

x(kh + h) = Φx(kh) + Γu(kh)

where the matrices Φ and Γ are given by (8). To simplify we use the sampling-
time convention and write the system as

x(k+ 1) = Φx(k) + Γu(k)

Admissible Controls
It is important to specify the information available for generating the control
signal. A simple situation is when all state variables are measured without error.
The general linear controller is then a linear feedback from all states, i.e.

u(k) = −Lx(k) (24)

This feedback is called state feedback. It is important conceptually but is rarely
used in practice because of the cost or difficulty of measuring all the states.
A more common situation is that the control signal is a function of measured
output signals, past control signals, and past and present reference signals.

Design Parameters
All design problems are compromises. It is often practical to have a few param-
eters that make the compromise explicit. These parameters are called design
parameters. The design parameters make it possible to fine tune the design on
line. Typical design parameters relate to trade-offs between attenuation of load
disturbances and injection of measurement noise for regulation problems or re-
sponse speed and model uncertainty for servo problems.
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Criteria and Specifications
The closed loop system in Figure 13 has three inputs uc, v and e and three
outputs z, y and u. It can be shown that the system is completely characterized
by six transfer functions.

−Hze = T = HpHc

1+ HpHc
−Hue = Hc

1+ Hp Hc
Hzuc =

HpHc Hf f

1+ Hp Hc

Hzv =
Hp

1+ HpHc
Hye = S = 1

1+ Hp Hc
Huuc =

Hc Hf f

1+ Hp Hc

(25)

Specifications on the closed loop system are thus naturally expressed in terms of
these transfer functions. Notice that it is necessary to give specifications on all
six transfer functions. The specifications can be given in the time or frequency
domain.

Robustness
Robustness to process variations are well captured by the sensitivity function
and the complementary sensitivity function, i.e.

S(z) = 1
1+ Hp(z)Hc(z) and T(z) = Hp(z)Hc(z)

1+ Hp(z)Hc(z)

Typical criteria are the maximum values

Ms =max
ω
hS(eiω h)h and Mt = max

ω
hT(eiω h)h (26)

where the values of Ms and Mt typically should be in the range of 1.2 to 2.0.
The smaller values give more robust closed loop systems. In critical situations
the values should be replaced by the exact frequency responses, see Chapter 4.

Attenuation of Load Disturbances
The pulse-transfer function from load disturbance to process output is

Hzv(z) = Hp(z)
1+ Hp(z)Hc(z)

Since load disturbances typically have low frequencies, the low frequency be-
havior is most important. Since the loop transfer function is also large at low
frequencies we have approximately

Hzv(z) = Hp(z)
1+ Hp(z)Hc(z) �

1
Hc(z)

The low frequency gain of the controller is thus a good measure of load distur-
bance attenuation. Other measures are the the maximum value or some some
weighted integral of hHzv(eiω h)h. See Chapter 10.

Injection of Measurement Noise
The pulse-transfer function from measurement noise to controller output is

Hue(z) = − Hc(z)
1+ Hp(z)Hc(z) = −S(z)Hc(z)
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Figure 14 Block diagram of a feedback system with a two-degree-of-freedom structure.

Since measurement noise typically has high frequencies, the high frequency be-
havior is most important. For high frequencies we have approximately

Hue(z) = − Hc(z)
1+ Hp(z)Hc(z) � −Ms Hc(z)

The high frequency gain of the controller is thus a good measure of measurement
noise attenuation. Other measures are some weighted integral of hHue(eiω h)h or
the maximum of this quantity for high frequencies.

Command Signals Following
The response to command signals can be decoupled from the response to distur-
bances by using a controller having two degrees of freedom. This is illustrated
in Figure 14. The reason that this controller is said to have two degrees of free-
dom is that the signal transmission from output y to control u is different from
the signal transmission from command signal uc to control u. This configuration
has the advantage that the servo and regulation problems are separated. The
feedback controller −Hf b is designed to obtain a closed-loop system that is in-
sensitive to process disturbances, measurement noise, and process uncertainties.
The feedforward compensator Hf f is then designed to obtain the desired servo
properties.

Summary
• The design can be separated into regulation and servo problems.

• The regulator problem is solved using feedback.

• The servo problem can mainly be solved using feedforward.

• The sensitivity S and complementary sensitivity T functions are important
measures of the robustness of the closed loop system.

• Good software packages are available for design of control systems.
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6. Approximation of Analog Controllers

There are situations when a continuous-time controller is already available. A
typical case is when an analog system is replaced by a computer controlled sys-
tem. It is then natural to convert the continuous-time controller to a discrete-
time controller directly. In all other situations it is more convenient to make the
design directly in the sampled-data domain.

A straightforward approach to approximate an analog controller is to use a
short sampling interval and to make some discrete-time approximations of the
continuous-time controller, compare Example 2. The problem is illustrated in
Figure 15. The continuous-time controller is a dynamical system which can be
given in terms of a state model or a transfer function. It is desired to find an
algorithm for a computer so that the digital system approximates the continuous-
time system. The algorithm can be given in terms of a difference equation or a
pulse-transfer function. This problem is interesting for implementation of both
analog controllers and digital filters. The approximation may be done in many
different ways. Digital implementation includes a data reconstruction, which
also can be made in different ways—for example, zero- or first-order hold.

State Model of the Controller
A controller is a dynamical system. We will first consider the case when the
controller is specified as a state model. To simplify the notation assume that the
controller G(s) in Figure 15 is represented as a generic dynamic system

dx
dt
= Ax + Bu

y = Cx + Du
(27)

where x is the controller state, which consists of the observer state and additional
states that are introduced to generate feedforward signals and integral action.

A simple way of converting the differential equation to a difference equation
is to approximate the derivative of the state by a difference. There are two simple
choices, a forward difference, also called Eulers’s method

dx(t)
dt

= px(t) � x(t + h) − x(t)
h

= q− 1
h

x(t) (28)

or a backward difference.

dx(t)
dt

= px(t) � x(t) − x(t− h)
h

= q− 1
qh

x(t) (29)

Algorithm

Clock

  u kh( ){ }   y kh( ){ }

  H(z) ≈ G (s)

  y(t)u(t)
A-D D-A

Figure 15 Approximating a continuous-time transfer function, G(s), using a computer.
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where p is the differential operator. Using these approximations we find that
(27) can be approximated by

x(t+ h) = (I + hA)x(t) + hB(t)
u(t) = Cx(t) + Du(t)

when forward differences are used and

x(t + h) = (I − hA)−1(x(t) + Bu(t+ h))
u(t) = Cx(t) + Du(t)

when backward differences are used. A nice feature of these approximations is
that there is a close correspondence between the continuous and discrete versions
of the controllers. The scheme works very well if the sampling frequency is
sufficiently high compared with the frequency content of the control signal.

More elaborate schemes are to compute the zero-order hold or the first-order-
hold equivalences. The first-order-hold is probably the most natural approxima-
tion because the continuous analysis assumes that the signals are continuous.
A sophisticated scheme is to assume that the measured signal is piecewise lin-
ear and that the control signal is piecewise constant. It is a straight forward
extension to derive the appropriate formulas in these cases.

Transfer Functions
When the controller is specified as a transfer function it is natural to look for
methods that will transform a continuous transfer function G(s) to a pulse-
transfer function H(z) so that the systems in Figure 15 are close to each other. A
transfer function represents a differential equation. The approximations given by
(28) and (29) imply that the differential operator p is replaced by some difference
approximation. In the transform variables, this corresponds to replacing s by
(z− 1)/h or (z− 1)/zh. The variables z and s are related as z = exp(sh). The
difference approximations correspond to the series expansions

z= esh � 1+ sh (Forward difference or Euler’s method)
z= esh � 1

1− sh
(Backward difference)

Another approximation, which corresponds to the trapezoidal method for nu-
merical integration, is

z= esh � 1+ sh/2
1− sh/2 (Trapezoidal method) (30)

In digital-control context, the approximation in (30) is often called Tustin’s ap-
proximation, or the bilinear transformation. Using the approximation methods
above, the pulse-transfer function H(z) is obtained simply by replacing the ar-
gument s in G(s) by s′, i.e. H(z) = G(s′) where

s′ = z− 1
h

(Forward difference or Euler’s method) (31)

s′ = z− 1
zh

(Backward difference) (32)

s′ = 2
h

⋅
z− 1
z+ 1

(Tustin’s approximation) (33)
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Forward differences Backward differences Tustin

Figure 16 Mapping of the stability region in the s-plane on the z-plane for the trans-
formations (31), (32), and (33).

The methods are very easy to apply even for hand calculations. Figure 16
shows how the stability region Re s < 0 in the s-plane is mapped on the z-plane
for the mappings (31), (32), and (33).

With the forward-difference approximation it is possible that a stable conti-
nuous-time system is mapped into an unstable discrete-time system. When the
backward approximation is used, a stable continuous-time system will always
give a stable discrete-time system. There are, however, also unstable continuous-
time systems that are transformed into stable discrete-time systems. Tustin’s ap-
proximation has the advantage that the left half-s-plane is transformed into the
unit disc. Stable continuous-time systems are therefore transformed into stable
discrete-time systems, and unstable continuous-time systems are transformed
into unstable discrete-time systems.

Frequency Prewarping
One problem with the approximations discussed above is that the frequency scale
is distorted. For instance, if it is desired to design band-pass or notch filters, the
digital filters obtained by the approximations may not give the correct frequen-
cies for the band-pass or the notches. This effect is called frequency warping.
Consider an approximation obtained by Tustin’s approximation. The transmis-
sion of sinusoids for the digital filter is given by

H(eiω h) = 1
iω h

(1− e−iω h)G
(

2
h

⋅
eiω h − 1
eiω h + 1

)
The first two factors are due to the sample-and-hold. The argument of G is

2
h

eiω h − 1
eiω h + 1

= 2
h

eiω h/2 − e−iω h/2

eiω h/2 + e−iω h/2 =
2i
h

tan
(

ω h
2

)
The frequency scale is thus distorted. Assume, for example, that the continuous-
time system blocks signals at the frequency ω ′. Because of the frequency distor-
tion, the sampled system will instead block signal transmission at the frequency
ω , where

ω ′ = 2
h

tan
(

ω h
2

)
That is,

ω = 2
h

tan−1
(

ω ′h
2

)
� ω ′

(
1− (ω

′h)2
12

)
(34)

This expression gives the distortion of the frequency scale (see Figure 17). It

36



Approximation
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iω ′

− iω ′

e iω ′

e − iω ′

Figure 17 Frequency distortion (warping) obtained with approximation.

follows from (34) that there is no frequency distortion at ω = 0 and that the
distortion is small if ω h is small. It is easy to introduce a transformation that
eliminates the scale distortion at a specific frequency ω1 by modifying Tustin’s
transformation from (33) to the transformation

s′ = ω1

tan(ω1h/2) ⋅
z− 1
z+ 1

(Tustin with prewarping) (35)

From (35), it follows that
H
(
eiω 1h) = G(iω1)

that is, the continuous-time filter and its approximation have the same value at
the frequency ω1. There is, however, still a distortion at other frequencies.

EXAMPLE 11—FREQUENCY PREWARPING

Assume that the integrator
G(s) = 1

s
should be implemented as a digital filter. Using the transformation of (33) with-
out prewarping gives

HT (z) =
1

2
h

⋅
z− 1
z+ 1

= h
2

⋅
z+ 1
z− 1

Prewarping gives

HP(z) =
tan (ω1h/2)

ω1
⋅

z+ 1
z− 1

The frequency function of HP is

HP(eiω h) = tan (ω1h/2)
ω1

⋅
eiω h + 1
eiω h − 1

= tan (ω1h/2)
ω1

⋅
1

i tan (ω h/2)

thus G(iω ) and HP
(
eiω h

)
are equal for ω = ω1.

Step Invariance
Another way to approximate is to use the idea of sampling a continuous-time
system. In this way it is possible to obtain approximations that give correct
values at the sampling instants for special classes of input signals. For example,
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if the input signal is constant over the sampling intervals (16) gives a pulse-
transfer function H(z) that corresponds to a transfer function G(s) that gives
correct values of the output when the input signal is a piecewise constant signal
that changes at the sampling instants. This approximation is therefore called
step invariance.

Ramp Invariance
The notion of step invariance is ideally suited to describe a system where the
input signal is generated by a computer, because the input signal is then constant
over the sampling period. The approximation is, however, not so good when
dealing with input signals that are continuous. In this case it is much better to
use an approximation where the input signal is assumed to vary linearly between
the sampling instants. The approximation obtained is called ramp invariance
because it gives the values of the output at the sampling instants exactly for
ramp signals and it is identical to first-order-hold sampling.

Comparison of Approximations
The step-invariant method is not suitable for approximation of continuous-time
transfer functions. The reason is that the approximation of the phase curve is un-
necessarily poor. Both Tustin’s method and the ramp-invariant method give bet-
ter approximations. Tustin’s method is a little simpler than the ramp-invariant
method. The ramp-invariant method does give correct sampled poles. This is
not the case for Tustin’s method. This difference is particularly important when
implementing notch filters where Tustin’s method gives a frequency distortion.
Another drawback with Tustin’s method is that very fast poles of the continuous-
time system transform into sampled poles close to z = −1, which will give rise
to ringing in the digital filter. The different approximations are illustrated by an
example.

EXAMPLE 12—SAMPLED APPROXIMATIONS OF TRANSFER FUNCTION

Consider a continuous-time system with the transfer function

G(s) = (s+ 1)2(s2 + 2s+ 400)
(s+ 5)2(s2 + 2s+ 100)(s2 + 3s+ 2500)

Let H(z) be the pulse-transfer function representing the algorithm in Figure 15.
The transmission properties of the digital filter in Figure 15 depend on the
nature of the D-A converter. If it is assumed that the converter keeps the output
constant between the sampling periods, the transmission properties of the filter
are described by

Ĝ(s) = 1
sh
(1− e−sh)H(esh)

where the pulse-transfer function H depends on the approximation used. Fig-
ure 18 shows Bode diagrams of H for the different digital filters obtained by
step equivalence, ramp equivalence, and Tustin’s method. The sampling period
is 0.03 s in all cases. This implies that the Nyquist frequency is 105 rad/s. All
methods except Tustin’s give a good approximation of the amplitude curve. The
frequency distortion by Tustin’s method is noticeable at the notch at 20 rad/s
and very clear at the resonance at 50 rad/s.

The step-equivalence method gives a small error in the gain but a significant
error in the phase. The phase error corresponds approximately to a time delay
of half a sampling interval. The approximation based on ramp equivalence gives
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Figure 18 Bode diagrams of a continuous-time transfer function G(s) and different sam-
pled approximations H(esh), continuous-time transfer function (solid/blue), ramp invari-
ance (dashed-dotted/red), step invariance (dashed/green), and Tustin’s approximation
(dotted/black).

very small errors in gain and phase. The phase curve for Tustin’s approximation
also deviates because of the frequency warping. Ramp equivalence gives the best
approximation of both amplitude and phase.

Selection of Sampling Interval and Antialiasing Filters
Choice of sampling rates and antialiasing filters are important issues in design
of digital control. It is also necessary to augment process dynamics with the
dynamics of the antialiasing filter. The choice of sampling period depends on
many factors. One way to determine the sampling period is to use continuous-
time arguments. The sampled system can be approximated by the hold circuit,
followed by the continuous-time system. For small sampling periods, the transfer
function of the hold circuit can be approximated as

1− e−sh

sh
� 1− 1+ sh− (sh)2/2+ ⋅ ⋅ ⋅

sh
= 1− sh

2
+ ⋅ ⋅ ⋅

The first two terms correspond to the Taylor series expansion of exp(−sh/2).
That is, for small h, the hold can be approximated by a time delay of half a
sampling interval. The antialiasing filter will also decrease the phase margin.
Consider a second order filter with transfer function

Gf (s) =
ω 2

f

s2 + 2ζ f ω f s+ω 2
f
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The gain of the filter at the Nyquist frequency ω N is approximately

nN =
(

ω f

ω N

)2

Hence ω f = ω N
√nN . The phase lag of the filter is approximately

arg Gf (iω ) �
2ζ f ω

ω f
= 2ζ f ω

ω N
√nN

= 2ζ f ω h
π√nN

Summarizing we find that the hold circuit and the antialiasing filter decrease
the phase margin with

ϕ =
(

0.5+ 2ζ f

π√nN

)
ω ch

Assuming that the phase margin can be decreased by 5○ to 15○ and introducing
the values ζ f = 0.707 and nN = 0.1 the following rule of thumb is obtained.

hω c � 0.05 to 0.14 (36)

where ω c is the crossover frequency (in radians per second) of the continuous-
time system. This rule gives a Nyquist frequency that is about 23 to 70 times
higher than the crossover frequency.

Summary
Different ways of translating a continuous-time controller to a digital controller
have been presented. These methods make it possible to use continuous-time de-
sign and simply translate the results to a pulse-transfer function that can be im-
plemented in a computer. This approach is particularly useful when continuous-
time designs are available.

• Forward, backward differences, and Tustins’s method are the simplest.

• Tustin’s method distort the frequency scale of the filter.

• Ramp invariance gives very good results and is only moderately more com-
plicated than Tustin’s method. With computer tools like Matlab there is no
reason to use any other method.

• The sampling period should be short to have good approximations ω ch �
0.05− 0.14.

• Antialiasing filters are important in all cases.
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7. Feedforward Design

Before treating design methods in detail we will discuss the structure of the
controllers. Figure 14 is an input-output representation which only gives an
overview of the system. Additional insight can be obtained by considering the
state space representation in Figure 19 which gives more details. The controller
is represented by three blocks: a generator for feedforward signals, an observer
and a state feedback L. The feedforward generator has the command signal as
the input and it generates the desired behavior of the states xm of the system
and the feedforward signal uf f . The feedforward signal uf f produces an input
to the process that will generate the desired response to the command signal.
The feedforward generator can be implemented as a dynamical system

xm(k+ 1) = Φmxm(k) + Γmuc(k)
uf f (k) = Cmxm(k) + Dmuc(k)

The block called observer also has two inputs, the process input u and output y,
and it generates an estimate of the state of the process. The observer is also a
dynamical system

x̂(k+ 1) = Φ x̂(k) + Γu(k) + K(y(k) − Cx̂(k)) (37)

The estimated state x̂ is compared with the ideal state from the feedforward
generator creating the feedback signal

uf b(k) = L
(

xm(k) − x̂(k)
)

The feedback signal L(xm− x̂) is zero if the error e = xm− x̂ is zero. If there is a
difference between x̂ and xm, the feedback will generate corrective actions. The
feedback term can be viewed as a generalization of error feedback in ordinary
control systems, because the error represents deviations of all state variables
and not just the output errors. The control signal is the sum of the feedback and
the feedforward signals, i.e.

u(k) = uf b + uf f = L
(

xm(k) − x̂(k)
)
+ uf f

Many design methods result in the controller structure represented by Figure 19.
There are also several refinements. It is, for example, possible to include models
of the disturbances acting on the system.

∑ ∑
xm

u

u
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 x 
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L Process

−

u fb y

u c   Model and
Feedforward 
  Generator

^ 

Figure 19 A two-degree-of-freedom controller based on state feedback and an observer.
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Figure 20 Block diagram of a system where measured disturbance d is reduced by a
combination of feedback and feedforward.

Reduction of Measurable Disturbances by Feedforward
Feedforward is a complement to feedback which can be used both to reduce the
effect of measurable disturbances and to improve the response to command sig-
nals as is illustrated in Figure 20. Assuming that the disturbance d is piecewise
constant over the sampling intervals and sampling the system we find that the
pulse-transfer function from load disturbance to process output is

Y(z)
D(z) =

Hp2(z)
(
1− Hp1 (z)Hf f (z)

)
1+ Hf b(z)Hp(z) = Hp2(z)

(
1− Hp1(z)Hf f (z)

)
S(z)

This equation shows that the effects of the disturbances can be reduced in two
ways: by making 1 − Hp1 (z)Hf f (z) (feedforward) small or by making the sen-
sitivity function S(z) small (feedback). To totally eliminate the disturbances by
feedforward the feedforward transfer function should be chosen as

Hf f (z) = H−1
p1
(z) (38)

which means that the process dynamics should be inverted.

System Inverses
Equation (38) shows that design of feedforward is essentially a problem of in-
verting a system. It is particularly simple to invert a system if it is given as a
pulse-transfer function. Consider a system given by the pulse-transfer function

H(z) = B(z)
A(z)

The inverse is then

H−1(z) = A(z)
B(z)

There are, however, some problems because the inverse is not causal if the degree
of the polynomial A(z) is greater than the degree of B(z). Further, the inverse is
unstable if the polynomial B(z) has zeros outside the unit circle. For feedforward
design it must be required that the feedforward transfer function is stable and
causal. It is therefore often necessary to replace the exact inverse of the transfer
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Figure 21 Another representation of the system with two-degrees-of-freedom in Fig-
ure 19.

function H−1
p1
(z) with an approximate inverse H†

p1
(z). If the disturbance d has

know properties it is possible to compute optimal inverses.
The following procedure gives an inverse that is optimal under certain con-

ditions. Write the transfer function H(z) as

H(z) = B+(z)B−(z)
A(z)

where the polynomial B+(z) has all its zeros inside the unit disc and B−(z) has
all its zeros outside the unit disc. An approximate inverse is then given by

H(z) = A(z)
zdeg A−deg B B+(z)B∗−(z)

where
B∗−(z) = zdeg B−B−(z−1)

Using Feedforward to Improve Response to Command Signals
Feedforward can also be used to improve the response to command signals.
This has already been discussed in connection with two-degrees-of-freedom con-
trollers, see Figure 19. An alternative representation of this figure is given in
Figure 21. In this figure Hm represents the desired response of the output to the
command signal uc, and Hu is the transfer function that generates the feedfor-
ward signal. From Figure 21

y(k) = Hp(Hu + Hc Hm)
1+ Hp Hc

uc(k) = Hmuc(k)

This gives the following relation

Hm = Hp Hu

which implies that
Hu = H−1

p Hm

The pulse-transfer function Hm must clearly be chosen to be causal and stable.
A pulse-transfer function Hu that is also causal and stable can be obtained by
choosing Hm to have the same pole excess and the same zeros outside the unit
circle as Hp.
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Summary
• Feedforward is efficient for reducing measurable disturbances.

• Feedforward is used to shape the response from the reference signal.

• Feedforward requires inversion of the open loop system and the inverse
often requires approximations to be causal and stable.
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8. PID Control

The PID controller is unquestionably the most common controller, therefore it
is appropriate to give it special attention. The “textbook” version of the PID-
controller can be described by the equation

u(t) = K
(

e(t) + 1
Ti

∫ t

e(s) ds+ Td
de(t)

dt

)
(39)

where the error e is the difference between the command signal uc (the set point)
and the process output y (the measured variable). K is the gain or proportional
gain, Ti the integration time or reset time, and Td the derivative time of the con-
troller. The PID-controller was originally implemented using analog technology
that went through several development stages, that is, pneumatic valves, re-
lays and motors, transistors, and integrated circuits. In this development much
know-how was accumulated that was embedded into the analog design. Today
virtually all PID-controllers are implemented digitally. Early digital implemen-
tations were often a pure translation of (39), which left out many of the extra
features that were incorporated in the analog design. In this chapter we will
discuss the digital PID-controller in some detail. This is a good illustration of
many practical issues in the implementation of control systems.

Modification of Linear Response
A pure derivative cannot, and should not be, implemented, because it will give a
very large amplification of measurement noise. The gain of the derivative must
thus be limited. This can be done by approximating the transfer function sTd as
follows:

sTd �
sTd

1+ sTd/N

The transfer function on the right approximates the derivative well at low fre-
quencies but the gain is limited to N at high frequencies. N is typically in the
range of 3 to 20.

In the work with analog controllers it was also found advantageous not to
let the derivative act on the command signal. Later it was also found suitable
to let only a fraction b of the command signal act on the proportional part. The
PID-algorithm then becomes

U(s) = K
(

bUc(s) − Y(s) + 1
sTi

(
Uc(s) − Y(s)

)
− sTd

1+ sTd/N
Y(s)

)
(40)

where U , Uc, and Y denote the Laplace transforms of u, uc, and y. The idea of
providing different signal paths for the process output and the command signal
is a good way to separate command signal response (the servo case) from the
response to disturbances (the regulator case). Alternatively, it may be viewed as
a way to position the closed-loop zeros. There are also several other variations
of the PID-algorithm that are used in commercial systems. An extra first-order
lag may be used in series with the controller to obtain a high-frequency roll-
off. In some applications it has also been useful to include nonlinearities. The
proportional term K e can be replaced by K eheh and a dead zone can also be
included.
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Discretization
The controller described by (40) can be discretized using any of the standard
methods such as Tustin’s approximation or ramp equivalence. Because the PID-
controller is so simple, there are some special methods that commonly are used.
The following is a popular approximation that is very easy to derive. The pro-
portional part

P(t) = K
(

buc(t) − y(t)
)

requires no approximation because it is a purely static part. The integral term

I(t) = K
Ti

∫ t

e(s) ds

is approximated by a forward approximation, that is,

I(kh+ h) = I(kh) + Kh
Ti

e(kh)

The derivative part given by

Td

N
dD
dt

+ D = −KTd
dy
dt

is approximated by taking backward differences. This gives

D(kh) = Td

Td + Nh
D(kh− h) − KTd N

Td + Nh

(
y(kh) − y(kh− h)

)
This approximation has the advantage that it is always stable and that the
sampled pole goes to zero when Td goes to zero. Tustin’s approximation gives an
approximation such that the pole instead goes to z= −1 as Td goes to zero. The
control signal is given as

u(kh) = P(kh) + I(kh) + D(kh) (41)

This approximation has the pedagogical advantage that the proportional, inte-
gral, and derivative terms are obtained separately. The other approximations
give similar results. They can all be represented as

R(q)u(kh) = T(q)uc(kh) − S(q)y(kh) (42)

where the polynomials R, S, and T are of second order. The polynomial R has
the form

R(q) = (q− 1)(q− ad) (43)
The number ad and the coefficients of the polynomials S and T obtained for
different approximation methods are given in Table 3.

Incremental Algorithms
Equation (41) is called a position algorithm or an absolute algorithm. The reason
is that the output of the controller is the absolute value of the control signal, for
instance, a valve position. In some cases it is advantageous to move the integral
action outside the control algorithm. This is natural when a stepper motor is
used. The output of the controller should then represent the increments of the
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Table 3 Coefficients in different approximations of the continuous-time PID-controller.

Special Tustin Ramp equivalence

s0 K(1 + bd) K(1 + bi+ bd)
s1 −K(1 + ad + 2bd− bi) −K

(
1+ ad + 2bd− bi(1− ad)

)
s2 K(ad + bd− biad) K(ad + bd− biad)
t0 Kb K(b+ bi)
t1 −K(b(1+ ad) − bi) −K

(
b(1+ ad) − bi(1− ad)

)
t2 Kad(b− bi) Kad(b− bi)

ad
Td

Nh+ Td

2Td − Nh
2Td + Nh

exp
(
−Nh

Td

)
bd Nad

2NTd

2Td + Nh
Td

h
(1− ad)

bi
h
Ti

h
2Ti

h
2Ti

control signal, and the motor implements the integrator. Another case is when
an actuator with pulse-width control is used.

To obtain an incremental algorithm the control algorithm is rewritten so that
its output is the increment of the control signal. Because it follows from (43)
that the polynomial R in (42) always has a factor (q − 1) this is easy to do.
Introducing

∆u(kh) = u(kh) − u(kh− h)
we get

(q− ad)∆u(kh + h) = T(q)uc(kh) − S(q)y(kh)
This is called the incremental form of the controller. A drawback with the in-
cremental algorithm is that it cannot be used for P- or PD-controllers. If this is
attempted the controller will be unable to keep the reference value, because an
unstable mode z− 1 is canceled.

Integrator Windup
A controller with integral action combined with an actuator that becomes sat-
urated can give some undesirable effects. If the control error is so large that
the integrator saturates the actuator, the feedback path will be broken, because
the actuator will remain saturated even if the process output changes. The inte-
grator, being an unstable system, may then integrate up to a very large value.
When the error is finally reduced, the integral may be so large that it takes
considerable time until the integral assumes a normal value again. This effect
is called integrator windup. The effect is illustrated in Figure 22.

There are several ways to avoid integrator windup. One possibility is to stop
updating the integral when the actuator is saturated. Another method for anti-
windup is illustrated by the block diagram in Figure 23. In this system an extra
feedback path is provided by using the output of the actuator model and forming
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Figure 22 Illustration of integrator windup. The dashed/red lines show the response
with an ordinary PID-controller with limitation of the control signal. The solid/blue lines
show the improvement with a controller having antiwindup.

an error signal es as the difference between the estimated actuator output u and
the controller output v and feeding this error back to the integrator through the
gain 1/Tt. The error signal es is zero when the actuator is not saturated. When
the actuator is saturated the extra feedback path tries to make the error signal es
equal zero. This means that the integrator is reset, so that the controller output
is at the saturation limit. The integrator is thus reset to an appropriate value
with the time constant Tt, which is called the tracking-time constant. Figure 22
shows the improved behavior with controllers having an antiwindup scheme.

Operational Aspects
Practically all PID-controllers can run in two modes: manual and automatic.
In manual mode the controller output is manipulated directly by the operator,
typically by push buttons that increase or decrease the controller output. The
controllers may also operate in combination with other controllers, as in a cas-
cade or ratio connection, or with nonlinear elements such as multipliers and
selectors. This gives rise to more operational modes. The controllers also have

∑ ∑
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Figure 23 PID controller with antiwindup. The actuator output is estimated from a
mathematical model of the actuator.
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parameters that can be adjusted during operation. When there are changes of
modes and parameters, it is essential to avoid switching transients.

Computer Code
A typical computer implementation of a discrete PID-controller is given in List-
ing 1. The discretization of the integral term is made using a forward difference.
The derivative term is approximated using a backward difference. The program-
ming language used in this example is an extension of Java.

The PID controller is implemented as a class and the signals, states, and
parameters of the controller are represented as inner classes of the PID class.
However, the code would look very similar also in other programming languages.
In the code we assume the existence of a waitUntil() primitive that makes it
possible to wait until an absolute time point. A primitive of this sort is normally
available in most real-time kernels and languages. However, it is not a part of
standard Java. A further discussion about how to implement periodic controller
tasks will be found in Chapter 12.

The constructor PID() is called only once when an instance of the PID class
is created. In a real system parts of these calculations have to be made each
time the controller parameters are changed. The code given admits bump-less
parameter changes if b = 1. When b �= 1 the proportional term (P) is different
from zero in steady state. To ensure bump-less parameter changes it is necessary
that the quantity P + I is invariant to parameter changes. This means that the
state I has to be changed as follows:

Inew = Iold+ Kold(bolduc − y) − Knew(bnewuc − y)

Tuning
If the sampling interval is chosen sufficiently short and if proper antialiasing
filters are used the digital PID controller behaves essentially as an analog con-
troller and the tuning rules for analog controllers can be used.

Summary
• The digital PID algorithm is a useful controller.

• Important to consider

– Filtering of the derivative or high frequency roll off.

– Setpoint weighting (poor man’s two-degrees-of-freedom controller).
– Antiwindup
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Listing 1 Java code for PID-controller.

public class PID {

private class Signals {
double uc; // Input: Set Point
double y; // Input: Measured Variable
double v; // Output: Controller output
double u; // Output: Limited controller output

}

private class States {
double I = 0; // Integral part
double D = 0; // Derivative part
double yold = 0; // Delayed measured variable

}

private class Parameters {
double K; // Proportional gain
double Ti; // Integral time
double Td; // Derivative time
double Tt; // Reset time
double N; // Maximum derivative gain
double b; // Fraction of set point in prop. term
double ulow; // Low output limit
double uhigh; // High output limit
double h; // Sampling period
double bi, ar, bd, ad;

}

private Signals signals = new Signals();
private States states = new States();
private Parameters par = new Parameters();

public PID() { // Constructor
par.K = 4.4;
par.Ti = 0.4;
par.Td = 0.2;
par.Tt = 10;
par.N = 10;
par.b = 1;
par.ulow = -1;
par.uhigh = 1;
par.h = 0.03;
par.bi = par.K*par.h/par.Ti;
par.ar = par.h/par.Tt;
par.ad = par.Td/(par.Td + par.N*par.h);
par.bd = par.K*par.N*par.ad;

}
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public double calculateOutput(double uc, double y) {
signals.uc = uc;
signals.y = y;
double P = par.K*(par.b*uc - y);
states.D = par.ad*states.D - par.bd*(y - states.yold);
signals.v = P + states.I + states.D;
if (signals.v < par.ulow) {
signals.u = par.ulow;

} else {
if (signals.v > par.uhigh) {

signals.u = par.uhigh;
} else {

signals.u = signals.v;
}

}
return signals.u;

}

public void updateState(double u) {
states.I = states.I + par.bi*(signals.uc - signals.y) +

par.ar*(u - signals.v);
states.yold = signals.y;

}

public static void main(String[] args) {
double uc, y, u;
PID pid = new PID();
long time = System.getCurrentTimeMillis(); // Get current time
while (true) {
y = readY();
uc = readUc();
u = pid.calculateOutput(uc,y);
writeU(u);
pid.updateState(u);
time = time + par.pid.h*1000; // Increment time with h
Thread.waitUntil(time); // Wait until "time"

}
}

}
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9. Pole-placement Design

In this chapter we will design two-degrees-of-freedom controllers based on pole-
placement using input-output descriptions. The closed loop system will have the
structure given in Figure 14. The process is described by

A(q)y(k) = B(q)(u(k) + v(k)) (44)
where the degree of B(q) is less than the degree of A(q). Further, it is assumed
that the polynomials A(q) and B(q) do not have any common factors and that
the polynomial A(q) is monic, i.e. it is normalized so that the coefficient of the
term with the highest power in q is one. The signal v(k) is an input disturbance
to the process.

A general linear controller can be represented by

R(q)u(k) = T(q)uc(k) − S(q)y(k) (45)
where R(q), S(q), and T(q) are polynomials in the forward-shift operator. The
polynomial R(q) is assumed to be monic. The control law (45) represents a com-
bination of a feedforward with the pulse-transfer function Hf f (z) = T(z)/R(z)
and a feedback with the pulse-transfer function Hf b(z) = S(z)/R(z) in Figure 14.
To have a causal controller it is necessary that the degree of R(z) is larger than
or equal to the degrees of S(z) and T(z).

From (44) and (45) it follows that the closed loop system is

y(k) = B(q)T(q)
A(q)R(q) + B(q)S(q)uc(k) + B(q)R(q)

A(q)R(q) + B(q)S(q)v(k) (46)

The characteristic polynomial of the closed-loop system is

Acl(z) = A(z)R(z) + B(z)S(z) (47)
We now want to design the controller such that the closed loop system fulfills
the following conditions:

1. The pulse-transfer function from uc to y should be

Hm = Bm

Am

with Am stable and with deg Am = deg A. Further, we want to have unit
steady-state gain from uc to y, which implies that Bm(1) = Am(1).

2. From (47) it follows that deg(AR+ BS) ≥ deg Am. This implies that some
dynamics in the pulse-transfer function from uc to y has to be canceled.
This dynamics must be stable and is denoted Ao.

3. The only way to remove open loop zeros in (46) is by cancellation. This
implies that only stable zeros B+(q) can be removed. Introduce the factor-
ization

B(q) = B+(q)B−(q)
To get a unique factorization it is assumed that B+(q) is monic. This implies
that we require that the unstable zeros are kept in Hm, i.e.

Bm(q) = B−(q)B̄m(q)
Compare the discussion of feedforward design in Chapter 7.
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The conditions above are fulfilled if we choose Acl = AoAm B+ and the controller
polynomials as

R = B+R̄

T = B̄m Ao
(48)

where R̄ and S fulfill the Diophantine equation

Ao Am = AR̄+ B−S (49)

The polynomial B+ is here canceled compared with (47) This gives the closed
loop system

y(k) = B+Ao

B+Ao
⋅

B− B̄m

Am
uc(k) + B+

B+
⋅

B+B−R̄
AoAm

v(k)

= Bm

Am
uc(k) + BR̄

AoAm
v(k)

(50)

From (50) it follows that the factors B+Ao are canceled in the pulse-transfer
function from the reference signal to the output. The stable polynomial Ao is
called the observer polynomial, since it can be interpreted as the dynamics of an
observer that reconstructs the internal states of the process.

The dynamics of the transfer function from the disturbance v to the output is
characterized by Ao Am. If we want to separate the design for the servo and the
regulator cases we need to have different responses from the reference signal
and the disturbance. This essentially means that we want to replace Am by Ac
in the second term of (50). This can be obtained by modifying the controller to

R = AmB+ R̄

S = AmS̄

T = B̄m AoAc

(51)

where R̄ and S fulfill the Diophantine equation

AoAc = AR̄+ B−S̄ (52)

The closed loop system is now

y(k) = BT
AR+ BS

uc(k) + BR
AR+ BS

v(k)

= B+Ao Ac

B+(AR̄ + B−S̄)
⋅

B− B̄m

Am
uc(k) + B+Am

B+Am
⋅

B−R̄

AR̄+ B−S̄
v(k)

= Bm

Am
uc(k) + B− R̄

Ao Ac
v(k)

So far we have only made formal calculations and determined the closed loop
system that satisfies the specifications. We need to determine the conditions for
when there exists a solution to our design problem.
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The Diophantine Equation
The make the design it is necessary to solve the Diophantine equation and de-
termine the controller polynomials. The fundamental mathematical problem is
to understand the properties of the polynomial equation (52). It is named after
Diophantus (� A.D. 300), who was one of the original inventors of algebra. It
has also many other names in literature, the Aryabhatta’s identity or the Bezout
identity. The existence of a solution will depend on the degrees of the polyno-
mials and if there are common factors between the polynomials. The general
Diophantine equation

AX + BY = C (53)
has a solution if and only if the greatest common factor of A and B divides C. If
one solution X0, Y0 exists there are X = X0+QB, and Y = Y0−QA, where Q is
an arbitrary polynomial and is also a solution. There are thus many solutions to
the equation, which can be generated as soon as one solution is obtained. There
are, however, unique solutions to (53) such that deg X < deg B or deg Y < deg A.

Solving the Diophantine equation for the coefficients in the X and Y polyno-
mials is the same as solving a set of linear equations.

Causality Conditions
It follows from the analysis that there may be infinitely many solutions to the
Diophantine equation. For the Diophantine equations that appear when solving
the pole-placement problem, it is natural to introduce some constraints on the
solution. The degrees of the polynomials S(z) and T(z) must be less than or
equal to the degree of R(z). If this is not the case the control signal at time k
will depend on values of the measured signal and the command signal at times
larger than k. We call this the causality condition, i.e.

deg R ≥ deg T and deg R ≥ deg S

Further, the closed loop system must have the same or longer time delay than
the open loop system, which implies that

deg Am − deg Bm ≥ deg A− deg B = d

where d is the time delay of the process.

Summary of the Pole-placement Design Procedure
In the control problem it is natural to select the solution of (47) that gives
a causal controller of lowest order. Since the process model must be causal it
follows that deg B ≤ deg A. Because the controller is also causal we have deg S ≤
deg R. We will thus want to find the solution where the degree of S is as low as
possible. From the condition for the unique solution of the Diophantine equation
we have deg S < deg A. It follows that if deg A = n the minimum-degree solution
corresponds to deg S = deg R = deg T = deg Ao = n− 1 and deg Acl ≥ 2n− 1.

The minimum degree solution of the pole-placement design with Am = Ac is
summarized by the conditions

deg S = deg R = deg T = n − 1

deg Ao = deg A− deg B+ − 1

deg Am = deg A = n

and the conditions (48) where R̄ and S fulfill (49).
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EXAMPLE 13—CONTROL OF A MOTOR

Consider the transfer function

G(s) = K
s(s+ 1)

which can be a model for a DC motor. Sampling the system gives the pulse-
transfer function

H(z) = K(z− b)
(z− 1)(z− a)

where

K = e−h − 1+ h, a = e−h, and b = 1− h(1− e−h)
e−h − 1+ h

Notice that −1 < b < 0; that is, the zero is on the negative real axis, but
inside the unit circle. It is first assumed that the desired closed-loop system is
characterized by the pulse-transfer function

Hm(z) = z(1+ p1 + p2)
z2 + p1z+ p2

It is assumed that the denominator corresponds to the sampling of the second
order polynomial s2 + 2ζ ω s+ ω 2 with ω = 1 and ζ = 0.7. The pulse-transfer
function H has a zero z= b that is not included in Hm. With the given specifica-
tions, it is necessary to cancel the zero z= b. The observer polynomial is chosen
as

Ao(z) = 1

The following polynomial identity is then obtained.

(z− 1)(z− a)r0 + K(s0 z+ s1) = z2 + p1z+ p2

Equating coefficients of equal powers of z gives the controller parameters

r0 = 1, s0 = 1+ a+ p1

K
, and s1 = p2 − a

K

Further

T(z) = Ao(z)B̄m(z) = z(1 + p1 + p2)
K

= t0z

The control law can be written as

u(k) = t0uc(k) − s0 y(k) − s1 y(k− 1) + bu(k− 1) (54)

A simulation of the step response of the system is shown in Figure 24(a). No-
tice the “ringing,” or the “ripple,” in the control signal, which is caused by the
cancellation of the zero on the negative real axis. The ripple is not noticeable
in the output signal at the sampling instants. It may, however, be seen as a
ripple in the output between the sampling instants when the sampling interval
is sufficiently long. The amplitude of the ripple in the output decreases rapidly
as the sampling period is decreased.

Now assume that the desired closed-loop transfer function is

Hm(z) = 1+ p1 + p2

1− b
z− b

z2 + p1 z+ p2
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Figure 24 Step response of a motor with pole-placement control. The specifications are
ω = 1 and ζ = 0.7. The sampling period h = 0.25. (a) The process zero is canceled; (b)
The process zero is not canceled.

The process zero on the negative real axis is now also a zero of the desired closed-
loop transfer function. This means that the zero does not have to be canceled by
the regulator. The degree of the observer polynomial is

deg Ao ≥ 2 deg A− deg Am − deg B+ − 1 = 1

Therefore, the observer polynomial should be of at least first order. A deadbeat
observer is chosen with

Ao(z) = z

The minimal degrees of the polynomials R and S are then given by

deg R = deg Am + deg Ao − deg A = 1

deg S = deg A− 1 = 1

The Diophantine equation can then be written as

(z− 1)(z− a)(z+ r1) + K(z− b)(s0z+ s1) = z3 + p1 z2 + p2z

Further
T(z) = AoB̄m = z

1+ p1 + p2

K(1 − b) = t0z

Notice that the controller is of the same form as (54). However, the coefficients
are different. A simulation of the step response of the system is shown in Fig-
ure 24(b). A comparison with Figure 24(a) shows that the control signal is much
smoother; there is no ringing. The response start is also a little slower, because
Ao is of higher degree than when the process zero was canceled.

Introduction of Integrators
To be able to eliminate constant input disturbances it is necessary that the con-
troller contains an integrator. It is easy to introduce integrators in the controller
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Figure 25 Control of the double integrator using the controller a pole placement con-
troller with different responses for disturbances and reference signals. (a) Output (solid)
and reference signal (dashed), (b) control signal.

(45) by postulating that the polynomial R contains the factor z− 1. The Dio-
phantine equation (49) then becomes

AoAm = A(z− 1)R̄+ B−S

Further the orders of the observer and S polynomials have to be increased by
one to get a solution.

EXAMPLE 14—CONTROL OF THE DOUBLE INTEGRATOR

Consider the double-integrator plant and assume that there is a process distur-
bance in the form of an unknown constant that is acting on the process input.
The pole placement controller is designed such that the controller has an inte-
grator and that the Ac is chosen to correspond to a sampled second order system
with with the ω c = 0.5, the damping ζ c = 1, and h = 0.4. The Am is chosen with
ω m = 1 and ζ m = 0.7. Figure 25 shows the control of the double integrator when
using the pole-placement controller designed using (51) and (52) and with an
integrator in the controller. There is first an input load disturbance at time t = 1,
and then a change in the reference value to the model at t = 18. The model is
designed to be twice as fast as when the disturbance rejection is designed. The
simulation shows that the regulation and servo problems can be separated and
given different dynamics.

Summary
• Pole-placement can be obtained using a two-degree-of-freedom input-output

controller.

• The design requires the solution of a set of linear equations when solving
the Diophantine equation.

• The design requires that the user can specify the desired closed loop trans-
fer functions.

• Zeros outside the unit circle or to the left of the imaginary axis should not
be canceled.
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• Integrators are easily introduced.

• The servo and regulator problems can be separated.

• The effects of aliasing can be reduced by imposing the condition S(−1) = 0,
this implies that the controller gain is zero at the Nyquist frequency.
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10. Optimization Based Design

In the previous chapters we have discusses the PID and pole-placement con-
trollers. The design of these controllers have either been based on on-line (heuris-
tic) tuning or specification of the closed loop pulse-transfer function. In these
designs we have to compromise between the speed of the response and the size
of the control signal. In this chapter we will discuss two approaches to the design
based on optimization criteria.

Linear Quadratic (LQ) Design
The process is assumed to be linear, but it may be time-varying and have several
inputs and outputs. The design problem is formulated as to minimize a criterion,
which is a quadratic function of the states and the control signals. The resulting
optimal controller is linear. The system is described by

x(k+ 1) = Φx(k) + Γu(k) (55)

where x(0) is given. We may also allow the matrices Φ and Γ to be time-varying.
The problem is now to determine the control sequence u(0), u(1), . . . , u(N − 1)
that minimizes the loss function

J =
N−1∑
k=0

(
xT (kh)Q1 x(kh) + 2xT(kh)Q12u(kh)

+ uT(kh)Q2u(kh)
)
+ xT(Nh)Q0 x(Nh)

(56)

The loss function can also be defined in continuous time and then sampled to
get a loss function of the form (56).

Using the idea of Dynamic Programming introduced by Richard Bellman the
solution is obtained by minimizing the loss function backwards. The minimum
control sequence is given by

u(k) = −L(k)x(k) (57)

where
L(k) =

(
Q2 + ΓT S(k+ 1)Γ

)−1(
ΓT S(k+ 1)Φ + QT

12

)
(58)

and where S(k) is the solution of the Riccati equation

S(k) = ΦT S(k+ 1)Φ + Q1 −
(

ΦT S(k+ 1)Γ + Q12

)
�
(

ΓT S(k+ 1)Γ + Q2

)−1(
ΓT S(k+ 1)Φ + QT

12

) (59)

with the end condition S(N) = Q0. The optimal linear quadratic controller is a
linear feedback from the states of the system. Compare (24). The condition for
the existence of a unique control strategy is that Q0 is positive semidefinite and
that Q2 + ΓT S(k)Γ is positive definite. The solution of the discrete-time Riccati
equation can only be made by hand for very simple problems. Efficient numerical
algorithms are, however, available for the solution of the Riccati equation.

Notice, that the system (55) is allowed to be multivariable and time-varying.
The resulting controller (57) is time-varying, even if the system is time-invariant.
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In many situations it is sufficient to use the stationary solution. The stationary
solution can be obtained by iterating (59) or by solving the algebraic Riccati
equation

S = ΦT SΦ + Q1 −
(

ΦT S̄Γ + Q12

)(
ΓT SΓ + Q2

)−1 (
ΓT SΦ + QT

12

)
The LQ-controller has several good properties. It is applicable to multivariable
and time-varying systems. Also, changing the relative magnitude between the
elements in the weighting matrices means a compromise between the speed of
the recovery and the magnitudes of the control signals. Using the stationary
solution for S in (57) and (58) guarantees a stable closed loop system if the
the weighting matrices fulfill the positivity conditions stated above and if there
exists a positive definite steady-state solution to the algebraic Riccati equation.

How to Find the Weighting Matrices?
When using optimization theory, the weighting matrices in the loss function
should ideally come from physical arguments. There are, however, few situa-
tions where this is the case. Linear quadratic control theory has found consid-
erable use even when this cannot be done. In such cases the control designer
chooses a loss function. The feedback law is obtained directly by solving the Ric-
cati equation. The closed-loop system obtained is then analyzed with respect to
transient response, frequency response, robustness, and so on. The elements of
the loss function are modified until the desired result is obtained. It has been
found empirically that LQ-theory is quite easy to use in this way. The search will
automatically guarantee stable closed-loop systems with reasonable margins.

It is often fairly easy to see how the weighting matrices should be chosen to
influence the properties of the closed-loop system. Variables xi, which correspond
to significant physical variables, are chosen first. The loss function is then cho-
sen as a weighted sum of xi. Large weights correspond to small responses. The
responses of the closed-loop system to typical disturbances are then evaluated.
The relative weights between state variables and control variables are usually
found by trial and error.

Sometimes the specifications are given in terms of the maximum allowed
deviations in the states and the control signals for a given disturbance. One rule
of thumb to decide the weights in (56) is to choose the diagonal elements as the
inverse value of the square of the allowed deviations. Another way is to consider
only penalties on the state variables and constraints on the control deviations.

EXAMPLE 15—LQ-CONTROL OF THE DOUBLE INTEGRATOR

Consider the double integrator and use the sampling period h = 1. Let the
weighting matrices in (56) be

Q1 =
 1 0

0 0

 and Q2 =
 ρ


The influence of the weighting can now be investigated. The stationary feedback
vector has been calculated for different values of ρ. Figure 26 shows the output
and the control signal for some values. When ρ = 0, which means there is a
penalty only on the output, then the resulting controller is the same as the
deadbeat controller. When ρ is increased, then the magnitude of the control
signal is decreased. The parameter ρ is now, together with the sampling period,
the design parameter.

60



0 10

−1

0

1

(a)

0 10

−1

0

1

(b)

0 10

−1

0

1

(c)

Time
0 10

−1

0

1

Time

(d)

Figure 26 Linear quadratic control of the double-integrator plant for different weight-
ings, ρ , on the control signal. The initial value of the state is x(0) = [1 0]. The output y
(solid/blue) and the control signal u (dashed/red) are shown. (a) ρ = 0.015, (b) ρ = 0.05,
(c) ρ = 0.5, and (d) ρ = 10.

10
−5

10
0

10
5

0

2

Control weighting ρ

C
on

tr
ol

le
r 

ga
in

s

Figure 27 Linear quadratic controller for the double integrator. The stationary gains l1

(solid/blue) and l2 (dashed/red) of the feedback vector L = [l1, l2] for different values of
the control weighting ρ .

Figure 27 shows the stationary L vector as a function of the control weighting
ρ. When ρ increases the gains go to zero and there will be almost no feedback.

Kalman Filters and LQG Control
When using the linear quadratic controller the full state vector has to be mea-
sured. From the measurements of only the outputs it is, however, possible to
obtain estimates of the states using the Kalman filter. Let the process be de-
scribed by

x(k+ 1) = Φx(k) + Γu(k) + v(k)
y(k) = Cx(k) + e(k) (60)

where v and e are discrete-time Gaussian white-noise processes with zero-mean
value and

E v(kh)vT(kh) = R1

E v(kh)eT(kh) = R12

E e(kh)eT(kh) = R2

From measurements of the inputs and outputs the Kalman filter gives the one-
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step-ahead estimates of the states, compare (37),
x̂(k+ 1) = Φ x̂(k) + Γu(k) + K(k) ( y(k) − Cx̂(k))

where

K(k) =
(

ΦP(k)CT + R12

)(
R2 + CP(k)CT

)−1

P(k+ 1) = ΦP(k)ΦT + R1

−
(

ΦP(k)CT + R12

)(
R2 + CP(k)CT

)−1(
CP(k)ΦT + RT

12

)
P(0) = R0

Consider the loss function EJ where J is given by (56). The optimal controller
that minimizes this loss function is given by

u(k) = −L(k)x̂(k h k− 1)

where L(k) still is given by (58). The resulting controller consists of a linear
feedback from the estimated states. This implies that the computation of L is
separated from the computation of K . The Linear Quadratic Gaussian (LQG)
controller is very flexible since it can be used for multivariable and time-varying
systems. One criticism of LQG-control is that an accurate full-order model of the
process must be available. Most physical processes are of high order. However,
for control purposes it is often sufficient to use a low-order approximation.

H∞ Design
Classical control design methods are based on shaping of Bode or Nyquist curves
using graphical design methods. Many methods have been proposed and much
research efforts have been given to find systematic and computational feasible
methods for loop shaping. The developed methods are quite mathematical, but
good computational tools have been developed, which have made the methods
feasible to use. The basic idea is to find a controller for a multivariable sys-
tem such that the sensitivity and complementary sensitivity functions together
with the transfer function from the measurement noise, or equivalently from
the reference signal, to the control signal are as small as possible in some sense.
For simplicity, we will discuss the single input single output case. The relevant
transfer functions are, see (25),

T = −Hze = Hp Hc

1+ Hp Hc

S = Hye = 1
1+ Hp Hc

Hue = − Hc

1+ Hp Hc

(61)

These pulse-transfer functions should be “small”. The system can be represented
as in Figure 28, where the the controller to be designed also is included. The
system has the input e and the outputs

ζ =


Wu Hue

−WT T

WSS

 e = Hζ ee
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Figure 28 Block diagram of expanded system for loop shaping.

where Wu, WT , and WS, are weighting functions that are used to determine the
frequency ranges where the transfer functions (61) should be small. There are
several ways in which the size of the transfer functions can be measured. One
way is to use the H∞-norm, i.e. to find, compare (26),

iHζ ei∞ = max
ω
hHζ e(eiω )h

In the multivariable case the right hand side is replaced by the maximum sin-
gular value of Hζ e(eiω ). The design problem is now defined as to find controllers
that satisfy

iHζ ei∞ < γ (62)
If this is satisfied it can be shown that

hWS(eiω )S(eiω )h < γ ∀ω
hWT(eiω )T(eiω )h < γ ∀ω

hWu(eiω )Hue(eiω )h < γ ∀ω

Notice that these equations are more restrictive than (62).
The solution to the H∞ problem is obtained by starting with the open loop

system Ho marked in Figure 28 and using the algorithm

1. Choose the transfer functions Wu, WT , and WS.

2. Assume a value of γ .

3. Solve a Riccati equation defined by a state space representation of Ho and
γ . If no solution exists go to Step 2 and increase γ and if a solution exists
use this or go to Step 2 and decrease γ to investigate if a better solution
exists.

4. Investigate the properties of the closed loop system and go back to Step 1
if the specifications are not fulfilled.

5. Investigate if the order of the controller can be reduced without influencing
the properties of the closed loop system.
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There are heuristic rule for choosing the frequency weightings Wu, WT , and WS.
For instance, if we want the system to be able to eliminate ramp disturbances,
i.e. to have a frequency roll-off of −2, then WS should contain two integrators.
The orders of the filters will increase the order of the Riccati equation that has
to be solved and it is thus advantageous to have as simple weighting filters
as possible. The Riccati equation in the solution is build up from a state space
representation of the open loop system Ho with its weighting filters and γ is
included as a parameter.

The resulting controller can be interpreted as an observer and a linear feed-
back from the estimated states. I.e. the controller has the same structure as the
LQG-controller discussed earlier in this chapter. The order of the open loop sys-
tem and the orders of the frequency filters determines the order of the controller.
This is regarded as a drawback of the design method. However, the resulting con-
troller can often be reduced without too much deterioration in the performance
of the closed loop system, see Step 5 in the algorithm.

The H∞ design method is developed for continuous-time as well as for discrete-
time systems. The theory and and choice of the weighting filters are easier to un-
derstand for the continuous-time case. A practical way of determining a discrete-
time H∞ controller is to make the design in continuous time and discretize the
resulting controller using the methods discussed in Chapter 6.

Summary
• Controllers can be designed based on optimization methods.

• In the Linear Quadratic Gaussian controller there is a separation between
the estimation of the states of the process and the computation of the state
feedback gains.

• The design parameters of the Linear Quadratic Gaussian controller are the
sampling period and the weights in the loss function.

• The H∞ controller determines a controller that keeps the maximum gain
of the transfer function below a certain value for all frequencies.

• The computations to derive the H∞ controller have to be iterated to find the
frequency filters and the minimum value of the norm. There are, however,
good numerical tools for the computations.

• The order of the H∞ controller normally has to be reduced.
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11. Practical Issues

In the previous chapters we have discussed how to design different types of
sampled-data controllers. Independent of the design method the resulting con-
troller is a discrete-time system that has to be interfaced with the physical world
outside the computer. In this chapter we will discuss some of the implementa-
tion issues. We need to discuss the realization or representation of the controller
and the influence of finite precision in the A-D and D-A conversions and the
calculations. Further, problems with actuator limitation will be discussed.

Controller Implementation and Computational Delay
The design of a controller for the sampled-data system results in a controller
that can be represented in state-space form

xc(k+ 1) = Fxc(k) + G y(k) + Gcuc(k)
u(k) = Cxc(k) + D y(k) + Dcuc(k)

(63)

where xc(k) is the state of the controller. The controller (63) can be interpreted as
an observer combined with a feedback from the observed states of the process.
The controller can, however, also be a realization of any dynamical controller
that has been designed. If the controller is designed in input-output form then
the it can be written as

R(q)u(k) = T(q)uc(k) − S(q)y(k) (64)

In this form the states of the controller are the old inputs, outputs, and reference
signals that have to be stored to compute the control signal. This implies that
(64) normally is not a minimal representation of the controller. The number of
states is in a direct implementation deg R + deg S + deg T, while the minimal
representation will have deg R states. One reason to have a non-minimal repre-
sentation can be that the inputs, outputs, and reference signals have to be stored
for other reasons, such as data analysis. Since the complexity of the controller,
in most cases, is quite low then the extra storage of some variables does not have
any practical consequences.

When discussing the implementation of the controller we can without loss of
generality choose the form (63). An algorithm for the controller at time k consists
of the following steps:

1. A-D conversion of y(k) and uc(k).
2. Computation of the control signal u(k) = Cxc(k) + D y(k) + Dcuc(k).
3. D-A conversion of u(k).
4. Update the state xc(k+ 1) = Fxc(k) + G y(k) + Gcuc(k).

Notice that the implementation of the control algorithm is done such that the
control signal is sent out to the process in Step 3 before the state to be used
at the next sampling interval is updated in Step 4. This is to minimize the
computational delay in the algorithm. It is possible to further reduce the amount
of computations between the A-D and D-A conversions by observing that the term
Cxc(k) can be precomputed, which gives the following algorithm
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Figure 29 Two ways of synchronizing inputs and outputs. In (a) the signals measured
at time tk are used to compute the control signal to be applied at time tk+1. In (b) the
control signals are applied as soon as they are computed.

1. A-D conversion of y(k) and uc(k).
2. Computation of the control signal u(k) = z(k) + D y(k) + Dcuc(k).
3. D-A conversion of u(k).
4. Update the state xc(k + 1) = Fxc(k) + G y(k) + Gcuc(k) and precompute

z(k+ 1) = Cxc(k+ 1) to be used at the next sampling instance.

Compare Listing 1 of the computer code for the PID controller in Chapter 8. For
a single-input-single-output controller this results in two multiplications and two
additions that have to be performed between the conversions.

Depending on the real-time operating system and the conversion times in the
A-D and D-A converters the computational delay, see Figure 29, may vary from
sample to sample. This will be even more pronounced if the control algorithm
also includes iterations or optimization steps. One way to reduce the variation of
the delay is to introduce a full sample interval delay in the controller, i.e. to allow
u(k) to be a function of the process output and the reference signal up to time
k− 1, see in Figure 29(a). The computational delay is now more deterministic
but unnecessarily long, which normally is not good for the performance of the
closed loop system. The delays and timing are also discussed in Chapter 13.

Controller Representation and Numerical Roundoff
Even if (63) and (64) are general forms for implementation of the controller
there is a degree of freedom in the choice of the states of the controller. Different
state representations have different numerical properties. Assume that we want
to implement the digital filter or controller

y(k) = H(q−1)u(k) = b0 + b1q−1 + ⋅ ⋅ ⋅+ bmq−m

1+ a1q−1 + a2q−2 + ⋅ ⋅ ⋅+ anq−n u(k)

The filter H(q−1) can be implemented in different ways
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∑

Figure 30 Illustration of series and parallel form of implementation of a digital filter
where each block is a system of first or second order.

• Direct form

• Companion form

• Series or parallel form

• δ -operator form

The direct form is the non-minimal representation

y(k) =
m∑

i=0

biu(k− i) −
n∑

i=1

ai y(k− i)

This and all other representations that directly are using the polynomial coeffi-
cients ai and bi are very sensitive for numerical errors if the polynomials have
multiple roots close to the unit circle. Small perturbations in the coefficients or
in the numerics can then lead to instabilities in the computations. Better real-
izations are series or parallel forms illustrated in Figure 30, where each block
represents a first or second order filter.

The poles of a sampled-data system are approaching one when the sampling
interval is decreased. This implies that there will be a cluster of poles that
are close to the stability boundary when the sampling interval is short. To avoid
numerical difficulties in this case it is possible to make a short-sampling-interval
modification. From (8) it follows that the matrix F in (63) is close to a unit matrix
and that the vectors G and Gc are proportional to the sampling interval for short
sampling intervals. This implies that there can be several orders of magnitude
in difference between F, G, and Gc. The state equation in (63) can be rewritten
into the equivalent form

xc(k+ 1) = xc(k) + (F − I)xc(k) + G y(k) + Gcuc(k) (65)

The last three terms of the right hand side can now be interpreted as an correc-
tion of the state that are of the same magnitude. The correction is added to the
previous state. The modification introduced in (65) is similar to the introduction
of the δ -operator which is defined as

δ f (kh) = f (kh + h) − f (kh)
h

The δ -operator can be interpreted as a forward difference approximation of the
differential operator p= d/dt.
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Figure 31 Bode plot of the desired controller (full/blue) for a DVD player. A 24 bits
implementation of the controller coincides with the desired controller. The Bode plot for
a 16 bits implementation (dashed/red) of the coefficients is also shown.

EXAMPLE 16—NUMERICAL SENSITIVITY

We will illustrate the numerical sensitivity with a simulation of the tracking in
a DVD player. The purpose with the control system is to follow the track on the
disk despite disturbances due to the eccentricity of the tracks. The disturbance
can be regarded as a sinusoidal disturbance that the controller has to eliminate.
The model for the tracking is a fourth order system with quite well damped
resonance. The sampling rate is 60 kHz. Figure 31 shows the Bode plot of the
desired controller in two cases. The controller is on Jordan form and coefficients
are implemented with 16 and 24 bits, respectively. The resulting Bode plot of the
16 bits implementation is shown as a dashed/red line while the 24 bits imple-
mentation coincides with the desired response (full/blue line). Figure 32 shows
the control error for the two implementations. It is seen that a high accuracy of
the coefficients is needed to eliminate the sinusoidal disturbance.
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Figure 32 The control error in a simulation of the tracking in a DVD player. The con-
troller coefficients are implemented with 16 (left) and 24 (right) bits, respectively.
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A-D and D-A Quantization
The previous section illustrated how numerical quantization can influence the
performance of the system. With double-precision the arithmetic computations
are typically done with a resolution of 64 bits. The A-D and D-A conversions are
done with much less accuracy and will have a larger influence on the perfor-
mance. The resolutions of the A-D and D-A converters are typically 12–16 bits
and 8–12 bits, respectively. It is better to have a good resolution of the mea-
sured signal, i.e. at the A-D converter, since a control system is less crucial for a
quantized input signal. Compare the situation where on-off control is used. With
such a crude input quantization it is still possible to get a reasonable closed loop
performance.

Nonlinearities, such as quantizations, will normally introduce oscillations or
limit cycles in the system. The magnitude of the oscillations will decrease with
the quantization step. It is normally difficult to make an exact analysis of the
influence of the converter resolutions even if crude results can be obtained using
the method of describing function. The final choice of the resolutions has to be
based on simulations or crude estimates.

Sampling Period Selection
In the discussion of the design of the controllers we have stated that the sampling
interval is a design parameter in a sampled-data system. There are several issues
that influences the selection of the sampling interval

• Response to reference signals (servo case)
• Influence of disturbances (regulator case)
• Computational load on the computer

• Digital filtering of signals

When we are considering the servo performance of the closed loop system, i.e. ref-
erence signal changes, it is possible to have quite long sampling periods. Compar-
atively low sampling rates can be used in control systems, compared with signal
processing applications. The reason for this is that the processes to be controlled
are normally of low pass character and the time constants are normally longer
than the closed loop response time. The output is then mainly influenced by the
pulse area over the sampling interval and is insensitive to the pulse shape. A
second reason for being able to use long sampling intervals in the servo case
is that the changes in the reference signal are synchronized with the sampling
instants.

In the regulator case we want to eliminate the influence of disturbances
acting on the system. The disturbances are not synchronized with the clock
in the computer. This means that the reaction of the closed loop system will
be very different if the disturbance starts just before a sample or just after a
sample. In the latter case the disturbance will influence the process over a full
sampling interval before any control actions can be taken to reduce the influence
of the disturbance. To eliminate different types of disturbances it is necessary
to increase the sampling rate for the regulator case compared with the servo
case. Based on experience and simulations a common rule for the selection of
the sampling period is to choose

ω h = 0.1 to 0.6
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where ω is the desired natural frequency of the closed loop system. This implies
that we are sampling up to 20 samples per period of the dominating mode of the
closed loop system. It is important to note that the choice of the sampling period
should be related to the desired properties of the closed loop system. When an
analog controller is redesigned as in Chapter 8 the sampling period should be
chosen according to (36).

The computers today are very fast and there should not be any problems
with the computing capacity. However, with the fast computers we also want to
control faster systems, which implies that the load on the computer still may
be an issue. To get as many control loops as possible into the computer it may
be necessary to decrease the sampling period. The load on the computer and
dynamic scheduling of the tasks in the computer may otherwise introduce jitter
in the sampling and even lost samples. See Chapter 13.

In connection with the discussion of the aliasing problem we found that it is
always necessary to introduce antialiasing filters. The bandwidths of these filters
should be tuned to the sampling rate such that the attenuation is sufficiently high
above the Nyquist frequency. It is, however, difficult to retune the analog filters
when the sampling period is changed. One solution is to sample the signals fast
using a fixed analog filter tuned for the fast sampling period. A digital filter can
then be constructed that removes the signals with frequencies above the Nyquist
frequency and the filtered signal can be sampled with the desired sampling rate.
The digital filters can easily be redesigned when the sampling rate is changed.

Saturations and Windup
In the discussion we have assumed that the processes to be controlled are linear
systems in state-space or input-output form. There are, however, some common
nonlinearities that should be considered. These are input saturations, rate lim-
iters, hysteresis, and backlash. Input or control signal saturation are very com-
mon since the control signal can only be of a certain magnitude. For instance,
a valve can only be fully open or fully closed and a motor can only rotate with
a maximum speed in one or the other direction. The performance of the closed
loop system can be very much influenced of the saturation when large inputs are
demanded, especially if the controller has an integrator. This is called integrator
windup and was discussed for the PID controller in Chapter 8.

The influence of the nonlinearities can be reduced by allowing only very cau-
tious changes in the control signal, which results in conservative design of the
controllers. The nonlinearities can also be taken into account by using nonlinear
optimization techniques, but this results in quite complicated design methods.
For input saturation there is a simple and effective way of reducing the effect
of the combined integrator and saturation. Consider a controller in the input-
output form (64). It is assumed that the controller contains an integrator, i.e.
the R-polynomial contains the factor (q−1). A block diagram of the controller is
given in Figure 33(a). When the signal e is not equal to zero then the integrator
will force the signal v to increase in magnitude even if the input to the process
u already has saturated. This implies that the increase in v has no effect on the
output of the process. The process will behave as an open loop system with a
maximum or minimum input signal. The idea is now to stop the integrator from
increasing its magnitude when the control signal saturates. Adding Aaw(q)u(k),
where Aaw(q) is a stable polynomial, to both sides of (64) gives

Aaw(q)u(k) = T(q)uc(k) − S(q)y(k) + (Aaw(q) − R(q))u(k)
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Figure 33 Block diagram of (a) the controller (64) and (b) the modification in (66) that
avoids windup.

A controller with antiwindup compensation is then given by

Aaw(q)v(k) = T(q)uc(k) − S(q)y(k) + (Aaw(q) − R(q))u(k)
u(k) = sat(v(k)) (66)

where sat(v(k)) is the saturation of the signal v(k). A block diagram of this
controller is shown in Figure 33(b). Compare Figure 23. The controller (66) is
equivalent to (64) when the control signal is not saturating. When the feedback
is broken due to the saturation then the signal v will not increase in magnitude
since Aaw is a stable polynomial.

EXAMPLE 17—ANTIRESET WINDUP

Consider the double integrator plant representing the disk arm drive. A con-
troller with integrator is designed for the process. Figure 34 shows the perfor-
mance of the closed loop system with and without the antireset windup modi-
fication. With saturation but without antireset windup the output will have a
large overshoot since the integrator in the controller will continue to increase
after the saturation. The output need to be above the reference signal for some
time to decrease the integrator value. With the antireset windup modification
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Figure 34 Control of the double integrator with a controller (a) without and (b) with
antireset windup given by (66). The upper curves show the output (full/blue) and the
behavior when there is no saturation (dash-dotted/green). The lower curves show the
unsaturated input v (dashed/red) and the saturated input u (full/blue).
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the integrator is modified such that the unsaturated signal v approaches the
saturated input u.

The example clearly shows that a simple modification of the controller improves
the performance of the closed loop system when there are saturations in the
control signal.

Summary
• Minimize the computational delay.

• Use an implementation that is insensitive for numerical errors, especially
when the sampling interval is short.

• Select the sampling frequency in relation to the desired closed loop perfor-
mance.

• It is utmost important to include antireset windup in the controller.

72



12. Real-time Implementation

Sampled-data control systems are implemented in different ways. Many are em-
bedded systems where the computer is one component in a larger system. The
systems are often implemented in microprocessors using a real-time operating
system or kernel. Examples are systems in automobiles, robots, and home elec-
tronics. In process and manufacturing industries the systems have to be very
flexible, since the number of control loops and their parameters often change.
These control applications are often implemented using a real-time operating
system with extensive graphical user interfaces. Often the systems are pro-
grammable allowing the end-user to program control applications using special,
often graphical, domain-specific programming languages, e.g., the languages in
the IEC 61131-3 standard.

Real-time Systems
A real-time system has to respond to external signals within a finite and specified
period of time. For the real-time system it is important that the results are
correct and that they are delivered within pre-specified times or deadlines. The
system responds to events that can be periodic such as sampled-data control
systems, or non-periodic such as alarms, operator interactions, or communication
events. Several types of real-time systems have been defined. A hard real-time
system is a system where it is absolutely imperative that the response occurs
within the required deadline. Many hard real-time systems are safety-critical
where life or serious damage is at risk if the deadlines are not met. Examples
of hard real-time systems are aircraft fly-by-wire systems, vehicle brake-by-wire
systems, and air traffic control systems. A soft real-time system is a system where
the deadlines are important but where the system will still function correctly if
deadlines are occasionally missed. Examples of soft real-time systems are web
browsers, telephone exchanges, and interactive graphical user interfaces.

A common misconception is that real-time systems are equivalent to high-
speed computations. This is not true. The important issue is that the real-time
system should execute at a speed that matches, and makes it possible to fulfill,
the timing requirements of the external system. In practical cases this, of course,
means that execution speed is very important. It is, however, not this issue that
makes real-time systems special.

During the last two decades real-time systems, in particular hard real-time
systems, have emerged as a rapidly emerging research area within computer
science. As motivating examples of hard real-time systems, sampled-data control
systems are commonly used. In some cases control systems have hard deadlines,
e.g., control of open-loop unstable systems. In many other cases control systems
are not hard real-time systems, since slight variations in the sampling period
or computational delay will in most cases only result in minor variations in
the behaviour of the closed control loop that are well within the performance
specifications. Nevertheless, the timing in the system and the interaction with
the operator is crucial and must obey strict time constraints.

Virtually all real-time systems are inherently concurrent. The reason is that
the real world is parallel. In any complex system a lot of events can occur at the
same time. The work that has to be done to service the different events consti-
tutes the set of tasks that have to be performed. It is also quite common to have
multiple controller tasks within the same system, for example, different flow,
pressure, level, and temperature control loops in process control applications
and different position, velocity, and force control loops in mechatronics appli-
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cations. The different controllers typically have different sampling intervals. In
some cases the controller tasks are relatively independent of each other. In other
cases the controller tasks need synchronization and communication, for example,
in cascade controllers.

Implementation Techniques
If we have a massively parallel computer system then it is, at least theoretically,
possible to assign one CPU to each task and to perform the execution associated
with the events truly in parallel. However, when we have a limited number of
CPUs or, in the common case, when we only have one CPU, we must in some
way multiplex or interleave the execution of the different tasks onto the single
CPU in such a way that the deadlines of all tasks still are met. This can be done
using several techniques. The most primitive alternative is to let the programmer
manually interleave the periodic tasks into a single sequential program, known
as a cyclic executive. This very easily results in complex code that is difficult to
understand and change. A better alternative is to automate the construction of
the cyclic executive. This is what is done if off-line static scheduling techniques
are used. The resulting system is time-driven. A similar approach is used within
the synchronous programming languages, e.g., Esterel, Lustre, and Argos, which
are compiled to a sequential finite state machine format. The advantage with
static execution schedules is the high level of temporal determinism achieved.
A disadvantage is that the resulting systems are quite rigid and the schedule
typically has to be modified every time the control system is modified. This can
only be used for embedded real-time systems that remain fixed for long periods
of time.

For more dynamic applications it is necessary to use event-driven scheduling.
In concurrent programming a real-time kernel or real-time operating system
(RTOS) uses multiprogramming to multiplex the execution of the tasks on a
single CPU. Hence, the available CPU capacity is shared between the different
tasks. Ideally, this is done in such a way that the timing constraints of the the
different tasks all are met, i.e., from an external, or logical, point of view it
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appears as if the tasks execute truly in parallel. In reality the CPU switches
between the processes. These switches are called context switches. This type of
concurrency is also known as time-sharing concurrency. The situation is shown
in Figure 35. The advantage with the concurrent approach is the flexibility that
can be achieved. For example, new tasks can be added to the system at run-
time. The concurrent approach is also what is dominating in industry and a
large amount of commercial hardware and software systems are available. The
main disadvantage is the nondeterminism. The event-driven execution makes it
impossible to know which task that is executing at any given time. It also makes
it difficult to guarantee that the timing constraints of the tasks are met. However,
recent real-time scheduling analysis techniques have somewhat alleviated this
situation making it possible to, at least theoretically, formally guarantee that
the tasks meet their time constraints.

Concurrent Programming
In a real-time kernel or RTOS each task is represented by a process or thread.
The term process is used when the tasks have separate address spaces and the
term thread is used when the tasks reside within the same address space, making
it easy to share code and variables. Here we will use the term process to cover
both cases.

A process can be in one out of three internal states: running, ready, or blocked.
On a single-CPU system only one process can be running at a time. Processes that
are ready have access to all resources that they need to execute except the CPU.
The ready processes are often stored in a queue called readyQueue, according
to their priority. The running process is first in the queue, since it has highest
priority. The processes that are blocked are waiting for something, e.g., sleeping
for a certain time or waiting for some shared resource to become available. A
context switch takes place every time the kernel changes the running process,
for example, when the current running process decides to wait (changes to the
blocked state) or when a process with higher priority than the running process
becomes ready. During the context switch the context of the running process, e.g.,
the values of the CPU registers, is saved and the context of the process that will
become the new running process is restored. In a preemptive real-time kernel
the context switch takes place immediately, whereas in a non-preemptive kernel
the running process may continue to execute until it reaches a preemption point
where a context switch may occur or until it voluntarily releases the CPU.

The priority of a process reflects the importance of the time demands of the
process. The higher priority the process has the more severe are its time de-
mands. Normally, the priorities are fixed numbers that are assigned off-line. An
alternative to priorities is to use deadlines. Here, each process has an associ-
ated deadline. Using earliest deadline first (EDF) scheduling the kernel always
executes the process which is closest to its deadline. Hence, the deadline can be
viewed as dynamic priority that changes as time proceeds.

Synchronization and Communication
Processes normally need to access different common resources. In many cases
these accesses need to be done under mutual exclusion, i.e., only one process at
a time may access the resource. Examples of resources can be external input-
output (IO) units and, if the processes reside in a shared address space, non-
reentrant code and accesses to shared variables. Shared variables are commonly
used to implement communication between different threads. The sections in
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code where shared variables are accessed are known as critical sections. A num-
ber of different synchronization schemes have been developed, e.g., semaphores,
monitors, and mutexes. A process that needs access to a shared resource becomes
blocked if a higher priority process currently holds the resource.

A real-time control system must communicate with the external environment.
This is done through external hardware interfaces such as A-D and D-A convert-
ers, serial and parallel ports, and different bus interfaces. The computer control
system may also communicate with the human users of the system through the
keyboard, mouse, and screen.

The communication with the external interface is made either on request
(polling) or using interrupts. Using polling the program repeatedly checks if the
hardware interface has new data to report or not, or if the hardware interface is
finished sending data or not. If the system has many external units a solution
based on polling can become very inefficient. Using interrupts it is the external
device that informs the system that some significant event has occurred, e.g.,
when new data is available. The interrupt is generated by the external device
when the event has occurred. Through hardware support the interrupt will asyn-
chronously interrupt the execution of the system and the execution will continue
in an interrupt handler where the execution that is needed to service the event
is performed. When the interrupt handler is finished the execution continues at
the place where the interrupt occurred in the currently executing process, unless
a context switch was initiated from the interrupt handler.

Clock interrupts are of special importance in a real-time system. The clock
interrupts are used to keep track of time, something which is necessary for pro-
cesses that need to wait a certain time or execute at a regular frequency. Clock
interrupts are generated from the hardware clock of the CPU every tick. The
tick value determines the smallest time resolution of the kernel. Processes that
are waiting for a specific time are stored in a time-sorted queue, often called
timeQueue. In the clock interrupt handler the processes that have finished wait-
ing are extracted from timeQueue and inserted into readyQueue. This may lead
to a context switch. Instead of having clock interrupts every tick it is common
to use a hardware timer unit. The hardware unit is set up to generate a clock
interrupt every time a process needs to be woken up.

In order for an operating system to qualify as a real-time operating system
several criteria must be fulfilled. To make use of the available scheduling theory
it is important that the kernel provides worst-case bounds on the execution times
of the different kernel primitives. Context switch times and interrupt handling
need to be fast. Sufficient number of distinct priority levels, support for pre-
emptive scheduling, and the availability of a real-time clock with high enough
granularity are further requirements.

Periodic Controller Tasks
Periodic controller tasks can be implemented in different ways. To begin with
we will assume that a controller task is represented by a single execution unit,
e.g., a thread. A few modern real-time operating systems provide operating sup-
port for scheduling periodic tasks. In this approach the task is implemented as
a procedure or method that is registered with the kernel to execute at a certain
period. It is then the responsibility of the RTOS to periodically call this pro-
cedure. Similar features are provided by the recent Real-Time Java standard.
In most RTOS periodic tasks are instead implemented as self-scheduling tasks,
that themselves contain calls to timing primitives.
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A real-time kernel normally provides two types of primitives that a task can
use to wait a certain time. A relative wait statement delays the calling task for an
interval relative to the current time. These primitives are known as delay, sleep,
or waituntil. An absolute wait statement instead delays the calling task until
an absolute point in time. These primitives are known as delayuntil, sleepuntil
or waituntil. The absolute delay primitives are more powerful than the relative
delay primitives in the sense that it possible to implement a relative delay using
an absolute delay primitive but not the opposite way around. The absolute delay
statements are also better for implementation of self-scheduling controller tasks.

When implementing periodic control loops it is important that they execute
at equidistant time intervals. The following definitions of the critical timing pa-
rameters of a control loop will be used in the sequel, see Figure 36. The task
release time is the time when the task is woken from its sleep. The sampling
interval h is the time interval between A-D conversions. The computational de-
lay or input-output latency τ is the time interval between the A-D and the D-A
conversions. The sampling jitter is the variation in sampling interval and the
computational delay jitter (input-output latency jitter) is the variation in τ . Ide-
ally the sampling jitter should be zero and the computational delay should be
jitter-free. If the computational delay is small it can normally be ignored in the
control design. If it is jitter-free it can be compensated for off-line in the design.

There are several reasons for jitter in sampling interval and control delay.
Some examples are data-dependent execution times, suspensions by higher pri-
ority tasks, blocking caused by lower priority tasks, communication delays in
networked control loops, and jitter caused by the hardware and software plat-
form used.

The simplest way of implementing a periodic controller loops is as follows:

while (true) do {
executeController();
sleep(h);

}

This approach does not work. Since the execution time of executeController is
not taken into account the actual sampling period will always be larger than h.
The approach also does not take variations in the execution time into account.

A slightly better approach is the following:

while (true) {
start = getCurrentTime();
executeController();
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end = getCurrentTime();
sleep(h - (end - start));

}

The idea here is to take the execution time into account by only waiting for the
time that remains of the sampling interval. However, if the task is suspended
after it has recorded the end time but before the start of the sleep, the approach
will not work.

A better solution is achieved by using an absolute wait primitive as follows:

while (true) {
start = getCurrentTime();
executeController();
nexttime = start + h;
sleepUntil(nexttime);

}

This solution is better but it still has problems. The main problem is that all
delays that occur between sleepUntil and start = getCurrentTime(); are not
taken into account. Therefore it is better to only measure the current time once,
before the start of the periodic task:

nexttime = getCurrentTime();
while (true) {
executeController();
nexttime = nexttime + h;
sleepUntil(nexttime);

}

If we assume that sleepUntil has the semantics that an attempt to sleep until
a point in time that already has elapsed is equivalent to a no operation this
solution will also try to catch up if it occasionally takes longer time to execute
executeController than the sampling interval. Hence, a too long sampling in-
terval will be followed by a too short sampling interval in such a way that the
average sampling period is equal to h. The value of this behaviour for control
loops is questionable. An alternative approach is to simply accept an occasional
too long sampling interval and then try to execute at the desired sampling inter-
val from then on. This behaviour is obtained by reseting nexttime to the current
time inside sleepuntil every time an overrun occurs.

To reduce the computational delay it is common to split the execution of
the controller into two parts, the calculateOutput part and the updateState
part and to perform the D-A conversion immediately after the execution of
calculateOutput as discussed in Chapter 11. The pseudo-code is shown below:

nexttime = getCurrentTime();
while (true) {
AD_conversion();
calculateOutput();
DA_conversion();
updateState();
nexttime = nexttime + h;
sleepUntil(nexttime);

}
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To further reduce the computational delay the priority of the task can be raised
within calculateOutput. The four different parts of the algorithm (A-D con-
version, calculateOutput, D-A conversion, and updateState) can be viewed as
subtasks. To improve the determinism of the IO operations the A-D and D-A
conversions are sometimes performed in hardware or in the interrupt handler.

Scheduling
For hard real-time systems it is crucial that the timing requirements always are
met. Hence, it is necessary to perform an off-line analysis (that is performed
before the system is started) that guarantees that there are no cases in which
deadlines are missed. If deadlines could be missed then the system should not
be started at all.

In scheduling theory we assume that we have events that occur and require
computations. Associated with an event is a task that executes a piece of code
in response to the event. The events could be periodic, sporadic, or aperiodic. A
sporadic event is non-periodic but have a maximum frequency that guarantees
that only the task associated with one event instance is active at a time. An
aperiodic event has an unbounded release frequency and could have many active
associated tasks.

Each event has an associated deadline. This is an upper bound on the al-
lowed time taken to execute the piece of code associated with the event. Each
event also has a required computation time. This is the worst-case CPU time it
takes to execute the piece of code associated with the event in the absence of
other competing tasks. Obtaining this time can in practice be quite difficult. The
problem is known as execution time estimation or program timing analysis.

Two main approaches to execution time estimation exist: measurements and
analysis. When measuring execution times the code is compiled and run with
measuring devices (a logical analyzer) connected. A large set of input data is used
and the longest execution time measured is defined as the required computation
time for the code. The main problem with this approach is that it can be overly
optimistic. There are no guarantees that the longest execution time really has
been encountered. The main reason for this is that execution times are data
dependent and an exhaustive testing using all combinations of input data is
impossible in practice. Another problem are nondeterministic features of modern
CPUs, e.g., caches and pipelines.

The aim of execution time analysis is an automatic tool that takes the source
code and formally correctly decides the longest execution time. Although this
has been an active research area for some time now, still very few timing anal-
ysis tools are available. The main problem with the approach is that it can be
overly pessimistic. The longest execution time calculated by the method can be
much longer than the actual execution time. This is specially the case if the
code contains many branches. Since scheduling analysis requires a worst-case
bound this approach is the only that is formally correct. A problem with timing
analysis is that the result is compiler dependent. Hence, the analysis must be
performed on machine code. Loop iterations and recursions typically require the
programmer to annotate the code with worst case bounds on the number of loops
or recursions. Another problem is dynamic memory allocation. The time taken
to allocate dynamic memory is often unknown. For example, memory allocation
may invoke garbage collection.

A general problem with execution time analysis is that the rate at which
computer architects introduce new hardware features increases faster than the
increase in the number of features that can be handled by the analysis. Hence,
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the gap in speed between general purpose hardware and hardware, which safely
can be used for hard real-time applications, increases rather than decreases.
Due to the lack of analysis tools the dominating approach in industry is to use
measurements and then to add an appropriate safety margin to the measured
worst case time.

The most commonly used scheduling approach is preemptive fixed priority
scheduling. This is used in the majority of the commercially available RTOS and
real-time kernels. For this type of scheduling a considerable amount of theory
is available that can be used to decide whether a given task is schedulable or
not. In the rate monotonic analysis priorities are assigned to tasks monotonically
with task rate. A task with a shorter period is assigned a higher priority.

Under the following assumptions a simple sufficient schedulability result
holds for the case of rate-monotonic task priority assignment:

• only periodic tasks with unique periods,

• tasks may not suspend themselves or be blocked by other tasks due to
synchronization,

• the task deadlines equal the task periods,

• the real-time kernel is “ideal” in the sense that that context switches and
interrupt handling take zero time

The result says that, for a system with n periodic tasks, all tasks will meet
their deadlines if the total CPU utilization U of the system satisfies the bound

U =
i=n∑
i=1

Ci

Ti
≤ n(21/n − 1), (67)

where Ci is the worst-case execution time of task i, Ti is the period of task i, and
n is the number of tasks.

The utilization U determines the CPU load. For example, if we have only
one task with a period of 10 ms and with a required computation time of 10 ms
then the CPU will spend all its time executing that task, hence, the utilization
will be 100%. If the CPU utilization is larger than the bound in (67) the task
set may still be schedulable. As n→∞, the utilization bound → 0.693. This has
led to the simple rule-of-thumb that says that

“If the CPU utilization is less than 69%, then all deadlines are met”.

The rate-monotonic scheduling theory is quite mature. Schedulability tests
that are both sufficient and necessary have been developed. Results are avail-
able that allow relaxations of the quite rigid assumptions above. For example,
scheduling results are available that take blocking due to synchronization into
account, the deadlines must not equal the task periods, context switches and
interrupt handling can be taken into account. The scheduling theory can also
be applied to distributed systems where the communication uses the Controller
Area Network (CAN) protocol. CAN is very common in the automotive industry.

Formal analysis methods are also available for EDF scheduling. With the
same assumptions as in the sufficient rate monotonic result above the following
necessary and sufficient condition holds for schedulability:

U =
i=n∑
i=1

Ci

Ti
≤ 1 (68)
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If the CPU utilization U of the system is not more than 100% then all deadlines
will be met.

The main advantage with EDF scheduling is that the processor can be fully
utilized and still all deadlines can be met. More complex analysis exists that
loosens many of the assumptions above. Another advantage is that it is often
more intuitive to assign deadlines to tasks than it is to assign priorities. As-
signing priorities requires global knowledge about the priorities of all the other
tasks in system, whereas assigning deadlines only requires local knowledge. An-
other difference between priority and deadline-based scheduling concerns the
behaviour during overruns, when a task has executed longer than its allowed
maximum time and the task set no longer is schedulable. A priority-based ap-
proach will favor high-priority tasks over low-priority tasks, with the possible
consequence that low-priority tasks may not execute at all; they are starved. Us-
ing deadline-based scheduling the available CPU time will be distributed among
the tasks in a more fair way. Depending on the application this may or may not
be a desired feature. The major drawback with deadline-based scheduling is the
lack of commercial products supporting it.

The scheduling theory described above is based on the worst-case scenario
that all the periodic tasks are released simultaneously, at the so called critical
instant. If the task set is schedulable for this case it can be shown that it is
also schedulable for all other cases. If offsets are introduced among the tasks
that prevent the critical instant from occurring, the schedulability of the task
set increases. A number of scheduling results have also been derived for subtask
scheduling. Here, a task is divided into serially executed subtasks each charac-
terized by a worst-case execution time, a priority, and a deadline. This model
matches the subtask view of a controller task very well.

The rate monotonic approach has gained a lot of attraction. It has been
adopted by several major companies, e.g., IBM, NASA, and European Space
Agency, and the theory has influenced the development of real-time program-
ming languages, e.g., Real-Time Java, and standards, e.g., Real-Time POSIX and
UML. The original results were based on a set of rather restrictive assumptions
and requirements. Most of these have subsequently been removed or relaxed.
To apply the theory it is essential that the estimated worst-case computation
requirements are known for all tasks. As discussed before it is difficult to obtain
these numbers. If a formal approach is used the bounds obtained are often very
pessimistic. This means that the worst-case execution times are much larger
than those that occur in practice. Also, the different factors used in the analysis
are also all worst-case numbers. This means that the whole analysis is based
upon a succession of worst-case assumptions. Therefore, there is a large risk
that many task sets will be considered unschedulable by the analysis although
they would run perfectly well in reality. Another objection against the approach
that sometimes is raised is that with the current low price on hardware it is
just as feasible to simply add another CPU to the system if there is even the
slightest risk that some of the timing requirements are not met. However, for
many embedded systems this argument is not true.

Summary

• A time-driven implementation maximizes the temporal determinism.

• Deterministic execution of controller tasks in an event-driven system re-
quires a real-time operating system or kernel.
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• Absolute timing primitives are needed to implement self-scheduling con-
troller tasks correctly.

• Using scheduling theory it is possible to formally guarantee that the time
constraints of real-time tasks are met, provided that the worst-case execu-
tion times are known.

• Timing compensation can make it possible to use COTS components for
implementing real-time control systems.

• The ratio between the sampling periods and the scheduling of different
tasks are important in multi-rate systems.
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13. Controller Timing

The rapid increase in average-case execution speeds and decrease in cost for com-
mercial off-the-shelf (COTS) components, e.g., processors and operating systems,
make them interesting platforms also for real-time control systems, at least for
non-safety-critical applications, even if hard worst-case guarantees cannot be
obtained. To use these components it is important to understand how jitter in
sampling interval and computational delay effect control performance.

Consider the general linear continuous-time plants described by

dx(t)
dt

= Ax(t) + Bu(t) + Bvv(t)
y(t) = Cx(t) + e(t)

and controlled by a general linear discrete-time controllers on the form

xc(kh+ h) = Φcxc(kh) + Γc y(kh)
u(kh) = Ccxc(kh) + Dc y(kh)

when sampling intervals and computational delays are given by probability den-
sity functions. If a quadratic cost function

J = lim
t→∞

1
t

E
v,e

{∫ t

0

(
xT (s)Q1x(s) + uT (s)Q2u(s)) ds

}
is used as a performance indicator it is possible to analytically evaluate the
performance for of the closed loop system. This is done by sampling the plant
and the cost function, formulating the closed-loop system (a jump-linear system),
and computing the stationary covariance of the states. These calculations can be
packaged in Matlab.

EXAMPLE 18—PERFORMANCE ANALYSIS

Consider the inverted pendulum process shown in Figure 37. The equations of
motion are given by

d2θ
dt2 = ω 2

0 sinθ + u ω 2
0 cosθ

where ω0 =
√
n/l is the natural frequency of the pendulum.

Using the state vector x = [θ θ̇ ]T and linearizing around the upright equi-
librium gives the state-space model

dx
dt
=
[

0 1
ω 2

0 1

]
x +

[
0

ω 2
0

]
u

y = [ 1 0 ] x

l

θ

u

Figure 37 Inverted pendulum
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Figure 38 Cost as a function of computational delay (left) and as a function of sampling
interval jitter (right).

For this model a discrete state-feedback controller u = −Lx is designed using
pole-placement.

The cost J = E θ 2 as a function of the normalized computational delay τ is
shown to the left in Figure 38. The performance degrades as the delay increases.
The loop becomes unstable (J →∞) when τ → h. To the right in Figure 38 the
same cost function is shown as a function of the sampling interval jitter. Here,
the performance degrades only slightly as the jitter level increases.

The traditional approach in the real-time control community is to design and
implement the systems in such a way that the temporal determinism is max-
imized. An alternative approach is to view the temporal non-determinism im-
plied by COTS components as an uncertainty, similar to a plant uncertainty, or
a disturbance and then design the control systems to be robust against the un-
certainty or actively compensate for the temporal disturbances on-line. This also
opens up for more flexible system architectures where the controllers and the
implementation platform negotiate on-line about the access to shared resources
such as CPU time and communication bandwidth. In this approach the control
performance can be regarded as a Quality-of-Service (QoS) parameter.

A reason why COTS components in many cases can be used for control system
implementation is the inherent robustness of most feedback control schemes.
However, in many cases better performance can be obtained of if the controller
is allowed to actively compensate for the jitter. A prerequisite for this is that the
implementation platform provides the means to measuring time with sufficient
resolution.

Compensation for sampling interval jitter can be performed in several ways.
A simplistic approach is to keep the sampling interval, h, as a parameter in
the the design and to update this every sample. For a sampled control system
this corresponds to resampling the continuous-time system. For a discretized
continuous-time design the changes in sampling interval only influence the ap-
proximation of the derivatives.

EXAMPLE 19—SAMPLING JITTER COMPENSATION

Consider PD control of a DC servo. The goal of the control is to make the servo
position, y(t), follow the reference position, uc(t), as closely as possible. Let the
servo be described by the continuous-time transfer function

G(s) = 1000
s(s+ 1) .

84



0 0.5 1 1.5 2

−1

0

1

O
u

tp
u

t

0 0.5 1 1.5 2

−2

0

2

In
pu

t

Time

Figure 39 Output (solid/blue) and reference signal (dashed/red) are shown in the upper
plot and the control signal in the lower plot. When no sampling jitter is present, the control
performance is good.

A good implementation of the PD controller, which includes filtering of the deriva-
tive part, is, compare Chapter 8,

P(kh) = K(uc(kh) − y(kh)),
D(kh) = ad D(kh− h) − bd(y(kh) − y(kh− h)),
u(kh) = P(kh) + D(kh),

where ad = Td/(Td + Nh), bd = KTd N/(Td + Nh).
A nominal sampling period of h = 10 ms is chosen, and the PD controller is

tuned to give a fast and well-damped response to set-point changes. The resulting
parameters are K = 1, Td = 0.04, and N = 30. The parameters ad and bd are
normally pre-calculated, assuming that the sampling interval is constant.

A first simulation of the closed-loop system, where there is no jitter in the
sampling interval, is shown in Figure 39. The controller behaves as expected,
and the performance is good. A second simulation, where the actual sampling
interval varies randomly between hmin = 2 ms and hmax = 18 ms, is shown
Figure 40. The sampling jitter causes the controller to repeatedly take either
too small or too large actions. The resulting performance is quite poor. This
is especially visible in the control signal. Finally, the controller is redesigned to
compensate for the jitter. This is done by measuring the actual sampling interval
and recalculating the controller parameters ad and bd at each sample. Figure 41
shows that this version of the controller handles the sampling jitter well.

Similar techniques as in Example 19 can also be used to compensate for parts
of the computational delay, particularly the part of the delay between the A-D
conversion and the start of the control calculations. This delay can be a com-
munication delay in a networked control loop where the sensor is located on
a different node than the controller. The delay can also be the delay from the
release time of the task to the start of the calculations of the task when the
A-D conversion is performed in the interrupt handler. A possibility here is to use
observer techniques to estimate what the values of the measured signals are at
the start of the controller calculations.
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Figure 40 Same as Figure 39, but with sampling interval jitter. Sampling jitter causes
the control performance to degrade.
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Figure 41 Same as Figure 40, but with compensation for the sampling jitter.

The possibility for controllers to compensate for timing variations can also
be used as a way to increase flexibility. Assume that the computer contains a
set of controller tasks. The number of controller tasks and their execution time
bounds may change over time. The latter can be due to too optimistic execution
time bounds causing occasional overruns, or due to different operation modes
in the controller. As the workload changes, the scheduler may then adjust the
task attributes, e.g., the periods, of the controller tasks in order to optimize
global control performance under the constraint that the task set should remain
schedulable.

A prerequisite for this type of on-line integration of control and scheduling
is that it is possible to make an integrated off-line design of control algorithms
and scheduling algorithms. Such a design process should allow an incorporation
of the availability of computing resources into the control design. This is an area
where, so far, relatively little work has been performed.

A scheduler that on-line adjusts task attributes in order to optimize con-
trol performance or QoS can be interpreted as a controller in itself, a feedback
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Figure 42 Feedback scheduler structure where Usp is the set-point for the CPU utiliza-
tion.

scheduler. Important issues that then must be decided are what the right con-
trol signals, measurement signals, and set-points are, what the control structure
should be, and which process model that may be used. The block diagram of a
feedback scheduler is shown in Figure 42.

The goal of the scheduler is to keep the CPU utilization, U , at a desired value.
To do this it adjusts the sampling frequencies of the controller tasks. Feedforward
is used to compensate for mode changes. A feedback scheduler can reduce the
workload required by a controller task in two ways: by increasing the sampling
interval or by decreasing the maximum allowed execution time for the task. The
latter would be a possibility for controllers that can be expressed on iterative
form, i.e., controllers that monotonously improve the control performance as a
function of their allotted execution time.

The communication between different nodes in the control system may also
cause delays. In most cases these delays are small compared with the time scale
of the processes, but poorly choices of the sampling rates in, for instance, multi-
rate systems, can create long delays in the transfer of information between dif-
ferent parts of the system.

EXAMPLE 20—DELAYS IN MULTI-RATE COMMUNICATION NETWORKS

Consider a simple distributed control and communication system as shown in
Figure 43. The system consists of a controller node and an IO unit which are
connected over a field-bus. The process outputs are measured and the control
signals are applied through the IO device. The communication to and from the
control node can be made over a local area network or a field-bus.

In the IO module the output of the process is A-D converted, and the result
is copied into memory cell m1. Synchronized with this is the D-A conversion
which writes the content of m4 to the process. Both these events occur every h2
time unit, however, they may not necessarily be completely synchronous, that is
there may be a phase difference between the input and the output. In a similar
way, both the write bus, transferring values from m1 to m2, and the read bus,
transferring values from m3 to m4, share the same timing, although there may

A-D m1

D-A m4

m2

m3
Field-bus Algorithm

ControllerIO device

From sensor

To actuator

Figure 43 Control over a layered communication net.
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Figure 44 Time delays due to multi-rate sampling in a layered communication network.
The system in Figure 43 is simulated with h0 = 50, h1 = 12, and h2 = 11. The phase shift
between the A-D and D-A converters is θ1 = 7 and in the field bus it is θ2 = 9.

also be a phase difference between the two. The sampling period is h1. Finally,
the controller is sampling and writing back to the field-bus with a sampling
period of h0.

Figure 44 shows the time history of the total delay from the A-D to the
D-A converter from a simulation of the system in Figure 43. The total delay
can be surprisingly long compared with the sampling interval of the controller
even if the converters and the field bus have short sampling periods. The reason
is that the ratio of the sampling intervals are not integers. This implies that
the sampling times are “sliding” with respect to each other. The choice of the
sampling intervals and the scheduling of the different tasks are thus very crucial
in multi-rate systems.

Summary
• It is important to assure good timing between the different processes of the

control system.

• Timing compensation can make it possible to use COTS components for
implementing real-time control systems.

• The ratio between the sampling periods and the scheduling of different
tasks are important in multi-rate systems.
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14. Research Issues

Computer control systems is quite a mature field. There are, however, two im-
portant research problems that do not have satisfactory solutions: multi-rate
sampling and sampling of nonlinear systems. There are several approaches to
control of multi-rate systems. They are all based on the same idea; to find a basic
sampling period h such that all rates are integer multiples of h. It is also as-
sumed that all samplings are synchronized. The system is then resampled with
period h. This leads to a linear system of high dimension. The difficulty with
this approach is that the dimension of the system changes drastically with minor
changes in the sampling rate. Sampling of nonlinear systems is another problem
which has not been solved satisfactorily, this is serious because it requires a lot
of ad hoc approaches when applying the powerful theory of nonlinear systems.
The standard approach is to sample fast and to use simple difference approxi-
mations. It seems reasonable that varying sampling rates should be used when
dealing with nonlinear systems. A fruitful approach may be to use results from
numerical integration of ordinary differential equations. Recent results where
control theory has been used to construct new algorithms for step length adjust-
ment in algorithms for integration of differential equations is an indication that
it may be very fruitful to combine the fields.

The continued advances of computing and communication will also have
strong impact on computer control systems as has been indicated in Chapters 12
and 13.
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Notes and References

The basic theory of computer-controlled systems is found in Åström and Witten-
mark (1997), Franklin et al. (1998), and Middleton and Goodwin (1990). Gen-
eral design methods for continuous-time and discrete-time control can be found
in the previous references and in Glad and Ljung (2000), Goodwin et al. (2001),
and Zhou and Doyle (1998). Analysis, tuning rules and implementation of PID
controllers are presented in Åström and Wittenmark (1997) and Åström and
Hägglund (1995).

The complex issue of frequency analysis of sampled-data systems is discussed
in Araki and Ito (1993), Chen and Francis (1995), and Yamamoto and Khar-
gonekar (1996).

Multirate systems and sampled-data control of nonlinear systems are dis-
cussed, for instance, in Kranc (1957), Crochieve and Rabiner (1983), and Monaco
and Normand-Cyrot (2001).

The lecture notes Årzén (2001) and the books Shin and Krishna (1997), But-
tazzo (1997), Liu (2000), and Burns and Wellings (2001) give extensive informa-
tion on different aspects on controller implementation issues, real-time systems,
and real-time scheduling.

There are also websites that contains material on sampled-data control. For
the book Åström and Wittenmark (1997) material for a course is available at
http://www.control.lth.se/ccs and for Goodwin et al. (2001) at http://csd.
newcastle.edu.au/control/index.html.

At http://www.engin.umich.edu/group/ctm/digital/digital.html Matlab
tutorials for digital control are available.

A dictionary where many of the terms in instrumentation and control are
defined is found at http://www.iica.org.au/dict/quikref.htm.

The Matlab files that are used to generate all the simulations in this paper
are available at http://www.control.lth.se/ccs/ifacfiles.zip.
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