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Abstract

This paper presents a systematic approach to robust preconditioning for gra-

dient based non-linear inverse scattering algorithms. In particular, one- and

two-dimensional inverse problems are considered where the permittivity and

conductivity pro�les are unknown and the input data consists of the scattered

�eld over a certain bandwidth. A time-domain least-squares formulation is

employed and the inversion algorithm is based on a conjugate gradient, or

quasi-Newton algorithm together with an FDTD-electromagnetic solver. A

Fisher information analysis is used to estimate the Hessian of the error func-

tional. A robust preconditioner is then obtained by incorporating a parameter

scaling such that the scaled Fisher information has a unit diagonal. By im-

proving the conditioning of the Hessian, the convergence rate of the conjugate

gradient or quasi-Newton methods are improved. The preconditioner is robust

in the sense that the scaling, i.e., the diagonal Fisher information is virtually

invariant to the numerical resolution and the discretization model that is em-

ployed. Numerical examples of image reconstruction are included to illustrate

the e�ciency of the proposed technique.

1 Introduction

Microwave tomography is an inverse problem with several promising applications in
e.g., non-invasive medical imaging, early detection of breast tumors [7�9, 16, 20, 21,
27], and non-destructive testing [2, 13, 14]. However, there still remains many impor-
tant analytical and computational challenges related to these highly non-linear and
often ill-conditioned imaging/estimation problems [17, 30]. In particular, computa-
tional cost and preconditioning of numerical algorithms are very important issues.

To accelerate the convergence of iterative methods, preconditioning is often used
[11, 19]. There are very few theoretical results on preconditioning, and �nding a
good preconditioner is sometimes considered as a combination of art and science [26].
The gradient based algorithms are often based on a least-squares formulation and
are hence justi�ed in the case of Gaussian noise [15, 30]. The major drawback with
the gradient based method is the high computational cost and the risk of getting
trapped in a local minimum. It has been observed that a preconditioner in the
form of a simple parameter scaling can increase the convergence rate and reduce the
problem with local minima [14].

The idea of employing sensitivity analysis as a means to improve the tradeo�
between the quality of images and the complexity of the reconstruction is a well
known issue in inverse problems. In [3], a sensitivity analysis for a linearized electri-
cal impedance tomography problem is used to obtain a regularization scheme based
on parameter variance uniformization. In this way, the inherent ill-posedness of the
reconstruction due to strong attenuation phenomena, is greatly alleviated.

A Fisher information analysis and the Cramér-Rao lower bound provides a very
useful instrument for sensitivity analysis of various wave propagation phenomena,
and which facilitates valuable physical interpretations, see e.g., [4�6, 12, 15, 23, 24,
28, 31]. Cramér-Rao bounds for the location, size and orientation of a known object
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has been studied in the context of di�raction tomography and Maximum Likelihood
(ML) estimation in [5, 23, 31]. Previously, the Cramér-Rao bound has been employed
as an analytical tool to investigate the one-dimensional inverse scattering problem of
multilayer structures [12], and a canonical two-dimensional microwave tomography
set-up is analyzed in [24]. In [12, 24], the Cramér-Rao bound is employed as an
analytical tool to quantify the ill-posedness of the reconstruction and to explicitely
describe the inherent trade-o� between the accuracy and the resolution.

In this paper, the Fisher information analysis is introduced as a systematic ap-
proach to obtain a robust preconditioner for gradient based non-linear inverse scat-
tering algorithms. One- and two-dimensional inverse problems are considered where
the permittivity and conductivity pro�les are unknown and the input data consists
of the scattered �eld over a certain bandwidth. A time-domain least-squares formu-
lation is employed [13] and the inversion algorithm is based on a conjugate gradient,
or quasi-Newton algorithm [10] together with an FDTD-electromagnetic solver [29].

In the �rst step of the preconditioning, the Fisher information analysis is per-
formed to estimate the Hessian of the error functional corresponding to some known
background. A robust preconditioner is then obtained by incorporating a param-
eter scaling such that the scaled Fisher information has a unit diagonal, cf., the
Jacobi preconditioner in numerical analysis [11, 19]. By improving the conditioning
of the Hessian in the corresponding Maximum Likelihood estimation problem, the
convergence rate of the conjugate gradient or quasi-Newton methods are improved.
The preconditioner is robust in the sense that the scaling, i.e., the diagonal Fisher
information is virtually invariant to the numerical resolution and the discretization
model that is employed.

One- and two-dimensional model problems are considered in parallel as these
o�er a natural introduction to electromagnetic inverse scattering, wave splitting
and numerical algorithms, see e.g., [13]. In particular, the numerical scheme for
two-dimensional microwave tomography as described in [8, 9, 16] has been modi�ed
by employing the Fisher information analysis developed in [24]. Further, the one-
dimensional model problem [12] is employed to illustrate the use of wave splitting
techniques. It should be noted that even though the detailed analysis given here is
with fairly simple one- and two-dimensional model problems which have been chosen
for simplicity and clarity of exposition, it is straightforward to extend the proposed
Fisher information analysis and preconditioning strategy to more elaborate inverse
problems including full three-dimensional modelling, etc.

The preconditioning strategy described in this paper bears several similarities
with the ideas presented in [3], eventhough [3] addresses the regularization param-
eters. In fact, the sensitivity matrix for the linearized problem used in [3] has a
direct correspondence to the Fisher information matrix used in the present context.
In particular, both techniques are e�ciently capturing the impact of attenuation
phenomena. In this respect, this paper presents a systematic and unifying approach
to preconditioning which does not require prior linearization of the forward prob-
lem. Numerical examples of image reconstruction are included to illustrate the
performance of the proposed preconditioner.

The rest of the paper is outlined as follows. In section 2 is presented the model
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problems in one and two dimensions, including the statistical signal modelling. In
section 3 is presented the Maximum Likelihood (ML) estimation interpretation of
the time-domain least-squares inverse problem formulation. In section 4 is presented
the Fisher information analysis for the one- and two-dimensional model problems. In
section 5 is presented the general Fisher information based preconditioning strategy
and in section 6 the numerical examples.

2 Model Problems in One and Two Dimensions

In this paper, two distinct model problems are considered related to the least-
squares optimization approach to time-domain electromagnetic inverse problems,
cf., [8, 9, 12�14, 16, 24]. These model problems are: a two-dimensional microwave
tomography set-up and a one-dimensional inverse scattering problem, as described
in detail below.

Throughout the paper, let eiωt be the time-convention where ω = 2πf is the
angular frequency. Let k0, c0, ε0, µ0 and η0 denote the wave number, the speed
of light, the permittivity, the permeability and the wave impedance of free space,
respectively.

2.1 Two-Dimensional Microwave Tomography Set-up

 Measurement
(a, φ)

Excitation
(a, ψ)

ε(ρ), σ(ρ) x

y

Figure 1: Two-dimensional microwave tomography set-up for an isotropic cylinder
with relative permittivity ε(ρ) and conductivity σ(ρ). Measurement cylinder of
radius a with excitation at (a, ψ) and measurement at (a, φ). The background space
is homogenous and isotropic.

Let (ρ, φ, z) denote the cylindrical coordinates, (ρ̂, φ̂, ẑ) the corresponding unit
vectors and ρ = ρρ̂ the two-dimensional radius vector with coordinates (ρ, φ). It is
assumed that all �elds depend on the two-dimensional spatial domain ρ ∈ R2 only
and that the electric �eld E is vertically polarized with E = E(ρ)ẑ.

Consider the electromagnetic inverse problem of imaging an isotropic two-dimen-
sional circular cylinder of radius a in a homogenous and isotropic background space,
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cf., �gure 1. The measurement is performed on a cylinder of radius a with excitation
at (a, ψ) and measurement at (a, φ). The inverse problem consists of estimating the
relative permittivity ε(ρ) and conductivity σ(ρ) within the cylindrical object (for
ρ < a), based on measurements (or observations) of the electric �eld E(φ, ψ, t) for
(φ, ψ, t) ∈ [0, 2π]× [0, 2π]× [0, T ] where T is the length of the observation interval.

The electric and magnetic �elds u = (E,H) satisfy Maxwell's equations1

Pu =

{
ε∂tE −∇×H + σE = −J s

∂tH +∇×E = 0
(2.1)

for t ∈ [0, T ], together with the initial conditions E(ρ, t) = 0 for t = 0 and ρ ∈ R2.
It is assumed that the excitation is a line source J s = ẑs(t)δ(ρ− ρ′) at ρ′ = (a, ψ)
where s(t) is the broad band excitation signal and δ(·) denotes a spatial impulse
function.

In the frequency domain, Maxwell's equations (2.1) yield the following wave
equation for the scalar �eld E, i.e., the Helmholtz equation

LE =

{
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2

}
E = iωJ, (2.2)

where k = k0
√
εc = ω

√
εc, εc(ρ) = ε(ρ) − iσ(ρ)/ω and the source is vertically po-

larized with J s = J ẑ. The corresponding Green's function G(ρ,ρ′) = G(ρ, φ, ρ′, φ′)
for a line source at ρ′ = (ρ′, φ′) satis�es LG(ρ,ρ′) = −δ(ρ− ρ′).

For a homogenous background and cylindrical coordinates, the background Green's
function is given by

G(ρ, φ, ρ′, φ′) = − i

4

∞∑
m=−∞

Jm(kρ<)H(2)
m (kρ>)eim(φ−φ′) (2.3)

where Jm(·) and H
(2)
m (·) are the Bessel function and the Hankel function of the

second kind, respectively, both of order m, see e.g., [1]. Here, ρ< = min{ρ, ρ′} and
ρ> = max{ρ, ρ′}.

Assuming that the source is a line source at ρ′ = (a, ψ) with J = S(f)δ(ρ−ρ′),
and that the measurement is performed at ρ = (a, φ), the observed quantity is then
given by

E(φ, ψ, f) =

∫ ∞
−∞

E(φ, ψ, t)e−iωt dt = −iωS(f)G(a, φ, a, ψ), (2.4)

where S(f) is the frequency domain excitation signal.
The two-dimensional Fourier coe�cients of the 2π×2π periodic function E(φ, ψ, f)

are de�ned by

Emn(f) =
1

(2π)2

∫ 2π

0

∫ 2π

0

E(φ, ψ, f)e−imφ−inψ dφ dψ. (2.5)

1Here, the common SI-unit quantities are normalized as (t, ω, ε, σ,E,H,J)norm =
(c0t, ω/c0, ε, η0σ,

√
ε0E,

√
µ0H,

√
µ0J) so that the speed of wave propagation is normalized to

unity and all �elds are measured in the same energy unit (Energy/Volyme)1/2.
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Further, letGm(ρ, ρ′, φ′) = − i
4
Jm(kρ<)H

(2)
m (kρ>)e−imφ′

be the one-dimensional Fourier
coe�cients of G(ρ, φ, ρ′, φ′) with respect to φ, as de�ned by (2.3). Due to the circular
symmetry, it is readily seen that Gm(ρ, ρ′, φ′) = Gm(ρ, ρ′, 0)e−imφ′

and hence

Emn(f) = −iωS(f)Gm(a, a, 0)δ−m,n = −ω
4
S(f)Jm(ka)H(2)

m (ka)δ−m,n (2.6)

where δmn denotes the Kronecker delta.
Consider now a �nite time interval [−τ/2, τ/2] and let Emnq denote the three-

dimensional Fourier coe�cients

Emnq =
1

(2π)2τ

∫ 2π

0

∫ 2π

0

∫ τ
2

− τ
2

E(φ, ψ, t)e−imφ−inψ−iq 2π
τ
t dt dφ dψ (2.7)

corresponding to a τ -periodic extension of the time-domain pulses. Assuming that
E(φ, ψ, t) is a time-limited pulse with support in [0, T ], it is seen that τEmnq →
Emn(f)|f= q

τ
as τ →∞.

Consider the following statistical measurement model

E(m)(φ, ψ, t) = E(φ, ψ, t) +N(φ, ψ, t), (2.8)

where E(m)(φ, ψ, t) denotes the measured �eld, N(φ, ψ, t) is additive measurement
noise and (φ, ψ, t) ∈ [0, 2π] × [0, 2π] × [−τ/2, τ/2]. Here, N(φ, ψ, t) is modeled as
a spatially uncorrelated zero mean Gaussian random process [18] with correlation
function

E {N(φ+∆φ,ψ +∆ψ, t+∆t)N(φ, ψ, t)} = (2π)2δ(∆φ)δ(∆ψ)rN(∆t), (2.9)

where E {·} denotes the expectation operator and δ(·) an impulse function with
period 2π. Here, rN(∆t) denotes the temporal correlation function with power
spectral density RN(f) =

∫∞
−∞ rN(t)e−i2πft dt.

A discrete measurement model is now obtained by �rst creating the complex
(time-domain) Hilbert pair [25] corresponding to (2.8), and then considering the cor-
responding three-dimensional Fourier series representation. Note that the complex
Hilbert pair corresponding to a real Gaussian random process is complex Gaussian,
and the Fourier transform of a complex Gaussian process is complex Gaussian [22].
Hence, (2.8) yields

2E(m)
mnq = 2Emnq +Nmnq, q ≥ 0, (2.10)

where Nmnq is discrete zero mean complex Gaussian noise with correlation function
given by

E
{
N∗mnqNm′n′q′

}
= δmm′δnn′

1

τ
4RN(

q

τ
)δqq′ , q ≥ 0 (2.11)

where (·)∗ denotes the complex conjugate and where it has been assumed that the
support time tN for the correlation function rN(∆t) is much less then the period,
tN � τ .
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E+(x, t)

E−(x, t)

x = 0 x = a x

σ(x)

ε(x)
ε = 1

σ = 0

Figure 2: One-dimensional inverse problem for an isotropic half space with relative
permittivity ε(x) and conductivity σ(x).

2.2 One-Dimensional Inverse Scattering Problem

Let (x, y, z) ∈ R3 denote the cartesian coordinates and (x̂, ŷ, ẑ) the correspond-
ing unit vectors. It is assumed that all �elds depend on the x-coordinate only and
that the electric and magnetic �eldsE andH are linearly polarized withE = E(x)ẑ
and H = H(x)ŷ.

Consider the electromagnetic inverse problem of imaging a one-dimensional iso-
tropic half space x ≥ 0, with relative permittivity ε(x) and conductivity σ(x), see
�gure 2. The imaging is based on a measurement of the incident �eld E+(x, t) and
the scattered �eld E−(x, t) at the boundary x = 0 for t ∈ [0, T ] where T is the length
of the observation interval. The left half space x < 0 is free space with ε = 1 and
σ = 0.

The electric and magnetic �elds u = (E,H) satisfy Maxwell's equations

Pu =

{
ε∂tE − ∂xH + σE = 0
∂tH − ∂xE = 0

(2.12)

for x ∈ R and t ∈ [0, T ], together with the initial conditions E(x, 0) = 0 for x ≥ 0

and t = 0, and the boundary conditions E+(0, t) = E
(m)
+ (0, t) for x = 0 and t ∈ [0, T ],

where the superscript (·)(m) denotes measured �eld quantities.
In the frequency domain, Maxwell's equations (2.12) yield the following wave

equation for the scalar �eld E

LE =
{
∂2
x + k2

}
E = 0, (2.13)

where k = k0
√
εc = ω

√
εc, εc(x) = ε(x) − iσ(x)/ω and the boundary conditions

are E+(0, f) = E
(m)
+ (0, f). Here, the Fourier transform is given by E(x, f) =∫∞

−∞E(x, t)e−iωt dt.
Assuming that the right half space x ≥ 0 is homogenous, the transmitted �eld

is given by the corresponding transmission coe�cient. Hence, for x ≥ 0

E(x, f) = E+(0, f)
2η

η + 1
e−ikx, (2.14)
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where η = 1/
√
εc. The corresponding Green's function G(x, x′) for a point source

at x′ satis�es LG(x, x′) = −δ(x − x′) where δ(·) is an impulse function. For a
homogenous half space and x′ = 0, the Green's function is given by

G(x, 0) =
1

iω + ik
e−ikx (2.15)

for x ≥ 0.
Consider now the �nite time interval [−τ/2, τ/2] and let E(x, q) denote the one-

dimensional Fourier coe�cients

E(x, q) =
1

τ

∫ τ
2

− τ
2

E(x, t)e−iq 2π
τ
t dt (2.16)

corresponding to a τ -periodic extension of the time-domain pulses. Assuming that
E(x, t) is a time-limited pulse with support in [0, T ], it is seen that τE(x, q) →
E(x, f)|f= q

τ
as τ →∞.

Consider the following statistical measurement model

E
(m)
− (0, t) = E−(0, t) +N(t) (2.17)

where t ∈ [−τ/2, τ/2] and N(t) is additive measurement noise. Here, N(t) is mod-
eled as a zero mean Gaussian random process with correlation function rN(∆t) =
E {N(t+∆t)N(t)} and power spectral density RN(f).

As before, a discrete measurement model is now obtained by �rst creating the
complex Hilbert pair corresponding to (2.17), and then considering the correspond-
ing Fourier series representation. Hence,

2E
(m)
− (0, q) = 2E−(0, q) +Nq, q ≥ 0 (2.18)

where Nq is discrete zero mean complex Gaussian noise with correlation function
given by

E
{
N∗qNq′

}
=

1

τ
4RN(

q

τ
)δqq′ , q ≥ 0 (2.19)

where it has been assumed that the support time tN for the correlation function
rN(∆t) is much less then the period, tN � τ .

3 Maximum Likelihood Estimation

3.1 The two-dimensional model problem

Consider �rst the two-dimensional model problem described above. It is assumed
that the cylinder region S = {ρ|ρ ≤ a0 < a} = ∪Ii=1Si is decomposed into a �nite set
of disjoint image cells or pixels Si corresponding to some speci�c scale of resolution.
The relative permittivity and conductivity within the cylinder is hence discretized
according to the �nite expansions{

ε(ρ) =
∑I

i=1 εiχi(ρ)

σ(ρ) =
∑I

i=1 σiχi(ρ)
(3.1)
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where εi and σi are the parameters to be estimated and χi(ρ) is the characteristic
function for pixel Si, i.e., χi(ρ) = 1 if ρ ∈ Si and χi(ρ) = 0 if ρ /∈ Si.

Let ν = [εTσT]T denote the parameter vector with elements εi and σi as de�ned

in (3.1), and let x denote the measurement vector x = {2E(m)
mnq} with probability

density function p(x|ν). Since the measurement noise Nmnq is an uncorrelated
complex Gaussian random process, the negative loglikelihood function [15, 18] is
given by

− log p(x|ν) = b+
∞∑

m=−∞

∞∑
n=−∞

∞∑
q=0

τ

RN( q
τ
)
|Emnq − E(m)

mnq|2 (3.2)

which becomes, in the limit as τ →∞,

− log p(x|ν) = b+
1

(2π)22N0

J (ν) (3.3)

where the power spectral density is assumed to be a constant RN(f) = N0 over the
relevant bandwidth, b is a constant, and J (ν) is the mis�t functional

J (ν) =

∫ 2π

0

∫ 2π

0

∫ T

0

|E(φ, ψ, t)− E(m)(φ, ψ, t)|2 dt dφ dψ. (3.4)

Hence, with the Gaussian noise model adopted here, the optimization problem
stated in two-dimensional microwave tomography [9, 14] is equivalent to the classical
Maximum Likelihood (ML) criterion [15, 18].

3.2 The one-dimensional model problem

The ML criterion for the one-dimensional model problem is merely a straightforward
modi�cation and a change of notation in the analysis above. The spatial region
S = {x|0 ≤ x ≤ a} = ∪Ii=1Si is decomposed into a �nite set of disjoint intervals Si
corresponding to some speci�c scale of resolution. The incident wave is assumed to
be attenuated such that it is negligible at the computational boundary x = a. The
relative permittivity and conductivity within the material is discretized according
to the �nite expansions {

ε(x) =
∑I

i=1 εiχi(x)

σ(x) =
∑I

i=1 σiχi(x)
, (3.5)

where χi(x) is the characteristic function for the interval (pixel) Si.
Here ν = [εTσT]T denotes the parameter vector with elements εi and σi as

de�ned in (3.5), and x denotes the measurement vector x = {2E(m)
− (0, q)} with

probability density function p(x|ν). The measurement noise Nq is an uncorrelated
complex Gaussian random process, and the negative loglikelihood function is given
by

− log p(x|ν) = b+ lim
τ→∞

∞∑
q=0

τ

RN( q
τ
)
|E−(0, q)− E(m)

− (0, q)|2 = b+
1

2N0

J (ν), (3.6)
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where J (ν) is the mis�t functional

J (ν) =

∫ T

0

|E−(0, t)− E(m)
− (0, t)|2 dt (3.7)

which is employed with one-dimensional inverse scattering problems, see e.g., [13].

4 Fisher Information Analysis

4.1 The two-dimensional model problem

The Fisher information matrix [18] for the parameters εi and σi based on the sta-
tistical measurement model (2.10) is given by

[Iνζ ]ij = 2 Re
∞∑

m=−∞

∞∑
n=−∞

∞∑
q=0

τ

RN( q
τ
)

∂E∗mnq
∂νi

∂Emnq
∂ζj

, (4.1)

where ν and ζ are either ε or σ, and i, j = 1, . . . , I. In the limit as τ → ∞, the
expression (4.1) becomes

[Iνζ ]ij =

∫ ∞
−∞

1

RN(f)

∞∑
m=−∞

∞∑
n=−∞

∂E∗mn
∂νi

∂Emn
∂ζj

df. (4.2)

The di�erentiated �eld, or sensitivity �eld, satisfy the wave equation (2.2)

L∂E
∂νi

=

{
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2

}
∂E

∂νi
= iωgνχiE, (4.3)

where gν = 1 if ν = σ and gν = iω if ν = ε. Note that the solution E of (2.2) now
appears in the source term of (4.3). The sensitivity �eld can hence be expressed as

∂E(φ, ψ, f)

∂νi
= −iωgν

∫
S
G(ρ,ρ′)χi(ρ

′)E(ρ′) dS ′

= −ω2gνS(f)

∫
Si
G(a, φ, ρ′, φ′)G(a, ψ, ρ′, φ′) dS ′, (4.4)

where the symmetry of the Green's function has been employed. Considering the
two-dimensional Fourier series representation of (4.4), the di�erentiated Fourier co-
e�cients become

∂Emn
∂νi

= −ω2gνS(f)

∫
Si
Gm(a, ρ′, φ′)Gn(a, ρ

′, φ′) dS ′

=
ω2

16
gνS(f)H(2)

m (ka)H(2)
n (ka)

∫
Si

Jm(kρ′)Jn(kρ
′)e−i(m+n)φ′

dS ′ (4.5)

where the last line is valid under the assumption that the background space is
homogenous with Gm(ρ, ρ′, φ′) = − i

4
Jm(kρ<)H

(2)
m (kρ>)e−imφ′

as de�ned in (2.3).
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After evaluation of (4.2), the total Fisher information matrix is assembled as

I =

(
Iεε Iεσ

Iσε Iσσ

)
. (4.6)

The Cramér-Rao bound (CRB) [18] for estimating the parameter νi is �nally given
by

E
{
|ν̂i − νi|2

}
≥
[[

I−1
]
νν

]
ii

(4.7)

where ν̂i is any unbiased estimate of νi. For further details about the calculation of
(4.2) and (4.5) for circularly symmetrical pixels Si, see [24].

In order to de�ne the signal to noise ratio, it is assumed that the noise power
spectral density is a constant RN(f) = N0 over the relevant bandwidth, and that
the incident signal is a normalized Gaussian pulse with{

s2(t) = 1√
2πσt

e−t
2/2σ2

t

S2(f) = 1√
2πσf

e−f
2/2σ2

f
(4.8)

which has been centered at the origin (base-band) for simplicity. Here,
∫
s2(t) dt =∫

S2(f) df = 1 and σtσf = 1/4π. De�ning the time and frequency bandwidths as
tB = 2 · 1.96σt and fB = 2 · 1.96σf for 95 % of the pulse energy, the time-frequency
bandwidth product is given by tBfB = 1.962

π
≈ 1. Hence,

1
T

∫
s2(t) dt∫

RN(f) df
≈
∫
s2(t) dt

tB4N0fB

≈ 1

4N0

= SNR (4.9)

where the factor 4N0 is due to the base-band translation.

4.2 The one-dimensional model problem

The Fisher information matrix based on the statistical measurement model (2.18)
is given by

[Iνζ ]ij = 2 Re
∞∑
q=0

τ

RN( q
τ
)

∂E∗−(0, q)

∂νi

∂E−(0, q)

∂ζj
(4.10)

where ν and ζ are either ε or σ, and i, j = 1, . . . , I. In the limit as τ → ∞, the
expression (4.10) becomes

[Iνζ ]ij =

∫ ∞
−∞

1

RN(f)

∂E∗−(0, f)

∂νi

∂E−(0, f)

∂ζj
df. (4.11)

The sensitivity �eld satisfy the wave equation (2.13)

L∂E
∂νi

=
{
∂2
x + k2

} ∂E
∂νi

= iωgνχiE (4.12)

where gν = 1 if ν = σ and gν = iω if ν = ε, and the solution E of (2.13) appears in
the source term of (4.12). The sensitivity �eld can hence be represented as

∂E(x, f)

∂νi
= −iωgν

∫
S
G(x, x′)χi(x

′)E(x′, f) dx′, (4.13)
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or
∂E−(0, f)

∂νi
= −iωgν

∫
Si
G(x′, 0)E(x′, f) dx′ (4.14)

where the symmetry of the Green's function G(x, x′) = G(x′, x) and ∂E+(0,f)
∂νi

= 0
have been employed. By inserting (2.14) and (2.15) in (4.14) and evaluating the
integral, the sensitivity �eld for a homogenous background is given by

∂E−(0, f)

∂νi
= −2gν

E+(0, f)

(1 +
√
εc)2

sin(k∆x)

k∆x
∆xe−ik(2i−1)∆x (4.15)

where Si = [(i− 1)∆x, i∆x], ∆x the spatial sampling interval and i = 1, . . . , I.
As can be clearly seen in (4.15), the magnitude of the sensitivity �eld is al-

most linear in ∆x (for small ∆x). A similar property can be deduced for the two-
dimensional case (4.5), i.e., the sensitivity �eld is almost proportional to the pixel
area ∆S. In this particular sense, we may say that the Fisher information is only
weakly dependent on, or virtually invariant to the assumed discretization model.
Note however, that the inverse Fisher information and the Cramér-Rao bound are
strongly dependent on, or extremely sensitive to the assumed discretization model.

The second essential property here is that the magnitude of the Fisher infor-
mation is closely related to the attenuation of the wave �eld. In fact, for the one-
dimensional problem above the magnitude of the Fisher information decays inside
the material exactly according to the (round-trip) attenuation of a plane wave at a
single frequency, as can be clearly seen in (4.15).

Finally, the signal to noise ratio for the one-dimensional problem is de�ned in
the same manner as in (4.9).

5 Preconditioning by Gradient Scaling

5.1 Calculation of the gradient

To obtain the gradient of J (ν) de�ned in (3.4) for the two-dimensional model prob-
lem, a �rst order perturbation analysis is considered as in [9, 14] where the Fréchet
derivative is used to de�ne the gradient. In the case when the relative permittivity
and conductivity within the cylinder is discretized according to a �nite expansion
as described in (3.1), the �nite gradients are given by

∂J
∂εi

= −
∫ 2π

0

∫
Si

∫ T

0

Ẽ · ∂tE dt dS dψ

∂J
∂σi

= −
∫ 2π

0

∫
Si

∫ T

0

Ẽ ·E dt dS dψ.

(5.1)

Here, the adjoint electric and magnetic �elds ũ = (Ẽ, H̃) satisfy the adjoint Maxwell's
equations

P†ũ =

{
−ε∂tẼ +∇× H̃ + σẼ = J̃
−∂tH̃ −∇× Ẽ = 0

(5.2)
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where J̃ = 2ẑ δ(ρ−a)
ρ

(E(φ, ψ, t) − E(m)(φ, ψ, t)) is the source term corresponding to

the solution of (2.1). Note that (5.2) is solved backwards in time for t ∈ [0, T ] and
the �initial� conditions are Ẽ(ρ, t) = 0 for t = T and ρ ∈ R2.

In a practical situation where a �nite number of measurement points (sensors)
are used, the integrals over φ and ψ in (3.4) and (5.1) are replaced by �nite sums
and the source term in (5.2) is replaced by J̃ → J̃

∑
j δ(φ− φj).

The calculation of the gradient in one dimension is similar to the two-dimensional
case above. However, since this is the wave splitting case the excitation is given by
boundary conditions instead of sources. For the one-dimensional model problem
the mis�t functional is given by (3.7) and the discretization by (3.5). The �nite
gradients are given by 

∂J
∂εi

= −
∫
Si

∫ T

0

Ẽ∂tE dt dx

∂J
∂σi

= −
∫
Si

∫ T

0

ẼE dt dx.

(5.3)

Here, the adjoint electric and magnetic �elds ũ = (Ẽ, H̃) satisfy the adjoint
Maxwell's equations

P†ũ =

{
−ε∂tẼ + ∂xH̃ + σẼ = 0

−∂tH̃ + ∂xẼ = 0
(5.4)

for x ∈ R and t ∈ [0, T ], together with the boundary conditions Ẽ−(0, t) = E−(0, t)−
E

(m)
− (0, t) corresponding to the solution of (2.12). Note that (5.4) is solved backwards

in time and the �initial� conditions are Ẽ(x, T ) = 0 for x ≥ 0.

5.2 Preconditioning based on the Fisher information analysis

The optimization problem aims at minimizing the mist�t functionals (3.4) or (3.7),
or equivalently, to minimize the negative loglikelihood functions (3.3) or (3.6). The
Hessian of the negative loglikelihood function is given by

H(x|ν) = −∂
2 log p(x|ν)

∂ν∂νT
(5.5)

and the Fisher information matrix is de�ned by

I(ν) = E{H(x|ν)} = −E{∂
2 log p(x|ν)

∂ν∂νT
} (5.6)

where [I(ν)]ij = −E{∂
2 log p(x|ν)
∂νi∂νj

}, see e.g., [18]. The preconditioning strategy is

now to chose a parameter scaling such that the resulting Fisher information matrix
becomes well-conditioned at some known background parameter value ν.

Since the Fisher information matrix is the mean value of the Hessian, it is ex-
pected that such a strategy will stabilize any gradient based numerical inversion
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algorithm. In particular, by improving the conditioning of the Hessian and hence
decreasing its eigenvalue spread, the convergence rate of the conjugate gradient and
quasi-Newton methods are expected to be signi�cantly improved since these opti-
mization algorithms are usually initiated as �steepest-descent� algorithms.

Assume that a linear prescaling is employed such that ν = Kξ where K is a
positive de�nite matrix and ξ denotes the scaled parameters. By using ∂

∂ξ
= KT ∂

∂ν

it is readily found that I(ξ) = KTI(ν)K and a natural choice of prescaler is
K = I−1/2(ν) so that the scaled Fisher information matrix becomes a unit matrix
I(ξ) = I. The corresponding gradient scaling is given by

∂

∂ξ
= I−1/2(ν)

∂

∂ν
. (5.7)

However, the inverse matrix operation above becomes highly ill-conditioned for high
resolution images, and the scaling (5.7) is thus extremely sensitive to modelling
errors. A better and more robust strategy is therefore to employ a diagonal scaling
matrix K and requiring that the scaled Fisher information matrix I(ξ) obtains a
unit diagonal, diag{I(ξ)} = I, cf., the Jacobi preconditioner in numerical analysis
[11, 19]. The appropriate scaling matrix is then

K = (diag{I(ν)})−1/2 (5.8)

and the resulting scaled Fisher information matrix is given by

[I(ξ)]ij =
1√

[I(ν)]ii
√

[I(ν)]jj
[I(ν)]ij. (5.9)

The corresponding gradient scaling is given by

∂

∂ξ
= K

∂

∂ν
= (diag{I(ν)})−1/2 ∂

∂ν
. (5.10)

An exponential transformation is sometimes advantageous since it e�ciently in-
corporates the a priori information inherently given by modelling a non-negative
parameter [15, 30]. Assume that the non-negative parameter νi is given by

νi = αie
ξi/βi + ν0i (5.11)

where αi and ν0i are a priori known constants and βi is the scaling parameter. The
gradient scaling is then given by ∂

∂ξi
= αi

βi
eξi/βi ∂

∂νi
, and the diagonal elements of the

scaled Fisher information is given by [I(ξ)]ii =
α2
i

β2
i
e2ξi/βi [I(ν)]ii. Hence, a robust

Fisher information based Jacobi preconditioner with [I(ξ)]ii = 1, is given by

βi = αie
ξi/βi

√
[I(ν)]ii (5.12)

at some known background parameter value νi.
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Assuming that the known background corresponds to ξi = 0 (νi = αi + ν0i), the
appropriate scaling is then given by βi = αi

√
[I(ν)]ii

∂

∂ξi
=

1√
[I(ν)]ii

eξi/βi
∂

∂νi
.

(5.13)

The resulting scaled Fisher information matrix at the background level ξ = 0 is
again given by (5.9).

6 Numerical Examples

6.1 The one-dimensional model problem

Consider the one-dimensional model problem as depicted in �gure 2. An exponential
transformation was used and a gradient scaling (5.13) was calculated based on the
Fisher information analysis described in section 4.2. The Fisher information matrix
is de�ned in (4.11). The calculation was performed for a homogeneous background
with ε = 15 (α = 1, ν0 = 14) and σ = 0.4 S/m (α = 0.4η0, ν0 = 0). The center
frequency was f0 = 6 GHz, the bandwidth fB = 8 GHz and the signal to noise ratio
SNR = 50 dB. Note that εc = 15− i1.2ω0/ω gives a loss tangent of 0.08 at the center
frequency. The computational boundary was a = 15λ where λ = 7.7 mm denotes
the wavelength in the background medium at 10 GHz.

In �gure 3 is shown the diagonal Fisher information [Iεε]ii, [Iσσ]ii and the Cramér-
Rao bound2 [I−1

εε ]ii, [I−1
σσ ]ii for the parameters ε and σ/ω0 versus x/λ, plotted for

di�erent resolutions d = ∆x/λ = {0.4, 0.5, 0.6}. Here, the conductivity parameter
has been scaled as σ/ω0 (where ω0 is the center frequency) in order for the pa-
rameters ε and σ/ω0 to obtain similar sensitivity, cf., [12]. The graphs in �gure 3
illustrate the fact that the diagonal Fisher information is virtually invariant to the
resolution d, whereas the Cramér-Rao bound is extremely sensitive to the assumed
discretization model. Hence, the diagonal Fisher information is a robust sensitivity
measure which can be used as a basis for parameter scaling and preconditioning.
Note that the reduced sensitivity is due to attenuation of the wave �eld. At the high-
est frequency 1.3 dB/λ, resembling the results in �gure 3 (yielding approximately
40 dB attenuation of the Fisher information at x = 15λ).

Next, we consider a numerical implementation of the one-dimensional inverse
problem. An inversion algorithm was implemented based on a quasi-Newton algo-
rithm using the BFGS formula and Golden section line search, see e.g., [10], together
with the gradient calculations and preconditioning that are described in section 5
above. The solutions to the related direct and adjoint electromagnetic problems
were based on an implementation of the FDTD algorithm, see e.g., [29], where the
spatial resolution was 10 points per wave length. The signal to noise ratio was
SNR = 50 dB, and arti�cial noise was added correspondingly prior to the inversion.

2Here,
[
I−1
νν

]
ii
is used as a simpli�ed notation for

[[
I−1

]
νν

]
ii
.
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In �gure 4 is shown the reconstruction for the one-dimensional model prob-
lem. The graphs show the parameters ε and σ/ω0 versus x/λ, with and without
preconditioning. The true parameter values are shown as a dashed line. The 4
columns illustrate the �rst 5 iterations in the reconstruction of ε with precondition-
ing (40 dB), ε without preconditioning (0 dB), σ/ω0 with preconditioning (40 dB)
and σ/ω0 without preconditioning (0 dB), respectively. Here, an iteration is referred
to as a calculation of a new search direction and a completed line search. As can be
seen in these reconstructions, the scaled version of the algorithm (with precondition-
ing) has improved capabilities of �nding objects in the interior of the material early
in the iteration process. This is due to the fact that the gradient scaling takes into
account the e�ect of losses (attenuation) and ampli�es the gradient further inside
the material.
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Figure 3: Fisher information and Cramér-Rao bound in the one-dimensional model
problem. The graphs show [Iεε]ii, [Iσσ]ii and [I−1

εε ]ii, [I−1
σσ ]ii for the parameters ε and

σ/ω0 versus x/λ. The resolution is d = ∆x/λ = {0.4, 0.5, 0.6}.
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Figure 4: Reconstruction for the one-dimensional model problem. The graphs show
the parameters ε and σ/ω0 versus x/λ, respectively, with preconditioning (40 dB)
and without preconditioning (0 dB), and iteration 1�5. The true parameter values
are shown as a dashed line.

6.2 The two-dimensional model problem

6.2.1 Calculation of gradient scaling based on the Fisher Information

Consider the two-dimensional microwave tomography set-up depicted in �gure 1.
A gradient scaling (5.10) was calculated based on the Fisher information analysis
described in section 4.1. The calculation was performed for a measurement cylinder
radius a = 0.1 m, center frequency f0 = 1 GHz, bandwidth fB = 1 GHz, and signal
to noise ratio SNR = 80 dB. The homogeneous background was modeled with ε = 78
and σ = 0.2 S/m, corresponding to εc = 78 − i3.6ω0/ω and a loss tangent of 0.046
at the center frequency. Note that the radius is a = 4.4λ where λ = 23 mm denotes
the wavelength in the background medium at 1.5 GHz. The Fisher information
matrix is de�ned in (4.2) and is circularly symmetrical for the circularly symmetrical
background under consideration.
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In �gure 5 is shown the Cramér-Rao bound [I−1
εε ]ii and [I−1

σσ ]ii as a function of
radius for di�erent scales of resolution d =

√
∆A0/λ, where A0 is the area of each

circularly symmetrical pixel and λ the shortest wave length, cf., [24]. Again, the
conductivity parameter has been scaled as σ/ω0 in order for the parameters ε and
σ/ω0 to obtain similar sensitivity. The �gure 5 also shows the Cramér-Rao bound
for the scaled parameters ξε and ξσ de�ned by a linear scaling and (5.8). As can be
seen in �gure 5, the behaviour of the Cramér-Rao bound for the parameters ε and
σ/ω0 is very similar as for the parameters ξε and ξσ. Hence, the simple scaling σ/ω0

makes the parameters ε and σ/ω0 be essentially �equal� in terms of sensitivity and
estimation performance.

A good estimation accuracy requires that the Cramér-Rao bound is well below
the required contrast level with respect to the background permittivity and con-
ductivity. Note, however, that regularization of the inverse problem implies adding
a priori information [17, 30], which in turn alleviates the resolution limit indicated
by the Cramér-Rao bound analysis employed here (which does not take a priori
information or regularization into account). In practice, when employing a partic-
ular regularization scheme, it is quite di�cult to say what the �e�ective� resolution
and estimation accuracy is. Figure 5 illustrates that the scaling (5.7) based on the
Cramér-Rao bound is very sensitive to the assumed scale of resolution, and is hence
very sensitive to the assumed pixel model or discretization. Experiments have also
shown that the scaling (5.7) is very sensitive to a small shift of the discretization
grid. In fact, the only situation when the scaling (5.7) can be used reliably, is when
the assumed pixel model (discretization) is known to be correct. However, since this
assumption is an �inverse crime� [17], the inverse Fisher information in (5.7) is not
a suitable basis for the gradient scaling.

In �gure 6 is shown the Fisher information diagonal elements [Iεε]ii and [Iσσ]ii
as a function of radius for di�erent scales of resolution. Again, the �gure 6 has been
calculated and plotted for the parameters ε and σ/ω0 showing that these parameters
have similar sensitivity properties. The �gure 6 also illustrates that the radial slope
of the diagonal Fisher information is virtually invariant to the scale of resolution.
Hence, the diagonal Fisher information employed in (5.10) is a suitable basis for
scaling the gradient with respect to the radially varying loss (attenuation). In this
particular example, it is concluded from �gure 6 that a suitable approximation of
the radial scaling is a straight line (in the dB scale) ranging approximately 12 dB
from the interior to the boundary of the measurement cylinder. Note that the
corresponding attenuation of a plane wave is 0.84 dB/λ giving an approximate radial
scaling of 7.4 dB.

6.2.2 Microwave tomography simulation

Consider the two-dimensional microwave tomography set-up depicted in �gure 7.
Here, we have employed the numerical algorithm described in [8, 9, 16] which has
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Figure 5: Cramér-Rao bound [I−1
νν ]ii as a function of radius ρ for di�erent scales

of resolution, d =
√
∆A0/λ. The solid �o�-lines indicate [I−1

εε ]ii and the dashed �o�-
lines [I−1

σσ ]ii, corresponding to the parameters ε and σ/ω0. The solid �?�-lines indicate
[I−1

εε ]ii and the dashed �?�-lines [I−1
σσ ]ii, corresponding to the scaled parameters ξε

and ξσ.

been modi�ed by using the Fisher information analysis and preconditioning tech-
nique as described above. The inversion algorithm was implemented based on a
least-squares optimization approach [9, 13, 14] and a conjugate-gradient algorithm,
see e.g., [10], together with the gradient calculations and preconditioning that is
described in section 5 above. The solutions to the related direct and adjoint electro-
magnetic problems were based on an implementation of the FDTD algorithm, see
e.g., [29], where the spatial resolution was 10 points per wave length. The signal to
noise ratio was SNR = 10 dB, and arti�cial Gaussian noise was added correspond-
ingly prior to the inversion.

In the numerical simulation, 17 antennas were placed on a circle with the radius
10 cm. The centre frequency of the electromagnetic Gaussian pulse was set to 1 GHz,
and the bandwidth to 1 GHz. The theoretical expression (5.8) was approximated
and used for the spatial gradient scaling (5.10) such that the scaling was ranging
from 0 dB at the outer edge of the reconstruction domain and 12 dB at the centre
(approximate linear radial function in dB).

Figure 7 a and b show the simulated true values of the relative permittivity ε
and conductivity σ (in S/m), respectively, where the background is ε = 78 and
σ = 0.2 S/m. The scatterer consists of 4 cylindrical objects, where the cylindrical
object with radius 16 mm ≈ 0.71λ is modeled by ε = 50 and σ = 1.8 S/m and
the 3 cylindrical objects with radius 8 mm ≈ 0.35λ are modeled by ε = 20 and
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Figure 6: Fisher Information [Iνν ]ii as a function of radius ρ for di�erent scales of
resolution, d =

√
∆A0/λ. The solid lines indicate [Iεε]ii and the dashed lines [Iσσ]ii,

corresponding to the parameters ε and σ/ω0.

σ = 3.4 S/m. Here, λ = 23 mm denotes the wavelength in the background medium
at 1.5 GHz. In �gure 7 c is shown the cost function

√
Jn/J0 for the �rst 25 iterations.

The solid line indicates the scaled version of the algorithm (12 dB) and the dashed
line the algorithm without preconditioning (0 dB). Here, an iteration is referred to
as a calculation of a new search direction and a completed line search.

The 4 columns in �gure 7 d and e illustrate the �rst 25 iterations in the numer-
ical reconstruction of the permittivity ε and the conductivity σ, respectively, with
preconditioning (12 dB) and without preconditioning (0 dB). Similar to the one-
dimensional numerical example above, it is clearly visible that the scaled version of
the algorithm (with preconditioning) has improved capabilities of �nding objects in
the interior of the cylinder early in the iteration process. Again, this is due to the
fact that the gradient scaling takes into account the e�ect of losses (attenuation)
and ampli�es the gradient in the vicinity of the cylinder center. The example also
shows that the scaled version of the algorithm has a capability to avoid spurious
local minima by decreasing the eigenvalue spread of the Hessian as discussed in sec-
tion 5.2 above. In particular, see �gure 7 d (reconstruction of ε) at iteration 10 and
25.
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Figure 7: a) and b) Microwave tomography measurement set-up and simulated
true values of the relative permittivity ε and conductivity σ, respectively. c) Cost
function

√
Jn/J0 for the �rst 25 iterations. d) and e) Contour plots depicting

reconstructions of the permittivity ε and the conductivity σ, respectively, with pre-
conditioning (12 dB) and without preconditioning (0 dB), and iterations 1�5, 10,
25.

7 Summary and conclusions

In this paper, the Fisher information analysis is introduced as a systematic approach
to obtain a robust preconditioner for gradient based non-linear inverse scattering
algorithms. One and two-dimensional inverse problems are considered where the
permittivity and conductivity pro�les are unknown and the input data consists of the
scattered �eld over a certain bandwidth. A time-domain least-squares formulation
is employed and the inversion algorithm is based on a conjugate gradient, or quasi-
Newton algorithm together with an FDTD-electromagnetic solver.

In the �rst step of the preconditioning, the Fisher information analysis is per-
formed to estimate the Hessian of the error functional corresponding to some known
background. A robust preconditioner is then obtained by incorporating a parameter
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scaling such that the scaled Fisher information has a unit diagonal. The precondi-
tioner is robust in the sense that the scaling, i.e., the diagonal Fisher information
is virtually invariant to the numerical resolution and the discretization model that
is employed. On the other hand, a full inversion of the Fisher information matrix
(a calculation of the Cramér-Rao bound) is extremely sensitive in this respect and
can not be used as a basis for the preconditioning.

Since the Fisher information matrix is the mean value of the Hessian, the pro-
posed preconditioner has a capability to stabilize any gradient based numerical in-
version algorithm. In particular, by improving the conditioning of the Hessian and
hence decreasing its eigenvalue spread, the convergence rate of the conjugate gradi-
ent or quasi-Newton methods are improved since these optimization algorithms are
usually initiated as �steepest-descent� algorithms.

Numerical examples of image reconstruction are included to illustrate the e�-
ciency of the proposed technique. As can be seen in these reconstructions, the scaled
version of the algorithm has improved capabilities of �nding objects in the interior
of the material as well as avoiding the problem with local minima.
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