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Abstract: The paper presents the development of interactive real-time control labs using Easy Java 
Simulations (Ejs). Ejs is a free software tool that allows rapid creation of interactive simulations in Java. A 
new TrueTime-based kernel has been designed in Ejs in order to create multitasking real-time system 
simulations as well as soft real-time applications. The main features of these new capabilities are 
presented. 

 

1. INTRODUCTION 

Control education has to take advantage of the possibilities 
that the new information technologies provide. One of these 
new features is the interactivity which is a crucial aspect when 
designing virtual labs for pedagogical purposes. The 
interactivity allows the user to simultaneously visualize the 
evolution of the system, and its response on-the-fly to any 
change introduced by the user. This immediate observation of 
the gradient of change of the system as response to user 
interaction is what really helps the student get useful practical 
insight into control system fundamentals (Heck 1999, 
Dormido 2004). Hence, interactive virtual labs have a great 
application potential in control engineering (Sánchez et al. 
2005, Dormido et al. 2003, 2005). 
 
An important subtopic of control engineering is embedded 
real-time control, which deals with feedback control under 
limited implementation resources (CPU time, communication 
bandwidth, energy, and memory). In this area, some new tools 
have recently been developed to create simulations from a 
research point of view. One of them is the freeware tool 
TrueTime (Andersson et al. 2005, Ohlin et al. 2007), which is 
very appropriate for the study of embedded real-time control 
systems but lacks the interactive features required to create 
easy-to-use simulations for educational purposes. On the other 
hand, the freeware tool Easy Java Simulations (Ejs) facilitates 
the creation of interactive simulations (Esquembre 2004) but 
is not able to handle multitasking real-time control systems.  
 
A first approach was to combine TrueTime and Ejs in order 
provide to users the possibility to create multitasking real-time 
labs (Farias et al. 2007). However in that case a user needs to 
have a Matlab license in its computer. In this paper we 
describe a new approach which is a first attempt to expand the 
functionality of Ejs to handle multitasking real-time control 
systems. To simplify the implementation, we have decided to 
adapt the basic real-time task model from TrueTime. The 

functionality is so far quite limited, only the basic primitives 
to describe real-time kernels and tasks have been 
implemented. Advanced TrueTime simulation features like 
wired and wireless communication networks are not yet 
supported in Ejs. 
 
The rest of this paper is organized as follows. In Section 2, the 
tools Ejs and TrueTime are introduced. Section 3 describes 
the implementation and use of the real-time kernel simulation 
features in Ejs. Section 4 presents the soft real-time kernel, 
while Section 5 presents the conclusions. 

 
2. BACKGROUND 

2.1  Real-Time Control Systems 

A real-time system is a computer program which has to satisfy 
some time-constraints. The systems are called hard or soft 
real-time systems if the time-requirements are or not critical 
to a suitable performance.  
 
Real-time control systems, which execute control algorithms, 
are traditionally designed jointly by two different types of 
engineers. The control engineer develops a model of the plant 
to be controlled, designs a control law and tests it in 
simulation. The real-time systems engineer is given a control 
algorithm to implement, and configures the real-time system 
by assigning priorities, deadlines, etc. 
 
A new interdisciplinary approach is currently emerging where 
control and real-time issues are discussed at each design 
levels (Cervin et al. 2003). The development of algorithms for 
co-design of control and real-time systems requires new tools. 
One of these new tools is TrueTime, which will be the base 
for the simulation model of real-time control system 
implemented in Ejs. 
 



 
 

     

 

2.2  Easy Java Simulations (Ejs) 

Ejs is a free software tool for rapid creation of simulations in 
Java with advanced graphical capabilities and a high degree of 
interactivity. Ejs is different from most other authoring tools 
in that it has not been designed to make life easier for 
professional programmers. Rather, it has been conceived for 
engineering students and teachers; that is, for people who are 
more interested in the content of the simulation and much less 
in the technical aspects needed to build the simulation.  
 

 
Fig. 1. An Ejs simulation consists of a model and a view. 

Ejs structures a simulation in two main parts, the model and 
the view (see Fig. 1). The model can be described by means of 
Java code, ordinary differential equations, or by dynamical 
models in external applications (such as Matlab/Simulink). 
The view provides the visualization of the simulated system 
and the user interface elements required for interaction with 
the user. The view elements can be chosen from a set of 
predefined components to build a tree-like structure. Both 
model and view are easily interconnected so that any change 
in the model state is automatically reflected by the view, and 
vice versa, in order to provide a dynamic and interactive 
visualization of the system. 

2.3 TrueTime 

TrueTime is a Matlab/Simulink based simulator for 
networked and embedded control systems that has been 
developed at Lund University since 1999. The simulator 
software consists of a Simulink block library and a collection 
of MEX files. The TrueTime Kernel block simulates a 
computer node, containing a real-time kernel that executes 
user-defined tasks and interrupt handlers. The TrueTime 
Network blocks are capable of simulating a variety of wired 
and wireless networks. 
 
To create a simulation using TrueTime, the plant dynamics 
are first modeled using ordinary Simulink blocks. Then, 
kernel and network blocks, that represent the computer 
implementation of the controller, are added to the model. For 
each kernel block, a set of Matlab functions have to be 
written: one function to initialize the kernel (and possible 
network interfaces), and one Matlab function for each task 
and interrupt handler in the real-time system. To model the 
execution time of a task or interrupt handler, a special code 
function format is used. A code function is divided into code 
segments according to Fig. 2. The execution of user code is 
done nonpreemptively in the beginning of each segment, and 
the code function returns the simulated execution time of the 
segment. Inside the code functions, the user can access the 

kernel block inputs and outputs using special kernel primitives 
(e.g. ttAnalogIn and ttAnalogOut). 
 

 

Fig. 2. TrueTime code model.  The execution of user code is 
modeled by a sequence of segments that are executed in 
sequence by the kernel. 

3. SIMULATION OF REAL-TIME KERNEL IN EJS 

3.1  Overview 

Inspired by the TrueTime Kernel block, a facility to simulate 
code execution and scheduling was implemented in Ejs. 
Currently, the Ejs Kernel supports periodic tasks, monitors 
(mutexes), and various scheduling policies such as earliest-
deadline first (EDF) and rate-monotonic (RM) scheduling. 
Similar to TrueTime, the code of a task is divided into 
segments as shown in Fig. 2. 
 
Internally, the kernel maintains a number of data structures 
that represents the tasks, the monitors, the scheduler, etc. Each 
time the kernel executes, it schedules its next invocation based 
on the time of the next expected event. An event can be for 
instance that a task has completed execution of a code 
segment, or that a task that has been sleeping should wake up. 
 
The Ejs bisection solver will then schedule the event, 
executing the relevant task code at the proper point in time, 
see Fig. 3. Similar to TrueTime, the plant dynamics is 
modeled using the regular ODE functionality. 
 

 

Fig. 3. Diagram of a real-time system simulation in Ejs.   

3.2  Kernel Primitives 

There are three main kinds of kernel primitives in Ejs.  The 
first type is related the initialization of the kernel, the second 
one deals with tasks, and in the last group there are special 
functions to synchronize tasks and to get scheduling data. 
 
Kernel primitives: The method _rtInitKernel is used to 
initialize the kernel. It is possible to declare the priority 
function desired (predifined or custom) and whether the 
scheduler should produce output data. It is also possible to 



 
 

     

 

choose simulation mode or soft real-time application mode 
(see Section 4). 
 
Task primitives: This is the main group of primitives; here 
there are methods to create periodic tasks 
(_rtCreatePeriodicTask), methods to set parameters of the 
tasks (like _rtTaskSetPeriod to set the period), and also 
methods to get parameters of the tasks (like 
_rtTaskGetDeadline to get the relative deadline). Finally, 
there is a special function to specify the end of a segment in 
the task code (_rtEndSegment, see below). The task code is 
entered as a method in the Custom section in Ejs. 
 
Special primitives: In this group there are primitives to 
creating and using monitors for task synchronization 
(_rtCreateMonitor, _rtEnterMonitor, _rtExitMonitor). There 
are also methods to get schedule output data for a task 
(_rtTaskGetSchedule). 
 
The functions implemented so far allow the creation of simple 
real-time control systems in an easy way. However, they do 
not yet support the simulation of for instance multiple kernels 
that communicate over a network. 
 
There is a slight difference between the TrueTime and Ejs  
models to describe the task code. In TrueTime, a switch-case 
structure is used to determine the segment to execute. In the 
Ejs kernel, the code is divided into segments by the primitive 
_rtEndSegment(value). This function indicates to Ejs that the 
end of a segment has been reached, and the value argument is 
used to return the execution time of the code segment. 
Another difference is that, in Ejs, the variables declared in the 
Variables subsection are global, hence the task code can 
directly use the variables of the ODE model. This eliminates 
the need of special kernel primitives for reading inputs and 
writing outputs.  

3.3  Example 1: Simple PID Control of a DC Servo 

As a first example, we show how a simple real-time control 
simulation can be created in Ejs. The simulation itself shows 
how the execution time of the controller induces a delay in the 
feedback loop that might deteriorate the performance. In Fig. 
4, the code to define the kernel and the task is shown. This 
code is entered in the Initialization section in Ejs.  

 

Fig. 4. Creation of the kernel and task for the first example.   

The first instruction in the code, _rtInitKernel, is used to 
indicate that a simulated kernel will be used. The kernel is 
linked to the model called “system”, which is shown in Fig. 5.  
The other parameters of the _rtInitKernel method indicate the 
selected priority function (fixed-priority scheduling), whether 
the schedule output data is needed, and if it is, how much 
schedule data time is required.  
 

 

Fig. 5. Ordinary differential equations of the model system 
using the editor of Ejs.  The models are defined in the 
Evolution section in Ejs. 

The function _rtCreatePeriodicTask creates a period task. The 
first parameter gives the name of the task (“task”), while the 
second parameter indicates the model used (“system”). The 
next parameters are the task offset (0), period (0.005), and 
priority (1), respectively. The last parameter specifies that the 
method “pidcode” is the code function for the task. This 
method is shown in Fig. 6. 
 

 

Fig. 6. The method “pidcode” used by the task created in the 
first example. The code functions are defined in the Custom 
section in Ejs. 

In the first segment of the code function, the control action is 
calculated using the custom function “pidcalc”. The segment 
is ended by _rtEndSegment(0.002), specifying the execution 
time of this segment. In the second code segment, the control 
action variable u is delivered to the plant. In this case the 



 
 

     

 

execution time for the segment is 0. After the second segment, 
the task should sleep until the next period.  
 
Typical results of this example are shown in Fig. 7, where the 
reference, control and output signals are presented for two 
cases. In the first case (a) the Execution Time is 2[ms] and in 
the second case (b) the Execution Time is 9[ms]. In both cases 
the Period is 12[ms].  Note that the performance of the first 
case is better than the second one. 

 

Fig. 7. Simulation of the first example: (a) The signals when 
Execution Time is 2[ms]. (b) The Signals when Execution 
Time is 9[ms]. In both cases the Period is 12[ms] and the 
control parameters are the same. 

3.4  Example 2: Control of Three DC Servos 

We now extend the previous example to the case of three 
PID-tasks running concurrently on the same CPU, controlling 
three different servo systems. The effect of the scheduling 
policy on the global control performance is demonstrated.  
 
The graphical user interface for the simulation is shown in 
Fig. 8. The user can modify different parameters like: 
reference type, control settings, jitter and the execution time 
of the controller. Also the user may choose between two 
scheduling policies, rate monotonic (RM) and earliest 
deadline first (EDF). In the RM case, a task with shorter 
period has higher priority. In the EDF case, the priority of 
each task is dynamic and depends on the minimum absolute 
deadline. If RM is selected, then the task with the longest 
period is strongly affected by the other tasks, whereas if EDF 
is selected, then all the tasks will be affected by each other. 
  

 
Fig. 8. Graphical user interface for the second example.   

In the time plots of Fig. 8, it is seen that RM scheduling 
causes the control loop with the longest period (and hence 
lowest priority) to go unstable. 

 

4. SOFT REAL-TIME CONTROL USING EJS 

4.1  Overview 

In some cases, users may want to execute their real-time 
models as real applications, and in real time (possibly even 
interfaced to real plants). In principle this is not possible, 
since Ejs generates ordinary Java programs without any 
timing guarantees. However, given a fast enough computer, a 
Java application may be time-stable over a long execution. 
Hence, as long as the user does not care about hard time 
constraints and just wants to execute an application (for 
instance to control a laboratory process), s(he) can use a 
special Ejs kernel to do it in an easy and fast way. 
  
The special kernel allows the execution of tasks as Java 
Threads, but using the scheduling algorithm defined by the 
user. Of course, the time accuracy of the final application 
depends on the Java Virtual Machine, the operating system, 
the hardware, etc. 
 
Fig. 9 shows how a soft real-time application can be 
implemented in Ejs. The kernel, tasks, and even the Ejs View 
are now Java threads. The Ejs View can be considered as a 
soft aperiodic task, since it will be executed only if the kernel 
is idle.  The threads (the kernel and the tasks) are executed 
when they have a token (implemented as a Java monitor). The 
sleep and wait methods of Java threads and System.nanotime 
method are used to control the time constraints.  
 

 
Fig. 9. Diagram of a soft real-time application described in 
Ejs.   
 
One limitation of our implementation is due to the fact that it 
is not possible to stop a thread from another thread. (This 
option was deprecated from Java authors because it is 
inherently unsafe.)  This makes it impossible to correctly 
preempt a task that is currently executing a code segment. 
Hence two options were introduced: the concurrent and non-
concurrent approach. In the concurrent case, a preempting 
thread is released and is allowed to execute in “parallel” until 
the preempted thread has finished. In the non-concurrent case, 
preemption will not occur until the code segment is finished.  
 



 
 

     

 

Fig. 10 illustrates the two cases. There are two tasks, T0 with 
three segments and T1 with four segments. Task T1 has higher 
priority than task T0. The behavior depends on the case 
selected: 

 
• Non-concurrent case: Task T1 has to wait for the end 

of the current segment of task T0. When the segment 
of task T0 is finished the first segment of task T1 is 
executed. The next segment of task T0 will be 
executed when the schedule policy indicates so. 

 
• Concurrent case: Task T1 starts execution at the 

release time, even though a segment of task T0 is still 
executing. The concurrence situation will finish 
when the task T0 segment finishes its code (i.e. when 
an _rtEndSegment is executed). The next segment of 
task T0 will execute when the schedule policy 
decides so. 

 
Both cases have advantages and disadvantages. The 
concurrent case executes the task at the release time, but the 
concurrence introduces an unpredictable jitter in the execution 
of both tasks. Moreover, preempting a segment could lead to 
unwanted side-effects. The non-concurrent case introduces 
release jitter in the execution of the tasks.   
 

 

Fig. 10. Example of concurrent and non concurrent cases. 
There are two tasks with three and four segments respectively. 
Task T1 has a higher priority than task T0. In concurrent case 
task T1 is executed even if the segment of T0 has not finished 
yet, and non concurrent case task T1 has to wait for the end of 
the segment of task T0. 

4.2  Example: A Soft Real-Time Application 

We now show an example of a real-time application. This 
example is very simple and has no real pedagogical value. 
However, it shows the approach that can help create, in an 
easy way, interactive (and even remote) real control 
laboratories. Remote laboratories have an scheme (Fig. 11) 
where the tasks require different priorities in order to provide 
a good performance for end users (Dormido 2007). 
 
In our example, we can suppose that we just need two tasks 
(communication and control tasks) to implement the server 
side for a remote lab. The creation of the kernel and two tasks, 
task0 and task1, is shown in Fig. 12. Since in this case any 
ODE model can be used (actually a real plant would be used) 

the first parameter of _rtInitKernel is null. Note that in this 
case the execution will use the concurrent approach.  
 

 

Fig. 11. Application and tasks diagram of an interactive 
remote lab.   

In the creation of the tasks the values for the periods and 
offsets are given in seconds. The scheduling policy is fixed 
priority scheduling, and the task1 has the highest priority. 
Further, task0 starts after one second, and one and half 
seconds later the task1 will execute the first segment. 

 

Fig. 12. Creation of the kernel and tasks for the real-time 
application.   

The code for both tasks is presented in Fig. 13. Both code 
functions call the custom method sleepAndEndSegment(), 
which generates a pause (using the Java sleep method) of the 
thread for 1000 milliseconds. After the pause, the method 
_rtEndSegment() is executed to indicate the end of the 
segment to the kernel. Hence, task0 has three segments of one 
second, and task1 has two segments of one second. 
 

 

Fig. 13. Code for both tasks used in the real-time application.   



 
 

     

 

When the application is executed, it is possible to view the 
state of both tasks for the first ten seconds. In the Fig. 14, the 
schedule signals are presented. In this case we can observe 
that the state of the task1 (upper signal) indicates that the first 
segment is executed at the release time (two and half 
seconds). Hence, the execution of this segment is concurrent 
with the execution of the second segment of task0 for half a 
second.  
 

 

Fig. 14. Schedule data for both tasks in the concurrent case. 
Note that the tasks are executing concurrently for half a 
second.   

If we select a non-concurrent case for this application, the 
schedule signals are now different to the previous case. The 
results are presented in Fig. 15, and it can be noticed that the 
first segment of task1 is delayed until the end of the second 
segment of task0 before executing.  

 

Fig. 15. Schedule data for both tasks in the non-concurrent 
case. Note that the task 1 is delayed for half a second until the 
task 0 finishes its second segment.  

Regarding to the interactive remote lab, probably the 
performance of the concurrent case is better since at least the 
control task (the highest priority task here) will start to 
execute when the period is reached, that is very important in 
particular, if the user introduces some disturbing in the plant. 

5. CONCLUSION 

In this paper a new experimental feature in Easy Java 
Simulations is presented. The feature allows non-
programming instructors to create simulations of real-time 
control systems or even soft real-time applications. 

The task model and the structure of the kernel is based on 
TrueTime, a freeware Matlab/Simulink based tool. The tasks 
are defined using code functions that are further divided into 
segments. Users of TrueTime will find that Ejs scheme to 
describe real-time systems is quite similar to the one 
TrueTime provides. However, only a basic set of TrueTime 
functions has been implemented so far. 

Using this implementation, users can describe simple real-
time control systems in an easy way, with all the interactive 
features that Ejs provides to create virtual labs for pedagogical 
purposes.  

Future work will mainly consist in adding new functionality 
based in the TrueTime model. But we are also interested in 
exploring how much the new possibilities actually allow us to 
create soft real-time applications in order to control real 
plants. 
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