
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Multitasking Real-Time Control Systems in Easy Java Simulations

Farias, Gonzalo; Cervin, Anton; Årzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

2008

Link to publication

Citation for published version (APA):
Farias, G., Cervin, A., Årzén, K.-E., Dormido, S., & Esquembre, F. (2008). Multitasking Real-Time Control
Systems in Easy Java Simulations. Paper presented at 17th IFAC World Congress, 2008, Seoul, Korea,
Democratic People's Republic of.
http://www.control.lth.se/database/publications/article.pike?artkey=far%2B08if%20ac

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9109e016-e5d8-46c0-8306-33d4883cf5fb
http://www.control.lth.se/database/publications/article.pike?artkey=far%2B08if%20ac

Multitasking Real-Time Control Systems in Easy Java Simulations

G. Farias*, A. Cervin**, K. Årzén**,
S. Dormido*, F. Esquembre***

*Depatamento de Informática y Automática, UNED, Madrid, Spain
(e-mail: gfarias@bec.uned.es, sdormido@dia.uned.es),

** Department of Automatic Control, Lund University, Sweden
(e-mail:{anton,karlerik}@control.lth.se),

*** Departamento de Matemáticas, Universidad de Murcia, Murcia, Spain
(e-mail: fem@um.es)

Abstract: The paper presents the development of interactive real-time control labs using Easy Java
Simulations (Ejs). Ejs is a free software tool that allows rapid creation of interactive simulations in Java. A
new TrueTime-based kernel has been designed in Ejs in order to create multitasking real-time system
simulations as well as soft real-time applications. The main features of these new capabilities are
presented.

1. INTRODUCTION

Control education has to take advantage of the possibilities
that the new information technologies provide. One of these
new features is the interactivity which is a crucial aspect when
designing virtual labs for pedagogical purposes. The
interactivity allows the user to simultaneously visualize the
evolution of the system, and its response on-the-fly to any
change introduced by the user. This immediate observation of
the gradient of change of the system as response to user
interaction is what really helps the student get useful practical
insight into control system fundamentals (Heck 1999,
Dormido 2004). Hence, interactive virtual labs have a great
application potential in control engineering (Sánchez et al.
2005, Dormido et al. 2003, 2005).

An important subtopic of control engineering is embedded
real-time control, which deals with feedback control under
limited implementation resources (CPU time, communication
bandwidth, energy, and memory). In this area, some new tools
have recently been developed to create simulations from a
research point of view. One of them is the freeware tool
TrueTime (Andersson et al. 2005, Ohlin et al. 2007), which is
very appropriate for the study of embedded real-time control
systems but lacks the interactive features required to create
easy-to-use simulations for educational purposes. On the other
hand, the freeware tool Easy Java Simulations (Ejs) facilitates
the creation of interactive simulations (Esquembre 2004) but
is not able to handle multitasking real-time control systems.

A first approach was to combine TrueTime and Ejs in order
provide to users the possibility to create multitasking real-time
labs (Farias et al. 2007). However in that case a user needs to
have a Matlab license in its computer. In this paper we
describe a new approach which is a first attempt to expand the
functionality of Ejs to handle multitasking real-time control
systems. To simplify the implementation, we have decided to
adapt the basic real-time task model from TrueTime. The

functionality is so far quite limited, only the basic primitives
to describe real-time kernels and tasks have been
implemented. Advanced TrueTime simulation features like
wired and wireless communication networks are not yet
supported in Ejs.

The rest of this paper is organized as follows. In Section 2, the
tools Ejs and TrueTime are introduced. Section 3 describes
the implementation and use of the real-time kernel simulation
features in Ejs. Section 4 presents the soft real-time kernel,
while Section 5 presents the conclusions.

2. BACKGROUND

2.1 Real-Time Control Systems

A real-time system is a computer program which has to satisfy
some time-constraints. The systems are called hard or soft
real-time systems if the time-requirements are or not critical
to a suitable performance.

Real-time control systems, which execute control algorithms,
are traditionally designed jointly by two different types of
engineers. The control engineer develops a model of the plant
to be controlled, designs a control law and tests it in
simulation. The real-time systems engineer is given a control
algorithm to implement, and configures the real-time system
by assigning priorities, deadlines, etc.

A new interdisciplinary approach is currently emerging where
control and real-time issues are discussed at each design
levels (Cervin et al. 2003). The development of algorithms for
co-design of control and real-time systems requires new tools.
One of these new tools is TrueTime, which will be the base
for the simulation model of real-time control system
implemented in Ejs.

2.2 Easy Java Simulations (Ejs)

Ejs is a free software tool for rapid creation of simulations in
Java with advanced graphical capabilities and a high degree of
interactivity. Ejs is different from most other authoring tools
in that it has not been designed to make life easier for
professional programmers. Rather, it has been conceived for
engineering students and teachers; that is, for people who are
more interested in the content of the simulation and much less
in the technical aspects needed to build the simulation.

Fig. 1. An Ejs simulation consists of a model and a view.

Ejs structures a simulation in two main parts, the model and
the view (see Fig. 1). The model can be described by means of
Java code, ordinary differential equations, or by dynamical
models in external applications (such as Matlab/Simulink).
The view provides the visualization of the simulated system
and the user interface elements required for interaction with
the user. The view elements can be chosen from a set of
predefined components to build a tree-like structure. Both
model and view are easily interconnected so that any change
in the model state is automatically reflected by the view, and
vice versa, in order to provide a dynamic and interactive
visualization of the system.

2.3 TrueTime

TrueTime is a Matlab/Simulink based simulator for
networked and embedded control systems that has been
developed at Lund University since 1999. The simulator
software consists of a Simulink block library and a collection
of MEX files. The TrueTime Kernel block simulates a
computer node, containing a real-time kernel that executes
user-defined tasks and interrupt handlers. The TrueTime
Network blocks are capable of simulating a variety of wired
and wireless networks.

To create a simulation using TrueTime, the plant dynamics
are first modeled using ordinary Simulink blocks. Then,
kernel and network blocks, that represent the computer
implementation of the controller, are added to the model. For
each kernel block, a set of Matlab functions have to be
written: one function to initialize the kernel (and possible
network interfaces), and one Matlab function for each task
and interrupt handler in the real-time system. To model the
execution time of a task or interrupt handler, a special code
function format is used. A code function is divided into code
segments according to Fig. 2. The execution of user code is
done nonpreemptively in the beginning of each segment, and
the code function returns the simulated execution time of the
segment. Inside the code functions, the user can access the

kernel block inputs and outputs using special kernel primitives
(e.g. ttAnalogIn and ttAnalogOut).

Fig. 2. TrueTime code model. The execution of user code is
modeled by a sequence of segments that are executed in
sequence by the kernel.

3. SIMULATION OF REAL-TIME KERNEL IN EJS

3.1 Overview

Inspired by the TrueTime Kernel block, a facility to simulate
code execution and scheduling was implemented in Ejs.
Currently, the Ejs Kernel supports periodic tasks, monitors
(mutexes), and various scheduling policies such as earliest-
deadline first (EDF) and rate-monotonic (RM) scheduling.
Similar to TrueTime, the code of a task is divided into
segments as shown in Fig. 2.

Internally, the kernel maintains a number of data structures
that represents the tasks, the monitors, the scheduler, etc. Each
time the kernel executes, it schedules its next invocation based
on the time of the next expected event. An event can be for
instance that a task has completed execution of a code
segment, or that a task that has been sleeping should wake up.

The Ejs bisection solver will then schedule the event,
executing the relevant task code at the proper point in time,
see Fig. 3. Similar to TrueTime, the plant dynamics is
modeled using the regular ODE functionality.

Fig. 3. Diagram of a real-time system simulation in Ejs.

3.2 Kernel Primitives

There are three main kinds of kernel primitives in Ejs. The
first type is related the initialization of the kernel, the second
one deals with tasks, and in the last group there are special
functions to synchronize tasks and to get scheduling data.

Kernel primitives: The method _rtInitKernel is used to
initialize the kernel. It is possible to declare the priority
function desired (predifined or custom) and whether the
scheduler should produce output data. It is also possible to

choose simulation mode or soft real-time application mode
(see Section 4).

Task primitives: This is the main group of primitives; here
there are methods to create periodic tasks
(_rtCreatePeriodicTask), methods to set parameters of the
tasks (like _rtTaskSetPeriod to set the period), and also
methods to get parameters of the tasks (like
_rtTaskGetDeadline to get the relative deadline). Finally,
there is a special function to specify the end of a segment in
the task code (_rtEndSegment, see below). The task code is
entered as a method in the Custom section in Ejs.

Special primitives: In this group there are primitives to
creating and using monitors for task synchronization
(_rtCreateMonitor, _rtEnterMonitor, _rtExitMonitor). There
are also methods to get schedule output data for a task
(_rtTaskGetSchedule).

The functions implemented so far allow the creation of simple
real-time control systems in an easy way. However, they do
not yet support the simulation of for instance multiple kernels
that communicate over a network.

There is a slight difference between the TrueTime and Ejs
models to describe the task code. In TrueTime, a switch-case
structure is used to determine the segment to execute. In the
Ejs kernel, the code is divided into segments by the primitive
_rtEndSegment(value). This function indicates to Ejs that the
end of a segment has been reached, and the value argument is
used to return the execution time of the code segment.
Another difference is that, in Ejs, the variables declared in the
Variables subsection are global, hence the task code can
directly use the variables of the ODE model. This eliminates
the need of special kernel primitives for reading inputs and
writing outputs.

3.3 Example 1: Simple PID Control of a DC Servo

As a first example, we show how a simple real-time control
simulation can be created in Ejs. The simulation itself shows
how the execution time of the controller induces a delay in the
feedback loop that might deteriorate the performance. In Fig.
4, the code to define the kernel and the task is shown. This
code is entered in the Initialization section in Ejs.

Fig. 4. Creation of the kernel and task for the first example.

The first instruction in the code, _rtInitKernel, is used to
indicate that a simulated kernel will be used. The kernel is
linked to the model called “system”, which is shown in Fig. 5.
The other parameters of the _rtInitKernel method indicate the
selected priority function (fixed-priority scheduling), whether
the schedule output data is needed, and if it is, how much
schedule data time is required.

Fig. 5. Ordinary differential equations of the model system
using the editor of Ejs. The models are defined in the
Evolution section in Ejs.

The function _rtCreatePeriodicTask creates a period task. The
first parameter gives the name of the task (“task”), while the
second parameter indicates the model used (“system”). The
next parameters are the task offset (0), period (0.005), and
priority (1), respectively. The last parameter specifies that the
method “pidcode” is the code function for the task. This
method is shown in Fig. 6.

Fig. 6. The method “pidcode” used by the task created in the
first example. The code functions are defined in the Custom
section in Ejs.

In the first segment of the code function, the control action is
calculated using the custom function “pidcalc”. The segment
is ended by _rtEndSegment(0.002), specifying the execution
time of this segment. In the second code segment, the control
action variable u is delivered to the plant. In this case the

execution time for the segment is 0. After the second segment,
the task should sleep until the next period.

Typical results of this example are shown in Fig. 7, where the
reference, control and output signals are presented for two
cases. In the first case (a) the Execution Time is 2[ms] and in
the second case (b) the Execution Time is 9[ms]. In both cases
the Period is 12[ms]. Note that the performance of the first
case is better than the second one.

Fig. 7. Simulation of the first example: (a) The signals when
Execution Time is 2[ms]. (b) The Signals when Execution
Time is 9[ms]. In both cases the Period is 12[ms] and the
control parameters are the same.

3.4 Example 2: Control of Three DC Servos

We now extend the previous example to the case of three
PID-tasks running concurrently on the same CPU, controlling
three different servo systems. The effect of the scheduling
policy on the global control performance is demonstrated.

The graphical user interface for the simulation is shown in
Fig. 8. The user can modify different parameters like:
reference type, control settings, jitter and the execution time
of the controller. Also the user may choose between two
scheduling policies, rate monotonic (RM) and earliest
deadline first (EDF). In the RM case, a task with shorter
period has higher priority. In the EDF case, the priority of
each task is dynamic and depends on the minimum absolute
deadline. If RM is selected, then the task with the longest
period is strongly affected by the other tasks, whereas if EDF
is selected, then all the tasks will be affected by each other.

Fig. 8. Graphical user interface for the second example.

In the time plots of Fig. 8, it is seen that RM scheduling
causes the control loop with the longest period (and hence
lowest priority) to go unstable.

4. SOFT REAL-TIME CONTROL USING EJS

4.1 Overview

In some cases, users may want to execute their real-time
models as real applications, and in real time (possibly even
interfaced to real plants). In principle this is not possible,
since Ejs generates ordinary Java programs without any
timing guarantees. However, given a fast enough computer, a
Java application may be time-stable over a long execution.
Hence, as long as the user does not care about hard time
constraints and just wants to execute an application (for
instance to control a laboratory process), s(he) can use a
special Ejs kernel to do it in an easy and fast way.

The special kernel allows the execution of tasks as Java
Threads, but using the scheduling algorithm defined by the
user. Of course, the time accuracy of the final application
depends on the Java Virtual Machine, the operating system,
the hardware, etc.

Fig. 9 shows how a soft real-time application can be
implemented in Ejs. The kernel, tasks, and even the Ejs View
are now Java threads. The Ejs View can be considered as a
soft aperiodic task, since it will be executed only if the kernel
is idle. The threads (the kernel and the tasks) are executed
when they have a token (implemented as a Java monitor). The
sleep and wait methods of Java threads and System.nanotime
method are used to control the time constraints.

Fig. 9. Diagram of a soft real-time application described in
Ejs.

One limitation of our implementation is due to the fact that it
is not possible to stop a thread from another thread. (This
option was deprecated from Java authors because it is
inherently unsafe.) This makes it impossible to correctly
preempt a task that is currently executing a code segment.
Hence two options were introduced: the concurrent and non-
concurrent approach. In the concurrent case, a preempting
thread is released and is allowed to execute in “parallel” until
the preempted thread has finished. In the non-concurrent case,
preemption will not occur until the code segment is finished.

Fig. 10 illustrates the two cases. There are two tasks, T0 with
three segments and T1 with four segments. Task T1 has higher
priority than task T0. The behavior depends on the case
selected:

• Non-concurrent case: Task T1 has to wait for the end

of the current segment of task T0. When the segment
of task T0 is finished the first segment of task T1 is
executed. The next segment of task T0 will be
executed when the schedule policy indicates so.

• Concurrent case: Task T1 starts execution at the

release time, even though a segment of task T0 is still
executing. The concurrence situation will finish
when the task T0 segment finishes its code (i.e. when
an _rtEndSegment is executed). The next segment of
task T0 will execute when the schedule policy
decides so.

Both cases have advantages and disadvantages. The
concurrent case executes the task at the release time, but the
concurrence introduces an unpredictable jitter in the execution
of both tasks. Moreover, preempting a segment could lead to
unwanted side-effects. The non-concurrent case introduces
release jitter in the execution of the tasks.

Fig. 10. Example of concurrent and non concurrent cases.
There are two tasks with three and four segments respectively.
Task T1 has a higher priority than task T0. In concurrent case
task T1 is executed even if the segment of T0 has not finished
yet, and non concurrent case task T1 has to wait for the end of
the segment of task T0.

4.2 Example: A Soft Real-Time Application

We now show an example of a real-time application. This
example is very simple and has no real pedagogical value.
However, it shows the approach that can help create, in an
easy way, interactive (and even remote) real control
laboratories. Remote laboratories have an scheme (Fig. 11)
where the tasks require different priorities in order to provide
a good performance for end users (Dormido 2007).

In our example, we can suppose that we just need two tasks
(communication and control tasks) to implement the server
side for a remote lab. The creation of the kernel and two tasks,
task0 and task1, is shown in Fig. 12. Since in this case any
ODE model can be used (actually a real plant would be used)

the first parameter of _rtInitKernel is null. Note that in this
case the execution will use the concurrent approach.

Fig. 11. Application and tasks diagram of an interactive
remote lab.

In the creation of the tasks the values for the periods and
offsets are given in seconds. The scheduling policy is fixed
priority scheduling, and the task1 has the highest priority.
Further, task0 starts after one second, and one and half
seconds later the task1 will execute the first segment.

Fig. 12. Creation of the kernel and tasks for the real-time
application.

The code for both tasks is presented in Fig. 13. Both code
functions call the custom method sleepAndEndSegment(),
which generates a pause (using the Java sleep method) of the
thread for 1000 milliseconds. After the pause, the method
_rtEndSegment() is executed to indicate the end of the
segment to the kernel. Hence, task0 has three segments of one
second, and task1 has two segments of one second.

Fig. 13. Code for both tasks used in the real-time application.

When the application is executed, it is possible to view the
state of both tasks for the first ten seconds. In the Fig. 14, the
schedule signals are presented. In this case we can observe
that the state of the task1 (upper signal) indicates that the first
segment is executed at the release time (two and half
seconds). Hence, the execution of this segment is concurrent
with the execution of the second segment of task0 for half a
second.

Fig. 14. Schedule data for both tasks in the concurrent case.
Note that the tasks are executing concurrently for half a
second.

If we select a non-concurrent case for this application, the
schedule signals are now different to the previous case. The
results are presented in Fig. 15, and it can be noticed that the
first segment of task1 is delayed until the end of the second
segment of task0 before executing.

Fig. 15. Schedule data for both tasks in the non-concurrent
case. Note that the task 1 is delayed for half a second until the
task 0 finishes its second segment.

Regarding to the interactive remote lab, probably the
performance of the concurrent case is better since at least the
control task (the highest priority task here) will start to
execute when the period is reached, that is very important in
particular, if the user introduces some disturbing in the plant.

5. CONCLUSION

In this paper a new experimental feature in Easy Java
Simulations is presented. The feature allows non-
programming instructors to create simulations of real-time
control systems or even soft real-time applications.

The task model and the structure of the kernel is based on
TrueTime, a freeware Matlab/Simulink based tool. The tasks
are defined using code functions that are further divided into
segments. Users of TrueTime will find that Ejs scheme to
describe real-time systems is quite similar to the one
TrueTime provides. However, only a basic set of TrueTime
functions has been implemented so far.

Using this implementation, users can describe simple real-
time control systems in an easy way, with all the interactive
features that Ejs provides to create virtual labs for pedagogical
purposes.

Future work will mainly consist in adding new functionality
based in the TrueTime model. But we are also interested in
exploring how much the new possibilities actually allow us to
create soft real-time applications in order to control real
plants.

ACKNOWLEDGEMENTS

This work has been supported by the by the Comisión
Interministerial de Ciencia y Tecnología(CICYT) under Grant
DPI2007-61068, and by the IV PRICIT (Plan Regional de
Ciencia y Tecnologia de la Comunidad de Madrid), under
Grant S-0505/DPI/0391.

REFERENCES

Andersson M., Henriksson D., Cervin A. and Årzén K. (2005)
Simulation of wireless networked control systems,
Proceedings of the 44th IEEE Conference on Decision and
Control and European Control Conference ECC, Seville,
Spain.

Cervin A., Henriksson D., Lincoln B., Eker J. and Årzén K.
(2003) How does control timing affect performance?, IEEE
Control Systems Magazine 23(3), 16–30.

Dormido, S., Esquembre, F. (2003) The Quadruple-Tank
Process: An Interactive Tool for Control Education,
Proceedings of the European Control Conference ECC,
Cambridge, England.

Dormido S. (2004) Control learning: Present and future: IFAC
Annual Control Reviews, vol. 28, 115-136.

Dormido, S., Esquembre, F., Farias, G., Sánchez, J. (2005)
Adding interactivity to existing Simulink models using
Easy Java Simulations, Proceedings of the Conference
Decision and Control-European Control Conference.

Dormido, S., Vargas, H., Sanchez, J., Duro, N., Dormido, R.;
Dormido-Canto, S., Esquembre, F. (2007) Using web-
based laboratories for control engineering education,
Proceeding of International Conference on Engineering
Education, Coimbra, Portugal.

Esquembre F. (2004) Easy Java Simulations: A software tool
to create scientific simulations in Java: Comp. Phys.
Comm. 156, 199-204.

Farias, G., Cervin A. and Årzén K. (2007) Interactive Real-
Time Control Labs with TrueTime and Easy Java
Simulations, Proceedings of the International
Multiconference on Computer Science and Information
Technology, Wisla, Poland.

Heck B.S. (editor) (1999) Special report: Future directions in
control education IEEE Control Systems Magazine, Vol.
19, No. 5, 35-58.

Ohlin M., Henriksson D., Cervin A. (2007) TrueTime 1.5
Reference Manual: Manual, Department of Automatic
Control, Lund University, Sweden.

Sánchez J., Dormido S., Esquembre F. (2005) The learning of
control concepts using interactive tools: Computer
Applications in Engineering Education, Vol. 13, No 1, 84-
98.

