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Abstract

In this paper we propose a new physically motivated model that allows to

study the interaction between the antennas and the propagation channel for

Multiple-Input Multiple-Output (MIMO) systems. The key tools employed in

the model are the expansion coe�cients of the electromagnetic �eld in spherical

vector waves and the scattering matrix representation of the properties of

the antenna. We derive the expansion of the MIMO channel matrix, H, in

spherical vector wave modes of the electromagnetic �eld of the antennas as

well as the propagation channel. We also introduce the channel scattering

dyadic, C, with a corresponding correlation model for co- and cross-polarized

elements and introduce the concept of mode-to-mode channel mapping, the

M-matrix, between the receive and transmit antenna modes. The M-matrix

maps the modes excited by the transmitting antenna to the modes exciting

the receive antennas and vice versa. The covariance statistics of this M-matrix

are expressed as a function of the double-directional power-angular spectrum

(PAS) of co- and cross-polarized components of the electromagnetic �eld. Our

approach aims at gaining insights into the physics governing the interaction

between antennas and channels and it is useful for studying the performance

of di�erent antenna designs in a speci�ed propagation channel as well as for

modeling the propagation channel. It can furthermore be used to quantify the

optimal properties of antennas in a given propagation channel. We illustrate

the developed methodology by analyzing the interaction of a 2 × 2 system of

slant polarized half-wavelength dipole antennas with some basic propagation

channel models.

1 Introduction

In the last two decades, communication systems with multiport antenna systems
at both the receiver and the transmitter, Multiple-Input Multiple-Output (MIMO)
systems, have attracted much attention [6, 12, 28, 37, 38, 41]. These systems have the
potential to provide higher bandwidth e�ciency and greater robustness to fading in
wireless systems due to their intrinsic ability to exploit the spatial and polarization
domains. The antennas are fundamental elements of the physical layer and play
an essential role in maximizing system performance for a given propagation chan-
nel. Therefore, a thorough understanding of the physics of the interaction between
the antennas and the propagation channel is essential for analyzing and optimizing
MIMO systems.

The �rst theoretical investigations of MIMO systems [12, 38, 41] were based on
the transfer function matrix, the H-matrix, which contains as its elements the trans-
fer function from each transmit antenna element to each receive antenna element1

and therefore lumps the antenna properties together with the propagation chan-
nel. This approach does not allow studying the antenna-channel interaction and the
antenna array optimization. To alleviate this problem, [32] introduced the �double-
directional channel model" that describes the �directions-of-departure" (DoD) and

1More speci�cally, from each transmit antenna connector to each receive antenna connector.
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�directions-of-arrival" (DoA) of the multi-path components (MPCs) or plane waves.
While this expansion has been used extensively in the past, e.g., [2, 9, 42] and is
�natural" for propagation models, it is not compact (i.e., can require a large number
of terms) and does not give straightforward insights of the interaction of channels es-
pecially with small antennas. We are therefore interested in an alternative, compact
and physically tractable description of the joint properties of channels and antennas.

Fortunately, both the propagation channel and the antennas can be described
in terms of the electromagnetic �eld and thus a homogeneous characterization is
feasible. More precisely, it is possible to use the expansion of the electromagnetic
�eld in spherical vector waves [18], together with the scattering matrix 2 represen-
tation of an antenna [17] to get a uni�ed description. The spherical vector wave
expansion is a natural way to express the polarization, angle, and spatial proper-
ties of MIMO systems. By expressing the channel directly in the spherical vector
wave modes [3] it is possible to determine the characteristics of a multiport antenna
system for wireless transmission of information, in that same propagation channel.
Our goal is to formulate a theoretical framework to study the mechanisms governing
the interaction between antennas and channels in order to determine the optimum
information transmission over wireless channels with multiport antenna systems.

Previous theoretical studies employed spherical modes to represent the propaga-
tion channel in terms of scalar �elds, see e.g., [15, 16, 19, 23, 29, 30, 33, 34]. However,
the physics of electromagnetic �elds is naturally described in terms of vector �elds,
where the polarization plays an important role. The application of the spherical
vector wave expansion of electromagnetic waves as well as the modal expansion in
guiding structures for deterministic MIMO channels has been intuitively outlined
in [24]. There some initial insights into the electromagnetic MIMO channel capacity
are also provided. We recently introduced the spherical vector wave mode expansion
of the �eld and the scattering matrix representation of the antenna to quantify the
interaction between the antennas and the propagation channel in a more physically
meaningful way. For example in [13, 14, 26] we studied the spectral e�ciency of
MIMO antennas based on antenna theory and broadband matching theory in the
isotropic channel (or 3D uniform channel). In [3] our focus was on the spatio-polar
characterization of an arbitrary receive multiport antenna in a random electromag-
netic �eld. However, the physics of the interaction between receive antennas, the
transmit antennas, and the propagation channel in MIMO systems was not ad-
dressed in previous research. In this work we extend the framework for analysis of
antenna-channel interaction to MIMO channels and multiport antenna systems at
Tx and Rx. This is accomplished by expressing both the stochastic channel and
deterministic antennas in a uni�ed way. The main contributions of the paper can
be summarized as follows:

1. We introduce the concept of mode-to-mode channel matrix, the M-matrix,
to describe the coupling between the modes excited by the transmit and the

2It is worthwhile to notice that all properties of multi-port antennas can be derived from the
scattering matrix representation, [17], inclusive mutual coupling between antennas elements of the
same multi-port antenna and/or between antennas belonging to di�erent antenna systems and
spatially separated as outlined in [22].
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receive antennas. The M-matrix contains all relevant information about the
channel on a fundamental level, information about the spherical vector wave
modes that are the most likely to be excited by the propagation channel.
The M-matrix also provides a mapping of modes excited at the receiver and
transmitter, respectively.

2. Using the correlation model for the amplitudes incident at the receive antenna
[3], we derive a general correlation model for the double-directional channel.
More speci�cally, we study the correlation between the components of the
channel scattering dyadic3 C. The dyadic C maps the �eld radiated by the
transmitting antenna to that impinging at the receive antenna by superposition
of plane waves4. We show that the formulation is equivalent to the single-
scatterer process, where the scatterer represents the propagation channel5.

3. We expand the channel transfer function matrix, the H-matrix, in spherical
vector wave modes, i.e., the M-matrix, using the derived correlation model
for the elements of the channel scattering dyadic. We also provide results for
�rst and second- order statistics of the expansion coe�cients based on the
assumption that the dyadic elements are independently distributed Gaussian
variables.

The derived equations allow us to establish a relationship between H and M,
and therefore to describe the spatial, directional and polarization properties of the
channel and the antennas for MIMO systems in spherical vector waves.

The remainder of the paper is organized as follows. In Sec. 2 we present a brief
introduction to the spherical vector wave expansion of the electromagnetic �eld and
the antenna scattering matrix. Here we also introduce the M-matrix concept. Sec.
3 introduces the channel scattering dyadic, C, and some of its properties, and derives
a model for the correlation between the dyadic components. In Sec. 4, we provide
the expansion of the channel matrix H in spherical vector waves. We further show
some properties of the expansion coe�cients and provide a brief discussion with
some speci�c examples. Sec. 5 provides simulation results for a 2× 2 MIMO slant-
antenna polarization system with half-wavelength dipoles orthogonally placed with
respect to each other, in a generic propagation channel. Finally, a summary with
conclusions is in given Sec. 6.

3This is basically the double-directional channel transfer function introduced in [32] in combi-
nation with the physical representation in [35].

4This is a good approximation when both transmitting and receiving antennas are in each
others' far-�eld region as well as when the distance from the antennas to the scatterers are much
larger than the size of the scatterers. This approximation is required for the scattering approach
assumed in this paper.

5It is worthwhile to notice that this equivalence only holds in the narrowband case.
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2 Mode-to-Mode MIMO channel matrix, M

In this section we present a straightforward treatment that aims at interconnecting
the signals from the receive antenna, the �eld from the transmit antenna and the
�eld impinging at the receive antenna. Building on the approach of [3], we de�ne
two main mathematical tools that describe the interaction between antennas and
channels. This approach provides a complete description of reciprocal antennas
by using the scattering matrix of the antennas of each multi-port antenna system
involved in the communications.

Consider two multi-port antennas separated by a distance d as shown in Fig.
1 where one of them acts as a transmitter (Tx) and one acts as a receiver (Rx).
Further assume that each antenna phase center coincides with the origin of their
own coordinate system and that there is no mutual coupling between the Tx and
Rx antennas6 though we do allow for mutual coupling between the elements of the
TX antenna (and similarly for the RX antenna).

Tx

Rx

The channel

d

a

Scatterers

r

at

rt

rs

x

y

z

z

x

y

z

x

y

rr

Figure 1: Schematic representation of the propagation channel with non interacting
scatterers and the antennas.

The electric �eld emitted by the Tx antenna, E(t)(rt), can be expanded into

outgoing spherical vector waves u
(2)
κ (krt), where rt is the coordinate vector with

origin in the phase center of the Tx and κ → (τ,m, l) is a multi-index that is also
calculated as7 κ = 2(l2 + l − 1 + m) + τ , see Appendices A and B. Then, the
expansion of the transmitted electric �eld in a source-free region (all sources are
inside the sphere with radius at) [18], can be expressed as

E(t)(rt) = k
√

2η
∑
κ

bκu
(2)
κ (krt), for |rt| ≥ at. (2.1)

6This is ful�lled when d is larger than a few wavelengths, i.e., in most practically relevant cases.
7κ = 2(l2 + l − 1 +m) + τ is computed for l = 1 . . . lmax, m = −l . . . l and τ = 1, 2.
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where η is the free-space impedance, k is the wave-number and the bk are the expan-
sion coe�cients. Similarly, the electric �eld sensed by the receive antenna, E(r)(rr),

can be expanded in incoming spherical vector waves u
(1)
ι (krr)

E(r)(rr) = k
√

2η
∑
ι

aιu
(1)
ι (krr), for |rr| ≥ ar, (2.2)

where ι→ (t, µ, λ) is the multi-index notation for the Rx antenna, which is computed
as ι = 2(λ2 + λ− 1 + µ) + t.

The scattering matrix8 of an N -port antenna provides a full description of all
its properties [17], i.e., the incoming signals, v ∈ CN×1 and waves, a ∈ C∞×1, the
outgoing signals, w ∈ CN×1 and waves b ∈ C∞×1, the matrix containing the com-
plex antenna re�ection coe�cients, Γ ∈ CN×N , the matrix containing the antenna
receiving coe�cients, R ∈ CN×∞, the matrix containing the antenna transmitting
coe�cients, T ∈ C∞×N and the matrix containing the antenna scattering coe�cients
S ∈ C∞×∞ [17] (

Γ R
T S

)(
v
a

)
=

(
w
b

)
. (2.3)

Based on the spherical wave expansion above and the scattering matrix repre-
sentation of the antenna9 we know that a transmitting antenna is characterized by
a = 0 and w = 0. Consequently, the transmitted signals, v, are mapped into the
outgoing spherical vector wave expansion coe�cients, b, by the transmission matrix,
T, as

b = Tv. (2.4)

On the other hand, at the receiving side, setting b = 0 and v = 0 , the incoming
spherical vector wave expansion coe�cients, a, are mapped into the received signals,
w, through the antenna matrix, R, as

w = Ra. (2.5)

In order to establish a relationship between input-output signals at the transmit and
the receive antennas, i.e., transmitted signals, v, and received signals, w, we need
�rst to establish a mapping between the outgoing waves at the transmit antennas,
b and the incoming waves at the receive antenna, a. We do this by using a mode-
to-mode mapping M [14]

a = Mb. (2.6)

The mode-to-mode MIMO channel matrix, M, is a stochastic matrix that describes
the properties of the wireless channel in terms of the multimode expansion coe�-
cients of the electromagnetic �eld. Hence, combining (2.4)-(2.6) we arrive at the

8From here and on we will use the term scattering matrix to denote di�erent mathematical
objects, whose meaning will follow from the context.

9It is worthwhile to notice that transmit and the receive antennas are each characterized by
a scattering matrix (see (2.3)), though with di�erent parameters. Moreover, we use the same
notation for both the transmit and receive antennas. However, through the paper, a, w, R and b,
v, T are used to identify the receive and transmit antennas, respectively.
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following linear relationship for the MIMO channel

w = RMTv. (2.7)

Denoting the MIMO channel transfer function by

H = RMT, (2.8)

we then arrive at the classical model for the input-output relation between the
transmitted, x = v, and the received signals in a noisy channel, y = w + n

y = Hx+ n, (2.9)

where n is the Additive White Gaussian Noise (AWGN) component.
Expressions (2.4)-(2.9) establish a full chain of relationships that enables the

analysis of the interaction between the antennas and the propagation channel and
their impact on the communication link by simple relationships. The classical trans-
fer function matrix H is a linear function of the physical properties of both the
antennas, R and T and the propagation channel M.

3 The Channel Scattering C-Dyadic
In the previous section we introduced a mapping, the M-matrix, between the modes
excited by the transmit antennas to the modes excited by the receive antenna. The
spatio-polar selectivity nature of the wireless propagation channels has been ex-
tensively investigated for stochastic propagation channels, we know therefore that
the properties of the M-matrix should be a function of the polarimetric double-
directional impulse response (if we are considering a single, deterministic, channel)
or the Power Angular Spectrum (PAS) of each of the orthogonal polarizations of
the electromagnetic waves, as well as the depolarization of transmitted waves. The
dependence of the M-matrix on the propagation channel need to be studied exper-
imentally to fully establish its properties.

In the following, we show from �rst principles, that the multiple-scattering pro-
cesses taking place in the wireless propagation channel can be described by a scat-
tering dyadic. Its representation is similar to the scattering dyadic when only a
single-scattering process is considered. This is of course an e�ective (or equiva-
lent) description of the actual scattering process since multiple-scattering actually
takes place within this e�ective scatterer, i.e., the channel. Backscattering from the
channel to the transmitting antenna as well as from the receiving antenna to the
channel is neglected. Hence, we can model the channel with a �black box" where
the energy that is transmitted in direction k̂t (the symbol (̂.) denotes a unit vector)
traverses the channel by means of an arbitrary number of interactions with physical
objects (the interactions may be due to scattering, specular re�ection, di�raction,
and others) and arrives at the receiver from one or multiple directions k̂r. In the
following, we �rst derive some properties of the M-matrix for some special cases
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(only one scatterer present; only single-scattering processes), and then give a more
general description.

Consider now the situation where there is a single linear scatterer present at a
position in space de�ned by the radius-vector rt de�ned in the coordinate system of
the Tx antenna, see Fig. 2. The �eld radiated by the transmitting antenna port j,
Ej(rt), is de�ned in the far-�eld region by the far-�eld amplitude, F j(r̂t) radiated
in direction r̂t = rt/rt

Ej(rt) = F j(r̂t)
e−ikrt

krt
+O(r−2t ) as rt →∞, (3.1)

where O(xn) is the "big-O" notation standing for "order of" asymptotics, i.e.,
|O(xn)/xn| < C as x→∞, and rt = |rt|.

An electric �eld Ej impinges on a scatterer from direction r̂t. In the far-�eld
region, the scattered electric �eld Es is fully described by the far-�eld amplitude
F s scattered in direction r̂s = rs/rs as

Es(rs) = F s(r̂s)
e−ikrs

krs
+O(r−2s ) as rs →∞, (3.2)

where F s can be expressed in terms of the scattering dyadic S(r̂s, r̂t)

F s(r̂s) = S(r̂s, r̂t) ·Ej(rt), (3.3)

where we have assumed that the amplitude of the plane wave incident at the scatterer
from direction r̂t is given by Ej(r̂t). Hence, from (3.1)-(3.3), the scattered �eld can
be expressed as

Es(rs) ≈ S(r̂s, r̂t) · F j(r̂t)
e−ik(rs+rt)

k2rsrt
as rs, rt →∞ (3.4)

In the far-�eld region the properties of the �eld are those of a plane wave, therefore
the scattered �eld in the far-�eld region can be described by a plane wave

Es(rr) ≈ E0e
−ikr̂s·rr , (3.5)

with the complex amplitude given by

E0 =
e−ikrs

krs
S(r̂s, r̂t) ·Ej(rt). (3.6)

In wireless communications channels, it is seldom the case that there is only a
single scatterer interacting with the receive and transmit antennas. Many scatterers
have to be considered in order to completely de�ne the propagation channel. This
is hard due to the fact that multiple-scattering propagation that takes place and
the shape and electromagnetic properties of each scatterer are not exactly known.
However, in many applications the exact physical properties of the channel scatterers
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are super�uous10 rather, we are mainly concerned with the statistical description of
the channel, which is a widely used approach [5, 25, 42].

We next consider a situation where many scatterers are present between the
transmit and the receive antennas. We assume that: 1) all the scatterers are in
the far-�eld regions of both the receiver and the transmitter, and 2) scatterers are
grouped into a group of scatterers11, where the maximum dimension of a group of
scatterers is much smaller than the distances to both the receiver and the transmit-
ter.

It can be shown that, if the assumption 2) above holds, then the scattered �eld
Es can be written in a similar way as the single scatterer case (3.3)-(3.4), where the
e�ective scattering dyadic12 Se

c (k̂r, k̂t) replaces S for each group of scatterers.
The key di�erence is that the contributions from the scatterers in each group

of scatterers are superimposed, leading to fading - in other words, the �eld arising
from each group of scatterers can be modeled as a stochastic process. We can then
express the total scattered far-�eld as a superposition of the scattered �elds from
each group of scatterers. Hence, we arrive at the following relationship for Es

Es(k̂r, k̂t) = C(k̂r, k̂t) · F j(k̂t), (3.7)

where C(k̂r, k̂t) is the channel scattering dyadic, [32, 35]

C(k̂r, k̂t) =
∑
c

e−ik(rrc+rtc)

k2rrcrtc
Se
c (k̂r, k̂t), (3.8)

where the summation is over the group of scatterers, rrc and rtc are the distances
between a reference position within the group of scatterers and the receiver and the
transmitter, respectively.

Since the scatterers are assumed to be linear it follows that C(k̂r, k̂t) satis�es an
identity similar to (7.38) in Appendix E for reciprocal channels

C(k̂r, k̂t) = CT (−k̂t,−k̂r). (3.9)

As a result of the assumptions made, one can further state that the received �eld,
i.e., the �eld incident at the receiver can be obtained as a linear transformation of
the transmitted �eld. Components of the electric �eld generated by the transmitter
antenna and the electric �eld available at the receiver are connected through a matrix
that could be interpreted as a �scattering" dyadic, C(k̂r, k̂t) , which is basically the

10Of course, if there are scatterers in the near-�eld region of the antenna this assumption is not
valid. For a handheld terminal the user's head, hands or body will in general have a large impact
on the performance. Similarly, for a base station scenario structures surrounding the base station
antenna will a�ect its radiation pattern.

11The de�nition of a group of scatterers here is related to both the classical de�nition of a cluster
and the concept of multipath-groups. However, strictly speaking it doesn't �t either of them. A
thorough description of both cluster and multipath group concepts can be found in [8�10].

12Observe that in order to introduce a more general framework we from now on express the
directionality of the channels an the antennas in terms of wave vectors, k̂, instead of radius vectors
r̂.
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channel transfer function in the �angular domain", (k̂r, k̂t), or equivalently, the
double-directional impulse response or transfer function [32, 42].

It is worthwhile to observe that the superposition of the scattered �elds from
di�erent group of scatterers is true only when there is no interaction or coupling
between each group of scatterers; in reality the coupling between groups of scatterers
always exists. This is an interesting question that needs further investigations, but
it is outside the scope of this paper.

3.1 Correlation model for the channel scattering dyadic, C
In order to further study the statistical properties of the M-matrix we need to
introduce a correlation model for co- and cross-polarized elements of the channel
scattering dyadic. We write the stochastic matrix C(k̂r, k̂t) as

C(k̂r, k̂t) =

(
Cθθ Cθφ
Cφθ Cφφ

)
, (3.10)

where Cθθ and Cφφ are co-polarized components, Cθφ and Cφθ are the cross-polarized
components, with θ and φ denoting two orthogonal polarizations. We further pos-
tulate that each entry of C(k̂r, k̂t) is a zero-mean complex Gaussian13 variable

〈Cαβ〉 = 0. (3.11)

where α = {θ, φ} and β = {θ, φ} and 〈·〉 denotes the ensemble average see, e.g., [27],
p.285).

The cross-covariance is given by

〈CαβC∗α′β′〉 = Pαβ(k̂r, k̂t)δ
2(k̂r − k̂

′
r)δ

2(k̂t − k̂
′
t)δαα′δββ′ . (3.12)

where δ2(k̂) = δ(θ)δ(φ)/ sin(θ) denotes the Dirac-delta in spherical coordinates de-
�ned on the sphere of unit radius, the asterisk (.)∗ denotes complex conjugate, and
Pαβ(k̂r, k̂t) denotes the double-directional power angular spectrum (DD-PAS) be-
tween polarization α at the receiver and polarization β at the transmitter. See,
e.g., [2, 7, 31, 32] for further details on the DD-PAS.

The DD-PAS of both co- and cross-polarized components can be expressed in
terms of joint probability distributions of the angle of arrivals (AoAs) and angle of
departures (AoDs) following the convention presented in [3]

Pαβ(k̂r, k̂t) = Pαβpαβ(k̂r, k̂t), (3.13)

where Pαβ denotes the co- or cross-coupling power between polarizations along α

and β. The joint probability density function pαβ(k̂r, k̂t) satis�es the normalization∫ ∫
pαβ(k̂r, k̂t)dΩrdΩt = 1. (3.14)

13The Gaussian assumption is valid if the number of scatterers in each group of scatterers is
large and none of them are dominating [10].
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Hence, Pαβ =
∫ ∫
Pαβ(k̂r, k̂t)dΩrdΩt, where we have expressed Pαβ(k̂r, k̂t) in spher-

ical coordinates.
The covariance model (3.12) is, as we show in Appendix C, a direct consequence

of the correlation model for the incident �eld presented in [3] and the reciprocity
of the wireless propagation channel. Here, for the sake of clarity, we restrict our
analysis to the Rayleigh fading environment. Extension to the more general Rice
case is straightforward following the exposition presented here and in [3]. The main
assumptions for the model of the Rayleigh case are14:

1. The phases of the co-polarized waves are independent for di�erent DoAs k̂ and

k̂
′
.

2. The phases of the cross-polarized waves are independent for any DoAs k̂ and

k̂
′
.

Let Eα, E
′
β denote the complex amplitudes of the random incident electric �eld

in α and β polarizations, respectively, and Ẽα and Ẽβ denote the corresponding
components of the plane wave spectrum, then we summarize the above postulates

〈ẼαẼ ′∗β 〉 = 〈EαE∗α〉δ2(k̂ − k̂
′
)δαβ, (3.15)

where δαβ denotes the Kronecker-delta function.
For the characterization we also need the cross polarization ratio (XPR) that

characterizes the power imbalance between the two orthogonal polarizations. It is
de�ned as the ratio between the power in the θ-polarization and the power in the
φ-polarization

χ =
Pθθ + Pθφ
Pφθ + Pφφ

, (3.16)

where the power of the co- and cross-polarized components have been de�ned above15.

4 Spherical vector wave expansion of the double-

directional MIMO channel

Our main focus now is to derive the correlation properties of the mode-to-mode
channel, the M-matrix, given the PAS of the double-directional channel. The in-
cident �eld can be described in either plane waves or spherical vector waves. This
section gives the transformation between the two.

The expansion of an arbitrary electromagnetic �eld E(r) at the observation
point in space r in regular spherical vector waves, vι(kr), (see Appendix A) can be
written as

E(r) = k
√

2η
∑
ι

fιvι(kr). (4.1)

14Note that these assumptions are a straightforward generalization of the generalized WSSUS
(Wide Sense Stationary Uncorrelated Scattering) assumption [11, 20].

15In many practical cases, Pθφ ≈ Pφθ � Pθθ, Pφφ and the XPR reduces to χ = Pθθ

Pφφ
.
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The expansion coe�cients fι [3] are given by

fι =
4π(−i)λ−t+1

k
√

2η

∫
A∗ι (k̂r) · Ẽ0(k̂r)dΩr, (4.2)

where Ẽ0(k̂r) denotes the amplitude of the (random) complex plane-wave spectrum
(PWS) in the direction k̂r, and A

∗
ι (k̂r) is the complex conjugated spherical vector

harmonic with index set ι → {tµλ}. The relationship between the incident �eld at
the antenna and the antenna �eld of the receiver is given by (2.5) and (4.2) as we
outlined in [3]. Next we relate the incident �eld to the transmit �eld, as given by
(2.4)-(2.6). Observing that the PWS of the incident �eld can be obtained from the
integral over the AoD, (3.7)

Ẽ0(k̂r) =

∫
C(k̂r, k̂t) · F j(k̂t)dΩt. (4.3)

We further expand the far-�eld amplitude of the transmit �eld in spherical vector
waves in the corresponding coordinate system

F j(r̂t) = k
√

2η
2∑

τ=1

∞∑
l=1

l∑
m=−l

il+2−τTκjvjAκ(k̂t). (4.4)

By combining (4.2)-(4.4) we arrive at the following expression for the expansion
coe�cients of the incoming �eld in regular spherical vector waves, fιj,

fιj = 4π
∞∑
κ

i1+l−λ−τ+t...

...

∫ ∫
A∗ι (k̂r) · C(k̂r, k̂t) ·Aκ(k̂t)TκjvjdΩrdΩt, (4.5)

where the index j denotes the contribution from the corresponding port at the
transmit antenna.

The expansion coe�cients aιj, of the incoming waves are related to the expansion
coe�cients fιj of the regular waves with multipole index ι as

2aιj = fιj. (4.6)

This result follows from the properties of the spherical vector wave functions and
the fact that the outgoing and incoming waves carry the same power in free space
(empty minimal sphere), i.e., ||a||2F = ||b||2F , where the scattering matrix S = I.
Thus, combining (2.5), (4.5) and (4.6) we arrive at the following expression

Hij = 2π

∫ ∫ ∑
ι

∑
κ

i1+l−λ−τ+t... (4.7)

...RiιA
∗
ι (k̂r) · C(k̂r, k̂t) ·Aκ(k̂t)TκjdΩrdΩt.

This expression describes the mapping of the outgoing (output) signal from the
receive antenna port i and the incoming (input) signals at the transmit antenna
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port j. Hence, (4.7) is the expansion of the transfer function matrix, H, in spherical
vector waves under the assumptions provided above. The elements of the channel
matrix Hij can also be expressed by expanding (2.8) in terms of the elements of
matrices Riι, Mικ and Tκj

Hij =
∑
ι

∑
κ

RiιMικTκj, (4.8)

where Mικ are the elements of the matrix coupling the spherical vector wave modes
at the receiver ι→ (t, µ, λ) and the transmitter κ→ (τ,m, l) respectively. Now, by
comparing (4.7) and (4.8) we obtain that Mικ is given by the double integral

Mικ = 2πi1+l−λ−τ+t... (4.9)

...

∫ ∫
A∗ι (k̂r) · C(k̂r, k̂t) ·Aκ(k̂t)dΩrdΩt.

The entries of the M-matrix, i.e., the matrix that maps the modes excited at
the receiver with the modes excited at the transmitter, are thus directly related to
the properties of the channel scattering dyadic C(k̂r, k̂t).

We now proceed to study the statistical properties of the mode-to-mode channel,
the M-matrix, as well as their implications on the statistics of the �classical" channel
matrix, the H-matrix. The elements of the correlation matrix for the entries of the
H -matrix can be readily obtained from (4.8) as

Ri′j′

ij =
∑
ι

∑
κ

∑
ι′

∑
κ′

RiιR
∗
i′ι′Rι′κ′

ικ Tκ,jT
∗
κ′j′ , (4.10)

where Ri′j′

ij = 〈HijH
∗
i′j′〉 denotes the covariance between any two elements of the

H-matrix, and Rι′κ′
ικ = 〈MικM

∗
ι′κ′〉, denotes the elements of the correlation matrix of

the M-matrix.
It is worthwhile to notice that (4.10) contains the full characterization of the

joint correlation properties of the channel and the antennas at both communication
link ends. Therefore, if Rι′κ′

ικ is available, or an estimate thereof, we can design the
communication system that, e.g., maximizes the system capacity.

In the following we study some general properties of the M-matrix. The following
proposition summarizes our main result on the computation of the correlation matrix
as function of the PAS of the double directional channel.

Proposition 1. In a multipath propagation environment characterized by a
Gaussian unpolarized �eld component only (Rayleigh fading), the �double directional"
expansion coe�cients, or the M-matrix entries, are Gaussian variates with zero
mean, 〈Mικ〉 = 0, and variance16

Pικ = 〈|Mικ|2〉 = 4π2
∑
α

∑
β

∫ ∫
... (4.11)

...|Aι,α(k̂r)|2Pαβ(k̂r, k̂t)|Aκ,β(k̂t)|2dΩrdΩt.

16Usually, the total power in the co- and cross-polarized components satis�es the nor-
malization Pθθ+ Pθφ + Pφθ + Pφφ = 1. Then normalization of the total multi-pole power,∑2
τ=1

∑2
t=1

∑l
m=−l

∑l
µ=−l

∑L
l=1

∑L
λ=1 Ptµλ,τml =

L2(L+2)2

8 , which directly follows from the addi-
tion theorem of spherical vector waves in Appendix A.
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where the summation is over α = {θ, φ} and, β = {θ, φ}. Moreover, the entries of
the correlation matrix are functions of the joint power angular spectrum of the co-
and cross-polarized components, Rι′κ′

ικ = 〈MικM
∗
ι′κ′〉,

Rι′κ′

ικ = 4π2il−l
′−λ+λ′−τ+τ ′+t−t′

∑
α

∑
β

∫ ∫
. . .

. . . A∗ι,α(k̂r)Aι′,α(k̂r)Pαβ(k̂r, k̂t) . . .

. . . Aκ,β(k̂t)A
∗
κ′,β(k̂t)dΩrdΩt. (4.12)

The derivation follows directly from the Gaussianity preservation property of
a�ne transformations; details are given in Appendix D.

As we can see from Proposition 1 the correlation depends on the joint distribu-
tions of co-polarized and cross-polarized components. Several well-known channels
can be interpreted in the framework of this model. For example, if isotropic PAS
are assumed at both the receiver and the transmitter

Pαβ(k̂r, k̂t) = 1/16π2 (4.13)

we obtain that
Rι′κ′

ικ = δtt′δµµ′δλλ′δττ ′δmm′δll′ . (4.14)

Hence, all modes are uncorrelated in the isotropic case, this is the most random
�eld that can be encountered in wireless channels. The covariance of the H-matrix
is then

Ri′j′

ij =
∑
ι

∑
κ

RiιR
∗
i′,ιTκjT

∗
κj′ (4.15)

In this case the correlation properties of the H-matrix are, as we should expect,
completely de�ned by the properties of the antennas used.

5 Numerical Examples

The increasing demand for smaller devices for wireless communication has led to
the search for methods to reduce the size of antennas in devices such as cellular
phones. A well-known way to keep the volume occupied by antennas down, while
still achieving or even increasing signal diversity, is to exploit polarization diversity.
Polarization diversity has been the objective of extensive theoretical and practical
studies, see [39] and references therein.

In the following example17 we apply our approach to a MIMO system based
on polarization diversity. We consider a 2 × 2 MIMO system with cross-polarized
antennas at both ends. Two half-wavelength dipoles are used, one is tilted 45◦ from
the z-axis towards the positive side of the y-axis, while the second dipole is also tilted

17This example is an oversimpli�ed antenna con�guration that does not take mutual coupling or
matching into account. However, it serves as a straightforward example demonstrating the main
points in the paper.
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45◦ but in the opposite direction. Thus we denote them as the +45◦- dipole and
the −45◦- dipole respectively (see Fig. 2). In order to illustrate how the multimode
expansion can be used to analyze the interaction between the antennas and the
channel we rotate both antenna pairs around the x-axis, towards the positive y-axis,
in their respective coordinate systems. The rotation angles are denoted by αr and
αt for the receive and the transmit antenna pairs, respectively.

x

y

z
+45

-45

α α
±

±

x

y

-45±

z

α

α

Tx

Rx

+45±

H+−

H−−

H++

H−+

Figure 2: Geometry of the cross polarized MIMO system.

We denote the transfer function matrix, the H-matrix, of the system by

H =

(
H++ H+−
H−+ H−−

)
, (5.1)

where for instance, H+− denotes the matrix element coupling the +45◦ antenna
at the receiver with the −45◦ antenna at the transmitter. The notation of the
remaining matrix elements follows the same principle. We keep the same notation
for the rotated antennas.

The polarization sensitivity of the multiport antenna system as a function of the
rotation angle can be directly derived from the behavior of the multipoles. Fig. 3
shows the squared absolute values of the transmission (or reception) coe�cients18,
|Rι|2, for the +45◦- dipole and the −45◦- dipole antennas as function of the rotation
angle α for the six lowest multipole multi-indices, ι, i.e., l = 1. As expected only
the TM dipoles, i.e., l = 1 and τ = 2, are excited while the antennas are rotated19.
Their magnitudes clearly change, indicating that the coupling to the di�erent modes
changes as the antenna is rotated. For example, at the initial position, when α = 0◦,
the positions of the +45◦- and the −45◦- dipole antennas are equivalent due to
symmetry and therefore the magnitudes of the multipoles are the same, with half

18For clarity, the transmission coe�cients in Fig. 3 are normalized as
∑
ι |Rι|2 = 1.

19From the properties of spherical functions it follows that rotation conserves the power in the
l-index and in the τ−index.
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of the power distributed equally between the two �horizontal"20 dipole modes with
ι = 2 → {2,−1, 1} and ι = 6 → {2, 1, 1}. The other half of the power goes into
the vertical dipole modes with ι = 4→ {2, 0, 1} . As we increase the rotation angle
to α = 10◦ the tilt angle of the +45◦- dipole increases to 55◦. At this angle the
half-wavelength dipole senses powers in the horizontal and vertical polarizations
in a similar manner [36]. In this case the antenna coupling into the three dipole
modes is equal as shown in the left plot of Fig. 3. Any further increase of the
rotation angle implies an increase of the power into the �horizontal" dipoles with
the proportional decrease of the power into the �vertical" dipole, which reaches their
respective maxima and minimum for α = 45◦. On the contrary, for the −45◦-
dipole, as the rotation angle increases, the power coupled into the �vertical" dipole
increases, while the power into the �horizontal" dipoles decreases. Due to symmetry
the reverse process is observed as the rotation angle is increased towards α = 90◦.

1 2
3 4
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90
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ι
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α, [°] 1 2
3 4

5 6
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80
90

0
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|R
 | ι

|R
 | ι22

Figure 3: Squared absolute values of the transmission (or reception) coe�cients,
|Rι|2 of the half-wavelength dipole antenna tilted from +45◦ to +135◦ from the z-
axis towards the y-axis (left plot) and the same but for tilting angles from −45◦ to
+45◦ (right plot).

The correlation between the two antenna branches can also be explained from
the multipole behavior. For example, for α = 0◦, the correlation between the two
antennas should be the highest since, as explained earlier, both antennas excite the
same modes equally. On the other hand for α = 45◦, the two antennas are �purely
orthogonal" since they excite orthogonal modes, i.e., one antenna, the +45◦- dipole,
is oriented along the y-axis, hence only �horizontal" dipoles are excited while the
other antenna is oriented along the z-axis.

We now proceed to specify the channel models we use for the analysis of the
MIMO system. It is well-known that an antenna performs di�erently depending on
the propagation environment where it is deployed. Thus, if we by some means can
gain knowledge of the properties of the propagation channel we can, in principle,
improve the performance in that channel by recon�guring the antenna so that it
matches the channel characteristics. Here we are, however, just going to analyze the

20In this paper we use the complex exponential convention of the spherical vector waves, [13, 17],
therefore no distinct association between the actual physical orientation of the horizontal dipoles
and the dipole order can be made.
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performance to illustrate how well (or badly) our simple system performs in terms
of the properties of the channel H-matrix and how the channel properties depend
upon the interaction between the multipoles of the antenna and that of the channel.

We consider two simple but widely used models. In both of them it is assumed
that the joint probability density functions are the same for both co- and cross-
polarized components, and that they are independent in azimuth and elevation

pαβ(θr, φr, θt, φt) = pθrαβ(θr)pφrαβ(φr)pθtαβ(θt)pφtαβ(φt), (5.2)

where α = {θ, φ} and β = {θ, φ} stands for either of θ̂ or φ̂, polarizations. We also
assume that the powers of the cross-polarized components are much lower than the
powers of the co-polarized components, i.e., Pθφ ≈ Pφθ � Pθθ, Pφφ and therefore the
XPR is completely de�ned by χ = Pθθ

Pφφ
.

Model-A describes a highly isotropic channel with a balanced polarization (χ =
0dB), where

pθrαβ(θ) = pθtαβ(θ) = Aθe
−
√
2|θ−µθ |
σθ sin θ, θ ∈ [0, π] (5.3)

pφrαβ(φ) = pφtαβ(φ) = Aφe
−
√
2|φ−µφ|
σφ , φ ∈ [−π, π), (5.4)

with parameters σ = σθ = σφ = 10 rad and µ = µθ = µφ = 0 rad.
Model-B emulates the propagation in a macro-cell deployed in an urban envi-

ronment as outlined in [9]21. We assume that

pθrαβ(θ) =
√

2 sin θ, θ ∈ [
π

4
,
π

2
] (5.5)

pφrαβ(φ) =
1

2π
, φ ∈ [−π, π) (5.6)

pθtαβ(θ) = Aθe
−
√
2|θ−µθ |
σθ sin θ, θ ∈ [0, π] (5.7)

pφtαβ(φ) = Aφe
−
√

2|φ−µφ|
σφ , φ ∈ [−π, π), (5.8)

with parameters σ = σθ = σφ = 0.1 rad and µ = µθ = µφ = 0 rad. We also assume
unbalanced polarization in favor to the vertical polarization, i.e., χ = 10dB. Here
the mobile terminal is the receiver, while the transmitter is the base station. Hence,
the angle-spread around the Rx is much higher than the angle-spread around the
Tx.

In both models the resulting channels produce a Rayleigh probability density
function for the envelopes of the elements of the H-matrix.

21Here we use the shape of the distributions provided in [9]. However, the parametrization is
generic.
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Figure 4: Average mode to mode power, 〈|Mικ|2〉, as function of the multipole
indices at the receiver, ι, and the transmitter, κ, for Model-A.

Figs. 4 and 5 show the average mode-to-mode power, 〈|Mικ|2〉, as a function
of the multipole indices at the Rx, ι, and the Tx, κ, for Model-A and Model-B,
respectively. The more uniform distribution of the power among the multimodes
of Model-A is a direct result of the uniform distribution of the AoA and the AoD
at the receiver and the transmitter, respectively. The fact that the power into the
vertical and horizontal polarizations is the same, also supports this uniform power
distribution among the modes. On the other hand, spatial selectivity, as we have
at the transmitter for Model-B, together with polarization power imbalance also
implies selectivity in modes, i.e., some multipole-multipole interactions are stronger
than others as shown in Fig. 5. More speci�cally, we see from Fig. 5 that the
coupling between the power into the �vertical" dipole modes, ι = κ = 4→ {2, 0, 1} ,
is much stronger than the power coupling between other modes, since the XPR of
the channel is such that the power into the power of the vertical polarization is
much stronger than the power of the horizontal polarization, χ = 10dB. It can also
be observed that the coupling between electric and magnetic dipoles is quite strong
since the propagation at the receiver takes place mostly on the horizontal plane.

Figs. 6 and 7 show the absolute values of the correlation matrix, |Rικ|, as func-
tion of the multipole indices at the receiver, (ι, κ),22 and the transmitter, (ι′, κ′),
for Model-A and Model-B, respectively. As we see from Fig. 6 the multimodes be-
come uncorrelated in the case of a uniform distribution of AoA and AoD, while the
correlation becomes noticeably higher for the spatially selective channel provided
by Model-B. It should be noted that in the case when the power of co- and cross-
polarized components is the same, i.e., Pθφ = Pφθ = Pθθ = Pφφ = 1

4
and the joint

pdf of the AoA and AoD is uniform, i.e., pθθ(Ωr,Ωt) = pθφ(Ωr,Ωt) = pφθ(Ωr,Ωt) =
pφφ(Ωr,Ωt) = 1

16π2 , the multimodes have identical powers given by the diagonal

22The index pair (ι, κ) denotes a multi-index calculated as ι⊗κ, where ⊗ denotes the Kronecker
product.
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Figure 5: Average power mode, 〈|Mικ|2〉, as function of the multipole indices at the
receiver, ι, and the transmitter, κ, for Model-B.

elements of (4.14).
The channel behavior in the multipole modes, i.e., the M-matrix, together with

the mode behavior of the antennas, given by the transmission and reception matrices
R and T, have direct impact on the behavior of the H-matrix. Fig. 8 shows the
average power of the elements of the 2 × 2 H-matrix as a function of the rotation
angles at the receiver and the transmitter obtained using Model-A. As we can see, the
power is practically the same for all links and it does not depend on the rotation of
the antennas. On the other hand, similar results obtained using Model-B show how
the XPR and spatial selectivity (and therefore selectivity in modes too) impact the
link power. For both Model-A and Model-B the powers of the links H+− and H−+
are mutually symmetric and symmetric with respect to the rotation angle α. On
the other hand, the powers of the links H++ and H−− are not mutually symmetric,
although each of them is symmetric with respect to the rotation angle α. Clearly,
the link is strongest for the H−− link in Model-B since both antennas are collinear
and their polarizations coincide with the polarization of the channel (see Figs. 3
and 5 for a comparison).

The correlation coe�cients of the H-matrix are shown in Figs. 10 and 11, for
Model-A and Model-B, respectively. As anticipated by the mode correlation in Fig.
7, the correlation coe�cient is low for Model-A as shown in Fig. 10. Here, we
also observe a symmetric behavior for the corresponding links. Moreover, we see
that for the isotropic channel discussed above the covariance is only determined by
the antennas, see (4.15). On the other hand the correlation increases considerably
with spatial selectivity as in Model-B, shown in Fig. 11. Also here, the behavior
can be anticipated by the covariance of the multimodes observed in Fig. 7. The
asymmetrical behavior of the correlation coe�cients is explained by the asymmetry
in AoA and AoD as well as the power polarization imbalance.

As a �nal remark we would like to brie�y mention spatial-diversity systems,
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Figure 6: Absolute value of the covariance matrix, |Rικ|, as function of the multipole
indices at the receiver, (ι, κ), and the transmitter, (ι′, κ′), for Model-A.

which draw special attention in the design of MIMO wireless systems. The topic
of spatial-diversity has been thoroughly analyzed since the seminal work presented
in [21]. Spatial-diversity has proven to have a great impact on wireless communica-
tions systems both through increased transmission rates and/or increased reliability
(lower error probability) [25]. A system of particular interest, due to its �apparent"
simplicity, is the 2× 2 MIMO spatial-diversity system with half-wavelength dipoles
placed at some distance ds from each other. Here we show a short example when
varying ds. The squared absolute values of the transmission (or reception) coe�-
cients, |Rι|2 of a vertically polarized half-wavelength dipole antenna as a function
of the o�set distance from a reference coordinate system, 2ds/λ, is given in Fig.
1223(compare with Fig. 3). As can be seen from the plot, the translation of the an-
tenna is equivalent to the excitation of higher order multipoles, e.g., coe�cients with
multi-pole index l = 2 have to be taken into the analysis of the interaction between
the antenna and the channel for a separation as low as λ/2. This �spread" in modes
can be seen as the origin of the low correlation between spatially separated antenna
branches. For more compact con�gurations, e.g., ds ≤ λ/6, the representation of
the antenna is mainly concentrated to coe�cients corresponding to dipole modes
(l = 1), more speci�cally to the "vertical" dipole moment with ι = 4. Therefore, the
correlation of closely placed dipoles is high unless "intelligent" matching measures
are taken [4, 19, 40].

6 Summary

In this paper we introduced the concept of mode-to-mode channel matrix, the M-
matrix, to describe the coupling between the spherical vector wave modes excited

23A similar behavior is observed for the second antenna too.
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Figure 7: Absolute value of the covariance matrix, |Rικ|, as function of the multipole
indices at the receiver, (ι, κ), and the transmitter, (ι′, κ′), for Model-B.

at the transmitter to the modes excited at the receiver of a wireless MIMO sys-
tem. The M-matrix contains all relevant information about the physics involving
the excitation of the channel by electromagnetic waves, since it provide a direct
coupling among di�erent multi-poles at the receiver and the transmitter. We fur-
ther discussed the concept of the channel scattering dyadic, C, which maps the �eld
radiated by the transmitting antenna to the �eld impinging at the receive antenna
obtained by superposition of plane waves. Further, using the correlation model for
the amplitudes incident at the receive antenna [10], we developed a more general
correlation model for the double-directional channel, i.e., the correlation between
the co- and cross-polarized components of the channel scattering dyadic. We then
expanded the channel H-matrix in spherical vector wave modes using the derived
correlation model for the elements of the channel scattering dyadic. We also provided
results for �rst and second order statistics of the expansion coe�cients based on the
assumption that the dyadic elements are independently distributed Gaussian vari-
ables. The equations we proved establish direct relationship between the elements
of H and M, and therefore the spatial, directional and polarization properties of the
channel and the antennas for MIMO systems.

Our results can be used to further analyze the interaction between the antennas
and the channel and the performance limits of antennas in stochastic channels.
Further investigations of the behavior of the mode-to-mode channel matrix should
also enable valuable insights into design of small and e�cient MIMO antenna arrays.
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Appendix A. Spherical vector waves

The regular spherical vector waves are given by [17]

v1ml(kr) = jl(kr)A1ml(kr̂), (7.1)

v2ml(kr) =
(krjl(kr))

′

kr
A2ml(kr̂) (7.2)

+
√
l(l + 1)

jl(kr)

kr
A3ml(kr̂),

where the time convention eiωt is used, r = rr̂, r = |r̂| and jl(kr) denotes the regular
spherical Bessel functions [1]. Similarly, the incoming (p = 1) and outgoing (p = 2)

spherical vector waves, u
(p)
τml(kr) are given by

u
(p)
1ml(kr) = h

(p)
l (kr)A1ml(kr̂), (7.3)

u
(p)
2ml(kr) =

(krh
(p)
l (kr))′

kr
A2ml(kr̂) (7.4)

+
√
l(l + 1)

h
(p)
l (kr)

kr
A3ml(kr̂),

where h
(p)
l (kr) are the spherical Hankel functions of the p-th kind.

The functions Aτml(kr̂) are the spherical vector harmonics that satisfy the com-
plex valued inner product, i.e. orthogonality on the unit sphere [17]∫

Aτml(r̂) ·A∗τ ′m′l′(r̂)dΩ = δττ ′δmm′δll′ . (7.5)
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Figure 9: Average power of the elements of the 2× 2 H-matrix as a function of the
rotation angles at the receiver and the transmitter, Model-B.

The addition theorem for the vector spherical harmonics reads

l∑
m=−l

Aτml(r̂) ·A∗τml(r̂) =
2l + 1

4π
(7.6)

Appendix B. Scattering Matrix

For reciprocal antennas we also note that the following relationship is valid [17]

Rn,τml = (−1)mTτ(−m)l,n, (7.7)

where Rn,τml and Tτml,n are elements of matrix R and T, respectively.
The transmission matrix is obtained as a projection of the far-�eld of the antenna

on the spherical vector harmonics, Aτml, in transmitting regime. Hence, the far-�eld
F n(r̂) of port n is given by

F n(r̂) = k
√

2η
∞∑
l=1

l∑
m=−l

2∑
τ=1

il+2−τTτml,nAτml(r̂)vn, (7.8)

where Aτml(r̂) is de�ned in Appendix A, r̂ is the unitary spatial coordinate and vn
is the signal incident on port n with corresponding power normalization, ‖v‖2 = 1.
Further, applying the orthogonality properties of spherical vector harmonics, we
obtain the transmission coe�cients of the antenna

Tτml,nvn =
i−l−2+τ

k
√

2η

∫
A∗τml(r̂) · F n(r̂)dΩ. (7.9)
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Figure 10: Correlation coe�cients between pairs of elements of the 2×2 H-matrix
as a function of the rotation angles at the receiver and the transmitter, Model-A.

I is worthwhile to notice that matrix T can also be obtained by measurements of
the radiated �eld in anechoic chambers or any other antenna range facility for near-
and/or far-�eld measurements, [17]. Moreover, mutual coupling between antenna
elements is implicitly integrated in the scattering matrix (7.7) and if we are interested
in calculating the mutual coupling between antennas belong to di�erent antenna
systems and spatially separated it can straightforwardly done as outlined in [22].

Appendix C. Correlation model

We see from (3.7) and (3.10) that the �eld incident at the receive antenna labeled
with the superscript r can be expressed through the elements of the "channel scat-
tering dyadic",

Et
0j,α = CαθF t

j,θ + CαφF t
j,φ (7.10)

Et′∗
0j,β = C ′∗βθF t′∗

j,θ + C ′∗βφF t′∗
j,φ (7.11)

Similarly for the reverse channel

Er
0i,α = CαθF r

i,θ + CαφF r
i,φ (7.12)

Er′∗
0i,β = C ′∗βθF r′∗

i,θ + C∗βφF r′∗
i,φ (7.13)

Similarly to (7.36) (see also Appendix E) we get for the direct link the following
relation

Hij = −2πiF r
i ·Et

0j (7.14)
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Figure 11: Correlation coe�cients between pairs of elements of the 2×2 H-matrix
as a function of the rotation angles at the receiver and the transmitter, Model-B.

and for the reverse channel
H̃ji = −2πiF t

j ·Er
0i (7.15)

where F r
i = [ F t

i,θ F t
i,φ ]T and F t

j = [ F t
j,θ F t

j,φ ]T are the far-�eld patterns of the
antennas at the receiver and transmitter, respectively. The received signal power is
proportional to the square of the absolute value of the induced open-circuit voltage
(7.14) , for the direct channel we obtain the correlation between where observing
that 〈Et

0j,θE
t′∗
0j,φ〉 = 〈Et

0j,φE
t′∗
0j,θ〉 = 0

〈HijH
′∗
ij 〉 ≈ F r

i,θF
r′∗
i,θ 〈Et

0j,θE
t′∗
0j,θ〉+ F r

i,φF
r′∗
i,φ 〈Et

0j,φE
t′∗
0j,φ〉 (7.16)

Now from (7.10)-(7.11) we compute the cross-covariance between the orthogonal
components

〈Et
0j,αE

t′∗
0j,α〉 = 〈CαθC ′∗αθ〉F t

j,θF
t′∗
j,θ + 〈CαθC ′∗αφ〉F t

j,θF
t′∗
j,φ (7.17)

+〈CαφC ′∗αθ〉F t
j,φF

t′∗
j,θ + 〈CαφC ′∗αφ〉F t

j,φF
t′∗
j,φ

which we can substitute in (7.16) and obtain

〈HijH
′∗
ij 〉 ≈ F r

i,θF
r′∗
i,θ 〈CθθC ′∗θθ〉F t

j,θF
t′∗
j,θ (7.18)

+F r
i,θF

r′∗
i,θ 〈CθθC ′∗θφ〉F t

j,θF
t′∗
j,φ

+F r
i,θF

r′∗
i,θ 〈CθφC ′∗θθ〉F t

j,φF
t′∗
j,θ

+F r
i,θF

r′∗
i,θ 〈CθφC ′∗θφ〉F t

j,φF
t′∗
j,φ

+F r
i,φF

r′∗
i,φ 〈CφθC ′∗φθ〉F t

j,θF
t′∗
j,θ

+F r
i,φF

r′∗
i,φ 〈CφθC ′∗φφ〉F t

j,θF
t′∗
j,φ

+F r
i,φF

r′∗
i,φ 〈CφφC ′∗φθ〉F t

j,φF
t′∗
j,θ

+F r
i,φF

r′∗
i,φ 〈CφφC ′∗φφ〉F t

j,φF
t′∗
j,φ
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Figure 12: Squared absolute values of the transmission (or reception) coe�cients,
|Rι|2 of a vertically polarized half-wavelength dipole antenna as a function of the
o�set distance from a reference coordinate system. It is assumed that there is no
mutual coupling between the antennas

Similarly, using the reciprocity condition for the channel scattering dyadic (3.9) we
obtain for the reverse channel

〈H̃jiH̃
′∗
ji〉 ≈ F t

j,θF
t′∗
j,θ 〈CθθC ′∗θθ〉F r

i,θF
r′∗
i,θ (7.19)

+F t
j,θF

t′∗
j,θ 〈CθθC ′∗φθ〉F r

i,θF
r′∗
i,φ

+F t
j,θF

t′∗
j,θ 〈CφθC ′∗θθ〉F r

i,φF
r′∗
i,θ

+F t
j,θF

t′∗
j,θ 〈CφθC ′∗φθ〉F r

i,φF
r′∗
i,φ

+F t
j,φF

t′∗
j,φ〈CθφC ′∗φθ〉F r

i,θF
r′∗
i,θ

+F t
j,φF

t′∗
j,φ〈CθφC ′∗φφ〉F r

i,θF
r′∗
i,φ

+F t
j,φF

t′∗
j,φ〈CφφC ′∗θφ〉F r

i,φF
r′∗
i,θ

+F t
j,φF

t′∗
j,φ〈CφφC ′∗φφ〉F r

i,φF
r′∗
i,φ

by comparing (7.18) and (7.19) we see that for the reciprocity to hold, i.e.,

〈HijH
′∗
ij 〉 = 〈H̃jiH̃

′∗
ji〉 (7.20)

the cross-covariance must satisfy 〈CθθC ′∗θφ〉 = 〈CθθC ′∗φθ〉 = 〈CθφC ′∗θθ〉 = 〈CφθC ′∗θθ〉 =
〈CφθC ′∗φφ〉 = 〈CθφC ′∗φφ〉 = 〈CφφC ′∗φθ〉 = 〈CφφC ′∗θφ〉 = 0. Furthermore, signals incom-
ing from di�erent directions are uncorrelated at both in the reverse and the direct
channels. Hence

〈HijH
′∗
ij 〉 = 〈H̃jiH̃

′∗
ji〉 (7.21)

≈ F r
i,θF

r′∗
i,θ 〈CθθC ′∗θθ〉F t

j,θF
t′∗
j,θ

+F r
i,θF

r′∗
i,θ 〈CθφC ′∗θφ〉F t

j,φF
t′∗
j,φ

+F r
i,φF

r′∗
i,φ 〈CφθC ′∗φθ〉F t

j,θF
t′∗
j,θ

+F r
i,φF

r′∗
i,φ 〈CφφC ′∗φφ〉F t

j,φF
t′∗
j,φ
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Thus, we �nally conclude that

〈CαβCα′β′〉 = Pαβ(k̂r, k̂t)δ
2(k̂r − k̂

′
r)δ

2(k̂t − k̂
′
t)δαα′δββ′ (7.22)

Appendix D. Proof of Proposition 1

Using the scattering matrix (3.10) we can express (4.9) more clearly in terms of the
matrix elements

Mικ = 2πi1+l−λ−τ+t
∫ ∫

A∗ι,θCθθAκ,θ+A∗ι,θCθφAκ,φ+A∗ι,φCφθAκ,θ+A∗ι,φCφφAκ,φdΩrdΩt

(7.23)
we arrive at

Rι′κ′

ικ = 4π2il−l
′−λ+λ′−τ+τ ′+t−t′

∑
α

∑
α′

∑
β

∑
β′

∫ ∫ ∫ ∫
. . .

. . . A∗ι,α(k̂r)Aι′,α′(k̂
′
r)〈CαβC ′∗α′β′〉 . . .

. . . Aκ,β(k̂t)A
∗
κ′,β′(k̂

′
t)dΩrdΩtdΩ′rdΩ′t (7.24)

where the summation is over α = {θ, φ} α′ = {θ, φ}, β = {θ, φ} and β′ = {θ, φ}.
Further substituting (3.12) into (7.24) and using the property of the delta function
that

∫
f(x)δn(x− a)dnx = f(a), where x and a are n dimensional vectors.

Appendix E.

According (2.7), the output signal at the receiver due to transmitter j can be written
as follows, wj = Raj, then the channel matrix can be expressed as

wij =
∑

ι
Riιaιj (7.25)

Now for an incident plane wave at the receive antenna with amplitude E0 with
k̂r ·E0 = 0 we have that coe�cients for the expansion in regular waves is given by

fιj =
4π(−i)λ−t+1

k
√

2η
A∗ι (k̂r) ·E0 (7.26)

Assuming r̂r = −k̂r and observing that

A∗ι (−r̂r) = (−1)λ−t+1A∗ι (r̂r) (7.27)

we can rewrite (7.26)

fιj =
4πiλ−t+1

k
√

2η
A∗ι (r̂r) ·E0 (7.28)

Then using (3.6) and (3.1) and the relationship between expansion coe�cients in
regular and incoming waves

2aιj = fιj (7.29)
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we obtain that

aιj =
2πiλ−t+1

k
√

2η
A∗ι (r̂r) · S(−r̂r, r̂t) · F j(r̂t)

e−ik(rs+rt)

k2rsrt
(7.30)

Inserting (7.30) into (7.25) we get

wij = −2πi
∑

ι
Ri,λµti

λ−t+2A∗λµt(r̂r) · S(−r̂r, r̂t) · F j(r̂t)
e−ik(rs+rt)

k
√

2ηk2rsrt
(7.31)

Further observing that

A∗λ(−µ)t(k̂r) = (−1)µAλµt(k̂r), (7.32)

Ri,λ(−µ)t = (−1)µTλµt,i, (7.33)

and that the far-�eld of the transmitted antenna can be expressed as

F j(r̂t) = k
√

2ηvjF
t
j(r̂t) (7.34)

we arrive at

Hij = −2πie−ik(rs+rt)

k2rsrt

∑
ι
k
√

2ηiλ−t+2Tλµt,iA
∗
λµt(r̂r) · S(−r̂r, r̂t) · F t

j(r̂t)

= −2πiF r
i (r̂r) · S(r̂r, r̂t) · F t

j(r̂t)
e−ik(rs+rt)

k2rsrt
(7.35)

= −2πiF r
i (r̂r) ·Et

0j(r̂t)

where we have used that wi =
∑

j wij =
∑

j Hijvj and F i(r̂r) = k
√

2ηviF
r
i (r̂r).

It is worthwhile to notice that both F r
i (r̂r), F

t
j(r̂t) and Et

0j(r̂t) are dimensionless
quantities.

Hence, we see that combining (2.7) with (3.4)-(3.6) and using the properties
of the spherical harmonics we obtain that the contribution to the signal sensed by
antenna i at the receiver position from antenna j at the transmitter is then given
by

Hij = −2πiF r
i (r̂r) · S(−r̂r, r̂t) · F t

j(r̂t)
e−ik(rs+rt)

k2rsrt
, (7.36)

where we have specialized r̂s = −r̂r. Equivalently, for the reverse channel, the
transmission and reception roles are interchanged between the antennas. Hence

H̃ji = −2πiF t
j(r̂t) · S(−r̂t, r̂r) · F r

i (r̂r)
e−ik(rs+rt)

k2rsrt
. (7.37)

It is worthwhile to notice that in (7.36) and (7.37), F r
i (r̂r) and F t

j(r̂t) are dimen-
sionless and di�er from F i(r̂r) and F j(r̂t) by a multiplication factor (7.34). For
reciprocal channels Hij = H̃ji, where the elements are obtained by transposition,
the scattering dyadic satisfy the following necessary but not su�cient condition

S(−r̂r, r̂t) = ST (−r̂t, r̂r). (7.38)
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