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Abstract

The homogenization of the Maxwell equations at fixed frequency is addressed
in this paper. The bulk (homogenized) electric and magnetic properties of
a material with a periodic microstructure are found from the solution of a
local problem on the unit cell by suitable averages. The material can be
anisotropic, and satisfies a coercivity condition. The exciting field is generated
by an incident field from sources outside the material under investigation. A
suitable sesquilinear form is defined for the interior problem, and the exterior
Calderón operator is used to solve the exterior radiating fields. The concept
of two-scale convergence is employed to solve the homogenization problem. A
new a priori estimate is proved as well as a new result on the correctors.

1 Introduction

The concept of two-scale convergence is a well established tool in the theory of ho-
mogenization of elliptic equations with rapidly oscillating coefficients, see e.g., [2,
3, 7, 10, 12, 14, 18, 22, 24, 29–31]. The results apply to several types of partial differ-
ential equations that are used in the engineering sciences, such as heat conduction,
elastic deformation, porous media, and acoustics. The situation is, however, dif-
ferent with the Maxwell equations, and the few results that exist adopt boundary
conditions that are of less importance in applications. Specifically, the boundary
conditions employed in the literature, see e.g., [4, 6, 16, 19, 23, 29–31] are that of
perfectly conducting walls. This situation applies to the case of a resonator filled
with a heterogeneous material, but for other situations these boundary conditions
are less applicable. Moreover, there is a need for a better understanding of how a
microscopic structure alters the macroscopic electric and magnetic behavior of the
material if the sources of the electromagnetic fields are located outside the hetero-
geneous material. In fact, most applications in the engineering sciences use external
excitations, and to find the homogenized parameters of a heterogeneous material
other boundary conditions, such as the penetrable boundary conditions, must be
used.

The engineering literature is dominated by the simple mixture formulae, which
are derived using physical arguments. For an excellent overview and history of the
mixture formulae, see [25].

The object of this paper is to thoroughly analyze the homogenization of the
Maxwell equations for a bounded object with penetrable boundary conditions. This
homogenization problem seems not to have been published before in the literature.
Moreover, the boundary condition implies that the excitation must be due to ex-
ternal sources. This situation is very important in many engineering applications,
such as antenna applications. The two-scale convergence of the Maxwell equations
depends on an a priori estimate of the fields. The external sources alters the tra-
ditional way of homogenization with two-scale convergence. In fact, in addition to
the interior homogenization problem, there is an exterior scattering problem that
couples via the boundary conditions to the interior problem. We solve this problem
by introducing the Calderón operators, which map the tangential electric field to the
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tangential magnetic field on the bounding surface. In order to apply the boundary
conditions and the Calderón operators a new a priori estimate has been derived.
The paper also includes new results on the correctors.

The paper is organized in the following way. Section 2 contains the prerequisites
of the paper. The existence of solutions is proved in Section 3, and the homoge-
nization of the Maxwell equations is derived in Section 4. We illustrate the exterior
Calderón operator with two examples in Section 5. The paper is concluded with
a series of appendices that contain definitions of function spaces, Appendix B, and
some important theorems, Appendix C. An alternative proof of the a priori estimate
for plane wave incidence, based on an energy integral, is given in Appendix A. In
Appendix D, the vector spherical waves used in Section 5 are defined.

2 Formulation of the problem

2.1 Domain and incident fields

Assume Ω is a bounded, open, simply connected set in R
3 with C1,1 boundary, ∂Ω.

The outward pointing unit normal is ν̂. The exterior of the volume Ω is denoted
Ωe = R

3\Ω, which is assumed vacuous. See Figure 1 for a typical geometry.
The incident field, Ei and H i, is assumed to have its sources outside Ω in a

bounded region Ωi, i.e., Ω∩Ωi = ∅. It is assumed to be a fixed field throughout this
paper. Outside this region the fields satisfy the time-harmonic Maxwell equations
in vacuum (time convention e−iωt), i.e., they satisfy1

{
∇× Ei(x) = ik0H i(x)

∇× H i(x) = −ik0Ei(x)
x ∈ R

3

The wave number in vacuum is k0 = ω/c0, where ω is the angular frequency of the
fields, and c0 is the speed of light in vacuum. The incident fields Ei and H i are
assumed to have traces on ∂Ω belonging to H− 1

2 (div, ∂Ω), i.e., (ν̂ × Ei, ν̂ × H i) ∈
H− 1

2 (div, ∂Ω)×H− 1
2 (div, ∂Ω), see Appendix B for definitions of the function spaces.

Otherwise, the incident fields are arbitrary.
A particular incident field, which is commonly used in the literature, is the plane

wave, i.e., {
Ei(x) = E0e

ik0k̂i·x

H i(x) = k̂i × E0e
ik0k̂i·x

x ∈ R
3

where E0 is a constant complex vector, and the unit vector of incidence k̂i satisfies
k̂i ·E0 = 0. The power flow of the incident plane wave in the direction of propagation

1We use scaled electric and magnetic fields in this paper, i.e., the SI-unit fields ESI and HSI

are related to the fields E and H used in this paper by

ESI(x) =
E(x)√

ε0
, HSI(x) =

H(x)√
µ0

where the permittivity and permeability of vacuum are denoted ε0 and µ0, respectively.
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Ω

∂Ω

ν̂

Figure 1: Typical geometry of the scattering problem in this paper.

is

Pi =
1

2
Re k̂i · (Ei(x) × H i(x)∗) =

|E0|2
2

(2.1)

2.2 Interior problem

In Ω we assume there is a material modelled by the permittivity dyadic ε(x) and
the permeability dyadic µ(x). The permittivity dyadic is assumed to satisfy

−ik0ξ ·
(
ε(x) − ε(x)†

)
· ξ∗ ≥ C1|ξ|2 for all ξ ∈ C

3 and a.e. x ∈ Ω (2.2)

and
|ε(x) · ξ| ≤ C2|ξ| for all ξ ∈ C

3 and a.e. x ∈ Ω (2.3)

where † denotes the Hermitian of the dyadic ε and where Ci > 0, i = 1, 2. The
condition in (2.2) corresponds physically to a passive material, i.e., a material that
show dissipation. The entries of ε(x) are assumed to belong to L∞(Ω), which implies
(2.3). Similar assumptions hold for the permeability µ. We note that it follows that
ε and µ are invertible and that the inverses have the same kind of properties [9, p.
22].

In Ω the electric field E and the magnetic field H satisfy the Maxwell equations{
∇× E(x) = ik0µ(x) · H(x)

∇× H(x) = −ik0ε(x) · E(x)
x ∈ Ω (2.4)

We are looking for solutions E and H of these equations in the space H(rot, Ω). A
weak formulation of the solution to this problem is found in Section 3.2.1.

2.3 Exterior problem

The presence of the material in the domain Ω distorts the incident field Ei and
H i. This distortion is denoted the scattered field, Es and Hs. They belong to
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Hloc(rot, Ωe) and satisfy{
∇× Es(x) = ik0Hs(x)

∇× Hs(x) = −ik0Es(x)
x ∈ Ωe (2.5)

Moreover, the scattered fields satisfy the Silver-Müller radiation condition at infinity,
i.e., one of the following conditions [11]{

x̂ × Es(x) − Hs(x) = o(1/x)

x̂ × Hs(x) + Es(x) = o(1/x)
as x → ∞ (2.6)

uniformly in all directions x̂.
In Ωe the sum of the incident and the scattered field is denoted the total field,

i.e., {
Et(x) = Ei(x) + Es(x)

H t(x) = H i(x) + Hs(x)
x ∈ Ωe

The boundary conditions on ∂Ω are{
ν̂ × Ei|∂Ω + ν̂ × Es|∂Ω = ν̂ × E|∂Ω

ν̂ × H i|∂Ω + ν̂ × Hs|∂Ω = ν̂ × H|∂Ω

(2.7)

where the traces of the fields are taken from the outside (inside) in the left (right)

hand side of the equations and belongs to H− 1
2 (div, ∂Ω).

2.4 Calderón operators

The Calderón operator Ce utilizes the solution of a specific exterior problem. In
fact, the following exterior problem, based upon (2.5) and (2.6) and given m ∈
H− 1

2 (div, ∂Ω), is fundamental:

1) (Es, Hs) ∈ Hloc(rot, Ωe) × Hloc(rot, Ωe)

2)

{
∇× Es(x) = ik0Hs(x)

∇× Hs(x) = −ik0Es(x)
x ∈ Ωe

3)




x̂ × Es(x) − Hs(x) = o(1/x)

or

x̂ × Hs(x) + Es(x) = o(1/x)

as x → ∞

4) ν̂ × Es|∂Ω = m ∈ H− 1
2 (div, ∂Ω)

Problem R) (2.8)

This problem has a unique solution [4, 9], see also Section 3.1.
We have the following results proved in [9, p. 35]:

Theorem 2.1. With the boundary ∂Ω of regularity C1,1, the mapping

γτ : u → ν̂ × u|∂Ω

is a continuous mapping from Hloc(rot, Ωe) onto H− 1
2 (div, ∂Ω).
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The trace theorem is a local property of the field at the boundary, and the
theorem shows that the field loses regularity on the boundary. We note that a
similar results holds when the trace is taken from the inside of the boundary, see
Section 3.2.

The linear mapping of the electric field to the corresponding magnetic field on
the boundary for a solution of the exterior problem is denoted the exterior Calderón
operator. The following definition makes this definition precise:

Definition 2.1. The exterior Calderón operator Ce is defined as

Ce : m → ν̂ × Hs|∂Ω , H− 1
2 (div, ∂Ω) → H− 1

2 (div, ∂Ω)

where m = ν̂ × Es|∂Ω and the fields Es and Hs satisfy Problem R) in (2.8).

Notice that the exterior Calderón operator Ce is uniquely defined for all m ∈
H− 1

2 (div, ∂Ω), since Problem R) has a unique solution. Two explicit examples of
the exterior Calderón operator are given in Section 5.

Theorem 2.2. The exterior Calderón operator defined in Definition 2.1 has the
following properties:

1. The exterior Calderón operator satisfies the positivity condition

Re

∫∫
∂Ω

Ce(m) · (ν̂ × m∗) dS ≥ 0, ∀ m ∈ H− 1
2 (div, ∂Ω) (2.9)

2. The exterior Calderón operator satisfies

(Ce)2 = −I on H− 1
2 (div, ∂Ω)

which implies that Ce is bounded on H− 1
2 (div, ∂Ω).

3. The exterior Calderón operator is independent of the material properties inside
Ω.

Here dS denotes the surface measure of ∂Ω.

Proof of Theorem 2.2: Property 1. is a simple consequence of the radiation
condition and proved in, e.g., [9]. Specifically, the radiation conditions, (2.6), imply

Re

∫∫
∂Ω

ν̂ · (Es × H∗
s) dS = Re

∫∫
|x|=R

x̂ · (Es × H∗
s) dS =

∫∫
|x|=R

|Es|2 dS + o(1)

as R → ∞, which implies (2.9), since ν̂ · (E∗
s × Hs) = −Ce(ν̂ × Es) · E∗

s.
Moreover, to prove property 2. we utilize the symmetry {Es, Hs} → {Hs,−Es}

in the equation (2.5) and the uniqueness of the exterior problem.
Property 3. is a consequence of the uniqueness of the exterior problem.
An immediate consequence of the positivity property of Ce is that

−Re

∫∫
∂Ω

Ce(ν̂ × Es) · E∗
s dS ≥ 0, ∀ ν̂ × Es ∈ H− 1

2 (div, ∂Ω) (2.10)
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3 Existence of solutions

The existence of exterior and interior solutions is addressed in this section.

3.1 Exterior problem

The system (2.5) with the radiation condition (2.6) supplied with the boundary
condition:

ν̂ × Es|∂Ω = m ∈ H− 1
2 (div, ∂Ω)

i.e., Problem R) in (2.8), has a unique solution in (Es, Hs) ∈ Hloc(rot, Ωe) ×
Hloc(rot, Ωe) for any m ∈ H− 1

2 (div, ∂Ω) [9, p. 107].

3.2 Interior problem

We have the interior trace result, similar to Theorem 2.1.

Theorem 3.1. With the boundary ∂Ω of regularity C1,1, the mapping

γτ : u → ν̂ × u|∂Ω

is a continuous mapping from H(rot, Ω) onto H− 1
2 (div, ∂Ω).

3.2.1 Sesquilinear form and weak solutions

Using Theorem 3.1 we can now define the sesquilinear form [9]

a(u, v) = −
∫∫∫

Ω

{
1

ik0

(∇× v∗) · µ−1 · (∇× u) + ik0v
∗ · ε · u

}
dv

−
∫∫
∂Ω

Ce(ν̂ × u) · v∗ dS

for u and v in H(rot, Ω). We denote the volume measure in R
3 by dv in this paper.

A weak formulation of the original problem is then to find E ∈ H(rot, Ω) such
that

a(E, v) =

∫∫
∂Ω

(ν̂ × H i − Ce(ν̂ × Ei)) · v∗ dS, ∀ v ∈ H(rot, Ω) (3.1)

This solution satisfies the boundary conditions (2.7), and couples to an exterior,
outwardly radiation solution, and implicitly the radiation condition by the exterior



7

Calderón operator. The corresponding magnetic field H is then constructed as2


 H(x) = − i

k0

µ−1(x) · (∇× E(x))

∇× H(x) = −ik0ε(x) · E(x)
x ∈ Ω

To see this, let E be a sufficiently regular solution to the Maxwell equations, (2.4).
Then (3.1) is equivalent to the Maxwell equations with a coupling to an exterior
solution since

a(E, v) = −
∫∫∫

Ω

{(∇× v∗) · H − v∗ · (∇× H)} dv −
∫∫
∂Ω

Ce(ν̂ × E) · v∗ dS

=

∫∫
∂Ω

{(ν̂ × H) · v∗ − Ce(ν̂ × E) · v∗} dS

which is identical to (3.1) by the use of the boundary conditions on ∂Ω and by
definition ∫∫

∂Ω

Ce(ν̂ × Es) · v∗ dS =

∫∫
∂Ω

(ν̂ × Hs) · v∗ dS

Moreover, the sesquilinear form a is coercive, i.e.,

Re a(u, u) = −
∫∫∫

Ω

1

ik0

(∇× u∗) ·
(
µ−1 − µ−1†

)
· (∇× u) dv

−
∫∫∫

Ω

ik0u
∗ ·

(
ε − ε†

)
· u dv

− Re

∫∫
∂Ω

Ce(ν̂ × u) · u∗ dS ≥ C‖u‖2
H(rot,Ω)

(3.2)

2This construction is consistent since −ik0ε(x) ·E(x) is the weak curl of H(x) = − i
k0

µ−1(x) ·
(∇× E(x)). In fact, we have

(H,∇× φ) + ik0 (ε · E,φ) = 0 ∀φ ∈ D(Ω; C3)

since a(E,φ) = 0, ∀φ ∈ D(Ω; C3).
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since from (2.2) we get 3




− ik0ξ ·
(
ε(x) − ε(x)†

)
· ξ∗ ≥ C1|ξ|2

i

k0

ξ ·
(
µ−1(x) − µ−1†(x)

)
· ξ∗ ≥ C2|ξ|2

∀ ξ ∈ C
3 and a.e. x ∈ Ω

and we have also used (2.10).

3.2.2 Existence of unique solution

Equation (3.1) has a unique solution in H(rot, Ω) due to the Lax-Milgram theorem,
see Theorem B.1, since the sesquilinear form a(u, v) is continuous, bounded, and
coercive, and the right hand side of (3.1) is continuous on H(rot, Ω). In fact,∣∣∣∣∣∣

∫∫
∂Ω

(ν̂ × H i − Ce(ν̂ × Ei)) · v∗ dS

∣∣∣∣∣∣
≤

(
‖ν̂ × H i‖H− 1

2 (div,∂Ω)
+ ‖Ce(ν̂ × Ei)‖H− 1

2 (div,∂Ω)

)
‖v‖

H− 1
2 (rot,∂Ω)

≤ C ′
(
‖ν̂ × H i‖H− 1

2 (div,∂Ω)
+ ‖(ν̂ × Ei)‖H− 1

2 (div,∂Ω)

)
‖v‖H(rot,Ω)

by Minkowski’s inequality, duality [9, p. 38], and the continuous dependence of the
trace norm on the norm of the corresponding function space.

4 Homogenization

So far we have considered a general heterogeneous scattering problem with a unique
solution in H(rot, Ω) for given incident electromagnetic field. But if the heteroge-
neous material in Ω has a typical spatial scale which is much smaller than the size
of the domain then one runs into sever numerical problems if one tries to apply
some standard numerical code, e.g., a finite element method (FEM). The principal
obstacle is that the fine scales requires a very fine numerical mesh which generates
a far too large linear system of equations for any computer to solve. However, if the
wavelength of the incident field is much larger than the fine scale then the field can
not resolve the fine scale and the solution of the Maxwell equations can be approx-
imated by the solution of a scattering problem with constant coefficients, i.e., the

3With (2.2) we get

i

k0

(
µt · ζ

)
·
(
µ−1 − µ−1†

)
·
(
µt · ζ

)∗ =
i

k0
ζ ·

(
µ† − µ

)
· ζ∗ ≥ C2

k2
0

|ζ|2

Apply this result with ζ = µt−1 · ξ and we get

i

k0
ξ ·

(
µ−1 − µ−1†

)
· ξ∗ ≥ C2

k2
0

|µt−1 · ξ|2 ≥ C|ξ|2

since µ is invertible.
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Ω

ε

Y ε-cell

Figure 2: Typical periodic geometry of the material parameters.

heterogeneous material in Ω has been replaced by a homogeneous material with the
same effective material properties. The procedure to find these effective properties
of the heterogeneous material is called homogenization.

4.1 Heterogeneous problem

Let us begin with the definition of a Y -cell which is the open unit cube in R
3, i.e.,

Y =]0, 1[3. Further, from now on we assume that ε and µ are Y -periodic which
is defined as ε(x + êk) = ε(x) for every k = 1, 2, 3, where êk, k = 1, 2, 3, is the
canonical basis in R

3.
In the following, we assume that the material in the domain Ω is periodic with

period ε in the three Cartesian coordinate directions, i.e., it is the union of a collec-
tion of disjoint, open identical cubes4 with side length ε (Y ε-cells), see Figure 2. It
is easily verified that the scaled permeability and permittivity, ε(x/ε) and µ(x/ε),
are periodic with period ε.

In Ω the fields satisfy the source free Maxwell equations5




∇× Eε(x) = ik0B
ε(x)

∇× Hε(x) = −ik0D
ε(x)

∇ · Bε(x) = 0

∇ · Dε(x) = 0

x ∈ Ω

4More general would be Y = (0, a1)×(0, a2)×(0, a3), where ai > 0, i = 1, 2, 3, and ε(x+akêk) =
ε(x) for every x ∈ R

3 and for every k = 1, 2, 3. Similar result holds for the permeability µ.
5The electric and magnetic fields are scaled as above, see Footnote 1, and the SI-unit flux

densities DSI and BSI are related to the fields D and B used in this paper by

DSI(x) =
√

ε0D(x), BSI(x) =
√

µ0B(x)
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almost everywhere, with boundary conditions given by (2.7). By using the consti-
tutive relations for the periodic material,{

Dε(x) = ε(x/ε) · Eε(x)

Bε(x) = µ(x/ε) · Hε(x)
x ∈ Ω

we eliminate Dε, Bε and obtain


∇× Eε(x) = ik0µ(x/ε) · Hε(x)

∇× Hε(x) = −ik0ε(x/ε) · Eε(x)

∇ · {ε(x/ε) · Eε(x)} = 0

∇ · {µ(x/ε) · Hε(x)} = 0

x ∈ Ω (4.1)

where the solution (Eε, Hε) is in H(rot, Ω) × H(rot, Ω) and belongs to a family of
solutions, one for each ε. In the homogenization procedure we identify the limit of
the fields Eε, Hε when ε → 0. This limit satisfies the homogenized system with
constant coefficients which is a model of a homogeneous material.

4.1.1 A priori estimate

We note that the heterogeneous system in (4.1) is of the same form as (2.4) and that
the constitutive relations satisfy the same assumptions as in Section 2.2. A weak
formulation of the two first equations in (4.1) supplied with boundary conditions
(2.7) reads

aε(Eε, v) =

∫∫
∂Ω

(ν̂ × H i − Ce(ν̂ × Ei)) · v∗ dS, ∀ v ∈ H(rot, Ω) (4.2)

where

aε(u, v) = −
∫∫∫

Ω

{
1

ik0

(∇× v∗) · µ−1(x/ε) · (∇× u)

+ ik0v
∗ · ε(x/ε) · u

}
dv −

∫∫
∂Ω

Ce(ν̂ × u) · v∗ dS

(4.3)

We have the following a priori estimate.

Theorem 4.1. Let Eε, Hε be a solution of (4.2), then

‖Eε‖H(rot,Ω) + ‖Hε‖H(rot,Ω) ≤ C

where the constant C depends only on the domain Ω, the material parameters in Ω,
and the strength of the incident field.
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Proof of Theorem 4.1: The sesquilinear form aε(u, v) is coercive, cf. (3.2), and
the weak formulation (4.2) gives:

C‖Eε‖2
H(rot,Ω) ≤ Re aε(Eε, Eε) ≤ |aε(Eε, Eε)|

=

∣∣∣∣∣∣
∫∫
∂Ω

(ν̂ × H i − Ce(ν̂ × Ei)) · (Eε)∗ dS

∣∣∣∣∣∣
≤

(
‖ν̂ × H i‖H− 1

2 (div,∂Ω)
+ ‖Ce(ν̂ × Ei)‖H− 1

2 (div,∂Ω)

)
‖Eε‖

H− 1
2 (rot,∂Ω)

≤ C ′
(
‖ν̂ × H i‖H− 1

2 (div,∂Ω)
+ ‖(ν̂ × Ei)‖H− 1

2 (div,∂Ω)

)
‖Eε‖H(rot,Ω)

by Minkowski’s inequality, duality [9, p. 38], and the continuous dependence of the
trace norm on the norm of the corresponding function space. It follows now that

‖Eε‖H(rot,Ω) ≤ C ′
(
‖ν̂ × H i‖H− 1

2 (div,∂Ω)
+ ‖(ν̂ × Ei)‖H− 1

2 (div,∂Ω)

)
≤ C

by the assumption of the incident field. The bound of Eε can now be used in (4.1)
to get the estimate of Hε.

4.2 Homogenized problem

Theorem 4.2. The sequence of solutions (Eε, Hε) of (4.1) converge weakly in
H(rot, Ω)×H(rot, Ω) to (E, H) ∈ H(rot, Ω)×H(rot, Ω) the unique solution of the
homogenized Maxwell equations



∇× E(x) = ik0µ
h · H(x)

∇× H(x) = −ik0ε
h · E(x)

∇ · B(x) = 0

∇ · D(x) = 0

(4.4)

which is coupled to the exterior problem (2.5)–(2.6) via the boundary conditions
(2.7). The homogenized permeability and permittivity εh and µh are defined by



εh =

∫∫∫
Y

ε(y) · (I3 −∇yχe(y)) dvy

µh =

∫∫∫
Y

µ(y) · (I3 −∇yχh(y)) dvy

χe(y) =
3∑

i=1

χi
e(y)êi χh(y) =

3∑
i=1

χi
h(y)êi (4.5)

and where χi
e(y) and χi

h(y), i = 1, 2, 3, in H1
#(Y )/C solve the local elliptic problems



∫∫∫
Y

∇yw(y) · ε(y) ·
(
êi −∇yχi

e(y)
)

dvy = 0

∫∫∫
Y

∇yw(y) · µ(y) ·
(
êi −∇yχi

h(y)
)

dvy = 0

(4.6)
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for all w ∈ H1
#(Y ).

We note that the weak convergence is sharp in the sense that it never converges
strongly in H(rot, Ω) except in the electrostatic case (see note after Theorem C.1).
However, we can get strong convergence by the use of corrector functions, see Sec-
tion 4.2.2. These functions contain the fine scale information in the problem and
yield strong convergence when scaled and added to the homogenized solution.

Proof of Theorem 4.2: We use the concept of two-scale convergence, see Ap-
pendix C. Due to the a priori estimates there exists a subsequence which converges
in the two-scale sense. We will keep the index ε for this subsequence. In the end we
conclude that the whole original sequence converges due to the fact that the homog-
enized system has a unique solution. Let φ(x) = εw(x/ε)v(x), where w ∈ H1

#(Y )
and v ∈ C∞

0 (Ω; C3). Then φ ∈ H(rot, Ω) and is an admissible test function. We get
in (4.1) 



∫∫∫
Ω

Eε(x) · {εw(x/ε)∇x × v(x) + ∇yw(x/ε) × v(x)} dv

− ik0

∫∫∫
Ω

εw(x/ε)v(x) · {µ(x/ε) · Hε(x)} dv = 0

∫∫∫
Ω

Hε(x) · {εw(x/ε)∇x × v(x) + ∇yw(x/ε) × v(x)} dv

+ ik0

∫∫∫
Ω

εw(x/ε)v(x) · {ε(x/ε) · Eε(x)} dv = 0

In the limit ε ↘ 0 we get


∫∫∫
Ω

Eε(x) · (∇yw(x/ε) × v(x)) dv → 0

∫∫∫
Ω

Hε(x) · (∇yw(x/ε) × v(x)) dv → 0

since Eε and Hε are uniformly bounded in ε in the L2(Ω; C3)-norm. By the use of
Theorem C.3, we get



∫∫∫
Ω

∫∫∫
Y

E0(x, y) · (∇yw(y) × v(x)) dvy dvx = 0

∫∫∫
Ω

∫∫∫
Y

H0(x, y) · (∇yw(y) × v(x)) dvy dvx = 0
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which implies after cyclic permutation that


∫∫∫
Y

E0(x, y) ×∇yw(y) dvy = 0

∫∫∫
Y

H0(x, y) ×∇yw(y) dvy = 0

x ∈ Ω a.e.

for all w ∈ H1
#(Y ). The functions E0(x, y) and H0(x, y) both belong to the

space L2(Ω; L2
#(Y ; C3)). From Lemma C.1 we conclude that the fields E0(x, y) and

H0(x, y) can be decomposed as{
E0(x, y) = E(x) + ∇yΦ1(x, y)

H0(x, y) = H(x) + ∇yΨ1(x, y)

where

E(x) =<E0(x, y)>=

∫∫∫
Y

E0(x, y) dvy

and similarly for the field H0(x, y). In summary,{
Eε(x)

2-s
⇀ E(x) + ∇yΦ1(x, y)

Hε(x)
2-s
⇀ H(x) + ∇yΨ1(x, y)

Multiplication of (4.1) by the admissible test functions φ ∈ C∞
0 (Ω; C3) gives



∫∫∫
Ω

∇x × Eε(x) · φ(x) dv − ik0

∫∫∫
Ω

φ(x) · {µ(x/ε) · Hε(x)} dv = 0

∫∫∫
Ω

∇x × Hε(x) · φ(x) dv + ik0

∫∫∫
Ω

φ(x) · {ε(x/ε) · Eε(x)} dv = 0

In the limit ε ↘ 0 we get


∫∫∫
Ω

∇x × E(x) · φ(x) dvx

− ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · µ(y) · (H(x) + ∇yΨ1(x, y)) dvy dvx = 0

∫∫∫
Ω

∇x × H(x) · φ(x) dvx

+ ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · ε(y) · (E(x) + ∇yΦ1(x, y)) dvy dvx = 0

(4.7)

Here we have used Theorem C.5 which states that

∇× Eε 2-s
⇀ ∇x × E0(x, y) + ∇y × E1(x, y)
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which gives the weak limit ∇x ×E(x) since the admissible test function φ does not
depend on y.

The divergence equations are multiplied with v(x) = εψ(x)φ(x/ε) where ψ ∈
C∞

0 (Ω), φ ∈ H1
#(Y ). We note that wε(y) = êi · ε(y) · êj ∈ L∞

# (Y ), and wµ(y) =
êi · µ(y) · êj ∈ L∞

# (Y ), which implies that wε(y)∇yφ and wµ(y)∇yφ ∈ L2
#(Y ; C3).

Theorem C.1 and an integration by parts give

lim
ε↘0

∫∫∫
Ω

∇ · {ε(x/ε) · Eε(x)} εψ(x)φ(x/ε) dvx

= − lim
ε↘0

∫∫∫
Ω

{ε∇ψ(x)φ(x/ε) + ψ(x)∇yφ(x/ε)} · {ε(x/ε) · Eε(x)} dvx

= −
∫∫∫

Ω

∫∫∫
Y

ψ(x)∇yφ(y) · ε(y) · {E(x) + ∇yΦ1(x, y)} dvy dvx = 0

for all φ ∈ H1
#(Y ) and all ψ ∈ H1

0 (Ω). Using similar arguments for the magnetic
field we get the local equations,



∫∫∫
Y

∇yφ(y) · ε(y) · {E(x) + ∇yΦ1(x, y)} dvy = 0

∫∫∫
Y

∇yφ(y) · µ(y) · {H(x) + ∇yΨ1(x, y)} dvy = 0

x ∈ Ω a.e. (4.8)

Define the vector fields

χe(y) =
3∑

i=1

χi
e(y)êi χh(y) =

3∑
i=1

χi
h(y)êi

The variables can be separated by using the Ansatz{
∇yΦ1(x, y) = −∇yχe(y) · E(x)

∇yΨ1(x, y) = −∇yχh(y) · H(x)

inserted into equation (4.8) which gives{
<∇yφ(y) · (ε(y) − ε(y) · ∇yχe(y))> ·E(x) = 0

<∇yφ(y) · (µ(y) − µ(y) · ∇yχh(y))> ·H(x) = 0

for all φ ∈ H1
#(Y ). i.e.,{

∇y · (ε(y) − ε(y) · ∇yχe(y)) = 0

∇y · (µ(y) − µ(y) · ∇yχh(y)) = 0

a.e. in Ω × Y . Inserting the solutions of the local equations into (4.7) yields the
macroscopic homogenized equations
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∫∫∫
Ω

∇x × E(x) · φ(x) dvx

− ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · (µ(y) − µ(y) · ∇yχh(y)) dvy · H(x) dvx = 0

∫∫∫
Ω

∇x × H(x) · φ(x) dvx

+ ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · (ε(y) − ε(y) · ∇yχe(y)) dvy · E(x) dvx = 0

and {
∇ · B(x) = 0

∇ · D(x) = 0

which defines the homogenized permeability and permittivity as


εh =

∫∫∫
Y

ε(y) · (I3 −∇yχe(y)) dvy

µh =

∫∫∫
Y

µ(y) · (I3 −∇yχh(y)) dvy

i.e., B = µh · H and D = εh · E. The existence of a unique solution of the
homogenized system follows from the properties of the homogenized permeability
and permittivity, µh and εh, respectively (see section 4.2.1), which satisfies the same
assumptions as the material properties for the heterogeneous system.

4.2.1 The properties of the homogenized parameters

An immediate consequence of Theorem 4.2 is that the homogenized parameters are
independent of the properties of the domain Ω and of the properties of the incident
field. Moreover, the homogenized material properties satisfy the same assumptions
as the heterogeneous parameters do, i.e., they are coercive and bounded. Coer-
civity and boundedness follow from the fact that the homogenized parameters are
bounded from below and above by the harmonic and arithmetic averages of the het-
erogeneous parameters, hence the homogenized parameters are bounded from below
and above (e.g., see [5] or [27]). If the heterogeneous material parameters are sym-
metric (reciprocal material), then the homogenized parameters are also symmetric
as proved below.

Proposition 4.1. The homogenized permeability and permittivity are symmetric
provided the heterogeneous parameters are symmetric.
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Proof of Proposition 4.1: We restrict ourselves to the electric parameters since
the arguments for the permeability are the same. By assumption the material pa-
rameters are symmetrical, i.e., ε(y) = εt(y) and µ(y) = µt(y).

We define the average over the Y -cell by

<f>=

∫∫∫
Y

f(y) dvy

The local problem, (4.6), can be written as, (i = 1, 2, 3)

<∇yw(y) · ε(y) · êi>=<∇yw(y) · ε(y) · ∇yχi
e(y)>

for all w ∈ H1
#(Y ). We rewrite these equations in one set of equations, see (4.5)

<∇yw(y) · ε(y)>=<∇yw(y) · ε(y) · ∇yχe(y)>

for all w ∈ H1
#(Y ). Due to the symmetry in ε we get

<ε(y) · ∇yχ(y)>=<(∇yχe(y))t · ε(y) · ∇yχe(y)>

if we choose w = χi
e.

The homogenized parameters in (4.4) are

εh = <ε(y)> −<ε(y) · ∇yχe(y)>

= <ε(y)> −<(∇yχe(y))t · ε(y) · ∇yχe(y)>

which proves that εh is symmetric.

4.2.2 Correctors

This section is concluded by the proof of a new result on correctors.
We begin with the two-scale limit of the heterogeneous system (4.1) which is

given by


∫∫∫
Ω

∫∫∫
Y

(∇x × E0(x, y) + ∇y × E1(x, y)) · φ(x, y) dvydvx

= ik0

∫∫∫
Ω

∫∫∫
Y

φ(x, y) · µ(y) · H0(x, y) dvydvx

∫∫∫
Ω

∫∫∫
Y

(∇x × H0(x, y) + ∇y × H1(x, y)) · φ(x, y) dvydvx

= −ik0

∫∫∫
Ω

∫∫∫
Y

φ(x, y) · ε(y) · E0(x, y) dvydvx,

(4.9)

for all φ ∈ D(Ω; C∞
# (Y ; C3)). These equations follow from the fact that, see Appen-

dix C,

Eε(x)
2-s
⇀ E0(x, y)
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and
∇× Eε(x)

2-s
⇀ ∇x × E0(x, y) + ∇y × E1(x, y).

where 


E0 ∈ L2(Ω; L2
#(Y ; C3))

∇x × E0 ∈ L2(Ω; L2
#(Y ; C3))

E1 ∈ L2(Ω; H#(rot, Y )/C)

The system (4.9) contains macroscopic and microscopic information which gives the
homogenized system when averaged over the local scale. The local equations and
the two-scale limit system (4.9) provide us with the following correctors in the case
when the solution of the homogenized system is smooth enough.

Theorem 4.3. Let Eε, Hε be the solution of (4.1) and let E, H be the solution
of the homogenized Maxwell equations (4.4) and E1, H1 solve the two-scale limit
system (4.9). If E0, H0, E1, H1, ∇x × E0, ∇x × H0, ∇x × E1, ∇x × H1,
∇y × E1 and ∇y × H1, are admissible test functions then,


lim
ε→0

‖Eε(x) − E0(x, x/ε) − εE1(x, x/ε)‖H(rot,Ω) = 0

lim
ε→0

‖Hε(x) − H0(x, x/ε) − εH1(x, x/ε)‖H(rot,Ω) = 0

where {
E0(x, y) = E(x) −∇yχe(y) · E(x)

H0(x, y) = H(x) −∇yχh(y) · H(x)

χe(y) =
3∑

i=1

χi
e(y)êi χh(y) =

3∑
i=1

χi
h(y)êi

and where χi
e(y) and χi

h(y), i = 1, 2, 3, in H1
#(Y ) solve the local problems (4.6).

Proof: The assumptions imply that, see Theorem C.5{
Eε 2-s

⇀ E0(x, y)

∇× Eε 2-s
⇀ ∇x × E0(x, y) + ∇y × E1(x, y)

and ∇y × E0(x, y) = 0.
The proof is carried out using the sesquilinear form

Qε(u, v) = −
∫∫∫

Ω

{ 1

ik0

(∇× v∗) · µ−1(x/ε) · (∇× u) + ik0v
∗ · ε(x/ε) · u

}
dv

which is identical to (4.3), but without the surface integral term.
The coercivity assumption, (2.2), implies

C‖u(x)‖2
H(rot,Ω) ≤ Re Qε(u, u).
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We get
C‖Eε(x) − E0(x, x/ε) − εE1(x, x/ε)‖2

H(rot,Ω) ≤ Iε
1 + Iε

2

where {
Iε
1 = Re Qε (Eε(x), Aε(x))

Iε
2 = −Re Qε (E0(x, x/ε) + εE1(x, x/ε), Aε(x))

where, for short, we denote Aε(x) = Eε(x) − E0(x, x/ε) − εE1(x, x/ε). Due to
the assumptions of the fields in Aε(x), we have{

Aε
2-s
⇀ 0

∇× Aε
2-s
⇀ 0

since {
Eε 2-s

⇀ E0(x, y)

∇× Eε 2-s
⇀ ∇x × E0(x, y) + ∇y × E1(x, y)

and ∇y × E0(x, y) = 0.
We start by analyzing the first integral Iε

1 . Since Eε satisfies the Maxwell equa-
tions, (4.1), we get

Iε
1 = Re

∫∫∫
Ω

(∇× Hε(x)) · Aε(x)∗ dv − Re

∫∫∫
Ω

Hε(x) · (∇× Aε(x))∗ dv

We now use ∇ · (∇× Hε) = 0 and ∇ · (∇× Aε) = 0, and, moreover, the fact that
∇×Hε ∈ L2(Ω; C3) and ∇×Aε ∈ L2(Ω; C3). The div-curl lemma, see [27, 28], can
be used and the limit is zero, since

Aε(x) ⇀ 0, and ∇× Aε(x) ⇀ 0

weakly in L2(Ω; C3).
The second integral is now analyzed.

Iε
2 = −Re

∫∫∫
Ω

{ 1

ik0

(∇× Aε(x))∗ · µ−1(x/ε)

· (∇x × E0(x, x/ε) + ε∇x × E1(x, x/ε) + ∇y × E1(x, x/ε))

+ ik0Aε(x)∗ · ε(x/ε) · (E0(x, x/ε) + εE1(x, x/ε))
}

dvx

We pass to the limit, ε ↘ 0, and use that µ−1(x/ε) · (∇x × E0(x, x/ε) + ε∇x ×
E1(x, x/ε)+∇y×E1(x, x/ε)) and ε(x/ε)·(E0(x, x/ε)+εE1(x, x/ε)) are admissible
test functions and obtain

lim
ε↘0

Iε
2 = 0

and the theorem is proved.
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Remark 4.1. It is still an open question how irregular a function can be and still be
an admissible test function. However, if the homogenized solution E ∈ C(Ω; C3) then
E0 ∈ L2

#(Y ; C(Ω; C3)) is admissible (see Appendix C). Further, if E ∈ C(Ω; C3),

then H ∈ C(Ω; C3) by symmetry, and via (4.9) we find that ∇x × E0 + ∇y × E1

is smooth in x, and for sufficient smoothness ∇x × E1 is also an admissible test
function. To the knowledge of the authors there exist no results about regularity
of the solutions of the Maxwell equations in the anisotropic, constant coefficient
case. However, we belive that for sufficient regular boundary and incident fields, the
solutions are admissible test functions.

5 Examples

In this section, we give two explicit examples of the exterior Calderón operator.

5.1 Plane boundary

The general representation of the solution to Problem R) in (2.8) in a region x3 > c
(plane interface Ω, x3 = c) is found by a Fourier transform in the lateral coordinates
x1 and x2.

The Fourier transform E(ξ, x3) of the electric field E(x), x = ê1x1+ê2x2+ê3x3,
with respect to the lateral position vector ρ = ê1x1 + ê2x2 is defined by

E(ξ, x3) =

∫∫
R2

E(x)e−iξ·ρ dρ

where the Fourier variable ξ is

ξ = ê1ξ1 + ê2ξ2

and dρ = dx1 dx2. The modulus of this vector is denoted ξ, i.e.,

ξ =
√

ξ2
1 + ξ2

2

By the Fourier inversion formula,

E(x) =
1

4π2

∫∫
R2

E(ξ, x3)e
iξ·ρ dξ

where dξ = dξ1 dξ2. Specifically, the tangential electric field on the surface ∂Ω is

− ê3 × (ê3 × E(x))|∂Ω =
1

4π2

∫∫
R2

A(ξ)eiξ·ρ dξ

where A(ξ) is the Fourier transform of the trace of the tangential electric field.
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The general solution of the solution to Problem R) in (2.8) in a region x3 > c
is [17]



E(x) =
1

4π2

∫∫
R2

(
I2 −

ξ

ξ3

ê3ê‖

)
· A(ξ)eiξ·ρ+iξ3(x3−c) dξ

H(x) =
1

4π2

∫∫
R2

(
ξ

k0

+
ξ3

k0

ê3

)
×

(
I2 −

ξ

ξ3

ê3ê‖

)
· A(ξ)eiξ·ρ+iξ3(x3−c) dξ

where I2 is the identity dyadic in R
2, and a pertinent orthogonal basis in R

2 is
{ê‖, ê⊥}, defined by

ê‖ = ξ/ξ, ê⊥ = ê3 × ê‖

and where

ξ3 =
(
k2

0 − ξ2
)1/2

=




√
k2

0 − ξ2 for ξ < k0

i
√

ξ2 − k2
0 for ξ > k0

and the standard convention of the square root of a non-negative argument is in-
tended.

The representation of the fields can be simplified using dyadic calculus


E(x) =
1

4π2

∫∫
R2

(
I2 −

ξ

ξ3

ê3ê‖

)
· A(ξ)eiξ·ρ+iξ3(x3−c) dξ

H(x) =
1

4π2

∫∫
R2

(
ξ

k0

ê3ê⊥ +
k0

ξ3

ê⊥ê‖ −
ξ3

k0

ê‖ê⊥

)
· A(ξ)eiξ·ρ+iξ3(x3−c) dξ

From these relations the exterior Calderón operator is the transformation from

ê3 × E(x)|∂Ω =
1

4π2

∫∫
R2

ê3 × A(ξ)eiξ·ρ dξ

to

ê3 × H(x)|∂Ω = − 1

4π2

∫∫
R2

(
k0

ξ3

ê‖ê‖ −
ξ3

k0

ê⊥ê⊥

)
· A(ξ)eiξ·ρ dξ

where the vector field A(ξ) is determined from ê3 × E(x)|∂Ω by

A(ξ) = −
∫∫
R2

ê3 × (ê3 × E(x))|∂Ω e−iξ·ρ dρ

We note that in this example the domain and the boundary are unbounded which
yields other function spaces for the traces. We refer to [9] for the details.
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5.2 Spherical boundary

For a spherical boundary, x = a, the exterior Calderón operator can be represented
in a series of vector spherical waves, see Appendix D.

The general solution of the solution to Problem R) in (2.8) in a region x > a is,
see (D.2) and (D.3) 


E(x) =

∑
τn

aτnuτn(k0x)

H(x) = −i
∑
τn

aτnuτ̄n(k0x)

where the index τ̄ is the dual index of τ , defined by 1̄ = 2 and 2̄ = 1.
The traces of the electric and the magnetic fields are (κ = k0a)


x̂ × E(x)|∂Ω =

∑
n

(
a1nh

(1)
l (κ)A2n(x̂) − a2n

(κh
(1)
l (κ))′

κ
A1n(x̂)

)

x̂ × H(x)|∂Ω = −i
∑

n

(
a2nh

(1)
l (κ)A2n(x̂) − a1n

(κh
(1)
l (κ))′

κ
A1n(x̂)

)

For given tangential field x̂ × E(x)|∂Ω, the expansion coefficients aτn are found by
the orthogonality relation, see (D.1).



a1n =
1

h
(1)
l (κ)

∫∫
γ

A2n(x̂) · ( x̂ × E(x)|∂Ω)

a2n = − κ

(κh
(1)
l (κ))′

∫∫
γ

A1n(x̂) · ( x̂ × E(x)|∂Ω)

The exterior Calderón mapping is the mapping from x̂ × E(x)|∂Ω (which deter-
mines the expansion coefficients aτn uniquely) to x̂ × H(x)|∂Ω.

6 Conclusions

This paper analyzes the homogenization of the Maxwell equations for a material
with periodic microscale. The material can be anisotropic, and satisfies a coercivity
condition (passive material), and the sources of the excitation are located in the
region outside the heterogeneous material in Ω. We utilize the concept of two-scale
convergence. A new a priori estimate is established and a proof of strong convergence
of the corrector fields is presented. The homogenized parameters are shown to be
independent of the properties of the domain Ω and of the properties of the incident
field.
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Appendix A Energy estimates

In this section, we derive the energy estimate used in this paper, and an alternative
proof of the a priori estimate for an incident plane wave.

Theorem A.1. Let E and H in H(rot, Ω) satisfy{
∇× E(x) = ik0µ(x) · H(x)

∇× H(x) = −ik0ε(x) · E(x)
x ∈ Ω

where the wave number in vacuum is k0 = ω/c0. Define the energy integral

E =
k0

2

∫∫∫
Ω

{
−E∗ · ε† · E + H∗ · µ · H

}
dv

Then the energy integral satisfies∫∫
∂Ω

ν̂ · (E × H∗) , dS = 2iE

and, moreover, for the permittivity and permeability dyadics defined in Section 2.2
the energy integral satisfies

Im E ≥ 0

and

Re

∫∫
∂Ω

ν̂ · (E × H∗) dS ≤ 0

Proof of Theorem A.1: The Maxwell equations imply (the Poynting’s theorem)

∇ · (E × H∗) = ik0

(
−E∗ · ε† · E + H∗ · µ · H

)
(A.1)

Integrate both sides of (A.1) over the volume Ω and we get∫∫
∂Ω

ν̂ · (E × H∗) , dS = 2iE

where we used the definition of the energy integral E . The real and the imaginary
parts of this expression are



Re

∫∫
∂Ω

ν̂ · (E × H∗) dS = −2 Im E

Im

∫∫
∂Ω

ν̂ · (E × H∗) dS = 2 Re E
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Here, the real and the imaginary part of the energy integral are


Re E =
k0

4

∫∫∫
Ω

{
−E∗ ·

(
ε + ε†

)
· E + H∗ ·

(
µ + µ†) · H}

dv

Im E =
k0

4i

∫∫∫
Ω

{
E∗ ·

(
ε − ε†

)
· E + H∗ ·

(
µ − µ†) · H}

dv

From the passive conditions, see (2.2), i.e.,{
− ik0

(
ε(x) − ε†(x)

)
− ik0

(
µ(x) − µ†(x)

) are non-negative definite for all x ∈ Ω

we deduce
Im E ≥ 0

and the theorem is proved.
An alternative proof of the a priori estimate for an incident plane wave concludes

this appendix.

Alternative proof of the a priori estimate: From Theorem A.1, any solution
in H(rot, Ω) of the Maxwell equations, (2.4), satisfy

Re

∫∫
∂Ω

ν̂ · (E × H∗) dS = −2 Im E

where the fields in the surface integral are the traces of the fields taken from the
inside of Ω. Here, the imaginary part of the energy integral is

Im E = −i
k0

4

∫∫∫
Ω

{
E∗ ·

(
ε − ε†

)
· E + H∗ ·

(
µ − µ†) · H}

dv

From the passive conditions, see (2.2), i.e.,{
− ik0ξ ·

(
ε(x) − ε(x)†

)
· ξ∗ ≥ C1|ξ|2

− ik0ξ ·
(
µ(x) − µ(x)†

)
· ξ∗ ≥ C2|ξ|2

for all ξ ∈ C
3 and all x ∈ Ω

we have
2 Im E ≥ C

(
‖E‖2

L2(Ω;C3) + ‖H‖2
L2(Ω;C3)

)
where C > 0 depends only on the domain Ω and the norm of the material. Therefore,

‖E‖2
L2(Ω;C3) + ‖H‖2

L2(Ω;C3) ≤ −C Re

∫∫
∂Ω

ν̂ · (E × H∗) dS (A.2)
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With the use of the boundary conditions, (2.7), we can rewrite the surface integral
in terms of the traces of the fields from the outside, The result is

Re

∫∫
∂Ω

ν̂ · (E × H∗) dS = Re

∫∫
∂Ω

ν̂ · (Es × H∗
s + Ei × H∗

s + Es × H∗
i ) dS (A.3)

since

Re

∫∫
∂Ω

ν̂ · (Ei × H∗
i ) dS = 0

for any solution that satisfy the Maxwell equation (in vacuum) inside Ω. Moreover,
the radiation conditions, (2.6), imply

Re

∫∫
∂Ω

ν̂ · (Es × H∗
s) dS = Re

∫∫
|x|=R

x̂ · (Es × H∗
s) dS =

∫∫
|x|=R

|Es|2 dS + o(1) (A.4)

as R → ∞. We introduce the the far field amplitude F (x̂) defined by [11]

F (x̂) = lim
x→∞

k0xEs(x)e−ik0x

This limit is well-defined and an explicit expression of it is [11]

F (x̂) = i
k2

0

4π
x̂ ×

∫∫
∂Ω

[
ν̂(x′) × Es(x

′) − x̂ × (ν̂(x′) × Hs(x
′))

]
e−ik0x̂·x′

dSx′ (A.5)

With this definition we easily get from (A.4) above

k2
0 Re

∫∫
∂Ω

ν̂ · (Es × H∗
s) dS = ‖F ‖2

γ

where ‖·‖γ is the square norm on the unit sphere γ in R
3, see Appendix B.

We now use this in (A.3), and we arrive at

Re

∫∫
∂Ω

ν̂· (E × H∗) dS =
‖F ‖2

γ

k2
0

+ Re

∫∫
∂Ω

ν̂ ·
(
E∗

0 × Hs + Es × (k̂i × E∗
0 )

)
e−ik0k̂i·x dS

A cyclic permutations of the vectors in the integrand

ν̂ ·
[
Es × (k̂i × E∗

0 )
]

= (ν̂ × Es) · (k̂i × E∗
0 ) = −E∗

0 ·
[
k̂i × (ν̂ × Es)

]
ν̂ · (E∗

0 × Hs) = −E∗
0 · (ν̂ × Hs) = E∗

0 ·
{

k̂i ×
[
k̂i × (ν̂ × Hs)

]}
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where we have used E0 · k̂i = 0, are helpful in the identification of the above surface
integral as an expression in the far field amplitude (A.5).6 The result is

Re

∫∫
∂Ω

ν̂ · (E × H∗) dS =
‖F ‖2

γ

k2
0

+ Re

{
4πi

k2
0

E∗
0 · F (k̂i)

}

This implies that our estimate in (A.2) becomes

‖E‖2
L2(Ω;C3) + ‖H‖2

L2(Ω;C3) ≤ −C‖F ‖2
γ + C |E0| ‖F ‖∞

for some constant C > 0 that depends only on the domain Ω and the norm of the
material. The norm ‖·‖∞ denotes the supremum norm on the unit sphere γ in R

3.
We now assume there exists an estimate

‖F ‖2
∞ ≤ C

(
‖E‖2

L2(Ω;C3) + ‖H‖2
L2(Ω;C3)

)
(A.6)

for some constant C > 0 that depends only on the domain Ω and the norm of the
material. This estimate implies that

‖E‖2
L2(Ω;C3) + ‖H‖2

L2(Ω;C3) ≤ −C‖F ‖2
γ + C

δ

2
|E0|2 +

C

2δ
‖F ‖2

∞

≤ C
δ

2
|E0|2 +

C2

2δ

(
‖E‖2

L2(Ω;C3) + ‖H‖2
L2(Ω;C3)

)
where δ > 0 is arbitrary. Choose δ such that

δ > C2/2

and we get
‖E‖2

L2(Ω;C3) + ‖H‖2
L2(Ω;C3) ≤ C ′ |E0|2 ≤ C

for some constants C ′, C > 0 that depend only on the domain Ω and the norm of
the material. The right hand side is proportional to the power flow of the incident
field, see (2.1), and independent of the material parameters.

Still, we have to prove (A.6). This is accomplished by using an alternative version
of (A.5)7

F (x̂) = i
k2

0

4π
x̂ ×

∫∫
∂Ω

[
ν̂(x′) × E(x′) − x̂ × (ν̂(x′) × H(x′))

]
e−ik0x̂·x′

dSx′

6This result is closely related to the optical theorem for electromagnetic waves [15, 20, 21].
7This is an alternative version of the far field amplitude in (A.5) which involves the total field.

An easy way of proving it is to start with (A.5) and then to add the following integral to both
sides:

x̂ ×
∫∫
∂Ω

[
ν̂(x′) × Ei(x′) − x̂ × (ν̂(x′) × Hi(x′))

]
e−ik0x̂·x′

dSx′ = 0
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Apply the Green’s theorem8 and use the Maxwell equations, (2.4), in Ω. We get

F (x̂) =
ik2

0

4π
x̂ ×

∫∫∫
Ω

[
∇′ ×

(
E(x′)e−ik0x̂·x′

)

− x̂ ×
(
∇′ ×

(
H(x′)e−ik0x̂·x′

))]
dvx′

= − k3
0

4π
x̂ ×

∫∫∫
Ω

[
µ(x′) · H(x′) + x̂ × (ε(x′) · E(x′))

]
e−ik0x̂·x′

dvx′

+
k3

0

4π
x̂ ×

∫∫∫
Ω

[
x̂ × E(x′) − x̂ × (x̂ × H(x′))

]
e−ik0x̂·x′

dvx′

= − k3
0

4π
x̂ ×

∫∫∫
Ω

[
(µ(x′) − I) · H(x′)

+ x̂ × (ε(x′) − I) · E(x′)
]
e−ik0x̂·x′

dvx′

From this expression and we easily arrive at (A.6)

‖F ‖2
∞ ≤ C

(
‖E‖2

L2(Ω;C3) + ‖H‖2
L2(Ω;C3)

)
with the use of (2.3), i.e.,{

|ε(x) · ξ| ≤ C1|ξ|
|µ(x) · ξ| ≤ C2|ξ|

for all ξ ∈ C
3 and all x ∈ Ω

We have proved
‖E‖2

L2(Ω;C3) + ‖H‖2
L2(Ω;C3) ≤ C

for some constant C > 0 that depends only on the domain Ω, the norm of the
material and the amplitude of the incident field.

The corresponding estimates on, i.e., ‖∇ × E‖2
L2(Ω;C3) + ‖∇ × H‖2

L2(Ω;C3) ≤ C,

follow at once by the use of (2.4).

Appendix B Function spaces

In this appendix, we list the various function spaces used in this paper. Let Ω be
a bounded, open, simply connected set in R

3 with Lipschitz boundary ∂Ω. A Y -
periodic function, f , is defined as f(x + êk) = f(x) for every k = 1, 2, 3, where êk,
k = 1, 2, 3, is the canonical basis in R

3.

8We use an alternative version of the Green’s theorem∫∫
∂Ω

ν̂(x) × E(x) dSx =
∫∫∫

Ω

∇× E(x) dvx
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The space C(Ω) is the space of continuous functions in Ω. We also use C0(Ω)
which consists of all uniformly continuous functions which are zero at the boundary.
The space C∞(Ω) is the space of infinitely continuously differentiable functions in
Ω, and C∞

0 (Ω) are the functions in this space with compact support in Ω, which we
also denote D(Ω). Moreover,

C∞
# (Y ) =

{
φ ∈ C∞(R3), φ Y -periodic

}
Several function spaces with square integrable functions are used in this paper.

The basic space is

L2(Ω)
def
=


u(x) : u Lebesgue integrable,

∫∫∫
Ω

|u(x)|2 dvx < ∞




with norm

‖u‖L2(Ω) =




∫∫∫
Ω

|u(x)|2 dvx




1/2

Similarly for vector-valued spaces we have the norm

‖u‖L2(Ω;C3) =




∫∫∫
Ω

|u(x)|2 dvx




1/2

We also define two function spaces of periodic functions.

L2
#(Y )

def
=

{
the completion of C∞

# (Y ) in the L2(Y )-norm
}

and
L∞

# (Y )
def
=

{
φ ∈ L∞(R3), φ Y -periodic

}
{

H(div, Ω)
def
=

{
u ∈ L2(Ω; C3) : ∇ · u ∈ L2(Ω)

}
H(rot, Ω)

def
=

{
u ∈ L2(Ω; C3) : ∇× u ∈ L2(Ω; C3)

}
which are Hilbert spaces with norms


‖u‖H(div,Ω) =

(
‖u‖2

L2(Ω;C3) + ‖∇ · u‖2
L2(Ω)

)1/2

‖u‖H(rot,Ω) =
(
‖u‖2

L2(Ω;C3) + ‖∇ × u‖2
L2(Ω;C3)

)1/2

The curl and the divergence are defined in the weak sense as{
(∇× u, φ) = (u,∇× φ), ∀φ ∈ D(Ω; C3)

(∇ · u, φ) = −(u,∇φ), ∀φ ∈ D(Ω)
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In the exterior region, we define spaces of locally integrable functions as{
Hloc(div, Ωe)

def
=

{
u ∈ D′(Ωe; C

3) : ξu ∈ H(div, Ωe),∀ ξ ∈ D(R3)
}

Hloc(rot, Ωe)
def
=

{
u ∈ D′(Ωe; C

3) : ξ∇× u ∈ H(rot, Ωe),∀ ξ ∈ D(R3)
}

where Ωe = R
3 \ Ω and D′(Ωe) is the space of distributions. The appropriate trace

spaces used in this paper are H− 1
2 (div, ∂Ω) and H− 1

2 (rot, ∂Ω) defined by




H− 1
2 (div, ∂Ω)

def
=

{
u ∈ H− 1

2 (∂Ω; C3), ν̂ · u = 0, div∂Ωu ∈ H− 1
2 (∂Ω)

}
H− 1

2 (rot, ∂Ω)
def
=

{
u ∈ H− 1

2 (∂Ω; C3), ν̂ · u = 0, rot∂Ωu ∈ H− 1
2 (∂Ω; C3)

}
where the surface divergence, div∂Ω, and the surface rotation, rot∂Ω, are defined by
duality and restriction{

(div∂Ωu, φ) = −(u, grad∂Ωφ), ∀φ ∈ D(∂Ω)

rot∂Ωu = ν̂ · (∇× u)|∂Ω

and the surface gradient, grad∂Ω, is defined by the orthogonal projection of ∇ on
the surface ∂Ω.

We also define the function spaces{
H#(div, Y )

def
= {u ∈ H(div, Y ), u Y -periodic}

H#(rot, Y )
def
= {u ∈ H(rot, Y ), u Y -periodic}

and 
 H1

#(Y )
def
=

{
the completion of C∞

# (Y ) in the H1(Y )-norm
}

H1
#(Y )/C

def
=

{
φ ∈ H1

#(Y ), equivalent up to a complex constant
}

If γ denotes the unit sphere in R
3, the following norms are used in the paper


‖u‖γ =




∫∫
γ

|u(x̂)|2 dγ




1/2

‖u‖∞ = sup
|x̂|=1

|u(x̂)|

and dγ denotes the surface measure on the unit sphere in R
3.

We conclude this appendix by stating the Lax-Milgram theorem [13].

Theorem B.1 (Lax-Milgram). Assume that H is a Hilbert space, with norm ‖·‖.
Moreover, assume

B : H × H → C



29

is a sesquilinear functional on H, for which there exists constants a, b > 0, such that

|B[u, v]| ≤ a‖u‖‖v‖, ∀ u, v ∈ H

and
b‖u‖2 ≤ |B[u, u]| , ∀ u ∈ H

Finally, let f : H → C be a bounded linear functional on H.
Then there exists a unique u ∈ H such that

B[u, v] = f(v), ∀ v ∈ H.

Appendix C Two-scale convergence

Definition C.1. A sequence {uε} in L2(Ω; C3) two-scale converges to u0 ∈ L2(Ω×
Y ; C3) if

lim
ε↘0

∫∫∫
Ω

uε(x) · φ(x, x/ε) dvx =

∫∫∫
Ω

∫∫∫
Y

u0(x, y) · φ(x, y) dvy dvx

for every φ ∈ D(Ω; C∞
# (Y ; C3)). We denote this by uε 2-s

⇀ u0.

The class of test functions can be enlarged to all admissible test functions defined
below [2].

Definition C.2. We say that φ ∈ L2(Ω; L2
#(Y ; C3)) is an admissible test function

if φ(x, x/ε) is measurable and

lim
ε↘0

‖φ(x, x/ε)‖L2(Ω;C3) = ‖φ(x, y)‖L2(Ω×Y ;C3).

Remark C.1. Some examples of admissible test functions are L2(Ω; C#(Y ; C3))
and for Ω bounded L2

#(Y ; C(Ω; C3)).

We cite two important theorems by Nguetseng [22].

Theorem C.1 (Nguetseng). Let uε ∈ L2(Ω). Suppose that there exists a constant
C > 0 such that

‖uε‖L2(Ω) ≤ C for all ε

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting
ε ↘ 0 ∫∫∫

Ω

uε(x)Ψ(x, x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x, y)Ψ(x, y) dvy dvx

for all Ψ ∈ C0(Ω; C#(Y )), where u0 ∈ L2(Ω; L2
#(Y )). Moreover,∫∫∫

Ω

uε(x)v(x)w(x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x, y)v(x)w(y) dvy dvx

for all v ∈ C0(Ω), and all w ∈ L2
#(Y ).
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We note that if uε is a sequence in L2(Ω), which two-scale converges to the
limit u0 ∈ L2(Ω × Y ), then uε also converges to u(x) =

∫∫∫
Y

u0(x, y) dvy in L2(Ω)
weakly [2]. Moreover, if uε converges strongly to u(x) in L2(Ω), then uε two-scale
converges to the same limit u(x). The second theorem is,

Theorem C.2 (Nguetseng). Let uε ∈ H1(Ω). Suppose that there exists a constant
C > 0 such that

‖uε‖H1(Ω) ≤ C for all ε

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting
ε ↘ 0

uε → u in H1(Ω)-weak

and ∫∫∫
Ω

∂uε(x)

∂xj

v(x)w(x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

{
∂u(x)

∂xj

+
∂u1(x, y)

∂yj

}
v(x)w(y) dvy dvx

j = 1, 2, 3, for all v ∈ C0(Ω), and all w ∈ L2
#(Y ), where u1 ∈ L2(Ω; H1

#(Y )/C).

In addition to these two theorems we observe that taking w = 1 we get from
Theorem C.1 ∫∫∫

Ω

uε(x)v(x) dvx →
∫∫∫

Ω

u(x)v(x) dvx

for all v ∈ C0(Ω), where

u(x) =

∫∫∫
Y

u0(x, y) dvy

is the usual weak L2(Ω)-limit of uε(x). It follows that u0 is uniquely expressed in
the form

u0(x, y) = u(x) + ũ0(x, y)

where ∫∫∫
Y

ũ0(x, y) dvy = 0

Lemma C.1. Let f ∈ H1
#(Y ; C3) and assume that ∇y × f(y) = 0. Moreover,

assume<f>= 0. Then there exists a unique function q ∈ H1
#(Y )/C such that

f(y) = ∇yq(y)
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Proof of Lemma C.1: The periodicity of the function f ∈ H1
#(Y ; C3) implies

that f has a Fourier expansion

f(y) =
∑

n

fneikn·y

where the vector kn is defined as

kn = 2πn1ê1 + 2πn2ê2 + 2πn3ê3

and where n1, n2, n3 are integers and n = (n1, n2, n3). The sequence fn belongs
to (�2

1)
3
. The assumption that<f >= 0 implies that f (0,0,0) = 0. Moreover, the

coefficients fn satisfy
kn × fn = 0 for all n

Therefore fn has the form

fn = k̂n

(
k̂n · fn

)
Define qn as {

qn = −i(k̂n · fn)/kn for n �= (0, 0, 0)

q(0,0,0) arbitrary

where kn = |kn|. The coefficients qn ∈ (�2
1)

3
and

fn = iknqn for all n

and
f(y) =

∑
n

iknqneikn·y = ∇yq(y)

where
q(y) =

∑
n

qneikn·y ∈ H1
#(Y )/C

since q(0,0,0) is arbitrary and the lemma is proved.
The obvious vector analogous theorems are:

Theorem C.3. Let uε ∈ L2(Ω; C3). Suppose that there exists a constant C > 0
such that

‖uε‖L2(Ω;C3) ≤ C for all ε

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting
ε ↘ 0 ∫∫∫

Ω

uε(x) · Ψ(x, x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x, y) · Ψ(x, y) dvy dvx

for all Ψ ∈ C0(Ω; C#(Y ; C3)), where u0 ∈ L2(Ω; L2
#(Y ; C3)). Moreover,∫∫∫

Ω

uε(x) · v(x)w(x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x, y) · v(x)w(y) dvy dvx

for all v ∈ C0(Ω; C3), and all w ∈ L2
#(Y ).
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The field u0 is uniquely expressed in the form

u0(x, y) = u(x) + ũ0(x, y)

where ∫∫∫
Y

ũ0(x, y) dvy = 0

We have the following results proved in [26]:

Theorem C.4. Let uε ∈ H(div, Ω). Suppose that there exists a constant C > 0
such that

‖uε‖H(div,Ω) ≤ C for all ε

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting
ε ↘ 0

uε → u in L2(Ω; C3)-weak

and ∫∫∫
Ω

∇x · uε(x)v(x)w(x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

{∇x · u(x) + ∇y · u1(x, y)} v(x)w(y) dvy dvx

for all v ∈ C0(Ω), and all w ∈ L2
#(Y ), where u(x) =

∫∫∫
Y

u0(x, y) dvy, u0 is the

two-scale limit of uε, and u1 ∈ L2(Ω; H#(div, Y )).

Theorem C.5. Let uε ∈ H(rot, Ω). Suppose that there exists a constant C > 0
such that

‖uε‖H(rot,Ω) ≤ C for all ε

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting
ε ↘ 0

uε → u0 in L2(Ω; C3)-weak

and ∫∫∫
Ω

∇× uε(x) · v(x)w(x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

{∇x × u0(x, y) + ∇y × u1(x, y)} · v(x)w(y) dvy dvx

for all v ∈ C0(Ω), and all w ∈ L2
#(Y ; C3), where u1 ∈ L2(Ω; H#(rot, Y )).
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Proof of Theorem C.5: From Theorem C.3 we get∫∫∫
Ω

uε(x) · Ψ(x, x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x, y) · Ψ(x, y) dvy dvx

and ∫∫∫
Ω

∇× uε(x) · Ψ(x, x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

χ0(x, y) · Ψ(x, y) dvy dvx

for all Ψ ∈ C0(Ω; C#(Y ; C3)), where u0, χ0 ∈ L2(Ω; L2
#(Y ; C3)). Choose test func-

tions Ψ ∈ C0(Ω; C#(Y ; C3)) such that ∇y × Ψ = 0. We get by integration by
parts ∫∫∫

Ω

∇× uε(x) · Ψ(x, x/ε) dvx =

∫∫∫
Ω

uε(x) · ∇ × Ψ(x, x/ε) dvx

=

∫∫∫
Ω

uε(x) · ∇x × Ψ(x, x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

u0(x, y) · ∇x × Ψ(x, y) dvy dvx

=

∫∫∫
Ω

∫∫∫
Y

∇x × u0(x, y) · Ψ(x, y) dvy dvx.

This means that∫∫∫
Ω

∫∫∫
Y

(χ0(x, y) −∇x × u0(x, y)) · Ψ(x, y) dvy dvx = 0

for all Ψ ∈ C0(Ω; C#(Y ; C3)) such that ∇y × Ψ = 0. By the decomposition of
L2(Ω; C3) (e.g., see [9]) there exists a function u1 ∈ L2(Ω; H#(rot, Y )) such that

∇y × u1 = χ0(x, y) −∇x × u0(x, y).

Theorem C.6 (Wellander [29] or [30]). Let uε ∈ H(rot, Ω). Suppose that there
exists a constant C > 0 such that

‖uε‖H(rot,Ω) ≤ C for all ε

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting
ε ↘ 0

uε 2-s
⇀ u(x) + ∇yφ(x, y)
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where φ ∈ L2(Ω; H1
#(Y )) is a scalar-valued function satisfying∫∫∫

Y

∇yφ(x, y) dvy = 0

Moreover,
∇× uε ⇀ ∇× u(x) in L2(Ω; C3)

Theorem C.7 (Wellander [29] or [30]). Let uε ∈ H(div, Ω). Suppose that there
exists a constant C > 0 such that

‖uε‖H(div,Ω) ≤ C for all ε

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting
ε ↘ 0

uε 2-s
⇀ u0(x, y)

and
ε∇ · uε 2-s

⇀ ∇y · u0(x, y)

Proof of Theorem C.7: From Theorem C.3 we get∫∫∫
Ω

uε(x) · Ψ(x, x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x, y) · Ψ(x, y) dvy dvx

and ∫∫∫
Ω

∇ · uε(x)Ψ(x, x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

χ0(x, y)Ψ(x, y) dvy dvx

for all Ψ ∈ C0(Ω; C#(Y ; C3)) and Ψ ∈ C0(Ω; C#(Y )), where u0 ∈ L2(Ω; L2
#(Y ; C3))

and χ0 ∈ L2(Ω; L2
#(Y )).

We get by integration by parts∫∫∫
Ω

ε∇ · uε(x)Ψ(x, x/ε) dvx = −
∫∫∫

Ω

εuε(x) · ∇Ψ(x, x/ε) dvx

= −
∫∫∫

Ω

εuε(x) · ∇xΨ(x, x/ε) dvx −
∫∫∫

Ω

uε(x) · ∇yΨ(x, x/ε) dvx

→ −
∫∫∫

Ω

∫∫∫
Y

u0(x, y) · ∇yΨ(x, y) dvy dvx

=

∫∫∫
Ω

∫∫∫
Y

∇y · u0(x, y)Ψ(x, y) dvy dvx.
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Appendix D Vector spherical harmonics

The vector spherical harmonics are defined as [8]


A1n(x̂) =
1√

l(l + 1)
∇× (xYn(x̂)) =

1√
l(l + 1)

∇Yn(x̂) × x

A2n(x̂) =
1√

l(l + 1)
x∇Yn(x̂)

A3n(x̂) = x̂Yn(x̂)

where the spherical harmonics are denoted Yn(x̂). The index n is a multi-index for
the integer indices l = 0, 1, 2, 3, . . ., m = 0, 1, . . . , l, and σ = e,o (even and odd in the
azimuthal angle). From these definitions we see that the first two vector spherical
harmonics, A1n(x̂) and A2n(x̂), are tangential to the unit sphere γ in R

3 and they
are related as {

x̂ × A1n(x̂) = A2n(x̂)

x̂ × A2n(x̂) = −A1n(x̂)

The vector spherical harmonics form an orthonormal set over the unit sphere γ
in R

3, i.e., ∫∫
γ

Aτn(x̂) · Aτ ′n′(x̂) dγ = δnn′δττ ′ (D.1)

The radiating solutions to the Maxwell equations in vacuum are defined as


u1n(k0x) = h
(1)
l (k0x)A1n(x̂)

u2n(k0x) =
1

k0

∇×
(
h

(1)
l (k0x)A1n(x̂)

)

where h
(1)
l (k0x) is the spherical Hankel function of the first kind [1]. These vector

waves satisfy

∇× (∇× uτn(k0x)) − k2
0uτn(k0x) = 0, τ = 1, 2 (D.2)

and they also satisfy the radiation condition in (2.6). Another representation of the
definition of the vector waves is


u1n(k0x) = h

(1)
l (k0x)A1n(x̂)

u2n(k0x) =
(k0xh

(1)
l (k0x))′

k0x
A2n(x̂) +

√
l(l + 1)

h
(1)
l (k0x)

k0x
A3n(x̂)

where ′ denotes differentiation w.r.t. the argument of the spherical Hankel function.
A simple consequence of these definitions is


u1n(k0x) =

1

k0

∇× u2n(k0x)

u2n(k0x) =
1

k0

∇× u1n(k0x).
(D.3)
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