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Abstract

In this thesis, a class of linear time-invariant systems is identified for
which a particular type of H-infinity optimal control problem can be solved
explicitly. It follows that the synthesized controller can be given on a simple
explicit form. More specifically, the controller can be written in terms of
the matrices of the system’s state-space representation. The result has
applications in the control of large-scale systems, as well as for the control
of infinite-dimensional systems, with certain properties.

For the large-scale applications considered, the controller is both globally
optimal as well as possesses a structure compatible with the information-
structure of the system. This decentralized property of the controller is
obtained without any structural constraints or regularization techniques
being part of the synthesis procedure. Instead, it is a result of its partic-
ular form. Examples of applications are electrical networks, temperature
dynamics in buildings and water irrigation systems.

In the infinite-dimensional case, the explicitly stated controller solves
the infinite-dimensional H-infinity synthesis problem directly without the
need of approximation techniques. An important application is diffusion
equations. Moreover, the presented results can be used for evaluation and
benchmarking of general purpose algorithms for H-infinity control.

The systems considered in this thesis are shown to belong to a larger
class of systems for which the H-infinity optimal control problem can be
translated into a static problem at a single frequency. In certain cases,
the static problem can be solved through a simple least-squares argument.
This procedure is what renders the simple and explicit expression of the
controller previously described. Moreover, the given approach is in contrast
to conventional methods to the problem of H-infinity control, as they are in
general performed numerically.
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1
Systems of Large Scale or
Infinite Dimension

In our everyday lives, we are dependent upon numerous systems of large
scale. Transportation networks, the power grid, water supply systems, cel-
lular networks and the internet are only a few examples. The goal of these
large-scale systems is to support multiple entities simultaneously with their
main functionality, often through some kind of network structure.

In this thesis, a large-scale system is defined as a system composed
of a large number of components. Hence, it is not necessarily a system of
large spatial size. Also, note that the given definition does not only include
man-made systems, such as those previously mentioned, but also systems
naturally occurring, such as river networks or ecosystems. However, the
systems considered in this thesis are further restricted to be linear and
time-invariant, which confines the type of dynamics that can be analysed.
This might seem limiting but it is a well-known fact that linear models can
be used to describe the behaviour of systems around an operating point.
Moreover, such a representation is often sufficient for the purpose of control
design, which is the main focus of this thesis.

Although confined to linear dynamics, models of large-scale systems can
still become very complex. For instance, they could have high dimension,
reflective of the many components apparent in these systems. Sometimes
they are even represented as infinite-dimensional systems, i.e modelled by
partial differential equations that can describe the dynamics of physical
quantities that evolve both in time and in space. In synthesis, such systems
often have to be treated through high-order approximations.

The design and synthesis of controllers for systems of large scale or
infinite dimension are often obstructed by the complexity in their models.
However, in this thesis, an approach to the so called problem of H∞ control
is presented that circumvents the complexity for certain such systems while
still providing controllers that achieve optimal performance.
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Chapter 1. Systems of Large Scale or Infinite Dimension

1.1 Outline of the Thesis
The format of this thesis is a compilation of publications. It consists of four
introductory chapters, including the current one, followed by five papers. In
the following chapter, a review of selected works within the fields of control
of large-scale systems and H∞ control of infinite-dimensional systems is
given. Thereafter, in Chapter 3, the main contributions are presented as
well as related to the works reviewed in Chapter 2. Finally, the thesis is
concluded in Chapter 4, which also includes directions for further research.

The remaining part of this chapter is divided into four sections. In the
first two sections, the reader is offered further background to the problems
of control of large-scale and infinite-dimensional systems. Then, the method
of H∞ control is briefly described. Finally, in the last section, the included
publications are summarized and the contributions made by the author of
this thesis are specified.

1.2 Large-Scale Systems in Our Society
The power grid is truly a system of large scale. Moreover, controllers are
a fundamental part of the system. For instance, they regulate the power
balance on the grid so that electricity supply can be guaranteed [Kundur
et al., 1994]. However, the increase in use of renewable energy, such as
energy from the wind turbines seen in Figure 1.1, raises new demands on
the power grid. In comparison to traditional generators, often driven by coal
or nuclear power, the renewable energy sources are much less predictable.
Researchers investigate, for instance, how management of the demand side
[Taneja et al., 2010; Blarke and Jenkins, 2013], electricity market regulation
[Klessmann et al., 2008] and energy storage solutions [Blarke and Jenkins,
2013; Castillo and Gayme, 2014] can compensate for the volatile behaviour
of renewables.

Another large-scale application is that of resource efficient temperature
regulation in buildings. In [Statens Energimyndighet, 2017] it was reported
that 53% of the total energy use during 2017 within the housing and service
sector in Sweden, was due to heating. Minimizing the energy used for heat-
ing is of course important from an environmental aspect. In fact, resource
efficiency is one of the main goals of the United Nations 2030 Agenda. It
is addressed world-wide through the development of so called smart build-
ings and societies, see e.g. [Snoonian, 2003; Hazyuk et al., 2012]. If heated
through electricity, an apartment building is a major user on the power grid.
In relation to the previous paragraph, regulating the activation of heating
or cooling devices can act as a buffer on the grid and be used in times of
high demand. This has, for instance, been trialed in a pilot project with an
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1.3 Implications of Scale and Dimension for Control

Figure 1.1 The energy harvested by wind turbines (left) is an example of
a renewable energy source. Within buildings, the temperature is often reg-
ulated on a room-by-room basis through thermostats (middle). Traffic jams
(right) are becoming an increasingly occurring problem as more and more
people are choosing to live in urban areas. (Free images from Pixabay.com)

office building in Malmö, Sweden, with promising results [e.on, 2019].
Concerning transportation networks, congestion on our roads is a promi-

nent issue and something many of us experience daily. Traffic control is a
field of research just on its own, which is actually the case for many large-
scale applications. Efforts are made within this field to make our travels on
the roads both safe and swift, see e.g. [Papageorgiou et al., 2003; Urmson
et al., 2008; Bojarski et al., 2016; Ferrara et al., 2018; Nilsson, 2019].

1.3 Implications of Scale and Dimension for Control
In the design of controllers, one has traditionally considered the scenario of
a single process element to be controlled by a single control element. This
setup is not the one found within large-scale systems. Instead, large-scale
systems can be seen as an interconnection of numerous process and control
elements. Moreover, they often lack centralized information and computing
capability, which is assumed to be available in the traditional setup. In fact,
in a large-scale system, computations often have to be made locally at the
control elements, and information exchange between components is limited.

The differences described to the traditional setup impose complexity
in the control design for large-scale systems. For instance, complexity is
introduced in the form of constraints on the structure of the controller.
Moreover, the dimensionality and uncertainty of the models, much due to
that simplifications are needed for analysis, are other challenges. In fact,
classical control methods often have to be re-invented for the purpose of
control of large-scale systems, see [Bakule, 2008] for an overview of some
of the approaches to control of large-scale systems.

In controller design for infinite-dimensional systems, the synthesis prob-
lem is generally approached by first approximating the partial differential
equations by a system of ordinary differential equations. The design is

13



Chapter 1. Systems of Large Scale or Infinite Dimension

then performed on this finite-dimensional approximation of the original
system. However, to ensure high accuracy, approximations of high order
often need to be used. This renders both complexity and high computa-
tional demand in synthesis. It is also difficult to ensure that the designed
controller works, as predicted, on the original infinite-dimensional system.
In contrast to approximative methods, it is often easier to determine the
performance of controllers derived by approaches that work directly in the
infinite-dimensional realm. However, such approaches are in general diffi-
cult use. For an introduction to the control of infinite-dimensional systems
and the issues that can arise in design, see [Morris, 2010].

1.4 The Method of H∞ Control
In this thesis, a classical controller synthesis method is analysed for the
purpose of control of systems of large scale, as well as for the control of
infinite-dimensional systems. The considered method is that of H∞ control.
In the H∞ control framework, a system’s performance is given by its be-
haviour when subject to worst-case disturbances, see [Zhou et al., 1996] and
[Van Keulen, 1993] for a comprehensive presentation of the problem for fi-
nite and infinite-dimensional systems, respectively. Moreover, H∞ control is
a method within the theory of robust control. This theory describes methods
for how to design controllers that guarantee some pre-specified behaviour
of the system in spite of model uncertainties or the impact of disturbances.

There are many additional design specifications to that of H∞ control
that can be considered for the synthesis of controllers. Examples are how
well the system can attenuate disturbances assumed to be Gaussian white
noise and how well the controller can adapt to changes in the dynamics of
the system. The many design specifications offered within the field of control
theory all have areas of application for which they are particularly suitable.
However, in this thesis, it is primarily the theoretical aspects of controller
design that have been investigated and the focus has been devoted to the
method of H∞ control.

1.5 Included Publications and Statement of Contribution
This thesis was prepared by Carolina Bergeling at the Department of Auto-
matic Control, Lund University, during the time period from June 2013 to
April 2019 (excluding May 2018 to January 2019 due to parental leave) as a
partial fulfilment of the requirements for obtaining the PhD degree. The re-
sults presented in this thesis were conducted by Carolina Bergeling under
the supervision of Professor Anders Rantzer, Professor Bo Bernhardsson
and Doctor Richard Pates.
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1.5 Included Publications and Statement of Contribution

In this section, the publications included in this thesis are summarized.
Moreover, a statement is given to specify what is contributed by whom in
each paper. Notice that Carolina Bergeling has changed her surname from
Lidström to Bergeling during the course of her PhD-studies. Both surnames
are used in the papers below.

Paper I
Lidström, C. and A. Rantzer (2016). “Optimal H-infinity state feedback

for systems with symmetric and Hurwitz state matrix”. In: American
Control Conference (ACC), 2016. IEEE, pp. 3366–3371.

In Paper I, an H∞ optimal state feedback law is stated explicitly on a
simple form. It is applicable to finite-dimensional linear and time-invariant
systems with symmetric and Hurwitz state matrix. Moreover, the control
law as well as the optimal performance value are expressed in terms of the
matrices of the system’s state-space representation.

The control law is shown to scale well for certain large-scale applica-
tions. Examples include temperature dynamics in buildings and networks
of buffers. The control law is also shown to comply with the structure of the
system. Moreover, for a subclass of the systems, the property of internal
positivity is preserved in closed-loop.

The paper also includes an extension of the control law that incorporates
coordination among a heterogeneous group of linear and time-invariant sys-
tems, with the aforementioned properties necessary for applicability. The
extended control law is composed of a decentralized and a centralized term,
where the centralized term is identical for all subsystems. Hence, it can be
implemented in a distributed manner.

Authors’ contribution: C. Lidström contributed with a conjecture giving the
structure of the optimal control law as well as an initial statement and
proof of the main theorem. The initial proof was, as is the final version
given in the paper, based on the so called KYP-lemma. C. Lidström derived
the crucial step of the proof, giving the optimal choice of matrices that
fulfil the inequality of this lemma. Furthermore, C. Lidström prepared the
manuscript. A. Rantzer revised the results and reviewed the manuscript.
Some of the applications to distributed control were formed in discussions
between the two authors.
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Chapter 1. Systems of Large Scale or Infinite Dimension

Paper II
Lidström, C., R. Pates, and A. Rantzer (2017). “H-infinity optimal dis-

tributed control in discrete time”. In: 2017 IEEE 56th Annual Conference
on Decision and Control (CDC). IEEE, pp. 3525–3530.

Paper II includes the discrete-time analogue of the continuous-time
state feedback result stated in Paper I. The translation is non-trivial and
a comparison to the continuous time result is included. Furthermore, an
explicit expression for an optimal proportional integral controller is given,
which is based on the continuous-time result presented in [Rantzer et al.,
2017]. Examples illustrate how the explicitly stated control laws can be
used in a distributed manner for the control of large-scale systems.

Authors’ contribution: C. Lidström derived the results and prepared the
manuscript, however, the proof of the main theorem relies upon an idea
suggested by A. Rantzer. Also, the local condition in Section 4.2 is a result
of discussions between C. Bergeling and R. Pates. The results as well as the
manuscript were reviewed by R. Pates and A. Rantzer.

Paper III
Bergeling, C., R. Pates, and A. Rantzer (2019). “H-infinity optimal control for

systems with a bottleneck frequency”. Submitted to IEEE Transactions
on Automatic Control.

The first theorem of Paper III characterizes a class of systems for which
the H∞ optimal control problem can be translated into a static problem
at a single frequency. Moreover, it is shown that for a subclass of the con-
sidered systems, an optimal controller can be given explicitly on a simple
form. The systems considered in Paper I and II are examples in this class.
However, the class of systems presented in Paper III goes beyond systems
with symmetric and Hurwitz state matrix. Further, several examples of
large-scale applications are included, such as control of electrical networks
and water irrigation systems.

Authors’ contribution: The first theorem of the paper was jointly derived
by C. Bergeling and A. Rantzer. The remaining results were derived by
C. Bergeling, however, based on discussions with R. Pates and A. Rantzer.
The example on droop control was suggested by R. Pates. Moreover, the
manuscript was prepared by C. Bergeling and reviewed by R. Pates and A.
Rantzer.
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1.5 Included Publications and Statement of Contribution

Paper IV
Lidström, C., A. Rantzer, and K. A. Morris (2016). “H-infinity optimal con-

trol for infinite-dimensional systems with strictly negative generator”.
In: 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE,
pp. 5275–5280.

In Paper IV, the infinite-dimensional analogue to the finite-dimensional
result presented in Paper I is given. The infinite-dimensional systems con-
sidered are linear and time-invariant with self-adjoint and strictly negative
state operator as well as bounded input and output operators. Diffusion
equations are an important example in this class. Similar to Paper I, an
H∞ optimal control law can be stated on a very simple and explicit form
for a certain case of state feedback.

Authors’ contribution: A. Rantzer and K. A. Morris suggested the idea of an
extension of the main result given in Paper I to infinite-dimensional sys-
tems. C. Lidström formalized the theorem and its proof as well as prepared
the manuscript. A. Rantzer and K. A. Morris revised the proof and reviewed
the manuscript.

Paper V
Bergeling, C., K. A. Morris, and A. Rantzer (2019). “Closed-form H-infinity

optimal control for parabolic systems”. Submitted to Automatica.

In Paper V, the problem of H∞ optimal state estimation, or filtering,
is studied for a certain class of infinite-dimensional systems. Similarly to
Paper IV, an optimal observer can be stated explicitly. The filtering problem
is highly related to the state feedback problem considered in Paper IV,
which is also included in this paper, however, with a new proof. The results
are illustrated through several examples. Furthermore, the computational
time of numerically determining an approximation of the explicitly stated
controller is compared to the computational time of a general purpose algo-
rithm for H∞ controller synthesis. Also, an application to optimal actuator
and sensor placement is described.

Authors’ contribution: C. Bergeling formalized the theorems and their
proofs, prepared the manuscript and performed the numerical compari-
son. K. A. Morris provided some initial code upon which the numerical
comparison is based. A. Rantzer and K. A. Morris revised the proofs and
reviewed the manuscript.
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Additional publications
In addition to the publications included in this thesis, the author has been
part of the following works during her PhD studies:

Bergeling, C., R. Pates, and A. Rantzer (2019). “On closed-form H-infinity
output feedback control”. Submitted to the 2019 IEEE Conference on
Decision and Control.

Pates, R., C. Lidström, and A. Rantzer (2017). “Control using local distance
measurements cannot prevent incoherence in platoons”. In: 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE, pp. 3461–
3466.

Rantzer, A., C. Lidström, and R. Pates (2017). “Structure preserving H-
infinity optimal PI control”. IFAC-PapersOnLine 50:1, pp. 2573–2576.

Ryu, E. K., A. B. Taylor, C. Bergeling, and P. Giselsson (2018). “Operator
splitting performance estimation: tight contraction factors and optimal
parameter selection”. arXiv preprint arXiv:1812.00146.
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2
Challenges in Control

In the 1960s and 1970s, research on the topic of large-scale systems and con-
trol was initiated at several institutions around the world [Bakule, 2008].
Today, the interest for this field of research has been renewed by the ad-
vances made in wireless communication. The field of control of infinite-
dimensional systems emerged around the same time as that of control of
large-scale systems [Padhi and Ali, 2009]. By now, it is a well-established
area within systems and controls research.

In this chapter, existing literature on control of large-scale and infinite-
dimensional systems are reviewed. It is divided into two sections, of which
the first one considers large-scale systems while the second one is devoted
to infinite-dimensional systems. The main focus of the review is to provide
further details on the research challenges within these fields. However, it
will also specifically focus on existing literature that is highly related to the
contributions presented in this thesis.

2.1 Control of Large-Scale Systems
In the preface of [Siljak, 2011], the author writes "Complexity is a central
problem in modern system theory and practice. Because of our intensive and
limitless desire to build and to control ever larger and more sophisticated
systems, the orthodox concept of a high performance system driven by a
central computer has become obsolete. [...] It is becoming apparent that a
"well-organized complexity" is the way of the future." This quote captures
the need to move past the setup traditionally considered in control, as was
also explained in Section 1.3. However, although moving away from the
concept of centrality is to prefer for the purpose of control of large-scale
systems, it is not straightforward how to compute or even how to construct
controllers suitable for these systems.

The complexity in design of controllers for large-scale systems stems
from the dimensionality of the problem, the requirements on the structure
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Chapter 2. Challenges in Control

of the controller, by the so called information structure of the system, as
well as the unavoidable uncertainty in the models used. The research de-
voted to address the challenges the complexity imposes can be divided into
design of decentralized control laws, distributed or efficient computation in
synthesis and control systems architecture. In the following three sections,
selected literature within these areas are described. However, a single work
within the field of control of large-scale systems often treats elements of all
three problem areas. Hence, there is no harsh divide between the literature
reviewed in the different sections.

From Centralized to Decentralized
Control of large-scale systems is often referred to as decentralized control.
This is due to the nonclassical information structure apparent in these sys-
tems which demands its controllers to be based on local, or more generally
non-central, information rather than the full set of information available.
The latter is often referred to as global information.

The following quote from the introduction of [Bakule, 2008] summarizes
the concept of a decentralized controller: "A system is considered large-scale
if it is necessary to partition the given analysis or synthesis into manage-
able sub-problems. As a result, the overall plant is no longer controlled by a
single controller but by several independent controllers which all together
represent a decentralized controller. This is the fundamental difference be-
tween feedback control of small and large systems usually described by the
idea of information structure." Distributed control is similar to decentral-
ized control but it often involves a central entity that supervise the full set
of control actions. However, in this thesis, the two notions will be used inter-
changeably and refer to the control of systems with nonclassical information
structure.

Information structure To illustrate the difference between a classical
and a nonclassical information structure, consider the feedback intercon-
nections, or closed-loop systems, depicted in Figure 2.1. The diagram to the
right depicts a system with classical information structure in which the
global information of the system is available to the controller. Furthermore,
the controller is in charge of the full set of control input signals.

In contrast to the classical setup, the diagram to the left in Figure 2.1
depicts a system with nonclassical information structure. Notice that the
information available to a controller Ki in Figure 2.1 (left) is not the glob-
ally available information of the overall system. Furthermore, a specific
controller can only impact some of the subsystems Gj. However, even if the
block-diagram in Figure 2.1 (left) looks vastly different from the traditional
setup shown in Figure 2.1 (right), it can be condensed into the form shown
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G1

G2

G3

G4

K1
K2

K3 G

K

Figure 2.1 (Left) Feedback interconnection of subsystems Gj and con-
trollers Ki. (Right) Traditional feedback interconnection of system G and
controller K .

in Figure 2.1 (right). It is important to stress that such a representation
implicitly demands a certain structure of the controller K .

Traditionally, the information structure of the system has been prespec-
ified and the design problem been solely to determine the decentralized
control laws. Moreover, the design is to be based on some notion of the
desired closed-loop behaviour, as is the case in any synthesis procedure.
The desired behaviour could be, simply, that of closed-loop stability or to
additionally achieve performance requirements such as the ability to atten-
uate certain disturbances. The conventional methods of control offer a wide
range of performance measures and many of them, if not all, have been
studied in the setting of decentralized control.

Global design Often, the design of decentralized controllers is based on
the full model of the system. Constraints on the structure of the controller,
as imposed by the information structure of the system, are then added to
a general synthesis procedure. However, enforcing the controller to have
a certain structure could greatly complicate the analysis or even make it
intractable [Papadimitriou and Tsitsiklis, 1986; Lessard and Lall, 2011;
Wang and Chen, 2002].

Procedures for a range of information structures have been reported
since the problem of decentralized control design was first addressed, see
e.g. [Sandell et al., 1978; Vidyasagar, 1981; Bakule, 2008; Siljak, 2011].
For instance, the system property called diagonal dominance, see [Grosdi-
dier and Morari, 1986], has been intensely studied. It is also common to
perform procedures in order to simplify the model of a large-scale system
and through this lower the complexity in synthesis. For an introduction to
model order reduction of large-scale systems’ models see for example the
first couple of chapters in [Mohammadpour and Grigoriadis, 2010].

In [Rotkowitz and Lall, 2005], a number of important cases have been
derived for which the decentralized control problem is in fact equivalent
to a convex optimization problem. Similarly, [Jovanović and Dhingra, 2016]
summarizes several distributed controller synthesis problems that are also
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convex. It covers for example problems of symmetric systems, consensus
type, optimal selection of sensors and actuators and decentralized control
of positive systems. Furthermore, on the topic of positive systems, [Tanaka
and Langbort, 2011; Briat, 2013; Rantzer, 2015] present methods for the
design of distributed controllers such systems, in the framework of several
different types of performance measures.

Most of the previously reviewed works consider stabilization, disturbance
attenuation or robustness to model uncertainty as performance specifica-
tions. In addition, design of distributed predictive control for large-scale
systems is considered in [Katebi and Johnson, 1997] and the framework of
model predictive control is further utilized in [Venkat et al., 2007]. More-
over, control methods of adaptive nature have also been considered in the
large-scale setting, see e.g. [Jain and Khorrami, 1997].

Local design In comparison to global design, a local design prcedure is
based on partial knowledge of the dynamics or structure of the system. For
instance, the information structure can be assumed to belong to a class of
information structures rather than being defined specifically. In [Lestas and
Vinnicombe, 2006], local stability conditions are given that are independent
of the interconnection topology of the system’s network, or in other words
its information structure, as well as the size of the system. Similarly, in
[Pates and Vinnicombe, 2017], the authors present a local certificate that
can be used to guarantee stability of the overall system. Methods similar to
those in [Lestas and Vinnicombe, 2006] and [Pates and Vinnicombe, 2017]
are passivity-based approaches for control, see e.g [Ortega et al., 2008], as
well methods based on so called integral quadratic constraints, see e.g. [Kao
et al., 2009] and [Khong and Rantzer, 2014].

The local design methods are often more efficient, computationally, than
global design methods. However, the simplicity in synthesis of local design
approaches comes at a price, as the limited information available in the
control design most probably imposes conservatism. In other words, it could
be the case that the closed-loop performance given a locally designed control
law is far from globally optimal.

Besides complying with the structural requirements imposed by the
information structure of the system, it is of interest to design control laws
that are less rigid to changes in the dynamics or structure of the system.
For instance, if an additional process or control element is added to the
system in Figure 2.1 (left), it would be preferable if only a subset of the
controllers were in need of updating their policies. This scenario is common
among large-scale systems, as they could be expanded to provide their
functionality to an increasing number of users. The described requirement
is to keep updates from becoming far too computationally complex and time-
consuming as well as to achieve robustness towards model uncertainty.
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The local design methods can often handle changes in the structure or
dynamics of the system. This is because they can be accounted for by the
design criteria, which often only specifies the dynamics or structure to be
of a certain type. On the contrary, in a global design setup, the synthesis
often has to be redone whenever the model is updated.

Optimality versus simplicity in design In comparison to centralized
control, the property of decentralization often results in losses in perfor-
mance. This was investigated in [Delvenne and Langbort, 2006] where the
performance of a decentralized controller was shown to be only half as good
as a centralized controller. It is inevitably so that one has to consider the
interplay between the achieved performance and simplicity of the design
procedure as a part of the design process. However, it is not always the case
that optimal performance is unachievable with a decentralized control law.
In fact, examples of this are given in this thesis. Moreover, several works on
fundamental limitations in distributed control of large-scale systems have
recently been published, and showcase the inherent limitations of decentral-
ized control in certain applications, see, e.g. [Tegling et al., 2017; Tegling,
2018; Pates et al., 2017; Bamieh et al., 2012].

Efficient computation
It is one thing to be able to synthesize decentralized controllers and another
to be able to do it in an efficient way. The computational complexity of
the actual implemented controller is an additional concern, however, often
related to the efficiency of the synthesis procedure. In the previous section,
the synthesis problem of decentralized control was studied and solvability
was related to convexity of the problem. However, although a problem is
convex, it is not necessarily computationally fast to solve, although this is
the case for many of the methods reviewed in the previous section.

In [Wang et al., 2018], the issue with computational scalability of tradi-
tional distributed optimal control methods is addressed. The work is based
on [Wang et al., 2019; Anderson and Matni, 2017] and shows that given cer-
tain separability of the control objective functions and system constraints,
the global optimization problem can be decomposed into parallel subprob-
lems. Given further sparsity constraints, the subproblems can be solved
efficiently. Moreover, the method in [Wang et al., 2018] clearly incorporates
both scalable synthesis as well as efficient computation when the controller
is in use.

In [Lestas and Vinnicombe, 2006], previously mentioned, the stability
certificates are shown to scale well with the network size. Similar to this,
[Jönsson and Kao, 2010] presents a scalable stability criterion for intercon-
nected systems with heterogeneous linear time-invariant components. The
criterion is based only on the individual components and the spectrum of
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the interconnection matrix, which is what maintains scalability of the anal-
ysis. Moreover, [D’Andrea and Dullerud, 2003] presents a state-space based
synthesis approach for systems with certain types of information structures.
It generalizes standard results in control to tractable computational tools
suitable for interconnected systems.

The so called alternating direction method of multipliers, see [Boyd et
al., 2011], is used for computing sparse controllers in for example [Fardad
et al., 2011; Dörfler et al., 2014] and [Lin et al., 2013]. More specifically,
it is the mathematical technique of regularization that guarantees sparsity
in the controller. Moreover, the computational approach alternates between
promoting the sparsity of the controller and optimizing the closed-loop per-
formance. In [Dhingra and Jovanović, 2016], another algorithm is used for
computing sparse controllers that has both a theoretical guarantee of con-
vergence and fast computation speed in practice. Further, symmetries in the
model of the system are taken advantage of in [Wu and Jovanović, 2017]
and other methods for efficient computation are found in [Waki et al., 2006;
Andersen et al., 2014; Benner, 2004].

Control Systems Architecture
In the design of large-scale systems, it is just as important to design the
architecture of the control system as it is to design the control laws. In other
words, the problem of control systems architecture is to design the place-
ment of controllers as well as the communication network they depend on.
In [Matni and Chandrasekaran, 2016], this design problem is interpreted
as the solution of a particular linear inverse problem. Furthermore, the
design problem can be formulated as a convex optimization problem that
can be solved efficiently. In [Rantzer, 2018], the author applies the same
idea to prove that network realizability of controllers can be enforced using
convex constraints on the closed-loop.

In some cases, the synthesis procedure renders a suitable architecture
without that being the primary function of the design method. For instance,
in [Bamieh et al., 2002; Curtain, 2011], control problems are investigated
for so called spatially invariant systems. Given their solution of the design
problem, the resulting controller has a degree of spatial localization similar
to the plant, due to which it possibly could be implemented in a distributed
manner. Similarly, the approach in [D’Andrea and Dullerud, 2003] renders
controllers that adopt and preserve the distributed spatial structure of the
system. Further, passivity is used as the primary design tool in [Arcak,
2007]. The controllers designed can be implemented with local information
and ensure stability of the overall closed-system. In certain cases, the closed-
loop system exhibits an interconnection structure that inherits the passivity
properties of its components.
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2.2 Control of Infinite-Dimensional Systems
Many of the results in control, firstly derived for finite-dimensional systems,
have been translated into the infinite-dimensional realm, see e.g. [Curtain
and Zwart, 2012]. Hence, there is an extensive literature on the of control
of infinite-dimensional systems. The following review will therefore focus
on H∞ control, which is the method considered in this thesis. Moreover,
note that some of the results covered in the previous section on control of
large-scale systems, actually considers infinite-dimensional systems, i.e. the
works on spatially invariant and spatially distributed systems.

As was already mentioned in the previous chapter, controller synthesis
for infinite-dimensional systems is often approached by first approximat-
ing the partial differential equations by a system of ordinary differential
equations. However, a major drawback of this approach is that the controller
designed for the finite-dimensional approximation may not stabilize the orig-
inal system. Hence, it needs to be verified that the controller synthesized for
the finite-dimensional approximation performs well on the original infinite-
dimensional systems. Sufficient conditions for certain problems have been
derived, see e.g. [Özbay et al., 2018; Ito and Morris, 1998; Morris, 2001],
which covers H∞ control and the class of systems considered in this thesis.

In order to achieve accuracy, the finite-dimensional approximations of-
ten need to be of high order, which could complicate computations. In finite
dimensions, H∞ synthesis is generally performed though iteratively solving
a series of so called algebraic Riccati equations, see [Doyle et al., 1989].
The method in [Arnold and Laub, 1984] is one example of an algorithm
for numerically solving such equations. However, it works poorly when the
order of the system is large, i.e. when the system of equations is of large
dimension. Other methods for solving algebraic Riccati equations are the
matrix sign function method [Byers, 1987] and the method based on game-
theory presented in [Lanzon et al., 2008]. However, even though synthesis
techniques with algebraic Riccati equations have existed for decades, there
is no generally accepted algorithm for systems of large order, such as high
order approximations of infinite-dimensional systems [Kasinathan et al.,
2014]. Moreover, it is not uncommon for numerical issues to arise, partic-
ularly when attempting to compute a controller near optimal attenuation
[Lanzon et al., 2008]. More specifically, it is the so called sign-indefiniteness
of the quadratic term in the H∞ type algebraic Riccati equation, and the
need for an iterative procedure to find the optimal attenuation, that compli-
cate the computations. Several approaches to the problem of H∞ control for
infinite-dimensional systems, and the computational difficulties that arise,
are described in [Özbay et al., 2018].

Methods to control that are not based on approximations of the infinite-
dimensional system are often called direct methods. Again, the advantage
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of a direct approach is that since the controller is designed for the original
model, actual performance is easier to determine. There are both state-space
based and frequency domain based solutions to the H∞ control problem in
infinite dimensions, see e.g. [Bensoussan and Bernhard, 1993; Van Keulen,
1993; Foias et al., 1996; Özbay et al., 2018]. The frequency domain approach
often requires one to determine the transfer function of the system, which
in general can be hard. For a tutorial on transfer functions of infinite-
dimensional systems, see [Curtain and Morris, 2009]. In the state-space
based approach to the H∞ control problem, the synthesis involves solving an
infinite-dimensional operator-valued Riccati equation or inequality, see, e.g.
[Bensoussan and Bernhard, 1993] and [Van Keulen, 1993]. On the latter
approach, the author in [Van Keulen, 1993, p. 184] writes "In general,
it is impossible to find explicit solutions to (infinite-dimensional) Riccati
equations. Therefore, one usually considers (numerical) approximations".
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3
Contributions

In this chapter, the main contributions of the included publications are
highlighted as well as related to the existing literature presented in the
previous chapter. The chapter is divided into three sections where the first
section covers the theoretical contributions. The remaining sections describe
the application of the results to control of large-scale systems and infinite-
dimensional systems.
Notation and preliminaries The following mathematical notation and
basic concepts of control theory can be found in standard text books on the
subject, see, e.g. [Zhou et al., 1996]. Moreover, [Zhou et al., 1996] offers
a comprehensive representation of the H∞ control problem treated in the
following section.

The real and complex numbers are denoted R and C, respectively. More-
over, Rn"m and Cn"m are the spaces of n-by-m real-valued and complex-
valued matrices. For vectors, only the length is specified, e.g. Rn is the
space of real-valued vectors of length n. The identity matrix is written as I.

If a scalar, vector or matrix x belongs to a set X , we write x ∈ X .
The transpose of a matrix M ∈ Rm"n is written MT while the conjugate
transpose of a matrix M ∈ Cm"n is written M∗. M ∈ Rn"n is said to be
Hurwitz if all its eigenvalues have negative real part. Further, for M ∈
Cn"n, positive and negative definiteness are denoted M ≻ 0 and M ≺ 0,
respectively.

The l2-norm of a vector v ∈ Cn is denoted &v&. The l2-induced matrix
norm is denoted 'M', for M ∈ Cn"m. It holds that

'M' = sup
&v&=1

&Mv&.

The space of square-integrable functions over [0,∞) is denoted L2[0,∞)
and its norm, denoted ' · '2, is given by, for f ∈ L2[0,∞),

' f '2 =
(∫∞

0
& f (t)&2 dt

)
1
2

.
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Let A ∈ Rn"n, B ∈ Rn"m, C ∈ Rk"n and D ∈ Rk"n define a linear
time-invariant continuous-time system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

x(0) = x0, t ≥ 0, (3.1)

where x is the state, u is the input, y is the output and n the order of the
system. Moreover, x0 is called the initial state. The transfer function, or
transfer matrix, of the system is given by

G(s) = C(sI − A)−1 B + D,

where s is the Laplace variable. The dual to the system G is denoted GT

and defined as

GT(s) = BT(sI − AT)−1CT + DT.

The so called poles of the system (3.1) are the eigenvalues of the matrix
A in (3.1). The system is said to be input-output stable, or simply stable, if
its poles have strictly negative real-part. If A in (3.1) is Hurwitz, the system
is stable. If (3.1) is a stable system with transfer function G, then the so
called H∞ norm of G is defined as

'G'∞ := sup
ω∈R

'G( jω)'.

Assuming that (3.1) has zero initial state, i.e. x0 = 0, the H∞ norm can also
be expressed as

'G'∞ = sup
'u'2=1

'y'2.

Consider (3.1) with C = I and D = 0. The static state feedback law u = K x,
where K ∈ Rm"n, or simply the controller K is said to stabilize the system,
or to be a stabilizing controller, if A + BK is Hurwitz.

3.1 An H∞ Optimal Controller on a Simple Explicit Form
In this section, an explicit solution to a particular H∞ optimal control
problem will be presented. Also, a more general result on the class of
systems studied in this thesis is given.
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The Problem Considered
Consider the system

ẋ(t) = Ax(t) + Bu(t) + Hw(t), x(0) = 0, t ≥ 0, (3.2a)

z(t) =
[

x(t)
u(t)

]

(3.2b)

y(t) = x(t), (3.2c)

where x(t) ∈ Rn is again the state of the system, w(t) ∈ Rl is an unknown
disturbance and the system can be controlled through the signal u(t) ∈ Rm.
The signal z is the so called regulated output of the system. Moreover, y is
the measurement of the system. A, B and H are real-valued matrices of
appropriate dimensions, and such that there exist a K ∈ Rm"n for which
A + BK is Hurwitz.

The control input u(t) is to be constructed as u(t) = Ky(t), where K
is a real-valued matrix of appropriate dimension. In fact, as y(t) = x(t) in
(3.2), i.e. the entire state vector can be measured, the control law can be
written as u(t) = K x(t). In other words, it is a static state feedback law.

More specifically, K should be chosen such that the controller stabilizes
the system (3.2) and that the following objective function is minimized

sup
'w'2=1

'z'2.

The objective function defines the performance of the closed-loop system,
as measured in H∞ control. It is implicitly assumed that the disturbance
w belongs to the space L2[0,∞), in other words, the disturbance signal
is assumed to have finite energy. The described problem can be written
compactly as

γo := inf
K∈Rm"n stab.

sup
'w'2=1

'z'2, (3.3)

where "stab." is short for stabilizing. Note that

'z'2 =
√
'x'2 + 'u'2.

In words, the objective (3.3) is to find a stabilizing static state feedback
controller K such that ratio of the energy of the state and control input
signals to the energy of any disturbance w ∈ L2[0,∞) is minimized. Hence,
the controller should be designed so that the impact of a disturbance on
the closed-loop system’s dynamics is optimally attenuated. The value γo is
called the optimal performance value.

The problem (3.3) can be written in the frequency domain as through
the following procedure. Denote the transfer matrix of (3.2) by G, i.e given
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G

K
u

w

y

z

Figure 3.1 Feedback interconnection of system G and controller K . The
signals z, y, u and w are the regulated output, measurement, control input
and disturbance, respectively.

inputs w and u and outputs z and y. It follows that G can be divided into
four blocks as

G(s) =
[

Gzw(s) Gzu(s)
Gyw(s) Gyu(s)

]

=

⎡

⎢

⎣

(sI − A)−1 H
0

(sI − A)−1 B
I

(sI − A)−1 H (sI − A)−1 B

⎤

⎥

⎦
. (3.4)

Moreover, as previously described, the controller K maps the measurement
signal y to the control input u, see Figure 3.1 for a depiction of the closed-
loop system.

The closed-loop system’s transfer matrix, i.e. the transfer matrix of the
system from w to z in Figure 3.1, can be written in terms of the so called
lower linear fractional transformation, denoted Fl, as

Fl(G, K) := Gzw + Gzu K(I − Gyu K)−1Gyw.

In this description it is assumed that the controller K is such that the
inverse of I − Gyu K exists. The problem (3.3) can now be given in the
frequency domain as

inf
K∈Rm"n, K stab.

'Fl(G, K)'∞, (3.5)

from which it becomes clear that it is an H∞ control problem. It is well
known that optimality can be achieved by a static controller in the case of
H∞ state feedback, see [Khargonekar et al., 1988]. Hence, it is nonrestrictive
to specify the set of controllers K as Rm"n.

Further comments on the objective The objective in (3.5), or more
specifically the choice of the signal z in (3.2), will now be discussed. For
simplicity, in (3.2), assume that H = B and that there are as many control
inputs as there are states in (3.2), i.e., B is a square matrix. Furthermore,
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denote P(s) = (sI − A)−1 B. Then, (3.4) is given by

G =

⎡

⎢

⎣

P
0

P
I

P P

⎤

⎥

⎦
.

Moreover,

Fl(G, K) =

[

P(I + K P)−1

K P(I + K P)−1

]

.

The H∞ optimal control problem (3.5) can thus be written as

inf
K∈Rm"n stab.

∥∥∥∥

[

P(I + K P)−1

K P(I + K P)−1

]∥∥∥∥
∞

. (3.6)

In general, closed-loop performance is concerned with the behaviour of
the systems corresponding to the four transfer functions (I + P K)−1,
(I + P K)−1 P, K(I + P K)−1 and (I + P K)−1 P K , see [Zhou et al., 1996]
for more details on this statement. The considered performance objective
(3.6) implies properties on two of these transfer functions. However, in the
applications considered in this thesis, P often has the characteristics of a
low-pass filter. Thus, small

'P(I + K P)−1'∞

implies that '(I+ P( jω)K)−1' is small at low frequencies. This is generally
the performance requirement aimed for. Also, in this example, as P and K
are square with the same dimensions, we have that

'K(I + P( jω)K)−1' ≤ 'K''(I + P( jω)K)−1'.

Thus, '(I + P( jω)K)−1' small for low frequencies implies that
'K(I + P( jω)K)−1' is small for low frequencies, as long as 'K' is kept
small.

The explicit solution
In this section, an explicit solution to (3.5), or equivalently (3.3), given
a certain class of systems (3.2), is presented. It follows from the explicit
solution that the synthesized static state feedback law also can be stated
explicitly, and on a simple form. The first part of this section considers
systems of the form (3.2) with A symmetric and Hurwitz while the second
part considers more general systems (3.2).
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The KYP approach A problem closely related to (3.5) is the following:
given γ > 0, find a stabilizing K ∈ Rm"n, if any exists, such that

'Fl(G, K)'∞ < γ . (3.7)

Note that γ can not be chosen as the value of (3.5), i.e. γo. In fact, it must
hold that γ > γo for there to possibly exist a solution. Hence, a controller
K that solves (3.7) is suboptimal.

The problem (3.7) can equivalently be written in terms of a linear matrix
inequality constraint by the KYP-lemma, see [Rantzer, 1996] for the version
used in this thesis. For simplicity, H = I in this section. The equivalent
statements are

i) There exists a stabilizing K ∈ Rm"n such that

'Fl(G, K)'∞ < γ .

ii) There exist matrices X ∈ Rn"n, X = X T ≻ 0, and Y ∈ Rm"n such that
⎡

⎢

⎢

⎢

⎣

X AT + AX + Y T BT + BY I X Y T

I −γ 2 I 0 0
X 0 −I 0
Y 0 0 −I

⎤

⎥

⎥

⎥

⎦

≺ 0.

The two statements are related by K = Y X−1. Moreover, the matrix in-
equality in ii) can be rewritten as

(X + A)(X + A)2 + (Y T + B)(Y T + B)T
︸ ︷︷ ︸

=: F(X, Y )

−AAT − BBT +γ−2 I ≺ 0, (3.8)

through the use of the Schur complement lemma and completion of squares.
The equivalent statements i) and ii) will now be used to find an explicit
solution to (3.5) when A in (3.2) is symmetric and Hurwitz.

In (3.8), it is clear that if the term F(X, Y ) is made as small as possible,
it allows for the performance value γ to be chosen as small as possible. In
fact, if the matrix A is symmetric and Hurwitz, then the term F(X, Y ) can
be made equal to zero by a certain choice of matrices X and Y .

From symmetry and Hurwitz stability of A it follows that A is negative
definite, i.e. A ≺ 0. Hence, it is possible to pick X = −A. Moreover, the
matrix Y can be chosen as −BT . This particular choice of matrices X and
Y makes the term F(X, Y ) equal to zero, i.e. F(−A,−BT) = 0. Now, given
X = −A and Y = −BT , it follows that

K = BT A−1.
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Moreover, the suboptimal performance level γ is bounded through (3.8) as
−A2 − BBT +γ−2 I ≺ 0,

which is equivalent to γ > '(A2 + BBT)−1' 1
2 . However, it can be shown that

the controller K = BT A−1 actually achieves the performance level

'(A2 + BBT)−1'
1
2

and that this is in fact the optimal performance level γo. This result is
stated as Theorem 1 in Paper I.
The static problem approach The optimal controller K = BT A−1 can
also be obtained through a procedure very different to that previously de-
scribed. Consider the following optimization problem

minimize &x̄&2 + &ū&2 (3.9a)

subject to 0 = Ax̄ + Bū + Hw̄, (3.9b)
where x̄, ū and w̄ are vectors of appropriate dimensions. Moreover, w̄ is
given and x̄ and ū are to be chosen so as to minimize the objective function,
given the constraint. This is a standard least-squares type problem with
solution

[

x̄∗
ū∗

]

=
[

−AT

−BT

]

(AAT + BBT)−1 Hw̄, (3.10)

where the matrix AAT + BBT is invertible by assumption. The solution
suggests that ū∗ = BT A−T x̄∗. Notice that this is exactly the optimal con-
troller previously derived. However, in the case with A symmetric, it can be
written as ū∗ = BT A−1 x̄∗.

It can be shown that the problem (3.5) is lower-bounded by the supre-
mum of the squareroot of (3.9) over &w̄& = 1, i.e.

γo ≥ 'HT(AAT + BBT)−1 H'
1
2 ,

see the proof of Theorem 2 in Paper III for details. For systems (3.2) with
A symmetric and Hurwitz, the controller K = BT A−1 is always stabilizing
and achieves this lower bound. Hence, it is a solution to (3.5). The discrete
time counterpart to this result is stated in Paper II.

Notice that (3.10) suggests that the controller K = BT A−T could be
a good guess of an optimal controller for systems (3.2) where A is not
symmetric as well, however, invertible. Systems for which this is in fact
the case are presented in Paper III. Moreover, for any system (3.2), it
is sufficient to check if K = BT A−T is stabilizing and if it achieves the
performance value

'HT(AAT + BBT)−1 H'
1
2 ,

for K = BT A−T to be optimal.
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Systems with a bottleneck frequency
For certain systems (3.2), such as those with A symmetric and Hurwitz,
the following claim can be made: there exist an ω0 ∈ R and a stabilizing
controller K0 ∈ Rm"n, of appropriate dimension, such that

K0 belongs to the set arg min
C∈Cm"n

'Fl(G( jω0), C)' (3.11)

and
ω0 belongs to the set arg max

ω∈R
'Fl(G( jω), K0)'. (3.12)

It follows that K0 minimizes 'Fl(G, K)'∞ over K ∈ Rm"n, which is proven
in Paper III. In fact, these properties characterize a class of systems G, not
necessarily on the form (3.2), for which the H∞ optimal control problem is
translated into a static problem at a single frequency. More specifically, the
frequency ω0 and the static problem given by the optimization problem in
(3.11), i.e.

min
C∈Cm"n

'Fl(G( jω0), C)'. (3.13)

The frequency ω0 can be interpreted as a bottleneck frequency at which
disturbance attenuation is the most crucial.

For G as defined in (3.4), the problem (3.13) has the solution
C∗ = −BT(− jω0 − AT)−1. This is given by Theorem 2 in Paper III. Notice
that C∗ is highly related to GT

yu. Moreover, for this to be a solution to (3.5) it
suffices to prove that there exists an ω0 ∈ R for which C∗ is real-valued and
stabilizing and such that (3.12) is fulfilled when K0 = −BT(− jω0 − AT)−1.
Clearly, for (3.2) with Hurwitz and Symmetric A, this holds for ω0 = 0.
Further comments Unstable open-loop systems (3.2) are not included in
the examples given in this thesis. However, they are covered by the included
results. Moreover, a slight variation in the problem setup is needed for
systems (3.2) with imaginary axis poles, see, e.g. the techniques described
in [Stoorvogel, 1992, Sec. 4.7]. However, they are not studied in any more
detail in this thesis. It is also possible to consider (3.2) where the signals z
and y are more general, see Paper I and Paper III for this.

3.2 Applications in Decentralized and Distributed Control
The H∞ optimal state feedback controller derived in the previous section,
i.e., K = BT A−T , has several features that makes it suitable for the control
of large-scale systems. Firstly, since it is given explicitly, no computations
are needed for it to be synthesized, only when implemented. Moreover, if
the matrices A and B are sparse, it is often the case that the controller
K = BT A−T is sparse as well. Consider for example (3.2) with A diagonal
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and Hurwitz and B sparse. Then K = BT A−1 is an example of a decentral-
ized control law that is also globally optimal.

The decentralized properties of the controller K = BT A−T are illus-
trated by the following example, extracted from Paper III.
Example 1
Consider (3.2a) to be given by the N subsystems i = 1, . . . , N with dynamics

ẋi(t) = −ai xi(t) +
∑

(i, j)∈E
(uij(t)− uji(t)) + wi(t), xi(0) = 0, t ≥ 0.

Here, xi is the state of subsystem i, wi is a disturbance and the control
inputs uij are to be designed. Furthermore, (i, j) is in the set E if and only
if subsystems i and j are connected and ai > 0 for all i ∈ {1, . . . , N}. The
overall system can be written on the form (3.2a) in which A is diagonal
and Hurwitz. Hence, it follows that K = BT A−1 solves (3.5) for the given
system. Moreover, K = BT A−T is equivalent to

uij(t) = −xi(t)/ai + xj(t)/a j.

Notice that a control signal uij is decentralized as it is only composed of
the states that it directly affects. Furthermore, the control law scales well
with the order of the system as each control input can be computed locally
and with simple computations. It is also the case that an extra subsystem
can be added without the need to change any of the already existing control
laws, see Paper I for more details on this claim. ✷

The sparsity patterns of the matrices A and B considered in Exam-
ple 1 are not the only types of sparsity patterns for which the controller
K = BT A−T is decentralized. In fact, in Papers I, II and III, several systems
are presented for which the explicitly stated controller can be implemented
in a distributed manner. The following model for the temperature dynamics
in a building is considered in both Paper I and Paper III.
Example 2
Consider a building with N rooms. The average temperature in room i
is denoted Ti. The temperature dynamics is governed by Fourier’s law of
thermal conduction and given, around an operating point, as follows

micṪi = pi(Tout − Ti) +
∑

j∈Ei

pi j (Tj − Ti) + ui + di, (3.14)

where mi is the air mass of room i and c is the specific heat capacity of air.
Furthermore, Ei is the set of rooms that share a wall/floor/ceiling with room
i. The heat conduction coefficients pi and pij = p ji are constant, real-valued
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and strictly positive. Moreover, Tout is the outdoor temperature and inputs
di and ui are disturbance and control inputs, respectively.

Disturbances occur for example when a window is opened or when there
is a change in outdoor temperature. Furthermore, it is assumed that the
average temperature of each room can be measured as well as controlled, the
latter through heating and cooling devices modelled by the control inputs ui.

The overall system can be written as

EṪ = PT + u + w

where

T =

⎡

⎢

⎢

⎢

⎣

T1

T2
...

TN

⎤

⎥

⎥

⎥

⎦

, u =

⎡

⎢

⎣

u1
...

uN

⎤

⎥

⎦
,

E is a diagonal matrix with positive elements Eii = mic, P ≺ 0 and the
i:th entry of w is equal to di + piTout. Consider the variable transformation
x = E 1

2 T. Then, the system can be written as

ẋ = Ax + Bu + Hw,

where

A = E−1/2 P E−1/2 ≺ 0, B = E−1/2 and H = E−1/2.

The system is now on the form (3.2a) with A is symmetric and Hurwitz.
Hence, K = BT A−1 = P−1 E solves the problem (3.5) for (3.2) where (3.2a)
is defined as above. Moreover, in words, the regulated output

z =

[

x
u

]

=

[

E 1
2 T
u

]

,

means that the temperature deviation in each room, as weighted by the air
mass, should be made as small as possible with minimum control effort.

Of course, it is not computationally efficient to compute the inverse of
the matrix P when the number of rooms is large, as the size of the matrix
is N " N. However, as the matrix P is sparse, computation can be done in
a distributed manner throughout the building. This will now be illustrated.

For simplicity, consider the case of 3 rooms in a line, i.e. room 1 and 2
share a wall and room 2 and room 3 share a wall as depicted in Figure 3.2.
Moreover, assume that pi = 1 for i = 1, . . . , 3 and that p12 = p23 = 1. Then,

P =

⎡

⎢

⎣

−2 1 0
1 −3 1
0 1 −2

⎤

⎥

⎦
.
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·T1 ·T2 ·T3

Figure 3.2 Three rooms in a line, where each room has a window. The
temperature measurement in each room is indicated by a dot.

The inverse of P is dense. However, consider the system of equations that
is equivalent to Pu = ET,

⎡

⎢

⎣

1 0 0
−α 1 0
0 −β 1

⎤

⎥

⎦

⎡

⎢

⎣

−2 1 0
0 α − 3 1
0 0 β − 2

⎤

⎥

⎦

⎡

⎢

⎣

u1

u2

u3

⎤

⎥

⎦
=

⎡

⎢

⎣

cm1T1

cm2T2

cm3T3

⎤

⎥

⎦

where α = 0.5 and β = 0.4. The control law can ideally be implemented
as follows, where delays due to communication are neglected. The arrows
show the propagation of information.

Controller 1 computes x1 = cm1T1

→ Controller 2 computes x2 = αx1 + cm2T2

→ Controller 3 computes u3 = (β x2 + cm3T3)/(β − 2)
→ Controller 2 computes u2 = (x2 − u3)/(α − 3)

→ Controller 1 computes u1 = (u2 − x1)/2.

The flow of information is through the building and back again. Notice that
each controller makes computations based only on local information and
information from its neighbours. ✷

Limitations and comparison to existing works Since the problem
of H∞ control was first formulated in [Zames, 1981], several solution
techniques for the general H∞ control problem, i.e. not necessarily the
case of state feedback, have been proposed. Examples are Youla-Kucera
parametrization, see e.g. [Zhou et al., 1996], Riccati-based approaches [Doyle
et al., 1989] and the optimization-based approach that uses linear matrix
inequalities [Gahinet and Apkarian, 1994]. However, sparsity in the con-
troller’s structure is generally not a trait of controllers derived through
these so called conventional approaches. For instance, the solution of an
algebraic Riccati equation is often dense. Also, in practice, the conventional
methods need to be performed numerically. Furthermore, to achieve op-
timality by these general purpose methods, the computational procedure
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needs to be iterated which is time consuming. This is not the case with the
explicit control law we have obtained. However, it is only applicable to a
certain class of systems and objectives.

Decentralized or distributed controllers are often obtained through im-
posing structural constraints on the controller as a part the synthesis pro-
cedure. This is the tool used in many of the works reviewed in Section 2.1.
However, as was also discussed there, imposing such constraints might
render losses in performance or intractability of the problem. The control
design problem we consider does not include any structural constraints on
the controller. Furthermore, the controller is not sparse due to regulariza-
tion. Instead, it is simply the structural sparsity of the system that decides
if the explicitly stated controller will be sparse or not. In some sense, the
controller naturally inherits a structure compatible with the information
structure of the system. This property of the controller is similar to that
exhibited by the spatially invariant and spatially distributed systems com-
mented on in the previous chapter. However, the systems we can consider
are not restricted to be spatially invariant. Moreover, the presented re-
sults show that structural constraints, or regularization techniques, are not
necessary for synthesis of distributed controllers.

If an H∞ optimal synthesis problem is solvable, it generally has several
solutions. In other words, there exist several optimal control laws. Naturally,
they will have different properties. In the design of controllers for large-
scale systems, properties of sparsity in the structure of the control law
is of importance. Hence, the choice of an optimal controller is crucial. The
explicitly stated controller indicates an optimal control systems architecture
that, for certain applications of large-scale systems, can be implemented
in a decentralized or distributed manner, as was previously illustrated
through examples. However, it is important to stress, again, that our results
are only applicable to a certain class of systems and objective, and only
for the problem of H∞ control. However, due to its strong properties, the
explicitly stated control law could be used for benchmarking of general
purpose methods for synthesis of decentralized controllers.

In comparison to the H∞ control problem, the regular H2 optimal control
problem, the type of which the state feedback case is, has one unique
solution. Hence, the structure given by the unconstrained synthesis is the
only globally optimal structure possible. On the contrary, when performance
is measured through the L1 or L∞ induced norms, there are yet again
several solutions. Existing works that consider the latter types of control was
reported in Chapter 1. However, they offer the controller as the unspecified
solution to linear programs, i.e. the controllers are not given explicitly but
can be efficiently computed.
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3.3 Applications for Infinite-Dimensional Systems
The infinite-dimensional linear and time-invariant systems considered in
this thesis can be described in the time-domain similarly to (3.2). However,
the state now evolves on an infinite-dimensional Hilbert space. Further-
more, what was before the state matrix A is instead an operator acting
on this infinite-dimensional space. More specifically, for this type of repre-
sentation to be valid, the operator A with domain D(A) needs to generate
a strongly continuous semigroup on the space. Consider the sections with
mathematical preliminaries in Paper IV and V for further details as well
as [Curtain and Zwart, 2012].

The state feedback result for (3.2) with symmetric and Hurwitz state
matrix A is translated into the infinite-dimensional realm in Paper IV. This
covers systems modelled by certain parabolic equations such as the heat
equation. In the following example, extracted from Paper IV, the problem
considered is to control the temperature of the rod in Figure 3.3 when under
the impact of a disturbance. The example showcases the use of the explicitly
expressed controller, or closed-form controller as we often refer to it in the
infinite-dimensional setting.

Example 3
The temperature at time t and position x is denoted z(x, t) and governed by

,z
,t (x, t) = ,2z

,x2 (x, t) + u(t) + w(t) 0 < x < l, z(x, 0) = 0, t ≥ 0, (3.15)

where l is the length of the rod and w(t) ∈ R is the disturbance at time t.
The disturbance is uniformly distributed along the length of the rod. Simi-
larly, the control input u can impact the temperature along the full length
of the rod and the temperature is assumed to be zero at the end points.
Notice that the state of the system, i.e. the temperature, is denoted z in the
infinite-dimensional setup as opposed to x in the finite-dimensional setting.

The H∞ state feedback problem (3.5) is as follows: Given w ∈ L2[0,∞),
minimize the H∞ norm of the closed-loop system’s transfer function from
w to

ζ =

[

z
u

]

over the set of stabilizing controllers K , represented by bounded linear
operators, that map z(x, t) to u(t). This is exactly the problem considered
in the finite-dimensional case and similarly, an optimal controller can be
given on closed form.
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x = 0 x = l

x

Figure 3.3 Rod of length l with one-dimensional spatial coordinate x.

In this example, the explicitly stated, or closed-form, controller is equiv-
alent to

u(t) =
∫ l

0

s(s − l)
2︸ ︷︷ ︸

:= f (s)

z(s, t) ds.

Hence, the control signal is a weighted integral of the deviation in temper-
ature along the spatial coordinate. Moreover, the weight f (s) determines
the scalar signal for controlling the temperature profile, as a compromise
between the deviation in temperature from zero and the cost for changing
the temperature. ✷

Limitations and comparison to existing works It is rare to obtain the
solution to an infinite-dimensional H∞ problem explicitly. Hence, the results
presented in this thesis are a rarity in the theory of H∞ control. Moreover,
the explicitly stated solution is a powerful tool both for its primary purpose
of control and as a means for benchmarking of general purpose algorithms,
especially those intended for systems of large order. Of course, it is again
important to stress that the controller is only applicable to a certain class
of infinite-dimensional systems, which is in contrast to the general purpose
methods found in the literature reviewed in the previous chapter.

The state feedback law we derive will depend on the infinite-dimensional
state vector for computation. However, as our results follows through in
finite dimensions as well, an approximation of the controller can be obtained
explicitly. Hence, the difference between the implemented and the exact
controller can be calculated and used to analyse the closed-loop behaviour.
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Conclusions

In this thesis, the problems of control of linear time-invariant large-scale
systems as well as infinite-dimensional systems are addressed. More specifi-
cally, the method of H∞ control, and in particular the case of state feedback,
is considered. One of the main contributions is the identification of a class
of systems for which an H∞ optimal control law can be given on a simple
explicit form. The control law is shown to have applications both to the
problem of control of systems of large scale as well as to the control of
infinite-dimensional systems.

More generally, a class of systems is characterized for which the H∞
optimal control problem can be translated into a static problem at a single
frequency. Hence, systems of this class has a bottleneck frequency at which
the disturbance attenuation is the most crucial. For some of the systems,
and objectives, the static problem can be solved explicitly. This is what
renders the simple and explicit expression of the control law. Examples of
systems for which this can be done are models for temperature dynamics in
buildings, water irrigation and electrical networks.

For systems with sparse structure, such as the large-scale applications
mentioned, the explicity stated control law is an example of a decentralized
controller that is also globally optimal. In fact, its decentralized structure
is obtained without any structural constraints or regularization techniques
being part of the synthesis. Instead, it is a result of its explicit form, through
which it inherits a structure compatible with the information structure of
the system. For infinite-dimensional systems, the explicitly stated control
law is important both for its primary purpose of control and as a means in
evaluation and benchmarking of general purpose algorithms for H∞ control.
Moreover, an important application is diffusion equations.

Directions for further research include to investigate time-delayed sys-
tems as well as systems with nonlinearities in the presented framework.
For instance, it is a natural extension to consider control input saturation
as this is a common feature among the physical systems considered in this
thesis. Initial analysis for a certain class of non-linear systems has pre-
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sented promising results. Another direction for further research is to study
how to efficiently solve the static synthesis problem for a general system in
the class, such as for the case of output feedback. It is also of interest to
investigate the possibility of explicit solutions to control problems in which
the performance is measured through norms other than the H∞ norm.

In the continuation of the work for infinite-dimensional systems, there
are several areas of application to explore, e.g. systems in financial math-
ematics and other problems in heat transfer. Furthermore, the possibility
of an extension to unbounded input and output maps, such as in the case
of boundary control, is worth to investigate. Moreover, it could be studied
how the results can be used to improve the performance of general purpose
algorithms for H∞ synthesis. This is also the case for the application of the
results to the problems of optimal actuator and sensor placement. Initial
discussion on these topics are included in Paper V.
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Paper I

Optimal H-infinity State Feedback
for Systems with Symmetric

and Hurwitz State Matrix

Carolina Lidström Anders Rantzer

Abstract

We address H∞ state feedback and give a simple form for an optimal
control law applicable to linear time-invariant systems with symmetric
and Hurwitz state matrix. More specifically, the control law as well as
the minimal value of the norm can be expressed in the matrices of the
system’s state space representation, given separate cost on state and
control input. Thus, the control law is transparent, easy to synthesize
and scalable. If the plant possesses a compatible sparsity pattern, it
is also distributed. Examples of such sparsity patterns are included.
Furthermore, if the state matrix is diagonal and the control input
matrix is a node-link incidence matrix, the open-loop system’s property
of internal positivity is preserved by the control law. Finally, we give
an extension of the optimal control law that incorporate coordination
among subsystems. Examples demonstrate the simplicity in synthesis
and performance of the optimal control law.

© 2016 IEEE. Reprinted, with permission, from 2016 American Control
Conference (ACC).
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1. Introduction
Systems with a high density of sensors and actuators often lack centralized
information and computing capability. Thus, structural constraints, e.g, on
information exchange among subsystems, have to be incorporated into the
design procedure of the control system. However, imposing such constraints
may greatly complicate controller synthesis.

We address H∞ structured static state feedback, a problem that is rec-
ognized as genuinely hard given arbitrary plant and controller structures.
However, we give a simple form for an optimal control law applicable to lin-
ear time-invariant (LTI) systems with symmetric and Hurwitz state matrix
that is distributed if the system possesses a compatible sparsity pattern.
Consider the following LTI system

ẋ =

⎡

⎢

⎣

−1 0 0
1 −3 0
0 0 −2

⎤

⎥

⎦

︸ ︷︷ ︸
=: A

x +

⎡

⎢

⎣

−1 0 0
1 1 −1
0 0 1

⎤

⎥

⎦

︸ ︷︷ ︸
=: B

u + w (4.1)

where the state x, the control input u and the disturbance w are real valued.
The static state feedback controllers

K1 =

⎡

⎢

⎣

1 − 1
3 0

0 − 1
3 0

0 1
3 − 1

2

⎤

⎥

⎦
and K2 =

⎡

⎢

⎣

0.93 −0.11 0.00
−0.05 −0.17 −0.01
0.04 0.16 −0.26

⎤

⎥

⎦

both minimize the H∞ norm of the closed-loop system from disturbance w to
penalized variables x and u, i.e., when u = K1 x and u = K2 x, respectively.
However, they have different structural properties, e.g., K1 is sparser than
K2. Furthermore, the feedback law u = K1 x is distributed as the matrix
K1 has the same structure as the sparse matrix BT . This is not the case for
controller K2. Controller K1 can be given on the simple form we propose.
More specifically K1 can be written as K1 = BT A−1. Controller K2 is
derived by the algebraic Riccati equation (ARE) approach. That is, iteration
over an ARE-constraint until the minimal value of the norm is obtained, see
[Zhou et al., 1996] for details. Controllers synthesized by the ARE method
are often dense, as is the case for controller K2. Moreover, as the control
law we give, i.e., u = BT A−1 x, is optimal, it is equal in performance to
any centrally derived optimal controller. Additionally, it is transparent in
its structure, easy to synthesize and scalable.

In the 1980’s, synthesis of controllers that achieve H∞ norm specifica-
tions became a major research area and was formulated in [Zames, 1981].
The state-space based solution approach to the synthesis problem paved
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the way for optimization tools to be used, e.g., see [Doyle et al., 1989]. The
H∞ norm condition can be turned into a linear matrix inequality (LMI) by
the Kalman-Yakubovich-Popov lemma [Gahinet and Apkarian, 1994], see
Lemma 1 in Appendix for the version used in this paper. As the theory on
H∞ control emerged, a decentralized version took form, e.g., see [Zhai et al.,
2001]. Imposing general sparsity constraints on the controller might compli-
cate the design procedure. However, design is simplified if the constrained
set of controllers is quadratically invariant with respect to the given system
[Rotkowitz and Lall, 2006]. It is also simplified if the closed-loop system
is constrained to be internally positive [Tanaka and Langbort, 2011]. Our
method results in a control law that is equal in performance to the central
non-structured controller of the system. This is not the case in the methods
previously mentioned. However, they treat more general classes of systems.

The optimal control law u = BT A−1 x only requires some relatively
inexpensive matrix calculations for its synthesis, especially for sparse sys-
tems. This is in contrast to general H∞ controller synthesis where more
expensive computational methods are required. Additionally, its structure
is transparent, which is not often the case in H∞ controller synthesis. The
H∞ framework treats worst-case disturbance as opposed to stochastic dis-
turbance in the H2 framework. However, the transparent structure and
simple synthesis of the derived optimal feedback law might motivate its use
even when some characteristics of the disturbance are known. Moreover,
we show that it can be extended to incorporate coordination in a system of
heterogeneous subsystems, given a linear coordination constraint. The coor-
dinated control law is a superposition of a decentralized and a centralized
part, where the latter is equal for all agents. This structure might be well
suited for distributed control purposes as well. See [Madjidian and Mirkin,
2014] for a similar problem treated in the H2 framework. Furthermore, if A
is diagonal and −BBT is Metzler, the closed-loop system with the optimal
control law, from disturbance to state, is internally positive. Thus, for such
systems the property of internal positivity is preserved in the closed-loop
system.

The outline of this paper is as follows. This section is ended with some
notation. In Section 2, the main result is stated and proved. Section 3 treats
system sparsity patterns that result in a distributed control law. Section 4
treats the result on internal positivity while Section 5 gives an extension of
the control law that incorporates coordination. In Section 6, the performance
of our optimal control law is compared, by a numerical example, to an
optimal controller synthesized by the ARE approach. Concluding remarks
are given in Section 7.

The set of real numbers is denoted R and the space n-by-m real-valued
matrices is denoted Rn"m. The identity matrix is written as I when its size
is clear from context, otherwise In to denote it is of size n-by-n. Similarly,
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a column vector of all ones is written 1 if its length is clear form context,
otherwise 1n to denote it is of length n.

For a matrix M, the inequality M ≥ 0 means that M is entry-wise non-
negative and M ∈ Rn"n is said to be Hurwitz if all eigenvalues have negative
real part. The matrix M is said to be Metzler if its off-diagonal entries are
nonnegative and the spectral norm of M is denoted 'M'. Furthermore, for
a square symmetric matrix M, M ≺ 0 (M ≼ 0) means that M is negative
(semi)definite while M ≻ 0 (M ≽ 0) means M is positive (semi)definite.

The H∞ norm of a transfer function F(s) is written as 'F(s)'∞. It is
well known that this operator norm equals the induced 2-norm, that is

'F'∞ = supv/=0
'Fv'2
'v'2

.

2. An Optimal H∞ State Feedback Law
Consider a LTI system

ẋ = Ax + Bu + w (4.2)
where the state matrix A ∈ Rn"n is symmetric and Hurwitz and the state
x ∈ Rn can be measured. Moreover, the control input u ∈ Rm, disturbance
w ∈ Rn and matrix B ∈ Rn"m. Given (4.2), consider a stabilizing static
state feedback law u := K x, where K ∈ Rm"n. Then, the transfer function
of the closed-loop system from disturbance w to penalized variables x and
u, is given by

GK(s) =
[

I
K

]

(sI − A − BK)−1 . (4.3)

For (4.2) with A symmetric and Hurwitz, an optimal H∞ static state feed-
back controller K , i.e., a matrix K such that 'GK'∞ is minimized, can be
given explicitly in the matrices A and B. This is the main result of this
paper and it is stated in the following theorem.
Theorem 1
Consider the system (4.2) with A symmetric and Hurwitz. Then, the norm
'GK'∞ is minimized by the static state feedback controller K∗ = BT A−1.
The minimal value of the norm is '(A2 + BBT)−1' 1

2 . ✷

Proof. Given γ > 0, the following statements are equivalent.

(i) There exists a stabilizing controller K such that

'GK'∞ = sup
ω∈R

∥∥∥∥∥

[

I
K

]

( jω I − A − BK)−1
∥∥∥∥∥ < γ .
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(ii) There exist matrices K and P = PT , P ≻ 0, such that
⎡

⎢

⎣

(A + BK)T P + P(A + BK) P [I KT]
P −γ 2 I 0

[I KT]T 0 −I

⎤

⎥

⎦
≺ 0.

(iii) There exist matrices X = X T , X ≻ 0, and Y such that
⎡

⎢

⎣

AX + X A + BY + Y T BT I [X Y T]
I −γ 2 I 0

[X Y T]T 0 −I

⎤

⎥

⎦
≺ 0.

(iv) There exist matrices X = X T , X ≻ 0, and Y such that

(X + A)2 +
(

Y + BT)T (

Y + BT)− A2 − BBT +γ−2 I ≺ 0.

(v)

−A2 − BBT +γ−2 I ≺ 0.

(vi)

γ > '
(

A2 + BBT)−1 '
1
2 .

The equivalence between (i) and (ii) is given by the KYP-lemma, see
Lemma 1 given in the Appendix. Statement (ii) can be equivalently written
as (iii) after right- and left-multiplication with diag(P−1, I, I) and change
of variables (P−1, K P−1) → (X, Y ). The equivalence between (iii) and (iv)
is obtained by applying the Schur complement lemma and completion of
squares to the inequality in (iii). Choosing X = −A and Y = −BT shows
equivalence between (iv) and (v). It is possible to choose X = −A as A is
symmetric and Hurwitz, i.e., A ≺ 0. Finally, notice that A2 + BBT ≻ 0.
Thus,

(

A2 + BBT)−1 ≻ 0 and

(v) 01 γ 2 I ≻
(

A2 + BBT)−1 01 (vi).

Given X = −A and Y = −BT , γ is minimized and K∗ = Y X−1 = BT A−1

minimizes the norm in (i). Now, define γ∗ := '
(

A2 + BBT)−1 ' 1
2 and assume

that 'GK∗'∞ /= γ∗. Then 'GK∗'∞ has to be strictly larger than or strictly
smaller than γ∗. Consider 'GK∗'∞ > γ∗. This statement contradicts state-
ment (i) and (vi) and is therefore false. Now, consider instead 'GK∗'∞ < γ∗.
This statement contradicts that γ is minimized and is therefore also false.
Hence, the statement 'GK∗'∞ /= γ∗ is false and

'GK∗'∞ = '
(

A2 + BBT)−1 '
1
2 .

✷
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Remark 1
The result stated in Theorem 1 can be made more general. However, we
only give some comments on this here, the details are left to the reader.
One can consider Hw instead of w in (4.2), where H is a real matrix of
appropriate size. Then, the optimal control law is still given by K∗ = BT A−1,
i.e., its form is not altered by H. However, the value of the norm becomes
'HT(A2 + BBT)−1 H'

1
2 . Notice that if H is a column vector, the expression

inside the norm is a scalar.
If the considered system is stable and diagonalizable but not symmetric,

a variable transformation can be used in order to be able to apply the
result in Theorem 1. If Du, with D ∈ Rq"m, is penalized instead of u, and
R := DT D is invertible, the control law becomes K∗ = R−1 BT A−1 and the
norm is given by '(A2 + BR−1 BT)−1'

1
2 . If the penalized variables x and u

are scaled by scalar nonzero coefficients, the optimal control law will only
be scaled by a scalar nonzero coefficient. ✷

Synthesis of optimal state feedback controllers generally requires addi-
tional computation beyond what is needed to compute K∗ from Theorem 1,
i.e., some relatively simple matrix calculations. Moreover, controllers gener-
ated by other methods are rarely as transparent as K∗. The transparency
simplifies analysis of the controller’s structure and enables scalability, which
will be exploited in the following section.

In order for Theorem 1 to be applicable, the system of interest has to
have a state space representation with symmetric and Hurwitz state matrix
A. The symmetry property of A demands that states that affect each other
do so with equal rate coefficient. Such representations appear, for instance,
in buffer networks and models of temperature dynamics in buildings. We
will now give an example of the latter.
Example 1
Consider a building with three rooms as depicted in Figure 1. The average
temperature Ti in each room i = 1, 2 and 3, around some steady state, is
given by the following model

Ṫ1 = −r1T1 + r12 (T2 − T1) + u1 + w1

Ṫ2 = −r2T2 + r12 (T1 − T2) + r23 (T3 − T2) + u2 + w2 (4.4)

Ṫ3 = −r3T3 + r23 (T2 − T3) + u3 + w3

governed by heat balance. The parameters r• are constant, real-valued and
positive. They are the rate coefficients of the system. For instance, r12 is the
rate coefficient of the heat transfer through the wall between room 1 and
2. Changes in outdoor temperature and disturbances specific for each room,
such as a window is opened, are modeled by disturbances wi. The average
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T1 T2 T3

Figure 1. Schematic of a building with three rooms. The average temper-
ature in each room i = 1, 2 and 3 is denoted Ti and given by (4.4).

temperatures can be measured as well as controlled, the latter through
heating and cooling devices given by control inputs ui.

If (4.4) is written on form (4.2), it is easy to see that the corresponding
matrix A is symmetric. Thus, Theorem 1 is applicable to (4.4), assuming
that parameters r• are such that A is also Hurwitz. Given a disturbance, the
feedback law with K∗ from Theorem 1 tries to keep the average temperature
as close to the steady state as possible while minimizing the cost that comes
with heating and cooling. ✷

3. Distributed and Scalable
The structure of the optimal controller K∗ given in Theorem 1 is clearly
dependent on the structure of matrices A and B in (4.2). For instance,
if A is diagonal and B is sparse, K∗ has the same sparsity pattern as
BT . Moreover, controller K∗ is distributed if (4.2) possesses a compatible
sparsity pattern. This is demonstrated in Example 2 below. It is worthwhile
to point out that for some sparsity patterns of (4.2) the representation
K−1

∗ u = x instead of u = K∗x might be beneficial for computation of u.
That is, if BT is invertible.

Example 2
Consider the following LTI system, containing three subsystems denoted
S1, S2 and S3,

S1 : ẋ1 = A1 x1 + B1u1 + w1

S2 : ẋ2 = A2 x2 + B2u1 + B3u2 + w2 (4.5)
S3 : ẋ3 = A3 x3 + B4u2 + w3

where each subsystem Si, i =1, 2 and 3, has finite state dimension ni ≥ 1,
each control input ui, i =1, 2 and 3, is a vector of finite length mi ≥ 1
and the matrices are of suitable dimension. Furthermore, matrices A1, A2
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S1 S2 S3 S4
u1 u2

w1 w2 w3 w4

u3

Figure 2. Graphical representation of (4.5) in solid lines. Additional sub-
system S4 and control input u3 in dashed lines.

and A3 are assumed to be symmetric and Hurwitz. Then, Theorem 1 is
applicable to (4.5) and results in the optimal controller

K∗ =

[

BT
1 A−1

1 BT
2 A−1

2 0
0 BT

3 A−1
2 BT

4 A−1
3

]

. (4.6)

Notice that, if (4.5) is written on form (4.2) the optimal controller K∗ has
the same sparsity pattern as BT . Thus, each control input vector ui is only
constructed from the states it affects in (4.5). If we consider each subsystem
Si in (4.5) to represent an area of the physical system it models, the optimal
controller (4.6) is distributed according to these areas. See Figure 2 for a
graphical representation of the system, drawn in solid lines. Each subsystem
Si is depicted by a circular node while each control input ui is given by a
link connecting the subsystems it affects in (4.5). Each disturbance wi is
drawn as an arrow that points toward the subsystem it affects in (4.5). ✷

Now, we will demonstrate the scalability of the optimal control law.
Consider that a fourth subsystem denoted S4, of finite dimension n4 ≥ 1,
is connected to (4.5) via a third control input denoted u3, of finite length
m3 ≥ 1, as depicted by the dashed lines in Figure 2. The dynamics of
subsystem S4 and the altered dynamics of subsystem S3 are then given by

S3 : ẋ3 = A3 x3 + B4u2 + B5u3 + w3

S4 : ẋ4 = A4 x4 + B6u3 + w4

where matrix A4 is also assumed to be symmetric and Hurwitz. Then,
Theorem 1 is still applicable and the extended optimal controller becomes

K∗ =

⎡

⎢

⎣

BT
1 A−1

1 BT
2 A−1

2 0 0
0 BT

3 A−1
2 BT

4 A−1
3 0

0 0 BT
5 A−1

3 BT
6 A−1

4

⎤

⎥

⎦
.

The expansion of the system does not alter the initial control inputs u1 and
u2. Thus, for systems with this type of sparsity pattern, the control law
u = K∗x is easily scalable. Moreover, the control law is still distributed as
the additional control input u3 is only constructed from states x3 and x4.
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4. Preserves Internal Positivity
We will now consider (4.2) with diagonal and Hurwitz matrix A and where
−BBT is Metzler. Then, the closed-loop system from disturbance w to state
x with the optimal control law u = K∗x, from Theorem 1, is internally
positive by Lemma 2, given in Appendix. This result is stated in Corollary 1
below and demonstrated in Example 3.

Corollary 1
Consider (4.2) with A diagonal and Hurwitz. Then, the closed-loop system
from w to x with K∗ = BT A−1 is internally positive if and only if −BBT is
Metzler. ✷

Proof. Theorem 1 is applicable as A is Hurwitz and clearly symmetric. The
closed-loop system from w to output y := x, with K∗ = BT A−1, is

ẋ = (A + BK∗) x + w, y = x,

where A + BK∗ = A + BBT A−1. This system is internally positive by
Lemma 2 in the Appendix, if and only if A + BK∗ is Metzler, as the other
matrices are entry-wise nonnegative. As A is diagonal and Hurwitz, i.e, all
diagonal elements are negative, it is easy to see that it is necessary and
sufficient that −BBT is Metzler for A + BK∗ to be Metzler. ✷

Remark 2
If B is a node-link incidence matrix, see [Newman, 2010] for a formal
definition of this notion, the matrix product −BBT is Metzler. The B-matrix
given in Example 3 below is an example of a node-link incidence matrix. ✷

Example 3
Consider three buffers of some quantity connected via links with flow u1
and u2 as depicted in Figure 3. The dynamics of the levels in the buffers,
around some steady state depicted by the dashed lines in Figure 3, is

⎡

⎢

⎣

ẋ1

ẋ2

ẋ3

⎤

⎥

⎦
=

⎡

⎢

⎣

−1 0 0
0 −2 0
0 0 −4

⎤

⎥

⎦

︸ ︷︷ ︸
=: A

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
+

⎡

⎢

⎣

−1 0
1 −1
0 1

⎤

⎥

⎦

︸ ︷︷ ︸
=: B

[

u1

u2

]

+ w. (4.7)

State xi corresponds to the level in buffer i =1, 2 and 3, respectively. Each
buffer has some internal dynamics dependent on its own state, as given by
matrix A. However, with different rate coefficients for the different buffers.

We want to construct a control law that minimizes the impact from
disturbance w to the penalized variables x and u in the H∞ norm sense.
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1 2 3

u1 u2

Figure 3. Three buffers denoted 1, 2 and 3 connected via links with flow
u1 and u2, respectively. The dashed lines represent some steady state of the
system.

That is, we want to keep the system at its steady state, i.e, xi = 0 for all i,
while also keeping the cost down, i.e, the magnitude of the control input.

Given the matrix B in (4.7), −BBT is Metzler. Thus, by Corollary 1,
the closed-loop system from w to x with the optimal control law given by
Theorem 1, i.e.,

K∗ =

[

1 − 1
2 0

0 1
2 − 1

4

]

,

is internally positive. This implies that, in closed-loop with controller K∗,
the states xi of (4.7) will always be nonnegative, i.e., the buffer levels will
never go below their steady state values, given nonnegative disturbance. To
get some further intuition of what controller K∗ does, consider control input
u1. It is given by u1 = x1− x2/2. Thus, u1 is strictly positive if x1 > x2/2 and
the controller K∗ redistributes the quantity of buffer 1 and buffer 2 relative
to their internal rate coefficients. As in the previous example, K∗ has the
same sparsity pattern as BT and thus each control input only considers
local information, i.e., from the buffers it connects. ✷

5. Coordination in the H∞ Framework
In this section we will extend the optimal control law given by Theorem 1
in order to include coordination. The problem formulation is as follows.
Consider a LTI system of ν subsystems

ẋi = Ai xi + Biui + wi, i = 1, . . . ,ν (4.8)

where Ai, for i = 1, . . . ,ν , is symmetric and Hurwitz. Furthermore, the
control inputs ui have to coordinate in order to fulfill the following constraint

u1 + u2 + · · ·+ uν = 0. (4.9)

Given penalized variables x and u and the coordination constraint in (4.9),
we want to construct an optimal H∞ static state feedback controller for
(4.8). The resulting control law is given by Corollary 2.

60



5 Coordination in the H∞ Framework

Corollary 2
Consider ν subsystems as in (4.8) with symmetric and Hurwitz state ma-
trices and coordination constraint (4.9). Then,

ui = BT
i A−1

i xi −
1
ν

ν∑

k=1
BT

k A−1
k xk for i = 1, . . . , ν (4.10)

minimizes the norm of the closed-loop system from w to the penalized
variables x and u. ✷

Proof. Rewrite control input u1 in terms of the other control inputs given
(4.9), i.e.,

u1 = −u2 − u3 . . . − uν , (4.11)

and define ũ = [u2, u3, . . . , uν ]T . Then,

u =

[

−1T
ν−1

Iν−1

]

︸ ︷︷ ︸
D

ũ

and the overall system of (4.8) can be written as

ẋ = diag(A1, . . . , Aν)︸ ︷︷ ︸
=: A

x + diag(B1, . . . , Bν)︸ ︷︷ ︸
=: B

Dũ + w

with penalized variables x and u = Dũ. Define R = DT D = I + 11T and
notice that R−1 = I − 1

ν 11T . The optimal control law by Theorem 1, see also
Remark 1, is then

ũ = R−1 DT BT A−1 x

=
(

Iν−1 −
1
ν 1ν−11T

ν−1

)

[

−1T
ν−1

Iν−1

]T

BT A−1 x

=
(

[

0 Iν−1
]

−
1
ν 1ν−11T

ν

)

BT A−1 x.

Thus, ui for i = 2, . . . , ν , i.e., the elements in ũ, is

ui = BT
i A−1

i xi −
1
ν

ν∑

k=1
BT

k A−1
k xk. (4.12)
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Now, consider u1 again,

u1
(4.11)= −

ν∑

i=2
ui

(4.12)= −
ν∑

i=2

(

BT
i A−1

i xi −
1
ν

ν∑

k=1
BT

k A−1
k xk

)

= −

( ν∑

k=1
BT

k A−1
k xk − BT

1 A−1
1 x1 −

v − 1
v

ν∑

k=1
BT

k A−1
k xk

)

= BT
1 A−1

1 x1 −
1
ν

ν∑

k=1
BT

k A−1
k xk,

i.e., it has the same structure as (4.12). Thus, the optimal control law is
given by

ui = BT
i A−1

i xi −
1
ν

ν∑

k=1
BT

k A−1
k xk

for each subsystem i = 1, . . . , ν in (4.8). ✷

Remark 3
The first term of ui in (4.10) is a local term, only dependent upon the
subsystem i, while the second term is dependent on global information of
the overall system. However, as this term is equal for all control inputs ui,
(4.10) might still be appropriate for distributed control use. ✷

In [Madjidian and Mirkin, 2014], a similar type of problem is consid-
ered, however in the H2 framework with stochastic disturbances and the
necessity of homogeneous subsystems. The optimal control law derived in
[Madjidian and Mirkin, 2014] and the one we suggest in (4.10) are simi-
lar in structure. However, our approach can treat heterogeneous systems
in addition to homogeneous ones. On the contrary, it is only applicable to
systems with symmetric and Hurwitz state matrix, properties that are not
necessary in [Madjidian and Mirkin, 2014].

6. Numerical Example
Consider a system of the same structure as (4.1) given in Section 1, i.e., a
system

⎡

⎢

⎣

ẋ1

ẋ2

ẋ3

⎤

⎥

⎦
=

⎡

⎢

⎣

−a1 0 0
0 −a2 0
0 0 −a3

⎤

⎥

⎦

︸ ︷︷ ︸
=: A

⎡

⎢

⎣

x1

x2

x3

⎤

⎥

⎦
+

⎡

⎢

⎣

−b1 0 0
b2 b3 −b4

0 0 b5

⎤

⎥

⎦

︸ ︷︷ ︸
=: B

⎡

⎢

⎣

u12

u2

u23

⎤

⎥

⎦
+

⎡

⎢

⎣

w1

w2

w3

⎤

⎥

⎦

(4.13)
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Figure 4. Average step response for states x1, x2 and x3 for closed-loop
systems with controller K∗ (solid lines) and KG (dashed lines).

where ai > 0, for i =1, 2 and 3, and bj > 0, for j = 1, . . . , 5, and penalized
variables x and u. We will now compare the optimal controller given by
Theorem 1, i.e., K∗, and an optimal controller derived by the ARE-approach,
see [Zhou et al., 1996], denoted KG for global. In the latter approach, we
consider the minimal value of the H∞ norm of (4.3) given by Theorem 1
and iterate over the ARE-constraint until this minimal value is reached. See
[Mathworks, 2015] for the software used. Controllers K1 and K2 given in
Section 1 are examples of controllers K∗ and KG treated here, respectively.

Controllers K∗ and KG are optimal and thus they both obtain the mini-
mal value of the H∞ norm of (4.3). Now we want to compare how they affect
the closed-loop dynamics more in detail. We randomly generate values of
the parameters ai and bj in (0.1, 5] and compare the step response of the
states of (4.13) in closed-loop with K∗ and KG. In other words, given con-
stant disturbance of value 1. The average dynamics over 50 such randomly
generated systems is shown in Figure 4. To clarify, we average over the
absolute value of the step response in each time instance.

The system (4.13) can be depicted by the graph given in Figure 5, as
described in Section 3. If we compare the step responses shown in Figure 4,
it seems as if controller K∗ is better at attenuating local disturbances than
KG is. With local disturbances we mean the disturbance that points towards
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1 2 3
u12 u23

w1

u2

w2 w3

Figure 5. Associated graph of (4.13).

the state in Figure 5. This is at the expense of larger impact on distance.
However, overall they are comparable in performance.

We will end this numerical example by commenting on controller K2
given in Section 1, that is an example of controller KG treated in this
numerical example. Some entries of K2 are small in magnitude compared
to the other entries, i.e., entries (2,1), (2,3) and (3,1), where the first number
in each parenthesis is the row and the second is the column. However, only
entry (3,1) can be replaced with a zero for the controller to still achieve the
optimal bound. Furthermore, for systems of much larger dimension than
(4.1), this type of reduction analysis might be difficult.

7. Conclusions
We give a simple form for an optimal H∞ static state feedback law applicable
to LTI systems with symmetric and Hurwitz state matrix. More specifically,
this simple form is given in the matrices of the system’s state space repre-
sentation which makes the structure of the controller transparent. It also
simplifies synthesis and enables scalability of the control law, especially
given sparse systems. Furthermore, given compatible system sparsity pat-
terns, the control law is distributed. The examples we give consider diagonal
or block diagonal state matrices and somewhat more general sparsity pat-
terns of the remaining system matrices. Given some further constraints
on the system’s matrices, the closed-loop system from disturbance to state
becomes internally positive. Furthermore, we extend the optimal control
law in order to incorporate coordination among subsystems. The resulting
coordinated control law is similar for all subsystems. More specifically, for
each subsystem, it is a superposition of a local term and an averaged cen-
tralized term where the latter is equal for all subsystems involved in the
coordination. In conclusion, our control law is well suited for distributed
control purposes.

Future research directions include to consider saturation constraints on
the optimal control law as such are common in the systems intended for
its application. Furthermore, to investigate the existence of an analogous
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7 Conclusions

optimal control law given output feedback instead of state feedback. For an
extension of the result to infinite-dimensional systems, see [Lidström et al.,
2016].

Appendix
Lemma 1—The Kalman-Yakubovich-Popov lemma
Given A ∈ Rn"n, B ∈ Rn"m, M ∈ R(n+m)"(n+m), M = MT , with
det( jω I − A) /= 0 and (A, B) controllable, the following two statements are
equivalent:

(i)
[

( jω I − A)−1 B
I

]∗

M
[

( jω I − A)−1 B
I

]

≼ 0

∀ω ∈ R ∪ {∞}.

(ii) There exists a matrix P ∈ Rn"n such that P = PT and

M +

[

AT P + PA P B
BT P 0

]

≼ 0

The corresponding equivalence for strict inequalities holds even if (A, B) is
not controllable. ✷

Proof. See [Rantzer, 1996]. ✷

Remark 4
If the upper left corner of M is positive semidefinite, it follows from (1) and
Hurwitz stability of A that P ≽ 0 [Rantzer, 1996]. ✷

Lemma 2
The LTI system

ẋ = Ax + Bv, y = Cx + Dv

is internally positive if and only if

(i) A is Metzler, and

(ii) B ≥ 0, C ≥ 0 and D ≥ 0. ✷

Proof. See [Kaczorek, 2001]. ✷
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Paper II

H-infinity Optimal Distributed Control
in Discrete Time

Carolina Lidström Richard Pates Anders Rantzer

Abstract

We give closed-form expressions for H-infinity optimal state feedback
laws applicable to linear time-invariant discrete time systems with sym-
metric and Schur state matrix. This class includes networked systems
with local dynamics in each node and control action along each edge.
Furthermore, the structure of the controllers mimics that of the system,
which makes them suitable for distributed control purposes.

© 2017 IEEE. Reprinted, with permission, from 2017 IEEE 56th Conference
on Decision and Control (CDC).
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1. Introduction
We study structured H∞ control and give a class of linear time-invariant
(LTI) discrete time systems for which distributed controllers are optimal.
To give a flavour of our results, consider the subsystems

xi(t + 1) = ai x(t) + b
∑

(i, j)∈E
uij(t) + di(t).

Here i ∈ (1, . . . , N), 0 < ai < 1, b > 0, uij = −uji and E is the edge
set of a network with N nodes. This system is naturally associated with a
graph, such as that in Figure 1. Each subsystem is depicted by a node, and
the edges describe the couplings between subsystems through the control
signals uij. We show that the static state feedback law

uij(t) =
b

ai − 1 xi(t)−
b

a j − 1 xj(t)

minimizes the H∞ norm of the closed-loop system from the disturbance d to
the state x and control input u when a2

i + 2b2ki < ai, where ki is the degree
of node i. This constraint is related to the speed of information propagation
through the network as well as its connectivity. Note that each control input
uij is only comprised of the states it directly affects, with a proportional term
related to these subsystems. Therefore not only is this control optimal, it is
also easy to apply, even when the number of subsystems N is large.

Control of large-scale and complex systems is most often performed in
a distributed manner. This is due to the practical impossibility of having
access to information about the overall system when deciding the control
actions. However, it is not straightforward to translate the conventional
control synthesis methods to synthesis of controllers suitable in a large-
scale setting. In fact, the optimal distributed control problem can often be
intractable.

uij
i j

Figure 1. Part of a network of N nodes. The dashed lines illustrates where
the connections are to the rest of the network. Node i depicts subsystem i
while edge (i, j) is related to the control input uij for which uij = −uji.
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Imagine the system described previously to be written compactly as
x(t + 1) = Ax + Bu + d. The optimal control law can then be written as
u = BT(I − A)−1 x. In fact, this control law is optimal as long as A is sym-
metric and Schur and A2 + BBT ≺ A. Also, it is explicitly given which is a
rarity in the case of H∞ control. Furthermore, our theory naturally suggests
a controller with a structure related to the structure of the considered sys-
tem, which makes it a candidate for distributed control. This link between
the structure of the system and that of the controller is similar to what
is described for spatially invariant systems [Bamieh et al., 2002; Bamieh
and Voulgaris, 2005]. However, the systems we consider are not restricted
to be spatially invariant, though our results are only valid for H∞ norm
performance requirements. Further, synthesis of structured controllers is
simplified when the closed-loop system is required to be positive [Tanaka
and Langbort, 2011; Rantzer, 2015]. Although, as we do not include this
requirement, it is hard to compare it with our approach. In [Delvenne and
Langbort, 2006; Wang et al., 2014; Pates and Vinnicombe, 2017], they in-
stead consider a localized approach to the design of distributed controllers.
Of course, this can be conservative. In our case, a local information pattern
is optimal whenever the dynamics can be divided into subsystems that only
share control inputs.

H∞ control, let alone distributed H∞ control, has mainly been treated in
the continuous time setting since these questions were first brought up half
a century ago. See [Doyle et al., 1989] for the first state space based solution
to the centralized non-structured H∞ control problem. In fact, in order to
solve the centralized H∞ control problem in discrete time an additional
criterion on the system needs to be fulfilled [Limebeer et al., 1989; Yaesh
and Shaked, 1989; Gu et al., 1989]. However, it is of great importance to
study the problem of distributed H∞ control in discrete time, as controllers
are almost always implemented digitally.

The work presented covers the non-trivial translation of the continu-
ous time problems studied by the authors in [Lidström and Rantzer, 2016]
and [Rantzer et al., 2017]. Besides the static state feedback law described
previously, we give a closed-form expression for a state feedback controller
with integral action which requires minimum control effort and guaran-
tees a specified level of disturbance attenuation. It has similar structure
preserving properties to the static state feedback controller and can track
references.

The outline is as follows. In Section 2 we present general results on the
optimal state feedback controllers, and state their closed-forms as well as
the system requirements needed for them to be applicable. In Section 3,
we discuss their relation to distributed control. Section 4 displays how the
results are related to their continuous time counterparts. The introduction
is ended with the notation used.
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The set of real numbers is denoted R and the space of n-by-m real-
valued matrices is denoted Rn"m. The identity matrix is written as I. Given
a matrix M, the spectral norm of M is denoted 'M' and the Moore-Penrose
pseudo-inverse of M is denoted M†. A square matrix M ∈ Rn"n is said
to be Hurwitz if all eigenvalues have negative real part. It is said to be
Schur if all eigenvalues are strictly inside the unit circle. Furthermore, for
a square symmetric matrix M, M ≺ 0 (M ≼ 0) means that M is negative
(semi)definite while M ≻ 0 (M ≽ 0) means M is positive (semi)definite.
The H∞ norm of a proper and real rational stable transfer function T(z) is
written as 'T'∞ and given by 'T'∞ = supω∈R 'T(ejω)'.

2. Closed-Form H∞ Optimal State Feedback in Discrete
Time

The first part of this section treats H∞ optimal static state feedback when
the performance requirement is to minimize the impact from process dis-
turbance on the state and control input. In the second part, we require
the controller to track a reference in addition to a disturbance rejection re-
quirement, with minimum control effort. Naturally, the latter controller has
integral action. Further, we specify a class of systems for which the optimal
controllers can be stated on closed-form. This class includes a broad range
of linear networked systems. We will show how these results can be used
for distributed control in Section 3.

2.1 Optimal Static State Feedback
Consider the discrete time LTI system

x(t + 1) = Ax + Bu + Hd (4.1)

where the state x ∈ Rn, control input u ∈ Rm, disturbance d ∈ Rl and the
matrices A, B and H are of appropriate dimensions. Furthermore, consider
the regulated output

ζ =

[

x
u

]

. (4.2)

The objective is to find a stabilizing static state feedback law u = K x,
K ∈ Rm"n, that minimizes the H∞ norm of the closed-loop system from
d to ζ . We denote the transfer function of the closed-loop system with
(4.1)-(4.2) and K by Td→ζ [K]. It is given by

Td→ζ [K](z) =
[

I
K

]

(zI − A − BK)−1 H. (4.3)
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The following theorem gives a closed-form optimal control law, with respect
to the objective described above, that is applicable to (4.1) with symmetric
and Schur stable matrix A and for which A2 + BBT ≺ A. The latter
constraint is related to the sample time used in the time discretization of
the equivalent continuous time system. This is discussed in more detail in
Section 4.
Theorem 1
Consider (4.3) with A symmetric and Schur and A2 + BBT ≺ A. Then,
'Td→ζ [K]'∞ is minimized by Kopt = BT(A− I)−1 and the minimal value of
the norm is 'HT (

(A − I)2 + BBT)−1 H' 1
2 . ✷

The proof of Theorem 1 is given in the Appendix.
Remark 1
Note that the control law is independent of how the disturbance enters the
system, i.e, H in (4.1). ✷

2.2 Optimal PI control
Consider the discrete time LTI system

x(t + 1) = Ax + Bu + Bd

q(t + 1) = q + x
(4.4)

where the state x ∈ Rn, integral of the state x, i.e., q ∈ Rn, control input
u ∈ Rm, disturbance d ∈ Rm and the matrices A and B are of appropriate
dimensions. The objective is to find a stabilizing state feedback controller
K , which maps r− x to u, where r ∈ Rn is a reference signal. Furthermore,
it should track r with minimum control effort and also guarantees a certain
level of disturbance attenuation. The closed-loop transfer functions from
r to u and d to q are denoted Tr→u[K] and Td→q[K], respectively. The
following theorem states a closed-form optimal control law, with respect to
the objective described above, that is applicable to (4.4) with A symmetric
and 0 ≺ A ≺ I.
Theorem 2
Consider (4.4) with A symmetric and 0 ≺ A ≺ I. Define γ = '

(

(I − A)−1 B
)† '

and assume that τ > 0 fulfills

τ
(

τ I −γ BT(I − A)−2 B
)

≽ BT(I − A)−4 AB.

Then, the problem

minimize 'Tr→u[K]'∞
subject to 'Td→q[K]'∞ ≤ τ
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over stabilizing K , is solved by

K̂opt(z) = k
(

BT(I − A)−2 +
1

z − 1 BT(I − A)−1
)

,

where k = γ/τ . The optimal value is γ . ✷

The proof of Theorem 2 is given in the Appendix.
Remark 2
The parameter τ determines the bandwidth of the control loop where
a smaller τ corresponds to disturbance rejection over a wider frequency
range. ✷

Remark 3
Note that K enters as an ordinary negative feedback as compared to the
previous subsection, where the negative feedback sign was incorporated in
the control law. ✷

3. Distributed Implementation
This section concerns structured control and describes a particular type of
systems for which Theorem 1 and 2 result in distributed controllers. The
considered systems are comprised of subsystems with local dynamics, that
only share control inputs. Furthermore, each control input only affects two
subsystems. Depicting the subsystems as nodes and the control inputs as
edges between the nodes they affect, the overall system can be illustrated
by a network graph.

It is evident from the results given in the previous section that the open-
loop system need to be structured itself in order for the optimal control laws
to be structured. This is natural from a large-scale system point of view as
the dynamics of such systems most definitely would be highly localized. For
the networked systems considered in this section, the control signals drive
the interaction among the subsystems. In a transportation network this is
related to routing the flow of commodities. Furthermore, the dynamics in
each subsystem is diffusive, so they act as infinite buffers. The dynamics
could also describe a linear approximation of the behavior of more involved
dynamics around an operating point.

3.1 Static State Feedback Case
Consider a network with N nodes or subsystems,

xi(t + 1) = ai xi + b
∑

(i, j)∈E
uij + di (4.5)
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where i ∈ (1, ..., N), b ∈ R, b > 0 and E is edge set. The overall system
can be written on the form (4.1) with A diagonal and B with columns
of one element equal to 1 and one equal to -1, scaled by b, while the
remaining elements are zero. See Figure 1 for an illustration of the system.
Each node in the system’s graph represents a subsystem i while an edge
(i, j) illustrates how control signal uij enters the system. Furthermore,
uij = −uji, i.e., what is drawn from system j is added to system i. This class
of systems includes linear models of transportation and buffer networks. The
Corollary below follows from Theorem 1 and gives a closed-form expression
for an optimal distributed static state feedback law for (4.5).

Corollary 1
Consider a graph with a set of nodes V and edges E. Let the dynamics in
each node i ∈ V be given by (4.5) with 0 < ai < 1, b > 0 and uij = −uji.
Furthermore, consider the N subsystems to be written on the form (4.1)-
(4.2), where x = {xi}i∈V, u = {uij}(i, j)∈E and d = {di}i∈V and assume that
A2 + BBT ≺ A. Then, the control law

uij =
b

ai − 1 xi −
b

a j − 1 xj

minimizes the H∞ norm of the transfer function from the disturbance d to
the regulated output ζ . ✷

Proof. The overall system is given by x(t + 1) = Ax + Bu + d, where A is
diagonal and 0 ≺ A ≺ I with A2 + BBT ≺ A. The controller structure then
follows from Theorem 1. ✷

Remark 4
In the distributed case, the constraint A2 + BBT ≺ A can be approximated
by a local constraint. See Section 4 for more details. ✷

3.2 Distributed optimal PI control
Consider a slight variation to the subsystems in (4.5) with an extra state
for each subsystem i as the integral of xi, denoted qi,

xi(t + 1) = ai xi + bi(ui + di) +
∑

(i, j)∈E
(uij + dij) ,

qi(t + 1) = qi + xi.
(4.6)

In this system, the disturbances enter in the same way as the control inputs
and again uij = −uji as well as dij = −d ji. The corollary given next follows
from Theorem 2.
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Corollary 2
Consider a graph with a set of nodes V and edges E. Let the dynamics in
each node i ∈ V be given by (4.6) with 0 < ai < 1, bi /= 0 for at least one
i, uij = −uji, dij = −d ji and qi(0) = 0. Denote ei = ri − xi, where ri is the
reference signal for subsystem i. Furthermore, consider the overall system
written on the form (4.4). Define γ = '((I − A)−1 B)+'/τ and assume that

τ(τ −γ BT(I − A)−2 B) ≽ BT(I − A)−4 AB.

Then, the controller

pi(t + 1) = pi(t) + ei(t),

ui j(t) = k (pi/(1 − ai)− p j/(1 − a j)) + k
(

ei/(1 − ai)2 − e j/(1 − a j)2) ,

ui(t) = k
(

pibi/(1 − ai) + eibi/(1 − ai)2) ,

with k = γ/τ , minimizes the H∞ norm of the transfer function from r to u
while keeping the L2-gain from d to q bounded by τ . ✷

Proof. The overall system is given by x(t + 1) = Ax + Bu + Bd, where A
is diagonal and 0 ≺ A ≺ I. Furthermore, the assumptions in Theorem 2
hold, and the controller structure thus follows from Theorem 2. ✷

3.3 Numerical Example
Consider the buffer network depicted in Figure 2, where N is the total
number of buffers. The network has a fork structure where the leftmost
part, the root, has n buffers while the upper and lower branch has n1 and
n2 buffers, respectively. The dynamics of the content in the buffers, around
some operating point, is

x1(t + 1) = a1 x1 + b1(u1 + d1) + u12 + d12,

xi(t + 1) = ai xi +
∑

(i, j)∈E
uij + dij, ∀ i ∈ 2, . . . , N.

The disturbance dij enters on edge (i, j). The control inputs and distur-
bances satisfy uij = −uji and dij = −d ji, respectively. Each 0 < ai < 1,
so given a non-zero initial state the buffers will eventually be empty if no
control is used and after any disturbance has abated. The content in the
buffers dissipates faster through the lower branch than through the upper.

The system described is part of the class of systems treated in the pre-
vious subsections. We will now show the closed-loop behavior of the system
with the distributed static state feedback and distributed PI controller, re-
spectively. As we consider the number of buffers N to be large, a localized
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4 Discussion

u1

1 2 n

n+ 1 i i+ 1

ui,i+1

u12

n+ n1

n+ n1 + 1

N = n+ n1 + n2

Figure 2. Buffer network with N buffers. Buffer 1 has inputs u1 and u12.
A general buffer i has inputs ui,k, where k is the number of its neighbors.
The network has a fork structure where, from the left, the first part has
n buffers. The upper branch has n1 buffers while the lower branch has n2
buffers.

control approach is the only practical design for implementation. Our results
suggest control inputs uij that only require local information regardless of
the size of the system N.

Figure 3, on the following page, shows the levels in some of the buffers
in the network, over time. At time t = 20 a constant disturbance enters
in node 1. The disturbance is then processed through the network via
the edges. The two upper plots and the lower right plot show the time
trajectories of the three first buffers in the head, the upper branch and
the lower branch, respectively. The dotted lines show the references, while
the dashed and solid lines show the trajectories given the static and PI
controller, respectively. The bottom left plot shows the time trajectory of the
disturbance. You can see how the process is evolved through the network,
starting at the head and following the branches by comparing the peaks of
the time trajectories.

4. Discussion

4.1 Comparison to Continuous Time Results
We will now compare Theorem 1 with its continuous time counterpart stated
by the authors in [Lidström and Rantzer, 2016]. For clarity, we include that
result next.

Theorem 3—[Lidström and Rantzer, 2016]
Consider

Gd→ζ [K](s) =
[

I
K

]

(sI − Ac − BK)−1 H,

with Ac symmetric and Hurwitz. Then 'Gd→z[K]'∞ is minimized
by Kopt = BT A−1

c and the minimal value of the norm is given by
'HT(A2

c + BBT)−1 H' 1
2 . ✷
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Root Upper branch

0 500 1,000

time

Disturbance

0 500 1,000

time

Lower branch

Figure 3. Numerical example with buffer network of N buffers. The two
upper plots and the lower right plot show the time trajectories of the three
first buffers in the root, upper branch and lower branch, respectively. For
instance the upper left plot show the time trajectories of node 1 in the top,
node 2 in the middle and node 3 at the bottom. The plots for the branches
are constructed in the same manner. The dotted lines show the references,
while the dashed and solid lines show the trajectories given the static and
PI controllers, respectively. The bottom left plot shows the disturbance that
enters in node 1. It is evident that the PI controller is able to track the
reference while the static controller leaves a stationary error.

The statements in Theorem 1 and 3 are very similar, however, with
one main difference. That is, the extra requirement on the matrices of the
system’s state space representation that is required in the discrete time
case, i.e., A2 + BBT ≺ A. If we consider the discretization of the open-loop
continuous time system with time period h, we get

x(t + 1) = eAc h x(t) +
∫ h

0
eAcτ Bu(τ)dτ .

For small h and given the assumption that u(t) is constant during each
time period, we can use the approximation

x(t + 1) 3 (I + Ach)x(t) + hBu(t).

The constraint then becomes

(I + Ach)2 + h2 BBT ≺ I + Ach,
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which is equivalent to h < 'A
1
2c (A2

c + BBT)−1 A
1
2c '. Thus, for small enough

h, it is always fulfilled. Similarly to the discussion above, one can compare
Theorem 2 to its continuous time equivalent stated in [Rantzer et al., 2017].

The constraint A2 + BBT ≺ A reveals that A ≻ 0 in the discrete time
case. Thus, the class of discrete time systems that can be considered for
both Theorem 1 and Theorem 2 are non-oscillatory. This also maps to the
class of continuous time systems considered in Theorem 3, as symmetric
matrices do not have imaginary eigenvalues.

The optimal controller given by Theorem 3 is clearly related to the
controller resulting from bisecting over the continuous time algebraic Riccati
equation (CARE). That is, if we denote the solution to the CARE by P, the
controller is given by K = −BT P [Stoorvogel, 1992]. In the discrete time
setting, they are not as clearly related. The controller given by bisection over
the discrete time ARE (DARE) is K = −(I + BT P B)−1 BT PA where P is
the solution to the DARE [Stoorvogel, 1992]. The expression for the DARE
controller is more involved than the expression we give for the controller
proposed in Theorem 1.

4.2 Local Condition for A2 + BBT ≺ A
Consider the systems described in Section 3. They are of the form (4.1) with
A diagonal and B sparse. In fact, given the network description of these
systems, the matrix B relates the nodes and edges. B/b is generally called
the node-link incidence matrix of the network graph. From this, it is possible
to approximate the constraint A2 + BBT ≺ A by a local constraint. Denote
the i:th diagonal element of A by ai. Furthermore, write BBT = b2 L. The
inequality can then be written as

A2 − A + b2 L ≺ 0.

Further, define the diagonal matrix D by Dii := Lii. Then the inequality
becomes

0 ≻ D 1
2
(

D−1(A2 − A) + b2 D− 1
2 LD− 1

2
)

D 1
2 ,

0 ≻ D−1(A2 − A) + b2 Lsym,

where Lsym is the symmetric normalized Laplacian of the network’s graph. It
is well-known that λmax(Lsym) ≤ 2. Therefore, satisfying the local condition

a2
i − ai + 2b2 Dii < 0.

is sufficient to guarantee that A2 + BBT ≺ A. The entry Dii is the degree
of node i, i.e., the number of nodes it is directly connected to, and often
denoted ki. Thus, the constraint A2 + BBT ≺ A is related to the speed
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of information propagation through the network and its connectivity, via
ai, b, the bound on the maximum eigenvalue of the symmetric normalized
Laplacian and the node degree. Note that a similar analysis can be made
for the inequality constraint on τ in Corollary 2, where it is necessary that
τ I −γ BT(I − A)−2 B ≻ 0.

5. Conclusions and Future Works
We define a class of systems and performance objectives for which the
optimal H∞ controller is structured. It includes networked systems with
local dynamics in each node and control action along each edge. Some as-
sumptions on this class of systems are only sufficient. It is left as future
work to characterize the both sufficient and necessary systems properties.
Furthermore, combining the discrete time results presented with their con-
tinuous time counterparts could bring some further intuition into the case
of sampled data control for networked systems.

Appendix
To prove Theorem 1, we need the following lemma.
Lemma 1
Assume A ∈ Rn"n symmetric and Schur, and B ∈ Rn"m. Then, the following
statements are equivalent

(i) A2 + BBT ≺ A,

(ii) (A − I)
(

(A − I)2 + BBT)−1 (A − I) + A − I ≻ 0.

Proof. Note that A − I ≺ 0 as A is symmetric and Schur. Then,

(ii) 01
(

(A − I)2 + BBT)−1 + (A − I)−1 ≻ 0

01 −A + I ≻ (A − I)2 + BBT 01 (i),

where in the first step we have multiplied (ii) with (A− I)−1 from both left
and right. ✷

Next, we give the proof of Theorem 1.

Proof of Theorem 1. The proof is divided into two parts. The first part
considers a lower bound on the minimal norm-value. In the second part, we
show stabilizability of Kopt and that the lower bound is achieved for Kopt.
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The minimal norm-value can be lower bounded as follows

inf
K

'Td→ζ [K]'∞ = inf
K

sup
ω

'Td→ζ [K](ejω)' ≥ inf
K

'Td→ζ [K](1)'. (4.7)

Moreover, given γ > 0,
'Td→ζ [K](1)' ≤ γ

is equivalent to
'Td→ζ [K](1)d'2 ≤ γ 2'd'2

for all d ∈ Cl. Further, it can be written as

'x'2 + 'K x'2 ≤ γ 2'd'2

for all x, d such that x = (I − A − BK)−1 Hd. Denote u = K x, and rewrite
the latter equality as

(I − A)x − Bu = Hd.

Now, for fixed d, consider the problem

minimize 'x'2 + 'u'2

subject to (I − A)x − Bu = Hd.

This problem lower bounds γ as the constraint u = K x is removed. The
solution to the problem is

[

x∗
u∗

]

=
[

I − AT

−BT

]

(

(A − I)(A − I)T + BBT)−1 Hd.

Thus, given (4.7) and symmetry of A we have that

inf
K

'Td→ζ [K]'∞ ≥ 'HT((A − I)2 + BBT)−1 H'
1
2 .

We will now prove that Kopt = BT(A − I)−1 is optimal by showing that
it is stabilizing and achieves the lower bound given above. For Kopt to be
stabilizing, Acl := A + BBT(A − I)−1 has to be Schur. It is equivalent to
existence of a matrix P ≻ 0 such that Acl PAT

cl − P ≺ 0. One such P is P =
(A− I)2, which is valid as A ≺ I. Note that, given the assumptions on A and
B, Acl PAT

cl − P ≺ 0 with P = (A− I)2 is equivalent to (A− I)2 + BBT ≻ 0,
which is true as A ≺ I.

To show that Kopt achieves the lower bound, rewrite

Td→ζ [Kopt](ejω)∗Td→ζ [Kopt](ejω) = HTG−1( jω)H
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where

G( jω) = (ejω − I)(A − I)M−1(A − I)(e− jω − I)
− (ejω + e− jω − 2I)(A − I) + M

= (2 − 2 cos(ω))
(

(A − I)M−1(A − I) + A − I
)

︸ ︷︷ ︸
=: N

+M,

and M := (A − I)2 + BBT . It follows from Lemma 1 that N ≻ 0 as
A2 + BBT ≺ A by assumption. Therefore, it holds that G( jω) ≽ M and
moreover that G( jω)−1 ≼ M−1 for ω ∈ [0, 2π). Hence,

Td→ζ [Kopt](ejω)∗Td→ζ [Kopt](ejω) = HTG−1( jω)H

≼ HT M−1 H

= HT((A − I)2 + BBT)−1 H

= Td→ζ [Kopt](1)∗Td→ζ [Kopt](1)

from which it follows that

'Td→ζ [Kopt]'∞ = 'HT((A − I)2 + BBT)−1 H'
1
2

and the proof is complete. ✷

To prove Theorem 2 we need the following lemma.

Lemma 2—[Rantzer et al., 2017]
Let A ∈ Cn"m. Then,

min
X∈Cq"n

'X' s.t. AX A = A

has the minimal value 'A†', attained by X̂ = A†. ✷

Proof of Theorem 2. Define P(z) := (zI − A)−1 B. Then, Tr→u[K] = (I +
K P)−1 K . Now, define

M := I − kBT(I − A)−2 B

and note that the given assumption on τ together with A ≻ 0 yields M ≻ 0.
Firstly, we will show that K̂opt is stabilizing. Factorize B as B = GFT ,
where G and F have full column rank. Then,

Tr→u[K̂opt](z) = k
(

(z − 1)I + kBT(I − A)−2 B
)−1 BT(I − A)−2(zI − A)

= k
(

(z − 1)I + kGT(I − A)−2GFT F
)−1 GT(I − A)−2(zI − A),
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so the poles of Tr→u[K̂opt] are the eigenvalues of

I − kGT(I − A)−2GFT F,

i.e., the eigenvalues of M that are not equal to 1. Clearly, as 0 ≺ M ≼ I,
Tr→u[K̂opt] is stable. Thus, K̂opt is stabilizing.

Now, we will show that 'Td→q[K̂opt]'∞ ≤ τ . From the definition of k we
have that I ≼ k2τ 2 BT(I − A)−2 B which is equivalent to

BT(2(1 − cos(ω))A + (I − A)2)−1 B

≼ τ 2 [2(1 − cos(ω))M + k2(BT(I − A)−2 B)2]

and further to
∥∥∥ 1

ejω−1 P(ejω)
(

I + K̂opt(ejω)P(ejω)
)−1∥∥∥ ≤ τ .

The latter inequality is precisely 'Td→q[K̂opt](ejω)' ≤ τ and thus K̂opt
fulfills the constraint.

Finally, we will show that K̂opt is in fact optimal. Again, consider the
constraint with τ . In general PTr→u[K]P = P − P(I + K P)−1 so the
constraint demands

P(1)Tr→u[K](1)P(1) = P(1).

Now, consider the minimization of 'Tr→u[K](1)' subject to the equality
above. Then, by Lemma 2, Tr→u[K](1) = P(1)† with optimal value 'P(1)†'.
Now, as Tr→u[K̂opt](1) = P(1)†, it follows that K̂opt is a feasible solution to
the static problem at ω = 0. Furthermore, to show that K̂opt is optimal for
the non static problem we need to show that 'Tr→u[K̂opt]'∞ is achieved at
ω = 0. Consider Tr→u[K̂opt]Tr→u[K̂opt]∗ ≼ γ 2 I which is equivalent to

k2 BT(I − A)−2(2(1 − cos(ω))A + (I − A)2)(I − A)−2 B

≼ γ 2 [2(1 − cos(ω))M + k2(BT(I − A)−2 B)2] .

This inequality holds trivially for ω = 0. It holds for all other other ω ∈ R
provided that

k2 BT(I − A)−4 AB ≼ γ 2 [I − kBT(I − A)−2 B
]

which is equivalent to the assumption on τ . Thus, 'Tr→u[K̂opt]'∞ takes the
minimal value γ and the proof is complete. ✷
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Paper IV

H-infinity Optimal Control
for Infinite-Dimensional Systems
with Strictly Negative Generator

Carolina Lidström, Anders Rantzer and Kirsten Morris

Abstract

A simple form for the optimal H-infinity state feedback of linear time-
invariant infinite-dimensional systems is derived. It is applicable to
systems with bounded input and output operators and a closed, densely
defined, self-adjoint and strictly negative state operator. However, un-
like other state-space algorithms, the optimal control is calculated in
one step. Furthermore, a closed-form expression for the L2-gain of the
closed-loop system is obtained. The result is an extension of the finite-
dimensional case, derived by the first two authors. Examples demon-
strate the simplicity of synthesis as well as the performance of the
control law.

© 2016 IEEE. Reprinted, with permission, from 2016 IEEE 55th Conference
on Decision and Control (CDC).
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1. Introduction
Infinite-dimensional models are often needed when the physical system of
interest is both temporally and spatially distributed. For instance, heat con-
duction systems can be modelled by a parabolic partial differential equation
known as the heat equation, see [Renardy and Rogers, 2006] for details on
this equation. We consider H∞ state feedback control of linear and time-
invariant infinite-dimensional systems. The H∞ control problem was first
formulated for finite-dimensional systems, see [Zhou et al., 1996] and the
references therein. There are both state-space based and frequency domain
based solutions to the H∞ control problem for infinite-dimensional systems,
as in the finite-dimensional case. In the frequency domain approach, see
[Foias et al., 1996], one needs to determine the transfer function of the sys-
tem, which in general can be hard. In the state-space based approach to this
problem, the synthesis involves solving an infinite-dimensional operator-
valued Riccati equation or inequality, see [Bensoussan and Bernhard, 1993]
and [Van Keulen, 1993]. Closed-form solutions are generally hard or not
possible to obtain. However, we show that for certain infinite-dimensional
systems, it is not only possible to give an analytic solution to the infinite-
dimensional operator-valued Riccati inequality, but also the resulting con-
troller has a very simple form.

We consider infinite-dimensional systems with bounded input and out-
put operators and where the state evolves on a separable Hilbert space.
Moreover, the state operator is closed, densely defined, self-adjoint and
strictly negative. Thus, it generates an exponentially stable strongly con-
tinuous semigroup. See [Curtain and Zwart, 1995] for further details. We
give a simple form for an optimal H∞ state feedback law applicable to
these systems, given that the state and control input are penalized sep-
arately. More specifically, the control law is given by the product of the
adjoint of the control input operator and the inverse of the state operator.
Furthermore, we provide a closed-form expression for the L2-gain of the
closed-loop system’s transfer function. The result is the analog to the result
for finite-dimensional systems derived by the first two authors in [Lidström
and Rantzer, 2016]. The heat equation is an example of a system to which
the derived control law is applicable. Examples are given in Section 4 that
show the simplicity of synthesis and the performance of the control law.

As mentioned earlier, closed-form solutions of the operator-valued Ric-
cati equation are generally hard or impossible to obtain. Therefore, one
common approach is to consider the state-space based synthesis problem
for a finite-dimensional approximation of the original system. In this proce-
dure one has to ensure that the controller synthesized for the approximated
system stabilizes the original system and also provides performance that ap-
proaches optimal as the approximation order increases; see [Morris, 2010].
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This can be problematic but there are conditions under which this approach
works, see [Ito and Morris, 1998] for H∞ state feedback. However, the ap-
proximation order can be large and the multiple solutions of the Riccati
equation required mean that computation can be intensive. Furthermore,
it is difficult to determine the performance degradation resulting from the
use of an approximated controller.

The result in this paper is important in several respects. First, for sys-
tems with self-adjoint generator to which the result directly applies, it
provides an explicit characterization of the optimal controller. No iteration
is required. This controller will be approximated in implementation, how-
ever the difference between the implemented and exact controller can be
calculated. Furthermore, the result may be used in evaluation and bench-
marking of algorithms for general systems.

The outline of this paper is as follows. Section 2 gives some mathematical
preliminaries and the notation used. The main theorem is stated in Section 3
together with its proof. In Section 4, we illustrate the simplicity of synthesis
and the performance of the derived control law by means of an example.
Section 4 also includes some further discussion. Concluding remarks are
given in Section 5.

2. Mathematical Preliminaries
The notations R and C stand for the set of real and complex numbers,
respectively, while the set of nonnegative real numbers is denoted R+.
The notation Re(x) where x ∈ C denotes the real part of x. We will only
consider linear operators on separable Hilbert spaces, where we denote the
inner product and norm by 〈·, ·〉 and ' · ', respectively.

The domain of an operator T is denoted by D(T), the adjoint of T
is denoted by T∗ and the inverse of T, if it exists, is denoted by T−1.
An operator T is called self-adjoint if T∗ = T and D(T∗) = D(T). The
set of bounded linear operators from X to Y is denoted L (X , Y), and
L (X) = L (X , X). The norm of an operator T ∈ L (X , Y) is defined as
follows

'T' = sup
x∈D(T)

x /=0

'T x'Y
'x'X

.

Definition 1—[Curtain and Zwart, 1995, p. 606, Def. A.3.71]
A self-adjoint operator A on the Hilbert space Z is nonnegative if 〈Az, z〉 ≥ 0
for all z ∈ D(A), A is positive if 〈Az, z〉 > 0 for all nonzero z ∈ D(A) and
A is strictly positive (coercive) if there exists an m > 0 such that

〈Az, z〉 ≥ m'z'2 for all z ∈ D(A).
✷
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We will use the notation A ≻ 0 for strict positivity of the self-adjoint
operator A. We will use the terminology strictly negative denoted A ≺ 0
when −A ≻ 0.

Remark 1
Let Z be a Hilbert space and consider a self-adjoint strictly negative oper-
ator A. It is clear from the definition of strict negativity that A is injective,
thus A−1 exists. Furthermore, it can be shown that it is bounded, positive
and A−1 ∈ L (Z). See [Curtain and Zwart, 1995, Ex. A.4.2] for details on
this. ✷

Definition 2— [Curtain and Zwart, 1995, p. 15, Def. 2.1.2]
A strongly continuous semigroup is an operator-valued function S(t) from
R+ to L (Z) that satisfies the following properties

1. S(0) = I,

2. S(t + τ) = S(t)S(τ) for t,τ ≥ 0,

3. limt→0, t>0 S(t)z = z for all z ∈ Z.
✷

Definition 3— [Curtain and Zwart, 1995, p. 215, Def. 5.1.1]
A strongly continuous semigroup, S(t), on a Hilbert space Z is exponentially
stable if there exist constants M, α > 0 such that 'T(t)' ≤ Me−αt for all
t ≥ 0.

Definition 4— [Curtain and Zwart, 1995, p. 20, Def. 2.1.8]
The generator A : D(A) → Z of a strongly continuous semigroup S(t) on a
Hilbert space Z is defined by

D(A) =
{

z ∈ X
∣∣∣∣ lim

t→0
t>0

S(t)z − z
t exists

}

Az = lim
t→0
t>0

S(t)z − z
t for all z ∈ D(A).

✷

Remark 2
If A is the generator of a strongly continuous semigroup as in Definition 4,
then the domain of A, i.e., D(A), is dense in Z and A is a closed operator,
see [Curtain and Zwart, 1995, p. 21, Th. 2.1.10]. ✷
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Lemma 1—[Curtain and Zwart, 1995, p. 33, Cor. 2.2.3]
Sufficient conditions for a closed, densely defined operator on a Hilbert
space to be the infinitesimal generator of a strongly continuous semigroup
satisfying 'S(t)' ≤ ewt are:

Re(〈Az, z〉) ≤ w'z'2 for z ∈ D(A),

Re(〈A∗z, z〉) ≤ w'z'2 for z ∈ D(A∗).
✷

Remark 3
If A is self-adjoint, then the sufficient condition becomes 〈Az, z〉 ≤ w'z'2

for z ∈ D(A). Furthermore, if A is strictly negative by Definition 1, the
condition clearly holds for some w < 0. Thus, by Definition 3, S(t) is
exponentially stable. Hence, A is the generator of an exponentially stable
strongly continuous semigroup. ✷

If A is the generator of a strongly continuous semigroup S(t) on the
Hilbert space Z, then for all z0 ∈ D(A), the differential equation on Z

dz(t)
dt = Az(t), z(0) = z0,

has the unique solution z(t) = S(t)z0. Consider an input u ∈ L2(0, t; U),
where U is a Hilbert space and Lp(Ω; X) is the class of Lebesque measurable
X-valued functions f with

∫

Ω
& f (t)&pdt < ∞, p ∈ [0, ∞].

Given u and an operator B ∈ L (U, Z), the differential equation

dz(t)
dt = Az(t) + Bu(t), z(0) = z0,

has the following solution at any time t

z(t) = S(t)z0 +
∫ t

0
S(t − s)Bu(s)ds.

If we consider an output signal

y(t) = Cz(t) + Du(t)

where C ∈ L (Z, Y) and D ∈ L (U, Y), the output at any time t given an
input u is

y(t) = C S(t)z0 + C
∫ t

0
S(t − τ)Bu(τ)dτ + Du(t).
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The Laplace transform of y(t) given z0 = 0 yields the transfer function of
the system, denoted G, as follows

ŷ(s) = G(s)û(s).

In what follows, the considered systems are assumed to be causal.

Definition 5— [Morris, 2010, p. 10, Def. 2.5]
A system is externally stable or L2-stable if for every input u ∈ L2(0,∞; U),
the output y ∈ L2(0,∞; Y). If a system is externally stable, the maximum
ratio between the norm of the input and the norm of the output is called
the L2-gain. ✷

Define

H∞ =
{

G : C+
0 → C

∣∣∣∣ G analytic and sup
Re s>0

'G(s)' < ∞
}

,

where C+
0 are all complex numbers with real part larger than zero, with

norm
'G'∞ = sup

Re s>0
'G(s)'.

The lemma below is stated for systems with finite-dimensional input and
output spaces, e.g., U and Y are R, but it generalises to infinite-dimensional
ones. The notation M(H∞) stands for matrices with entries in H∞.

Lemma 2— [Morris, 2010, p. 10, Def. 2.6]
A linear system is externally stable if and only if its transfer function

matrix G ∈ M(H∞). In this case, 'G'∞ is the L2-gain of the system and
we say that G is a stable transfer function. ✷

Definition 6— [Morris, 2010, p. 10, Def. 2.9]
The pair (A, B) is exponentially stabilizable if there exists a K ∈ L (Z, U)

such that A + BK generates an exponentially stable strongly continuous
semigroup. ✷

3. Main Theorem
Consider a linear time-invariant infinite-dimensional system

dz(t)
dt = Az(t) + Bu(t) + Hd(t) (4.1)

where the state z(t) ∈ Z and Z is a separable Hilbert space. The operator
A is closed, densely defined, self-adjoint and strictly negative. Then by
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Lemma 1, a version of the Lumer-Philips Theorem, A is the generator of
an exponentially stable strongly continuous semigroup on Z. See Remark 3
for further comments on this statement. The state z(t) is assumed to be
measurable with initial condition z(0) = 0. Furthermore, the control signal
u(t) ∈ U and the disturbance d ∈ L2(0,∞; V), where U and V are Hilbert
spaces, and B ∈ L (U, Z) and H ∈ L (V, Z).

Consider H∞ state feedback of (4.1) given unit cost on the state z(t) and
control input u(t), separately, i.e., the cost function is given by

ζ (t) =
[

z(t)
u(t)

]

.

Given a stabilizing static state feedback controller K ∈ L (Z, U), i.e., u(t) =
K z(t), the closed-loop system from the disturbance d(t) to the controlled
output ζ (t) is given by

dz(t)
dt = (A + BK)z(t) + Hd(t)

ζ (t) =
[

I
K

]

z(t)
(4.2)

where A+ BK generates an exponentially stable strongly continuous semi-
group. We denote the Laplace transform of the closed-loop system given a
controller K by GK , i.e.,

ζ̂ (s) = GK(s)d̂(s).
In the following theorem, we give a closed-form expression for a state feed-
back controller K that minimizes the L2-gain of GK . The optimal control
law can be considered to be constant without restriction, see [Morris, 2010]
for further details to this statement. The notation B∗ indicates the adjoint
of the operator B.
Theorem 1
Consider the system (4.1) where A is closed, densely defined, self-adjoint
and strictly negative, B ∈ L (U, Z) and H ∈ L (V, Z), where Z, U and
V are Hilbert spaces. Then, 'GK'∞ is minimized by the state feedback
controller Kopt = B∗ A−1 and the minimal value of the norm is given by
'H∗(A2 + BB∗)−1 H'

1
2 . ✷

Proof. The proof is divided into two parts. In the first part we show that

'GKopt' ≤ 'H∗(A2 + BB∗)−1 H'
1
2 .

In the second part of the proof, we show that no controller can achieve
strict inequality. Hence, equality holds. In both parts of the proof, we use
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the following equivalence given by the strict bounded real lemma in infinite
dimensions, see [Curtain, 1993, Theorem 1.1], applied to (4.2): Given γ > 0
and a controller K ∈ L (Z, U), the following two statements are equivalent

(i) A + BK generates an exponentially stable strongly continuous semi-
group T(t) on the Hilbert space Z and

'GK'∞ < γ .

(ii) There exists a self-adjoint, nonnegative operator P̃ ∈ L (Z) such that

(A + BK)∗ P̃ + P̃(A + BK) + I + K∗K + γ−2 P̃ H H∗ P̃ ≺ 0. (4.3)

First, as A is closed, densely defined, self-adjoint and strictly negative
then by Lemma 1, A is the generator of an exponentially stable strongly
continuous semigroup on Z, denoted S(t). Furthermore, we know that
(A, B) is exponentially stabilizable as S(t) is exponentially stable. The
domain of A + BK , i.e., D(A + BK), is equal to the domain of A as BK ∈
L (Z).

For the first part of the proof consider (ii) and set P̃ = −A−1,
K = Kopt = B∗ A−1 and take any γ with

'H∗(A2 + BB∗)−1 H'
1
2 < γ .

It is possible to set P̃ = −A−1 as A is self-adjoint and strictly negative, thus
−A−1 is self-adjoint, nonnegative and A−1 ∈ L (Z), see Remark 1. Now, we
will prove that 'GKopt'∞ < γ by the equivalence between (ii) and (i). First,
notice that

P̃(A + BK) = −A−1(A + BB∗ A−1) = −I − K∗K.

Thus, (4.3) can be equivalently written as

−I − K∗K +γ−2 A−1 H H∗ A−1 ≺ 0. (4.4)

Inequality (4.4) holds if and only if
[

I + K∗K −A−1 H
−H∗ A−1 γ 2 I

]

≻ 0 (4.5)

by the Schur Complement Lemma for bounded linear operators,
see [Dritschel and Rovnyak, 2010, Def. 3.1 and Lem. A.1]. Again, by
the same Lemma, inequality (4.5) is equivalent to

γ 2 I − H∗(A2 + BB∗)H ≻ 0. (4.6)
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where we have used that

γ 2 I − H∗ A−1(I + K∗K)−1 A−1 H = γ 2 I − H∗(A2 + BB∗)H.

Inequality (4.6) is true by the definition of γ . Hence, 'GKopt' < γ by the
equivalence between (ii) and (i).

For the second part of the proof, consider again (4.3). Given a self-adjoint,
nonnegative operator P̃ that solves (4.3), we can construct a self-adjoint,
strictly positive operator Pε ≻ 0 by Pε = P̃ +ε I, where ε > 0 is some small
real number. Then, we can define

Mε = (A + BK)∗Pε + Pε(A + BK) + I + K∗K + γ−2 Pε H H∗Pε

and we know that M0 ≺ 0. Furthermore,

Mε = M0+ε2A+ε(K∗B∗+BK)+I+K∗K+γ−2(Pε H H∗Pε−P0 H H∗P0).

The right-hand side of this equality is negative for small ε as 2A ≺ 0 and
K , B, P and H are bounded. Thus, Mε ≺ 0, i.e., the following holds

(A + BK)∗P + P(A + BK) + I + K∗K +γ−2 P H H∗P ≺ 0

for some P ≻ 0. This P is invertible and we can rewrite the inequality
further as

P−1(A+ BK)∗ +(A+ BK)P−1 + P−2 + P−1 K∗K P−1 +γ−2 H H∗ ≺ 0.

We perform the change of variables

(P−1, K P−1) → (X, Y ),

thus X ∈ L (Z) and Y ∈ L (U, Z), and sum of squares to write the
inequality as follows

(X + A)2 + (Y ∗ + B)(Y ∗ + B)∗ − A2 − BB∗ +γ−2 H H∗ ≺ 0.

The first two terms of the operator expression are always non-
negative and thus no controller can satisfy a bound γ smaller than
'H∗(A2 + BB∗)−1 H'

1
2 . Hence the controller constructed in the first part is

optimal and the proof is complete. ✷

4. Control of the Heat Equation
In this section, we illustrate the simplicity in synthesis of the control law
given by Theorem 1. The example concerns control of the heat equation,
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x = 0 x = l

x

Figure 1. Rod of length l with one-dimensional spatial coordinate x.

see (4.7) below, which describes the distribution of heat, or variation in
temperature, in a region over time. The equation also describes other types
of diffusion, such as chemical diffusion.

Consider the following partial differential equation that models heat
propagation in a rod of length l

,z
,t (x, t) = ,2z

,x2 (x, t) 0 < x < l, t ≥ 0. (4.7)

The temperature at time t at position x is z(x, t) ∈ Z = L2(0, l). See Fig-
ure 1 for a depiction of the rod.

To fully determine the temperature of the rod, the initial temperature
profile as well as the boundary conditions have to be specified. As we con-
sider H∞ control, the initial temperature is set to zero. We will consider
Dirichlet boundary conditions, i.e.,

z(0, t) = 0, z(l, t) = 0.

Define the operator A as

A =
d2z
dx2

with domain

D(A) =
{

z ∈ L2(0, l)
∣∣∣∣ z, dz

dt locally absolutely continuous,

d2z
dx2 ∈ L2(0, l) with z(0) = 0, z(l) = 0

}

.

This operator fulfills the requirements for Theorem 1, i.e., it is closed,
densely defined, self-adjoint and strictly negative. For a proof of this see
[Tucsnak and Weiss, 2009, pp. 92-94]. Thus, by Lemma 1, A generates an
exponentially stable strongly continuous semigroup S(t) on L2(0, l), the
state z evolves on the space L2(0, l) and we can write (4.7) as

ż(t) = Az(t), z(x, 0) = 0.
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Now, suppose the temperature is controlled by an input u(t) and affected
by a disturbance d(t) as follows

ż(t) = Az(t) + Bu(t) + Hd(t), z(x, 0) = 0,

where B, H ∈ L (R, L2(0, l)), u ∈ L2(0,∞;R) and the disturbance
d ∈ L2(0,∞;R). Given the properties stated for the system, Theorem 1
is applicable. We will now, given some explicit examples of operators B
and H, write down the closed-form expression for the control law given by
Theorem 1.

The structure of the optimal control law, i.e., Kopt = B∗ A−1 is not de-
pendent upon the operator H, as can be seen in Theorem 1. We will only
consider

(Hd)(x) = d(t) for all 0 < x < l.

In other words, the disturbance is uniformly distributed along the entire
rod. We will treat operators B defined by

Bu = χ[0,α](x)u(t) (4.8)

where 0 < α ≤ l and

χ[0,α](x) =
{

1 if 0 < x < α
0 otherwise.

Thus, for α = l the control input is uniformly distributed along the entire
rod while for instance for α = l/2 it is only distributed in 0 < x < l/2
while it is zero for the remaining part of the rod. The adjoint of operator B
defined in (4.8) is

B∗y(x, t) =
∫α

0
y(x, t)dx for y ∈ L2(0, l).

Consider the following equality, as a step towards explicitly stating the
optimal control law u(t) = Koptz(x, t) = B∗ A−1z(x, t),

z(x, t) = Ay(x, t), y ∈ D(A).

The function y(x, t) can be written as

y(x, t) =
∫ l

0
G(x, s)z(s, t)ds

where

G(x, s) =

⎧
⎪⎨

⎪⎩

(s − l)
l x if 0 < x < s

s
l (x − l) if s < x < l
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is the Green’s function of A. Note that G(x, s) is piece-wise linear in x with
G(0, s) = G(l, s) = 0. Now, if α = 1 in (4.8), then

u(t) = B∗ A−1z(x, t) =
∫ l

0

∫ l

0
G(x, s)z(s, t) ds dx

=
∫ l

0

[∫ l

0
G(x, s) dx

]

︸ ︷︷ ︸
:= f (s)

z(s, t) ds (4.9)

where
f (s) = s(s − l)

2 .

The control input is thus a weighted integral of the deviation in temper-
ature along the spatial coordinate. The quadratic weight f (s) determines
the scalar signal for controlling the temperature profile, as a compromise
between the deviation in temperature from zero and the cost for changing
the temperature. The general form of the control signal, i.e., without any
specific value on α, is similarly given by

u(t) =
∫ l

0

(∫α

0
G(x, s) dx

)

z(s, t) ds

=
∫α

0
f1(s)z(s, t) ds +

∫ l

α
f2(s)z(s, t) ds

where

f1(s) =
s(s − l)

2 +
s(l − α)2

2l and f2(s) =
α2

2l (s − l).

The weighting function is altered dependent on if the spatial coordinate is
less than or larger than α, to account for the asymmetry in B. Notice that
f1(s) = f (s) and the second integral is zero when α = l as expected from
the firstly derived expression for u(t) in (4.9).

Given a constant disturbance d(t) = 1 for t ≥ 0, the state z(x, t) is
determined numerically in MATLAB, see [Mathworks, 2015], by the finite
element method for 200 time steps with interval length 0.01 and spatial
segments of length 0.1, with l = 3. The integrals in the expression of the
control law are approximated numerically by the trapezoidal rule.

In Figure 2a, the time trajectory of the temperature at the midpoint,
i.e., x = l/2, is shown for the control input operators B defined by (4.8)
given α = l and α = l/2 as well as B := 0. Clearly, when α = l we get
the best disturbance attenuation as shown by the solid line. When α = l/2,
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0 200
0

0.5

1

t

a) Temperature at midpoint

0 3
0

0.5

1

x

b) Temperature along rod

Figure 2. Response from unit disturbance for system with B = 0 is given
by the dashed lines, with B defined in (4.8) with α = l is given by the solid
lines and with α = l/2 is given by the dashed dotted lines. a) Temperature
at x = l/2 over time, b) temperature along the rod at t = 200.

the controller is not able to attenuate the disturbance as effectively and of
course with B = 0 the system evolves only according to the heat equation
with a disturbance. In Figure 2b we show the temperature distribution of
the rod at the final time t = 200. Here one can see that the temperature
distribution given with α = l/2 is not symmetric along x. This is due to
that the control input operator B in this case is asymmetric in x. The
temperature distributions are normalized such that z(200, l/2) given α = 0
is equal to 1.

5. Conclusions
We give a closed-form expression for an optimal H∞ state feedback con-
troller applicable to systems with bounded input and output operators and
closed, densely defined, self-adjoint and strictly negative state operator. We
demonstrate, by means of an example, the simplicity of synthesis of the
control law as well as its performance. The control law may be used in eval-
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uation and benchmarking of general purpose algorithms for H∞ controller
synthesis. Future work includes comparison of a finite-dimensional approxi-
mation of the optimal controller to a controller derived by a general purpose
algorithm. Further, to investigate possible benefits of having a closed-form
expression for an optimal controller in the synthesis of controllers for large
scale systems.
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Vi är alla beroende av ett flertal storskaliga system i vår vardag. Ex-
empelvis så är de allra flesta hushåll kopplade till elnätet och vi nyttjar
vägnätet för att pendla till jobbet. Reglerteknik kan användas för att för-
säkra att dessa system fungerar på ett bra sätt. I själva verket utnyttjas
reglertekniken redan inom många användningsområden, bland annat för
att garantera stabil elförsörjning via vårt elnät.

Effektiv temperaturreglering i bostä-
der är en del av forskningen för att
skapa smarta samhällen.

Reglerteknik baseras på återkopp-
ling av information från till exempel
mätningar. Föreställ dig ett rum där
temperaturen regleras med hjälp av ett
värme/kyla-system. Detta kan vara ett
element eller en luftkonditioneringsen-
het. I rummet finns även en termome-
ter för att avläsa temperaturen. Vi öns-
kar nu att temperaturen hålls så nära
21 grader som möjligt trots störningar.
Exempel på störningar kan vara att ett
fönster öppnas eller att utomhustem-
peraturen sjunker. Istället för att be-
höva styra värme/kyla-enheten på egen
hand, så att temperaturen hålls på öns-
kad nivå, kan en reglerteknisk styrlag
användas och göra det automatiskt.

Att skapa reglertekniska styrlagar för just storskaliga system kräver
tyvärr ofta många och svåra beräkningar. Tänk dig ett flerbostadshus där
temperaturen i varje rum ska regleras. Likt tidigare är varje rum utrustat
med en termometer och en värme/kyla-enhet. Däremot är temperaturnivån
i ett rum endast tillgänglig för värme/kyla-enheten som är installerad i det
specifika rummet.

Förutom att hålla temperaturen i rummen på önskad nivå, trots stör-
ningar, är målet nu att koordinera värme/kyla-enheterna på ett sådant sätt
att den totala energiförbrukningen blir den minsta möjliga. För att inte

1



behöva installera en central beräkningsenhet, som även måste inhämta
information från alla värme/kyla-enheter, ska målet kunna uppnås genom
beräkningar utförda lokalt i varje rum. För att kunna koordinera sin verkan
måste därför enheterna kommunicera med varandra och utbyta information
om temperaturen i rummen. Det är även önskvärt att de lokala beräkning-
arna kan utföras med så lite informationsutbyte mellan enheterna som
möjligt. Denna begänsning på informationsdelning måste tas i beaktning
vid designen av styrlagen.

Det beskrivna scenariot kan formuleras som ett matematiskt problem.
Om rummen är många blir dock beräkningarna som krävs för att lösa
problemet, alltså för att bestämma beteendet hos varje enskild värme/kyla-
enheten, mycket svåra att genomföra. Denna avhandling ger en lösning på
detta problem, nämligen en styrlag som rentav kan anges på en enkel mate-
matisk form och som endast kräver att en värme/kyla-enhet kommunicerar
med enheterna i angränsande rum. Det behövs alltså inte ett beräknings-
program för att beräkna lösningen till problemet. Samtidigt krävs det en-
dast begränsat med kommunikation för att styrlagen ska kunna användas.

Designen av en reglerteknisk styrlag är beroende av hur man definierar
systemets prestanda, vilket kan göras på många olika sätt. I detta arbete
har styrlagen designats så att systemet kan hantera värsta möjliga stör-
ningar. Styrlagen kan alltså reglera systemet så att det beter sig på önskat
sätt även när det utsätts för dessa störningar.

Avhandlingen undersöker egentligen en klass av matematiska modeller
till vilken modellen för temperaturreglering tillhör. Andra möjliga tillämp-
ningar är bevattningssystem och elektriska nätverk. Det visar sig att det
matematiska designproblemet för system i denna klass kan förenklas. I
själva verket visar det sig att man endast behöver ta hänsyn till systemets
mest dominanta beteende, vilket förenklar problemet.

Styrlagen visar sig ha ett flertal fördelaktiga egenskaper för just stor-
skaliga tillämpningar. Exempelvis tar den hänsyn till de restriktioner som
finns på informationsdelning mellan olika delar av systemet, likt i fallet
med temperaturreglering. Den visar sig även vara ett värdefullt verktyg för
reglering av fysikaliska system där storheten beror både på tid och rum.
Ett exempel är temperaturdynamiken hos ett objekt, vilken beskrivs med
hjälp av värmeledningsekvationen. Dessutom kan styrlagen användas som
ett riktmärke vid utvecklingen av designmetoder för generella system.

För att vidareutveckla styrlagen som presenteras i denna avhandling är
det viktigt att införa olinjär dynamik i analysen. Detta kan användas för
att beskriva exempelvis maxvärden på styrsignaler, vilket i praktiken alltid
existerar. Det är även av intresse att undersöka om styrlagar med liknande
egenskaper kan bestämmas när prestandan hos systemet beskrivs på ett
annorlunda sätt.
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