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FOR NUCLEAR MATRIX ELEMENTS
DUE TO PARTICLE NUMBER FLUCTUATIONS
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Department of Mathematical Physics,

Lund Institute of Technology, Lund

Received 1 March 1966

The effect of particle-number fluctuations on matrix elements based on the BCS wave function is investi-
gated by the employment of a saddle-point projection method. In particular, in the cage of a uniform model
containing 32 levels it is found that the correction is relatively small and in most cases of interest fairly

well reproduced by the method discussed.

In a previous paper [1] a method was proposed
to correct approximately the BCS expressions for
effects of particle number fluctuations. The same
method is now generalized to treat in a similar
fashion matrix elements of one-body operators,
involving transitions characterized by seniority
quantum numbers v; =0, vy =2and v; =vp =1,
respectively. The former types of matrix ele-
ments are involved in particular in the evaluation
of the even-even moments of inertia [2], and are
therefore of considerable interest.

The saddle point method [3,4]. The BCS wave
function ("unblocked' or "blocked') referring to
an average particle number z» may be decomposed
according to an arbitrary particle number % as
follows

WBOS () = %} Cp(n) o, 0) . (1

In eq. (1) the index % given in parenthesis refers
to the average number of particles in terms of
which the BCS coefficients U, and V;, are deter-
mined. The projected matrix elements, involving
only wave function components with 2 =#, of a
general one-particle operator @ may be defined
as

Q) = (i) |@ | @) . (2)
The projection is accomplished, as in refs. 1,3,
by the help of operator exp p(p-#). One obtains
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in im im )
Qe,n) = [ K(p)dp[f. fle)dp [ g(p)dp] ,(3)

~im -im ~im

where
K(p) = (¥ Qexp[p(h-m)]| ¥, (4)

and the normalization is accomplished by means
of the functions

Flp) = (W'} exp[p(p-n)]: ¥ )
and
g(p) = (Wlexp[p(B-m]\W) (6)

The integrals (4) - (6) may be evaluated by means
of a saddle-point method. Thus,

im L i N
[ Kpdp~K [ du exp{iu2K"Q)/K}, (7)
-im e

where
R = K(0) - 3[K" (0)]%/K"(0). ®)

Correépondingly the integrals involving the func-
tions f and g may be evaluated in an entirely
analogous manner.

The ratio of the corrected to the uncorrected
matrix element, denoted C, may now be expressed
S L PR
C =[&/ K(O)*[K"(0)/ K(0)] *[/"(0) 8" (O]*[f&] * -
The actual labour is now entailed in the evaluation
of the matrix elements

K(©0) = (¥ [Qiy"),

K'(0) = (" [Q(B-m) [V, (10)

K"(0) = (¥ 1Q(B-n)2 [y,
and the corresponding expressions for the functions
f and g&.

The even case, Av = 2, The matrix elements

involving time-reversed orbitals 7 are related to
the other matrix elements through the formula

A5 = Tdyry - (11)

We may assume that phases such that 7 = +1 for
EX and -1 for M\ are employed. Let ¥/ refer to
the ground state and Y'* to a broken-pair state
with the odd particles in orbitals 1 and 2, respec-
tively. One then obtains

K(©0) =

- apWyVperiy by L1 @iy, a2

662

2V, vV (13)
K K
R =K'O)/KQ) = 2 - (m-2),
K¢1,2 UKUK+VKVK

40,V UV, (14)
R" =K"(0)/K(0) = sz + Q_K_E_QK_.K_Z .
K#1,2 UygUg + VieVio)

The coefficients U, and V. refer to the ground
state, Uy and Vj; to the excited state where the
levels 1 and 2 are "blocked". One may thus eval-
uate the correction factor C of eq. (9) by the help
of eqs. (12)- (14) in the 'blocked" case.
In the "unblocked' case, on the other hand, we
obtain the following simple expression
o[ 5/€1_ €2\2 1[a2 A2
C = 1+0'02\:—-8—'<F' +E") +Z _§+_§ :1. (15)
1 =2 E] Ej
The character of the saddle-point method as an
expansion in 0g? is clearly born out by eq. (15).
The odd case, Av = 0. The procedure in the
vy =1, vy =1 odd case is analogous to the even
case. However, for Av = 0 one can no longer in-
troduce one simple correction factor as was done
in the Av = 2 case. Instead one finds (with "block-
ing" included)

Q(n,m) = 91 H (URTY + VyVS) X (16)
A#1,2
x [UyuyC, - VG

where the correction factors C, and Cy, are
given in ref. 5. Some representative values are
listed in figs. 2.

For the "unblocked" case one may give simple
explicit expansion formulae for C, and Cy, re-
sembling eq. (15)

2
_ ol 5(€1 “2
C(%) =1+ Tg \:—Z<E1+F2:F 1) + (17)

2 2
B[ 1 2| 1[a? A2 ]
One should observe that for the case of T = +1
and € = -¢€, i.e., when Uy = V5, Vo =Uy, C,
and C}, become equal. Hence, also the corrected
matrix elements vanish under the particular con-
ditions cited.

We have compared the approximate, saddle-
point projection method with an exact projection
[5-7] as obtained with the help of a computer pro-
gram in close analogy to that of ref. 6. The fol-
lowing conclusions may be reached from a com-
parison of correction factors (see figs. 1 and 2).
In general, the corrections are unexpectedly
small for matrix elements moderately near to the
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Fig. 1. Correction factor C for single-particle matrix elements between v; = 0 and v¢ = 2 states without

and with "blocking". Numbers given in parenthesis are obtained by the approximate (saddle-point) method
described in the text. These should be compared with the numbers given just above obtained by an exact
projection method. The numbers on the axis refer to the levels of an equally spaced doubly degenerate
single-particle model consisting of 32 levels, in which 16 pairs are accomodated. Thus, in the v=0 ground
state the chemical potential falls half-way between levels number 16 and 17, which defines a point of
symmetry in the figure.
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Fig. 2. Correction factor Cy (see text) for v; = v¢ = 1, without and with "blocking". (The model is here
modified to 33 levels and 33 particles.) The other correction factor Cp, can also be read from a mirror
reflexion of this figure through the diagonal extending from the upper left to the lower right corner.
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Fermi surface in the case treated, which should
be considered fairly realistic (32 equidistant en-
ergy levels, G = 0.4 A€). This holds both for the
"blocked' and the '"unblocked' cases.

For Av =0, "blocked' and "unblocked", and
for Av = 2, "unblocked", the saddle-point method
is fairly successful in reproducing the very small
corrections in question. For the Av = 2 'blocked"
case, on the other hand, the method appears un-
reliable.

We are grateful to Professor A, Bohr and Dr.
J. Bang for very helpful discussions and to Pro-

fessor J. Rasmussen and Dr. L. Silverberg for
giving us generous access to their computer pro-
grams.
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