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A Helping Hand: Industrial Robotics, Knowledge and User-Oriented
Services

Maj Stenmark1 and Jacek Malec1

Abstract— In this paper we discuss AI in industrial robotics.
In automatic control, computer vision and optimization, ma-
chine learning and data mining algorithms are widely used.
However, cognition enabling mechanisms, such as high-level
logic and symbolic reasoning, are still limited. This is not
due to the lack of available algorithms, rather the bottleneck
is knowledge representation, acquisition and transformation
between different formalisms.

In industrial robotics, cognition is not self-serving, AI tech-
nologies are rather a tool to make the user interaction, the
system configuration and the task execution as cost efficient as
possible. Autonomy is a mean to minimize the human workload.

In our approach, we use an online knowledge base that
provides libraries with object models and task specifications,
and offer services to support the user (and the robot) during
programming, deployment and execution.

I. INTRODUCTION
What is considered intelligent behavior depends on the

domain, for a Mars rover it is autonomy and for a toy
robots it is simple user interaction. For industrial robots, it
is being a good subordinate. A good subordinate is easy
to communicate with, it has domain knowledge and works
safely, effectively and independently, but does not take any
radical decisions without approval from the supervisor.

Nowadays, computing power and storage is cheap and
efficient and extensive amounts of data and processing algo-
rithms are available. This data driven approach, together with
knowledge engineering technologies such as the Semantic
Web, provide a hotbed for AI research.

Within the service robotics community, the use of results
from AI are commonplace, however, the field differs from
industrial robotics on several key enabling factors. Service
robotics is mostly research-oriented and mostly publicly
funded. There is a focus on user interaction, and the solutions
can be open-source and experimental. Industrial robotics
on the other hand, is application-oriented, often privately
funded, uses standardized or proprietary software solutions,
focuses on repeatability and reliability in an often structured
environment, and is regulated regarding human safety. AI
has anyway entered the field through machine learning
approaches used in automatic control, computer vision and
optimization.

However, there is an economic factor which favors indus-
trial robots, namely, labor cost in manufacturing industries.
Still, in industries where the products have short life span,
small scale production or in small businesses, the program-
ming time and effort does not cover the savings on cheap
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mechanical labor. Thus, it is necessary to lower the effort of
programming the robot while keeping the execution robust.
This motivates the integration of AI techniques into industrial
robotics systems.

We believe that building a system with domain knowledge
and reasoning capabilities, we can lower the required exper-
tise for robot instruction while keeping sufficiently robust
and efficient task execution. In this paper, we present an
early attempt to add AI in an industrial robotics system and
discuss future research plans. We focus on the AI-related
services providing user support. Our system is intended for
humans cooperating with robots, therefore knowledge and
the communication of knowledge is important. Since lan-
guage is essential for human communication of knowledge
we have taken a special interest in how natural language can
be used in task instruction and user interaction.

The paper is organized as follows: first, we discuss related
research, then we briefly introduce the relevant components
of the system. In the end, we discuss research challenges in
industrial robotics that will advance AI research.

II. RELATED WORK

In knowledge engineering, ROBOEARTH [1] is an attempt
to create a possibly distributed knowledge base accessible
as a ”World Wide Web for robots”. Although RoboEarth is
robot-agnostic, and also encompasses, at least in principle,
industrial robots, it does not address the issues of predom-
inant importance for industry, i.e. real-time performance,
local, closed knowledge bases and multitude of existing,
developed in-house, custom methods and tools for task-
level programming. A related achievement is CRAM [2],
a successful attempt to enable cognition during task execu-
tion. However, it addresses mostly service tasks, putting no
particular stress on real-time or accuracy and repeatability
aspects of performed actions.

In industrial robotics there are a few attempts to create
ontologies describing devices and task representations [3],
[4], [6], these also work towards formal standardization.
The ROS ecosystem has led to development of a number
of informally standardized languages for semantic descrip-
tion of robots. The bottom one in a hierarchy and in the
same time the most commonly adopted is URDF used for
specifying robot hardware as consisting of links and joints.
On top of it there exist a number of semantic annotation
formats, like SRDF (Semantic Robot Description Format,
http://wiki.ros.org/srdf/), which is just a set of
XML-tags for specifying information not available in URDF,
or SRDL (Semantic Robot Description Language) [5] which



is an OWL-based language for providing semantic infor-
mation to reasoning services. SRDL is the closest previous
solution to the one presented in this paper.

With a semantic reasoning layer at the top and low-level
motion control at the bottom, there are several proposed
architectures that attempt to bridge the gap between the
high-level and the low-level representations [7]. In industrial
robotics, there are several languages used for motion con-
trol. IEC 61131-3 [8] lists five standards for programmable
logic controllers (PLCs), among others Sequential Function
Chart (SFC) for parallel control processing. PLC languages,
Statecharts [9], iTaSC specifications [10] and vendor specific
robot languages are different ways to express a task. On a
higher abstraction level, others express device capabilities
as skills [11] that can be sequenced into a task synthesis.
When building knowledge engineering systems for robotics,
existing standards and formalisms should (at least to some
extent) be supported to lower the integration effort.

Apart from the work in representation and standardization,
the acquisition of knowledge poses another issue. Since large
amounts of human knowledge is encoded in text one way to
approach it is natural language parsing and knowledge ex-
traction from online sources. Examples are Watson [12] that
acquired a large amount of knowledge and won Jeopardy!
and [13] that parse cooking recipes online and transforms
them to action recipes. The latter is a prominent example of
how to automatically extract skill knowledge.

Natural language is also used as a teaching and instruction
of a skill. It can work as an additional input modality,
e.g., when guiding the robot [14], or in high-level program-
ming [15]. An interesting solution to verbal human-robot
interaction is presented in [16], focusing on the process
of context-dependent anchoring of the symbols used in the
dialogue to real-world objects in the world model. However,
their parser is custom-built, domain-tailored and rule-based
while in the solution described in this paper we use a state-
of-the-art statistical semantic parsing, offering much more
generality.

III. ARCHITECTURE

The distributed system consists of four main components,
depicted as the rectangular boxes in Fig. 1. The knowl-
edge base, here called Knowledge Integration Framework
(KIF), is a server containing ontologies, data repositories and
reasoning services. The Engineering System is a graphical
user interface for high-level robot instruction that uses the
data and services that KIF provides for user support. The
Task Execution is built on top of the native robot controller
and sensor hardware. It compiles, with the help of KIF, the
symbolic task to executable files and when needed, hardware
specific code, before executing it. It is implemented on a real-
time enabled Linux machine, which also runs adaption and
error detection algorithms.

The Engineering System and the execution environment
can also communicate.

In addition to the benefit of modular exchangeable compo-
nents, the rationale behind KIF as a separate entity is that the

Fig. 1. The Knowledge Integration Framework provides services to the
Engineering System and the Task Execution. The latter two communicate
during deployment and execution of tasks. The Task Execution uses sensor
input to control the robot and tools.

services can be black boxes. Robot vendors can offer their
customers computationally expensive or data heavy cloud-
based services.

IV. KNOWLEDGE INTEGRATION FRAMEWORK

The Knowledge Integration Framework, is a server con-
taining a set of robotics ontologies, data repositories and ser-
vice servlets. The repositories are implemented as a Sesame
Triple store [17], which, together with the services are stored
in an Apache Tomcat servlet container [18].

The ontologies are described in more detail in [6]. The
core ontology, rosetta.owl1, contains robotics devices
and skills [19], [20], [21]. The devices described in the
ontology provide a set of skills, and each skill is offered
by one or more devices. Skills are hierarchical and composi-
tional, where atomic skills can be combined into compound
ones. A task, which we consider being the goal specification
expressed as constraints [22], is realized by a state machine
of skills. Skills can have several different (platform specific)
implementations.

The core ontology is extended with additional ontolo-
gies, shown in Fig. 2, that are used for different purposes.
frames.owl is an ontology describing frames of physical
objects. It contains representations of geometrical location
and constraints between frames, kinematics chains, which are
later used to generate the control program. params.owl
contains skills, their parametrization and pre-and postcon-
ditions which is necessary for knowledge based services
such as planning and consistency checking. sfc.owl con-
tains representations for executable state machines and in-
cludes among others Sequential Function Charts, OpenPLC
and rFSM. Finally, injury.owl contains injury risk data
needed to calculate new speeds and evading evasive motions
when humans and robots share workspace.

V. KNOWLEDGE-BASED SERVICES

The reasoning in the system is principally done on KIF
by a number of services that are accessible over the internet.

1http://kif.cs.lth.se/ontologies/rosetta.owl
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Fig. 2. The ontologies used in the Rosetta project.

This section presents the services that are currently imple-
mented in the system. Since services are implemented as
servlets, the number can easily be extended.

The most basic, but also most used, services are the object
and skill libraries. The user can retrieve and reuse task and
skill descriptions and upload new programs. Skills and object
descriptions are represented semantically as triples or stored
as text and binary files, or both, such as instances of objects
with both CAD-files and semantic properties.

Other services provide user support during programming
and deployment. The Engineering System uses a service for
natural language programming [15]. The input to the service
is English text, given directly as text or from speech-to-text
in the Engineering System. In turn, the KIF service calls a
generic high-performance statistical semantic parser [23] that
produces predicate-argument structures for each sentence.
The parser uses Propbank [24], which is a verb-centric
corpus with large amounts of annotated text. The verbs have
different senses depending on the context, pick.01 is for
example select something from a group, while pick.02 refers
to bully. Each sense has a number of arguments, pick.01
has arg0 - picker, arg1 - thing that is picked, arg2 - source
and arg3 - beneficiary. The arguments are optional, e.g.,
the sentence Alice (arg0) picked out (pick.01) guitar strings
(arg1) for Marley (arg3) does not have a source argument.
The parsing also extracts time, location, plural objects and
manner for the actions.

In our case, the actor, given by arg0, can be implicitly
set to the robot, while the predicate is matched to existing
robot programs and the rest of the arguments are matched to
objects in the robot station in the Engineering System and
generates an executable sequence of steps.

For the lazy programmer, action planning and scheduling
services are also available. The user can specify the assembly
task by a tree of partially ordered subgoals [22] and let the
planning service check the pre- and postconditions of each
assembly operation and return a skill sequence. The schedul-
ing service attempts to minimize the execution time on a
system with limited resources. The current implementation
is based on list-scheduling.

KIF also provides code generation for both the physical
and the virtual system, e.g., one service can be used to
generate JGrafChart files [25] for the sensor-based skills.
Also, Maple files for kinematic calculations are stored online

Fig. 3. The ABB RobotStudio programming environment.

from which Java-files can be generated and used to simulate
robots in virtual systems.

VI. ENGINEERING SYSTEM

The Engineering System is a high-level programming
interface implemented as a plugin to the programming and
simulation environment ABB RobotStudio [26], see Fig. 3.

The Engineering System uses and produces KIF data for
devices, workpieces, frames and skills. It is used to visualize
the object geometries and properties, the frames and the task
and skills.

The task specification is represented as an assembly
graph [22], which is a partially ordered tree of assembly op-
erations. An example of an assembly graph for an emergency
stop button assembly task [27] is shown in Fig. 5. The task is
transformed into a sequence of operations, graphically repre-
sented as an editable sequence. Fig. 4 displays a sequence of
nested steps that combines vendor specific motions, a force-
controlled assembly skill that has been downloaded from KIF
and two force-controlled motions with force constraints on
different axes on an object frame. Sequences can be created
either 1) manually, or 2) by using the validation service on
KIF, which takes the assembly graph as input and outputs a
suggested sequence of actions, or 3) by the natural language
programming interface described in earlier work [6], [15].

The sequence is then used to generate executable code
for the target platform, which gan be both a virtual and a
physical robot controller.

VII. EXECUTION

The high-level symbolic description displayed in Fig. 4
can be executed on different platforms. One setup, shown
in Fig. 6, is located at RobotLab in Lund and contains a
two-armed concept robot from ABB as well as conventional
ABB robot (IRB120). Our project partners at KU Leuven
have a KUKA LWR. Although the low-level control in both
systems are based on iTasC [10], they use different state
machines descriptions, execution engines as well as robot
programming languages.



Fig. 4. An example of a sequence with hierarchical steps. First, the
box button is picked, then assembled using a force-controlled skill that
is downloaded from KIF. After an additional move command, there are
two force-controlled motions, Search along z and Push to the side with the
corresponding constraints for the motion. By right-clicking on the objects,
parameters to the motions, such as force thresholds, can be edited.

Fig. 5. An assembly graph for an assembly of an emergency stop
button box. The subtrees are partially ordered, hence there are two parallel
assemblies numbered 1.

Fig. 6. The assemble workers in RobotLab at Lund University are, to the
left, an ABB concept robot and, to the right, a traditional ABB industrial
robot (IRB120).

In Lund, we generate vendor-specific code for simple
motions and actions (such as opening and closing grippers),
while sensor-based skills are implemented as state machines
in JGrafChart [25]. When a skill is uploaded to the skill
library, the statechart is annotated semantically. This pro-
cedure is reversed during the deployment and a new xml-
file is generated. If the skill was created from scratch in
the Engineering System using motion constraints, the full
kinematic chain has to be extracted first.

When programming tasks using force control, it is a
challenge to select suitable force-control parameters. The
parameters depend on the stiffness of the involved materials.
Stolt et al. [28] developed a self-tuning algorithm based on
Recursive Least Squares to experimentally determine the
stiffness and damping factor of an impedance controller.
Other parameters can be learned from training data, such
as uncertain contact positions [27].

During the execution, errors and non-nominal sensor read-
ings are detected by creating sensor signature models using
Hierarchical Dirichlet Process Hidden Markov Models [30],
[29]. Error-handling procedures can be added to the task to
cope with common errors, however, this is currently done by
a human operator.

VIII. EXPERIMENTS

We have experimented with the emergency stop button box
assembly shown in Fig. 5. Initially, there are five separate
parts: an emergency button, the top of the box, the bottom of
the box, a switch and a nut. The complete assembly consists
of four force-controlled assembly operations. The emergency
button should be placed in a hole on the top of the box using
a peg-in-hole skill, then rotated and fastened with the nut
using a two-armed screwing operation. The switch should
be snapped into place on the bottom of the box before the
two subassemblies are joined together into the final product.

The programs can be generated from the assembly graph
by annotating the assembly operations with skill types from
the skill databases (without annotations there will be place-
holder assembly skills). As an example, the switch is attached
to the box bottom using a SnapFit skill. The SnapFit is stored
in KIF with pre- and postconditions as well as parameters.
One precondition is that the switch has to be held in the
gripper and the switch is at a start position above the box
bottom. When the planning service is invoked it will return a
sequence of actions including intermediate picking, moving
and placing of objects.

The knowledge base contains also a number of typical
object descriptions, useful while defining a work cell, like
feeders, trays, fixtures, tables, etc., thus simplifying the world
definition phase of the programming and setting the ground
for further symbol anchoring later on. All the defined skills
come with parameterization and pre- and postconditions
necessary for consistency checking and reasoning.

The scheduling service requires that the execution times
and tools for each operation are specified, as well as the
partial ordering of the actions and number of cycles. E.g.,
the screwing of the nut is a two-armed operation using two



specific tools, while a third tool is used for gripping the
box bottom. There is a tool changer in the station, however,
the time to change tools can add precious seconds to the
cycle time and are therefore also included when generating
a schedule for the two-armed robot.

The sequence can also be generated by natural language
input. The number of skill types labelled with natural lan-
guage is limited, excluding synonyms it is 10. Skills that are
labelled with predicates, such as pick/take and place/put, can
be expressed in unconstrained language. Example sentences
are ”Could you please pick the switch and insert it on the
box bottom.” and ”The switch should be picked and inserted
on the box bottom.” However, the system will be tricked by
”The switch is not ready for picking”, which also results in
a pick.01 and the switch as arg1 because the negation is not
related to the verb.

IX. FUTURE WORK

Ideally, the robot should be able to reason about knowl-
edge it has and does not have, draw conclusions to why an
execution failed and optimize the task and suggest improve-
ments. These types of reasoning systems should be coupled
with a comprehensive dialogue system, so that the human and
the robot can discuss the task more freely. At the moment,
the initiative is entirely the human’s: the user employs the
programming and planning support to create a task, the
adaption algorithms to automatically select parameters and
the error detection algorithms to learn nominal behavior. For
the robot system to be perceived as intelligent, it has to take
the initiative as well and act more autonomously and goal
oriented.

We have four interest areas where we want to enhance the
AI in industrial robotic systems:

Robust execution and error handling. Symbolic task de-
scriptions make it possible for the robot to understand
the meaning of its actions and plan the execution, while
error detection algorithms provide a data-driven classification
of the execution. During failure, the robot has very little
understanding of the cause of the error, only that something
failed in the current state of the skill. To improve the
robustness of the execution, several issues have to be solved:
How can errors be semantically labelled automatically? How
can we automatically generate error handling policies from
knowledge about the task and the environment (such as the
object CAD data)? How can the robot explain for the human
what and why the execution failed?

Developing the natural language interaction. Initially we
want to develop the natural language programming interface
to allow more diverse actions, such as navigating in the pro-
gram (”Restart the program after the two-armed assembly”)
and creating skills from scratch (which is still done best
using visual programming tools). In a longer perspective,
the entire robot system should be supported by a natural
language interface, where the user can command actions such
as ”Run the parameter adaption routine”.

Developing dialogue systems. We need to develop a mixed
initiative dialogue system that governs the user interaction.

The dialogue system has to consider both the user input
and the current state of the system and decide what actions
the robot system should take and what user input should be
requested.

Knowledge acquisition. The robot system can have access
to enormous amounts of data, both from online sources
and from sensor input. An open research problem is to
translate data to knowledge, to automatically create ontolo-
gies from reading manuals or from learned sensor data. We
urgently need tools and techniques to acquire knowledge
about skills in order to populate the skill libraries. In PRACE
project (http://prace-fp7.eu), one of the goals is
to create user-friendly programming tools, however, how
can we generalize and extract the knowledge from the skill
demonstrations that is needed to reason about the skills
(action planning, error handling, etc)?

X. CONCLUSIONS

In this paper, we have presented a short overview of
how we have added AI services to support the users in
programming and setting up industrial robotic systems. The
distributed architecture provides a way for robots to share
knowledge and access remote reasoning services and com-
puting, that rely on large amounts of data or computing
power. The results presented are a first step to give industrial
robots cognitive abilities and the work continues within the
European FP7 projects PRACE and SMErobotics.
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