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Abstract

A new convergence criterion for nonlinear systems was re-
cently derived by the first author. The criterion is similar to
Lyapunov’s second theorem but differs in several respects. In
particular, it has a remarkable convexity property in the context
of control synthesis. While the set of control Lyapunov func-
tions for a given system may not even be connected, the cor-
responding set of “density” functions is always convex. In this
paper, we will demonstrate how this opens new possibilities in
synthesis of nonlinear controllers. We also give an alternative
version of the criterion, that proves attractivity of a set rather
than a point in the state space.

1 Introduction

A fundamental problem in nonlinear systems is the search for
control laws that achieve stability of a certain point or set in the
state space. Many methods have been proposed, for example
backstepping, feedback linearization and passivity based con-
trol [3, 2, 5].

In this paper, we address the stabilization problem using the
new criterion of [4]. Convexity is exploited to make smooth
transitions between different control laws. In particular, the
transition from a globally stabilizing nonlinear controller to a
local linear controller is addressed.

Consider a nonlinear control system of the form

ẋ = f (x) + n(x)u(x) x(t) ∈ Rn

For a fixed control law u(x), the stability citerion of [4] can be
applied provided that there exists a non-negative scalar function
ρ(x) which is integrable outside a neighborhood of zero and
satisfies the divergence inequality

∇ ⋅ (( f + nu)ρ) > 0

almost everywhere in the state space. This criterion is convex
in the pair (ρ, uρ). In particular, if the two control laws u1(x)

and u2(x) satisfy the criterion together with ρ1(x) and ρ2(x)
respectively, then the control law

u(x) = ρ1(x)
ρ1(x) + ρ2(x)

u1(x) +
ρ2(x)

ρ1(x) + ρ2(x)
u2(x)

satisfies the criterion with ρ(x) = ρ1(x) + ρ2(x). Note that
u � u1 in regions of the state space where ρ1 >> ρ2 and vice
versa. This will be used for design of u(x) by “blending” two
control laws u1(x) and u2(x).
The outline of the paper is as follows. Each of the following
two sections is devoted to an example applying the idea de-
scribed above. The second example concerns swing-up of an
inverted pendulum and the original criterion of [4] is not di-
rectly applicable. This motivates the introduction of a modified
(but still not fully satisfactory) criterion in section4.

2 Local modification of a global controller

For the system
[

ẋ
ẏ

]
= fu(x, y) :=

[
x2 + y

u

]

a globally stabilizing controller can be found, e.g. using back-
stepping:

uN(x, y) = −2(x + y+ x2 + x y+ x3)

This design gives an oscillatory behavior near the origin. Sup-
pose that a different local controller has been designed based
on linearization. It is then natural to ask how the transition be-
tween the local and the global controller can be done without
loss of global stability. This problem will now be addressed
using the method outlined before.

The controller uN(x, y) satisfies the inequality∇ ⋅ ( fuN ρN ) >
0 (see Theorem 1 below) together with

ρN =
(
x2 + (y+ x2 + x)2

)−2

For the system (ẋ, ẏ) = fuL(x, y) with the linear controller

uL(x, y) = −x − 2y



x ’ = x2 + y                            
y ’ = − 2 x − 2 y − 2 x x − 2 x y − 2 x3
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Figure 1: Left: Phase plot for globally stabilizing nonlinear
controller. Right: Phase plot for linear controller with good
local performance.

let the matrix P > 0 define a Lyapunov function that is de-
creasing inside the ellipsoid [x y]P[x y]′ = 1. Then

ρL(x, y) = max{(([x y]P[x y]′))−3 − 1, 0}

satisfies

∇ ⋅ ( fuL ρL) > 0 inside the ellipsoid

∇ ⋅ ( fuL ρL) = 0 outside the ellipsoid

In fact ρL can be replaced by a smooth approximation without
violating these conditions.

The controller

u(x, y) = ρL

ρN + ρL
uL(x, y) + ρN

ρN + ρL
uN(x, y)

gives

∇ ⋅ ( fu(ρN + ρL))
= ∇ ⋅ ( fuN ρN ) + ∇ ⋅ ( fuL ρL) > 0 x �= 0

It is identical to uN outside the ellipsoid [x y]P[x y]′ = 1 and
it is close to uL for small (x, y). Hence our problem has been
solved.

3 Swing-up of an inverted pendulum

Let us consider the problem to find a control law for swing-up
of an inverted pendulum. The dynamics can be written as

[
ẋ
ẏ

]
= fu(x, y) =

[
y

sin x + u cos x

]

The energy and its time-derivative can be described as

E = y2/2+ cos x − 1

Ė = uy cos x

For almost all initial conditions, the feedback uE = −y cos xE
steers towards the right energy [1]. To prove this, introduce

ρ0(x, y) = 1
E2

∇ ⋅ ( fuE ρ0) =
cos2 x

E2

(
y2

2
+ 1− cos x

)
≥ 0

x ’ = y                                       
y ’ = sin(x) − y cos(x)2 (y2/2 + cos(x) − 1)
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Figure 2: Left: Phase plot for pendulum with energy control.
Right: Graph of the density function 1/E2.

x ’ = y                                                            
y ’ = sin(x) − cos(x) (y cos(x) E rE + 2 (y + sin(x)) rL)/(rE + rL)

rE = 1/(y2/2 + cos(x) − 1 + mx(1 − x2 − y2))2

rL = 100 mx(.01/(2 x x + (x + y)2) − 1)
E = y2/2 + cos(x) − 1
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x ’ = y                                                       
y ’ = sin(x) − cos(x) (y cos(x) E rE + 2 (y + x) rL)/(rE + rL)

rE = 1/(y2/2 + cos(x) − 1 + mx(1 − x2 − y2))2

rL = 100 mx(.01/(2 x x + (x + y)2) − 1)
E = y2/2 + cos(x) − 1
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Figure 3: Left: Phase plot for pendulum swing-up control.
Right: Magnified phase plot near upright equilibrium.

Note however, that ρ0 is not integrable outside a neighborhood
of the equilibria, so even the generalized Theorem 1 in section 4
does not apply as it stands. Instead Theorem 2 needs to be
applied with X as a manifold.

The controller uL(x, y) = −2 sin(x) − 2y is locally sta-
bilizing with Lyapunov function V (x, y) = 8 sin(x/2)2 +
(2 sin(x/2) + y)2. With

ρE =
1

E2 +max(0, 1− x2 − y2)
ρL = max(0, V (x, y)−1− 100)

u(x, y) = ρL

ρE + ρL
uL(x, y) + ρE

ρE + ρL
uE(x, y)

the pendulum swings up for almost all initial conditions. Phase
plots with smoothened max-operator are shown in Figure 3

4 Convergence to a set

Consider the equation

ẋ = f (x) (1)

where f ∈ C1(Rn, Rn) and assume existence of A, B > 0
such that h f (x)h ≤ Ahxh + B (This is the classical condition in
order to guarantee existence of solutions on [0,+∞)).
In the following we denote by φ(t, z) the solution of (1) with
initial condition z and by φ(t, Z) the set {φ(t, z), z ∈ Z}.
Moreover h ⋅ h is the Lebesgue measure in Rn, d is the usual
distance in Rn, B(0, r) is the closed ball centered at 0 with
radius r and Sr = S+ B(0, r) for any given set S.

The following theorem modifies Theorem 1 in [4] to the case
in which the attraction set is a general closed invariant set.



Theorem 1 Assume that S ⊂ Rn is a closed set, invari-
ant for (1) and ρ ∈ C1(Rn\S, R) ∩ L1(Rn\Sε ) for all
ε > 0. If ρ(x) > 0 and ∇ ⋅ (ρ f )(x) > 0 for almost all
x ∈ Rn\S and f is bounded in Sr for some r > 0, then
limt→+∞d (φ(t, x), S) = 0 for almost all x ∈ Rn.

Before giving the proof of the theorem, we recall some prelim-
inary results from [4] which we state in the form we will need
in the following.

Theorem 2 Let (X ,A , µ) be a measure space. Let P ⊂ X be
a finite measure set and T : X → X be such that µ(T−1Y) ≤
µ(Y) for all Y ∈ A and µ(T−1Y) < µ(Y) if µ(Y) > 0. The
set Z = {x ∈ P : T nx ∈ P for infinitely many n} then has
zero measure.

Lemma 1 If S, f and ρ are as in the statement of Theorem 1
and Y ⊆ (Rn\S) is such that

∫
Y ρ(x)dx < +∞, then for

t > 0 one has
∫

φ(t,Y)
ρ(x)dx −

∫

Y
ρ(x)dx

=
∫ t

0

∫

φ(s,Y)
∇ ⋅ (ρ f )(x)dxds

Proof of Theorem 1 For k, m ∈ N, we define the following
sets:

Zm
k =

{
x ∈ Rn : lim sup

l→∞
d(φ( l

k
, x), S) > 1

m

}

Zm =
{

x ∈ Rn : lim sup
t→∞

d(φ(t, x), S) > 1
m

}

Z =
{

x ∈ Rn : lim sup
t→∞

d(φ(t, x), S) > 0
}

where l ∈ N and t ∈ R. Note that if x �∈ Z then
limt→+∞d (φ(t, x), S) = 0.

We have to prove that hZh = 0. The first step is to prove that
hZm

k h = 0 for all k, m ∈ N. This fact is a consequence of
Lemma 1 and Theorem 2 where X = Rn\S, A is the usual
σ -algebra in Rn, P = {x ∈ Rn : d(x, S) > 1

m}, µ(Y) =∫
Y ρ(x)dx and T x = φ( 1

k , x).
The second step is to prove that Zm ⊆ ∪k∈NZm

k for all fixed
m (sufficiently large: m > 1

r ). Actually we prove that x �∈
∪k∈NZm

k implies x �∈ Zm . x �∈ ∪k∈NZm
k means that x �∈ Zm

k
for all k, i.e. for all k there exists nk such that d(φ( n

k , x), S) ≤
1
m for all n > nk. We prove that for all ε > 0 there exists tε
such that d(φ(t, x), S) < 1

m + ε for all t > tε .

Let ε > 0 be fixed, K ∈ R be such that h f (x)h ≤ K for all
x ∈ Sr, k ∈ N such that k > max{ K

ε , K
r− 1

m
}, nk such that

d(φ( n
k , x), S) ≤ 1

m for all n > nk, tε = nk
k , t > tε and nt ∈ N

be such that ht− nt
k h < 1

k . Let us remark that φ(τ , x) ∈ Sr for
all τ ∈ [ nt

k , t]. Infact if z ∈ S 1
m

, the minimum time tr for a

solution starting at z to reach the boundary of Sr satisfies the
inequality tr ≥ 1

K (r − 1
m):

r − 1
m
≤ hφ(tr, z)− zh ≤

∫ tr

0
h f (φ(s, z))hds≤ tr K .

Due to this fact we also have that

d(φ(t, x),φ(nt

k
, x))

= h
∫ t

nt
k

f (φ(s, x))dxh′ ≤ (t− nt

k
)K < K

k
< ε

and

d(φ(t, x), S) ≤ d(φ(nt

k
, x),φ(t, x)) + d(φ(n

k
, x), S)

< ε + 1
m

Since hZm
k h = 0 for each m, k ∈ Rn, we get that also hZm h =

0. Finally we just need to note that Z ⊆ ∪m> 1
r
Zm in order to

get that hZh = 0.
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