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Abstract

Continuum based elasto-plastic-damage models for paperboard have been established in
this work. The thesis begins with an introductory section that describes the mechanical
properties of paperboard and some of the converting processes during forming of a package.
A short review of modeling concepts that have been applied to paperboard is presented
and then some key aspects and assumptions developed in this work are summarized. The
main part of the thesis consists of the five papers, A, B, C, D and E. In addition to these
works, a possible concept to reduce a pathological mesh-dependency is reviewed.

The thermodynamical framework is established in Paper A and a model for the in-
plane response is developed. The anisotropy is handled by introducing a set of director
vectors that change direction along with the continuum. A distortion hardening yield
surface coupled to several scalar internal variables is introduced. The effects of pre-straining
a sample in one direction and then subsequently load the sample in the perpendicular
direction is studied. The model is compared to measurements obtained with Digital Image
Correlation.

In Paper B, the model is further developed to model out-of-plane deformations. A
normal vector is introduced to model the out-of-plane direction. Key ingredients in the
model includes the specific format for the elastic part of the free energy and an expression
for the plastic spin. The spin is used to control the direction of the plastic flow. Simula-
tions are performed on the line crease setup and compared to experimental measurements.
Furthermore, the industrial rotation crease setup is studied in detail using the developed
model.

The Short-span Compression Test (SCT) and the line folding operation are investi-
gated in Paper C and the deformation patterns extracted from x-ray images are studied.
The model parameters are calibrated to uniaxial tests and the SCT, and then the folding
of uncreased paperboard is simulated. The simulated global force-displacement/rotation
curves matches the measurements and the simulated deformation patterns are similar to
that observed experimentally.

A numerical scheme is presented in Paper D, where the governing equations of the
elasto-plastic boundary value problem are interpreted as a Differential-Algebraic Equa-
tion (DAE) system. In particular, two material models, which includes damage variables,
are investigated using the Diagonally Implicit Runge-Kutta (DIRK) scheme. The error
obtained using the DIRK-method is compared to the standard implicit Euler method.

In Paper E, the continuum model that has been developed in paper A-C is further
enhanced to include the effect of damage. Two damage variables are introduced in the
elastic part of the free energy which is associated with out-of-plane deformations. The
softening in the out-of-plane normal and shear deformations can then be recovered. The
folding of creased paperboard is simulated and compared to measurements.
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Sammanfattning

För att tillverka en pappersbaserad förpackning är det viktigt att materialet är tillräckligt
hållfast. Förpackningsmaterial består ofta av kartong, aluminium och polymerfilmer där
kartong utgör den största delen av förpackningen och bidrar mest till styvheten. Det säljs
årligen mer än hundra miljarder förpackningar i världen och om kostnaden samt materi-
alåtgång för att tillverka en kartong kan reduceras, så kan stora besparingar göras både
ekonomiskt och miljömässigt. När förpackningsmaterialet spricker under konverteringen
till en förpackning är anledningen till detta inte alltid helt klart. Mycket material och tid
kan gå till spillo under felsökningen och det är inte alltid säkert att man finner orsaken till
bristerna. Ett verktyg för att analysera hur förpackningsmaterialet belastas kan därmed
vara till stor hjälp för att få en ökad förståelse av konverteringsprocessen. Ett sådant
verktyg för kartongmaterialet har utvecklats i den här avhandlingen.

En materialmodell som kan beskriva relationen mellan krafter och deformationer som
kartongen utsätts för har utvecklats. Kartongen består primärt av cellulosafiber som är
ett par millimeter långa med en bredd och tjocklek på cirka 10-50 mikrometer. Karton-
gen som har betraktats i detta arbete har en tjocklek på 400 mikrometer. På grund av
tillverkningsprocessen så är de flesta av fibrerna riktade åt samma håll, och fibrerna ligger
väsentligen ovanpå varandra. Den riktning som fibrerna ligger staplade ovanpå varandra
definieras som ut-ur-planet riktningen. Kartongens hållfasthetsegenskaper är som starkast
i den riktning som fibrerna ligger i, dvs i-planet och mycket svagare ut-ur-planet. Det
kan skilja en faktor hundra i styvhet mellan i-planet och ut-ur-planet. Detta är en av
anledningarna som gör modellering av kartongen utmanande.

Fokus i detta arbete har varit inriktat på att simulera bignings och vikningsprocessen
med hjälp av den utvecklade modellen. De mycket stora lokala deformationer som sker
under dessa processer har studeras med hjälp av modellen. Viker man en obigad kartong
uppkommer rynkor vilket gör det mycket svårt att vika kartongen rakt. Dessa rynkor
formas på ett instabilt sätt och röntgenbilder visar att fibrerna har omorienterats inuti
rynkorna. Det är därför viktigt att man först bigar kartongen så att man kan få väl
definierade viklinjer. I bigprocessen pressas ett hanverktyg på kartongen så att kartongen
förs in i ett honverktyg. Kartongen skjuvas och skadas genom tjockleken och en viklinje
uppkommer, vilket gör att kartongen låter sig formas till en förpackning.

Denna avhandling består av fem artiklar, A-E. I artikel A etableras det termodynamiska
ramverk som är basen för modellen och en i-planet modell etableras. I artikel B utökas
kontinuum-modellen så att ut-ur-planet egenskaperna kan modelleras. Vikning av en obi-
gad kartong samt i-planet kompression studeras i artikel C. För att simulera vikning av
bigad kartong behövs skade-variabler införas och två olika skademodeller samt två integra-
tionsmetoder studeras i artikel D. I artikel E införs skadevariabler i kartongmodellen och
vikning av bigad kartong studeras och simuleras.
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1 Introduction

Paperboard is frequently used for food and beverage packaging containers. A typical paper-
based package consists of metallic and polymer films and paperboard, where paperboard
occupies the largest volume of the package material and provides most of the package stiff-
ness. The number of packages produced every year in the world is several hundred billions
and to avoid waste, it is important to have knowledge about the converting operations.
Appropriate mechanical properties of paperboard are thereby required to obtain intact
packages. It is evident that experimental testings are necessary, but it can sometimes be
difficult to determine which properties of the board that are actually measured and what
information to extract from the tests. Mathematical modeling can be of great aid to ana-
lyze and gain an increased understanding of the converting of packaging material. In this
work, a mathematical model which can describe the mechanical behavior of paperboard
during deformation has been developed.

From a mechanical modeling perspective, paperboard is a complex material and a chal-
lenge to model. Dependent upon application, many effects have to be considered, such as
the high degree of anisotropy, non-linear elasticity, large plastic deformations, heterogene-
ity, damage, creep, etc. During the converting process of paperboard to a package, many
of the above listed effects need to be considered. By the use of mathematical modeling,
important information regarding the converting process can be obtained. This information
might be difficult to extract from experimental measurements only. From simulations, it
is possible to obtain information about the local deformation of the paperboard in the
converting operations. This information can e.g. be used to design and optimize the
converting tools and also provide understanding of the overall converting process.

2 Paperboard material

At the micro-level, paperboard is a fibrous material, mainly made from cellulose fibers.
Starch and other chemical additives are also common constituents of paperboard. Paper-
board used in packages has a thickness typically ranging from 0.2 mm to 0.5 mm and
a density between 300-900 kg/m3, which is thicker and more dense compared to normal
printing paper, cf. Niskanen (2012). The dimensions of the cellulose fibers are typically 1-3
mm long and about 10-50 µm thick and wide. The structure of the paperboard is shown
in Fig. 1.

The fibrous structure of paperboard is apparent from Fig. 1 and it is evident that
the properties of this fiber network, such as alignment of fibers and the strength of fiber-
fiber bonds, will have a major impact on the mechanical behavior of the material. As
depicted in Fig. 1, the fibers are primarily arranged in planes that are stacked on top of
each other. This stacking of fibers is the cause for the high difference between the in-plane
and out-of-plane (ZD) directional properties. In machine produced paperboard materials,
a mixture of fibers are sprayed on a traversing web from a head nozzle. The velocity
difference between the web and the head nozzle results in that the majority of fibers align
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a) b)

Figure 1: a) 3D-image of paperboard taken with x-ray tomograph at 4D-imaging lab, LTH.
b) In-plane image obtained from Scanning Electron Microscopic technique.

in the Machine Direction (MD). As a consequence of the alignment, the stiffness in the MD
direction is typically 2-3 times higher compared with the stiffness in Cross Direction (CD)
and about 100 times higher compared with ZD, cf. Stenberg (2002). Due to the three
distinct directions, the paperboard is typically regarded as being an orthotropic material.
The three directions are marked in Fig. 2.

MD

CD
ZD

Figure 2: Illustration of the different material directions of paperboard resulting from the
manufacturing process. The preferred direction are aligned with the Machine(1)-, Cross(2)-
and ZD(3)-directions.

A paperboard can be either a single-ply or a multi-ply board. A multi-ply paperboard
is designed as a layered fiberous structure, where each layer have different properties, such
as fiber-orientation and number of fiber bonds. Normally, the middle layers are bulkier and
weaker, while the outer layers contains more chemical agents and are in general stronger.
The paperboard considered in this work is a single-ply board and in the modeling it has
been assumed that the material properties are homogeneous through the thickness.

2



3 Characterization of mechanical properties

To characterize the mechanical properties of paperboard, mechanical testing needs to be
performed. Since paperboard is sensitive to moisture, all tests have been performed in a
climate controlled environment with 50 % relative humidity and 23◦ C. It is important to
consider the full displacement field since the macroscopic response like force-displacement
curves only provide limited information. Full field experimental techniques have therefore
been utilized in this work and have been of importance for the development of the model.
The full field tests have been used for verification that the deformation field predicted by
the model is in agreement with the observations. Some of the full-field techniques that
have been utilized are shown in Fig. 3.

a) b)

c) d)

Figure 3: a) Digital image correlation during an in-plane tensile test of a paperboard with
a punched hole. The magnitude of the first principal strains are indicated by the colors. b)
A processed post-mortem image after a short span compression test obtained from X-ray
tomograph. c) Out-of-plane tension test filmed with a microscope. d) Folding of a creased
paperboard filmed with a microscope.

Within the packaging industry, there are a number of standard tests that are performed
to ensure the quality of the paperboard. These standard tests have been utilized to a great
extent for extracting the material properties in the developed model. Tests which induces
uniaxial stress states are convenient for a modeling purposes, since they allow for a straight
forward calibration of material parameters. The in-plane material properties can i.e. be
extracted from an equipment following ISO:1924-3 that performs in-plane uniaxial tests.
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The in-plane force-displacement curves generated from the experimental tests are shown
in Fig. 4.

60

0.01 0.02 0.03 0.04 0.05 0.06

10

20

30

40

50

0

Normalized Displacement, u/L0

N
or

m
al

iz
ed

F
or

ce
,
F
/A

0
,
M

P
a

MD

45o

CD

Figure 4: In-plane uniaxial tension tests in MD, CD and 45o directions of paperboard.
Displacement is normalized with the initial length, l0 and force normalized with the initial
cross section area, A0.

The shape of the uniaxial curves in Fig. 4 are typical for paperboard materials, where
the MD-test has higher stiffness, higher tensile strength and lower failure strain compared
to CD. It can be observed from Fig. 4 that the degree of in-plane anisotropy is significant.
The MD, CD and 45-degree tests are needed to calibrate the proposed model.

The in-plane compression response for paperboard is however challenging to determine.
The difficulties stem from the fact that structural buckling occurs, since the paperboard
has a slender geometry. The Short Compression Test (SCT) utilizes a short span length
(0.7 mm) to compress the board. However, the clamping pressure that is applied during
the test induces significant boundary effects. An alternative compression test is the long
edge test, where instead a long paperboard specimen (55 mm) is used. Slender beams then
acts as rigid supports on the top and bottom of the board to prevent buckling. The test
does not introduce any significant boundary effects from the clamping, but the deformation
state and failure are affected by the slender beams.

From the force displacement curves shown in Fig. 5, it is observed that the failure stress
is lower in the long edge test compared with the SCT. The apparent stiffness in the long
edge test is however very close to the stiffness measured in the tension tests, while the
SCT has an apparent stiffness that is much lower. This deviation is likely due to sliding
between the clamps and the paperboard in the SCT. The SCT has been investigated in
detail in Paper C.

For out-of-plane testing, the situation is opposite compared with in-plane testing, i.e. it
is more complicated to perform ZD-tensile testing than compression testing due to the thin
geometry of paperboard. A typical force-displacement curve obtained from an out-of-plane
compression test is shown in Fig. 6.
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Figure 5: Force displacement curves obtained from in-plane compression tests of paper-
board. a) Results from long edge tests, b) Results from SCT. Normalized force vs nor-
malized displacement is plotted, where A0 is the initial cross section area and l0 the initial
span-length in respective tests.

The force-displacement response in the out-of-plane compression is evidently different
from the in-plane compression response, cf. Fig. 6. From the unloading curves, a non-
linear elastic material response is observed. Permanent deformations also start to develop
at a relatively low stress level and a significant hysteresis can be observed in the reloading
cycles. In the developed model it is assumed that permanent deformations increase linearly
with respect to the stress.

Out-of-plane tension and out-of-plane shear tests are required to characterize the full
orthotropic behavior of paperboard. The paperboard is much weaker in the out-of-plane
direction compared to the in-plane direction. To test the paperboard in out-of-plane ten-
sion, the paperboard is glued on the top and bottom on two metal blocks, as shown in
Fig. 3c. Typical out-of-plane tension curves for a paperboard are shown in Fig. 7.

As seen in Fig. 7 and Fig. 3c, the paperboard can be stretched significantly in the ZD-
direction and still carry a force. The paperboard can therefore be viewed as a relatively
though material. Degradation of the elastic modulus as well as permanent deformations
are developed during post peak stress deformation. Hysteresis during unloading-reloading
cycles are also seen in Fig. 7.

Preliminary measurements of out-of-plane shear are shown in Fig. 8 where a in-plane
sample size of 20 mm × 20 mm has been used. In a) out-of-plane shear tests have been
measured in the MD-ZD shear direction. Measurements of a mixed out-of-plane compres-
sion and out-of-plane shear mode are shown in Fig. 8b, where the paperboard is sheared
under a constant out-of-plane pressure. This mixed mode of compression and shear is
important to determine in a controlled fashion, since this mode is active in the creasing
process. The tests were prepared in a climate controlled environment, but brought out to
an uncontrolled testing environment during the tests. The curves are taken from Tayeh
(2015) and a significant amount of tests were also performed in Håkansson (2014). The
tests are conducted at a relatively slow speed of 0.5 mm/min.

If the out-of-plane shear curve in Fig. 8a is compared to the out-of plane tension curve

5



0-0.05-0.1-0.15-0.20-0.25

0

-2

-4

-6

-8

-10

Normalized Displacement, u/t0

N
or

m
al

iz
ed

F
or

ce
,
F
/A

0
,
M

P
a

Figure 6: Out-of-plane compression test of paperboard with unloading cycles. The dis-
placement is normalized with the initial thickness, t0 and the force is normalized with the
initial cross section area A0.

in Fig. 7, it is noticed that the peak stress is higher in shearing. The stress also decreases
faster in shear compared with tension. From Fig. 8b, it is seen that the maximum shear
stress is increasing with increasing normal pressure, and that the residual stress after the
peak stress is increasing. A behavior which resembles frictional type response is therefore
observed for the paperboard material.

Additional tests should be performed to fully characterize the mechanical properties.
It is for example important to characterize the rate-dependence, moisture dependence and
temperature dependence. In this work however, a rate-independent model is proposed
and all the tests and operations should preferably be performed in a climate controlled
environment.

4 Converting procedures

The forming of a package is a complex process and involves several steps. To obtain
straight fold lines during forming, it is important to first crease the paperboard. This is
typically done by large rotating male and female cylinders as illustrated in Fig. 9. The
crease patterns are complicated to ensure that corners of a package can be folded without
inducing cracks. To study and isolate effects that occurs during creasing, simplified setups
can be utilized. A setup where a straight male tool is pressed into the groove of a female
die has been studied in this work, i.e. a line creasing operation, cf. Fig. 10.

The influence of different crease depths, crease speeds, tool geometries and web-tensions
can easily be studied using the simplified setup. The paperboard is initially stretched
with an initial displacement uw and the displacement is kept fixed during the creasing
process to mimic the effect of web-tension. The state in the paperboard during the line
creasing process has been studied using the model developed in Paper B. Typical force-
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Figure 7: Out-of-plane tension test of paperboard with unloading cycles. Displacement
normalized with the initial thickness, t0 and force normalized with the initial cross section
area, A0.
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Figure 8: Out-of-plane shear test of paperboard in MD-ZD direction a) with no superim-
posed pressure and b) with a superimposed out-of-plane compression stress. The displace-
ment is normalized with the initial thickness, t0 and the force is normalized with the initial
cross section area, A0.

displacement curves from the line creasing setup are shown in Fig. 11, where a paperboard
with a thickness of 0.39 mm and width of 38 mm is used. The displacement of the male
die is defined as zero, when it is aligned with the female die.

In Fig. 11, the MD-crease curve means that the MD-direction is aligned in the x-
direction in Fig. 10 and the x-direction is aligned with CD for the CD-crease curve. The
tangent of the MD-crease curve is marked with a black line at load levels (1)-(4) in Fig. 11.
It can be observed from the curves that the maximum reaction force is higher for MD
compared with CD and during the initial displacement of the male die, the reaction force
in MD and CD develops in a similar manner. The stiffness has a minimum at a displacement
around -0.25 mm (marked at load level (2)). Upon further loading, the stiffness increases
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Male Die

Female Die

Paperboard

Rotation Direction

Rotation Direction

Figure 9: Rotation creasing of paperboard.

Male die

Paperboard

uw

Female die
Out-of-plane shear and compression

In-plane tension

In-plane compressionx (MD/CD)

z (ZD)

Figure 10: A schematic of the line creasing procedure. The arrows inside the paperboard
indicate the dominant deformation mechanisms.

i.e. compare load level (2) with (3) and (4). From the simulations, the deformation modes
can be analyzed in detail. It has been observed that between load level (1)-(2), out-of-plane
shear between the male and female die is the dominant deformation mode. The simulations
indicate at load level (2), the out-of-plane shear stress yield limit is reached. Upon further
displacement of the male die, the ZD-compression stress increases and the paperboard is in
a mixed state of ZD-compression and shear. As the male die unloads from the paperboard,
it has been observed that permanent deformations in shear keeps developing.

After the creasing operation, it is much easier to obtain straight fold lines. To validate
the performance of the package in the forming operations, use can be made of the simplified
folding setup sketched in Fig. 12. Both creased and uncreased paperboards are tested using
this setup.

The paperboard is clamped on one side with a clamping pressure of 0.2 MPa. At a
distance l0 from the clamps, a load cell is acting as rigid support. The distance l0 is taken
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Figure 11: Force displacement curve in the line creasing operation in MD and CD. The
tangent of the MD-crease curve is marked at load level (1)-(4).

l0 = 10 mm

Paperboard

Load cell

Clamp

Wrinkle

x (MD/CD)

y (ZD)

Figure 12: Schematic of line folding operation. Illustration of the folding of an uncreased
paperboard.

to be l0 = 10 mm in this work. The maximum bending moment is located close to the
clamps and significant local deformations are triggered. The strength in compression is
lower compared to the strength in tension, cf. Fig. 4 and Fig. 5 and the paperboard will
fail on the side where the compression stresses are present and wrinkles will be formed.

The deformation pattern of creased paperboard, shown in Fig. 3d, is different compared
to an uncreased paperboard. Due to permanent deformations and damage induced during
creasing, the crease line will act as a plastic hinge where the fiber layers will become
separated (delamination) during folding. The force-bending angle curve from the line
folding operation of an uncreased paperboard in MD and a paperboard that has been
creased 0.2 mm is shown in Fig. 13.

The maximal reaction force is significantly reduced for the creased paperboard. A
common measure within the packaging industry is the Relative Crease Strength (RCS),
which is often used to correlate to the behavior during the forming of a package. The
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Figure 13: Force-rotation curve of folding of a creased and uncreased paperboard in MD.

RCS-value is defined as

RCS =
Maximum bending force creased paperboard

Maximum bending force uncreased paperboard
. (1)

For the folding curves in Fig. 13, a RCS value of about 0.39 is obtained. The folding of
an uncreased paperboard is investigated in Paper C and a creased paperboard in Paper
E. For folding of uncreased paperboard, it is noticed from the simulations that shear
bands are forming during the simulations. It has also been noticed that the material
parameters related to out-of-plane shear has a large influence on the folding curve of creased
paperboard. An experimental study on the influence of crease depth on the folding behavior
are found in e.g. Nagasawa et al. (2003) and Cavlin (1988).

5 Modeling of paperboard

One of the early attempts to model the response of paperboard in a unified manner was
proposed in Xia (2002). The model consist of two parts, one continuum model which
mainly captures the in-plane behavior and an interface model that captures the out-of-
plane response, cf. Fig. 14.

Using the approach with both interfaces and continuum the delamination response of
the paperboard can effectively be captured. However, the approach is associated with some
limitations. The first being that the number of interfaces are somewhat arbitrary and the
second is that it is necessary to apriori define where the delamination is allowed to nucleate
and propagate. The third limitation is related to the calibration, which requires that the
interface parameters and the continuum parameters can be experimentally distinguished.

In the original model proposed in Xia (2002), it was assumed that the continuum
in the out-of-plane directions was purely elastic. This turned out to be too restrictive,
since the continuum properties became too stiff, which potentially could lead to numerical
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Interface

Continuum

Figure 14: A paperboard model with predefined interfaces.

instability. As a remedy for this issue, three yield surfaces were utilized as well as hardening
plasticity in the out-of-plane shear- and compression-directions in Nygårds et al. (2009).
Models for paperboard utilizing a thermodynamic framework at finite strains were proposed
in Harrysson and Ristinmaa (2008) and Ask and Ristinmaa (2008). Lately, simplified
models for the mechanical response of paperboard have attracted increased interest in
the research community. One disadvantage with more complex models is the number
of material parameters needed to capture all the mechanical deformation modes. In Beex
and Peerlings (2009), a simplified model based on the Hill criterion available in commercial
softwares together with interface elements were used. It was concluded that plasticity is
important to obtain a good crease. A similar approach, using the Abaqus software with
Hill’s yield criterion for the continuum and surface based cohesive zones for the interfaces,
was established in Huang et al. (2014). It was shown that by mapping the continuum
properties throughout the thickness, the macroscopic force-displacement curves obtained
from experiments could be predicted. A model which accounts for the rate dependence for
a high density fiberous material has been proposed recently in Tjahjanto et al. (2015).

Paperboard can also be modeled with other types of techniques rather than a continuum
based approach. In Giampieri et al. (2011), a special purpose crease element was developed
that can be placed between two adjacent 4 node shell finite elements of Mindlin-Reissner
type, suitable for large scale forming applications. Solid-shell and cohesive elements were
utilized in Pagania and Perego (2015) to model the cap opening of a carton package.
In Borodulina et al. (2012) and Kulachenko (2012) paperboard was modeled using a fiber
network model, where the fibers are represented by beam elements. These models are useful
to investigate the influence of local micro-scale phenomenons on the mechanical properties.
Micromechanical models are however computionally expensive and an alternative is to use
a quasi-continuum model, cf. Beex et al. (2014), where local mirco-scale phenomena can
be resolved in regions of interest, while having a coarse fiber structure elsewhere. Moisture
effects were recently incorporated in a model in Bosco et al. (2015), where representative
unit cell was established based on micro-scale considerations.

5.1 Continuum modeling

The continuum assumption is based on that a large number of the micro structural com-
ponents of the medium are replaced with a set of representative macroscopic quantities.
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The structural components for paperboard are on the microscopic scale, i.e. the cellulose
fibers. For continuum modeling, the size of the specimen needs to be sufficiently large
for the macroscopic observable quantities to be representative of the average behavior of
the structural components. The Representative Volume Element (RVE) is defined as the
smallest volume of the medium that can represent the macroscopic quantities of the entire
medium. For paperboard, the size and shape of the RVE is related to the size and shape
of the fibers and their bondings. It can therefore be imagined that the RVE is longer in
the MD direction compared with CD and ZD, i.e. length scales varies with orientation.
In Mäkelä and Östlund (2003), an investigation of the length scale effects were performed
and it was concluded that length scale can matter already at the dimension at which the
standardized uniaxial tests of paperboard are performed.

5.2 Kinematics framework

All tensors in this work will be considered in a Cartesian setting, i.e. following the work of
Ciarlet (1988). Consider a material body in the reference configuration Ω0 ∈ R3 at the time
instance t0 and at the deformed configuration Ω ∈ R3 at time instance t. The non-linear
map that defines the motion is assumed to be given by ϕ(X, t) : Ω0 × T → Ω, where X
denotes the position of a particle in the reference configuration and the position of the same
particle in the current configuration is found as x = ϕ(X, t). The mapping of vectors in the
reference configuration to the current configuration is given by the deformation gradient
F = ∇Xϕ. To model permanent deformations, a multiplicative split of the deformation
gradient is assumed, i.e.

F = F eF p, (2)

where F e represents the elastic deformation and F p the plastic deformation. The split (2),
introduces a stress-free intermediate configuration, cf. Fig. 15.

F

F
p

F
e

Reference configuration

Spatial configuration

Intermediate configuration

Figure 15: The three configuration introduced by the multiplicative split, i.e. the unde-
formed, intermediate and deformed configurations.

The evolution of the plastic deformation gradient is given by

Ḟ
p
= LpF p, (3)
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where Lp is the material plastic velocity gradient. The spatial plastic velocity gradient is
defined by the material time derivative of (2) and using (3),

lp = F eLpF e−1. (4)

The models presented in this thesis are making use of quantities defined in the current
configuration.

The intermediate configuration is not unique and this can be realized by a rotation of
the intermediate configuration, i.e.

F = (F eQT )(QF p) = (F e)∗(F p)∗, (5)

where (F p)∗ and (F e)∗ introduces an equivalent intermediate configuration and Q is an
orthogonal tensor. The rotation operation of the intermediate configuration will leave the
configuration stress free. The arbitrary rotation, Q, of the intermediate configuration will
in general enter in the evolution format in the skew-symmetric part of (3) i.e.

skew(Lp) = skew(Lp
c) +W c, (6)

where W c is referred to as the constitutive spin and is related to the choice of intermediate
configuration, i.e. Q. One possible choice of the intermediate configuration is the isoclinic,
where W c = 0, cf. Dafalias (1998) and Harrysson and Ristinmaa (2007). The isoclinic
configuration has been adopted in the work herein. Based on the isoclinic format, the
plastic velocity gradient can be expressed as skew(Lp) = skew(Lp

c). The spatial plastic
velocity gradient can be split into a symmetric and a skew-symmetric part, i.e.

lp = sym(lp) + skew(lp) = dp + ωp, (7)

where dp is the symmetric part of the plastic velocity gradient and ωp is the eulerian plastic
spin.

5.3 Anisotropy framework

Since paperboard experiences large deformations in converting operations, in particular the
out-of-plane directions, it is important to consider the change of the preferred directions,
i.e. the MD, CD and ZD directions. Three vectors, which phenomenologically represents
the preferred directions, are introduced in the undeformed configuration. Properties of
paperboard is highly related to its fiberous structure and the preferred directions can
therefore assumed to be embedded in the continuum. An alternative to the embedding, is
to utilize an evolution of the vectors governed by a potential function, cf. Harrysson and
Ristinmaa (2007) and Dafalias (1998).

A common assumption for materials with embedded fibers, is that the preferred direc-
tions evolve together with the deformation gradient, F or F e, cf. Holzapfel (2000). This
choice is however not unique and an assumption needs to be made. The mapping of a
phenomenological direction in the continuum can be written as

v = βαv0 = βv̄, (8)
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where v̄ = αv0 represents the transformation of the vector to the intermediate config-
uration, cf. Harrysson and Ristinmaa (2007). In this work it is assumed that v̄ = v0.
The director vectors are assumed to be orthogonal and of unit length in the reference
configuration.

In Paper A, it is suggested that the change of the in-plane director vectors, v(α), follow
the rotation part of the polar decomposition of the elastic deformation gradient, i.e. Re

defined from F e = V eRe. The choice will ensure that the preferred directions remain at
unit length and orthogonal to each other. The drawback of the assumption is that the
stress-strain relationship become somewhat complex. It is also cumbersome to derive an
analytic expression for the algorithmic tangent stiffness matrix, which is needed in the
numerical scheme. To simplify, the in-plane directions were taken to follow F e in Paper
B, i.e.

v(1) = F ev
(1)
0

v(2) = F ev
(2)
0 .

(9)

The ZD-direction is chosen to change together with the cofactor of the elastic deforma-
tion gradient in Paper B, i.e.

n(3) = cof(F e)n(3)
0 , (10)

where cof(F e) = JeF e−T is the cofactor of the elastic deformation gradient. This assump-
tion will ensure that the ZD-direction remains perpendicular to the in-plane directions
v(1) and v(2). The motivation for this choice in the ZD-direction stems from the idealized
shearing of a deck of cards, as illustrated in Fig. 16.

v
(3)
0

v
(1)
0

n
(3)
0

v(3)

v(1)

n(3)

MD

ZD

Figure 16: Out-of-plane shearing of paperboard, illustrating the idealized deformation
pattern.

When defining the evolution of the director vectors, paperboard is ideally considered to
be a sandwiched structure with fibers stacked on top of each other. After shear deformation,
each fiber-layer normal, n(3), is assumed to remain unchanged, while a director vector,
v(3) = F ev

(3)
0 has components in the MD-direction, cf. Fig. 16. Rather than using v(3) =

F ev
(3)
0 , a normal vector n(3)

0 will be utilized for the out-of-plane behavior. This choice will
ensure that the ZD-direction is always perpendicular to the in-plane directions, i.e.

n(3) = v(1) × v(2), (11)
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The alignment of v(3) will imply a coupling between the in-plane and the out-of-plane
response, i.e. v(3) · v(1) ̸= 0. Use of v(3) instead of n(3) will result in that the stronger
in-plane properties will influence the weaker out-of-plane properties, whereas the choice
(10) will reduce the influence of the in-plane properties on the out-of-plane response in the
model.

5.4 Thermodynamic framework

The thermodynamic framework is a helpful tool when deriving relations between kinematic
and kinetic quantities, as well when formulating evolution laws. A hyperelastic format is
adopted in this work, which implies the existence of a potential, ψ, i.e. Helmholtz free
energy. The free energy is a function of variables which characterizes the state of the
system, defined as state variables. The choice of state variables are however non-trivial
and depends upon which features of the system that is desired to be modeled. One typical
state variable is the left elastic Cauchy-Green tensor, defined as

be = F eF eT , (12)

which characterize the deformation of the system. To model plasticity, the introduction
of internal state variables, κ(ν), are needed as well. To model anisotropy, state variables
associated with the preferred directions of the material needs to be utilized. This is achieved
by letting the free energy be a function of the director vectors, v(1), v(2) and the director
normal n(3).

The fulfillment of the dissipation inequality will ensure that the first law of thermody-
namic is fulfilled. The dissipation inequality in an iso-thermal setting is given by

d = τ : l − ρ0ψ̇ ≥ 0, (13)

where τ is the Kirchhoff stress, l = Ḟ F−1 is the spatial velocity gradient and ρ0 the den-
sity in the reference configuration. By choosing appropriate evolution laws for the state
variables, the dissipation inequality can be ensured to be fulfilled. Thermodynamical argu-
ments are also important to consider if multi-physical problems are considered. In several
industrial processes, high temperatures and moisture will influence the process, and the
thermodynamical framework will then be crucial when developing a physical sound model.
A recently proposed model where moisture and heat transport utilizing the thermodynamic
framework for paperboard has been established in Alexandersson et al. (2016).

The free energy is split into an elastic part and a plastic part according to ψ = ψe+ψp.
A novel format, suitable for materials with high degree of anisotropy, of the elastic part
of the free energy is proposed in Paper B and further developed in Paper C and E. The
elastic part of the free energy is split according to

ψe = ψe
ip + ψe

cop + ψe
top + ψe

sop. (14)

The subscripts refer to the direction in which the energy contribution is found in the initial
stiffness, i.e. ip in-plane directions, top tension-out-of-plane, cop compression out-of-plane
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and sop shearing out-of-plane. The additive format of the free energy enables the response
between the in-plane and out-of-plane properties to be decoupled. Each term in (14) has
been constructed such that the free energy is increasing for an arbitrary deformation.

5.5 Plasticity

To model an elastic domain, a yield surface, f , which determines the onset of plasticity
is utilized. For f < 0 the response is purely elastic, while f = 0 implies that plastic
deformations develop. In the elastic regime, the material response is reversible and no
energy is dissipated, while during plastic deformations, energy is dissipated.

A range of yield surfaces for anisotropic materials were investigated in Lindström (2013).
For example, a common yield surface for anisotropic materials is the Hill surface, cf. Hill
(1948), which have been adopted for the modeling of paperboard, cf. Beex and Peerlings
(2009) and Huang and Nygårds (2010). Assuming a fix coordinate system that is aligned
with the MD, CD and ZD directions, the Hill criterion can be written as

fH = τ : H : τ − 1 ≤ 0 (15)

The fourth order tensor H can be calibrated from uniaxial tensile tests and the components
of H are chosen such that the yield criterion becomes pressure independent. It should
however be noted that paperboard is not a pressure independent material. Moreover, for
the surface fH to be convex, it is required that H is positive definite, cf. Ottosen and
Ristinmaa (2005). The positive definiteness of H limits the degree of anisotropy which
imposes a severe restriction in the context of paperboard modeling.

The continuum model proposed in Xia (2002), is based on a yield surface which turns
out to be effective for modeling of paperboard and it has therefore been utilized in this
work. The yield surface in the stress space is built up by a number of subsurfaces n

(s)
ν

connected by switch functions χ(ν). The explicit expression for the yield surface, which is
explained in detail in the appended papers, is given by

f(τ ,n(β), K(β)) =
n
∑

ν=1

χ(ν)

(

τ : n(ν)
s

τ (ν)

)2k

− 1 = 0 (16)

The yield surface (16), can be used to model materials with high degree of anistropy and
still remain convex. This feature stems from the fact that the location of the independent
subsurfaces n

(ν)
s provides flexibility which allows convexity to be preserved.

The yield surface (16), is suitable for modeling of complex hardening behavior, since the
yield subsurfaces, n(ν)

s , can be controlled independently of each other in the stress space.
One independent internal variable κ(ν), associated with each subsurface n

(ν)
s , is introduced

to control the distance between each subsurface and the origin in the stress space. The
decoupling also allows cross hardening to be modeled. Due to the high degree of flexibility,
one yield surface can therefore be used to model both the weaker out-of-plane properties
and the stronger in-plane properties. In Paper B, six additional subsurfaces, compared
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to the original proposed model in Xia et al. (2002), are introduced to model the out-of-
plane behavior of paperboard. One disadvantage of the yield criterion is however that
many parameters needs to be determined for the subsurfaces. The number of parameters
can however be reduced, by apriori assumptions regarding the plastic strain ratios, which
allows the subsurfaces to be calibrated from uniaxial tests.

A rate independent model is adopted in this work. It can be shown cf. Ottosen and
Ristinmaa (2005), that by assuming the dissipation (13) to be at maximum during plasticity
and fulfilling the constraint f = 0, provide the associated evolution laws

dp = λ ∂f
∂τ

κ̇(ν) = λ ∂f
∂K(ν) ,

(17)

where K(ν) is a conjugate stress variable. The Lagrange multiplier, λ, fulfills the Karush-
Kuhn-Tucker conditions. The first equation in (17), only provides the symmetric part of
the plastic velocity gradient, lp and additional assumption need to be made for the skew
symmetric part. The skew-symmetric part, i.e. the eulerian plastic spin ωp, is an important
quantity in large strain elasto-plastic constitutive models and should not be confused with
the constitutive spin in (6). The plastic spin has the format

ωp = λ < · >, (18)

and is related to the plastic rate of deformation, cf. Dafalias (1998). The eulerian plastic
spin will not contribute to the the dissipation (13). It is however important to specify, as
is shown in Paper B.

5.6 Damage

During folding of a creased paperboard, the fiber-layers in paperboard separates and the
material properties in the delaminated zones are altered. In this work, Continuum Damage
Mechanics (CDM), cf. Kachanov (1958) and Chaboche (1981), has been adopted to model
the softening associated with out-of-plane deformations. In CDM, scalar or tensor damage
variables are introduced to model the weakening of material in a macroscopic sense. In
Paper D, two formats for the damage evolution are reviewed and one of the formats is
adopted in Paper E for modeling of paperboard. The CDM-concept has been adopted to
model the in-plane behavior of paper previously in Isaksson et al. (2004). An alternative
to CDM, which has commonly been adopted to model in-plane fracture of paper, is the
use of cohesive zones cf. Tryding and Gustafsson (2001), Mäkelä and Östlund (2012) and
Vojskovic (2015). An excellent review on the concept of fracture mechanics applied to
paper is given in Mäkelä (2002).

Scalar damage variables φα have been adopted in this work to model the weakening
associated with out-of-plane deformation. The scalar damage variables are introduced into
the elastic part of the free energy according to

ρ0ψ
e = ψe

ip + ψe
cop + (1− φ1)

nψ̃e
top + (1− φ2)

nψ̃e
sop, (19)
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Two scalar damage variables are introduced, one for the degradation of elastic properties
in ZD-tension, φ1, and the other for the degradation in out-of-plane shear, φ2. Note that a
material parameter n is introduced in (19) and that ψ̃e

sop and ψ̃e
top are functions of invariants

related to the deformation only, i.e. not the damage variables. The two damage variables
introduce a possibility to model softening in shear and tension independently. As seen in
Fig. 8 and Fig. 7, the the post-peak part of the out-of-plane shear curve is steeper compared
with ZD-tension. The energy conjugates to the damage variables are given by

Y1 =
∂ψe

top

∂φ1
= n(1 − φ1)

n−1ψ̃e
top Y2 =

∂ψe
sop

∂φ2
= n(1− φ2)

n−1ψ̃e
sop (20)

and are used to drive the evolution of damage, i.e. φ̇1 = φ̇1(Y1) and φ̇2 = φ̇2(Y2).
To obtain a material response with softening, the yield surface is required to function

the damage variables. In the expression for the yield surface (16), the distance to respective
subsurface is given by τ (ν). The distances τ (ν) belonging to ZD-tension, out-of-plane shear
and MD/CD compression will be reduced according to

τ (ν) = (1− φ1)ncτ (ν)0 ν ∈ {4, 5}

τ (ν) = (1− φ1)ntτ (ν)0 ν = 8

τ (ν) = (1− φ1)ns(1− φ2)nsτ (ν)0 ν ∈ {9, 10, 11, 12}

(21)

where ν ∈ {4, 5} are associated with MD and CD compression, ν = 8 is associated with
ZD-tension and ν ∈ {9, 10, 11, 12} are associated with out-of-plane shear. Note the three
independent material constants, nt, ns and nc have been introduced in (21). Other formats
for how the damage variables changes the τ (ν) can be included in the framework, but the
specific format proposed in (21) appears to give results in agreement with the creasing and
folding processes.

Damage is however a local phenomenon and by using CDM, a solution which is depen-
dent on the mesh is obtained. The damage will typically localize in a single element as the
mesh size is reduced and consequently the results will not converge to a unique solution.
Typical force-displacement curves where damage has been forced to localize in a single
element for different mesh sizes are shown in Fig. 17. As clearly seen in Fig. 17, the curves
do no not converge upon mesh refinement.

One method to reduce the mesh-dependency is to use a non-local formulation of the
state variables, e.g. Pijaudier-Cabot and Bažant (1987), Strömberg and Ristinmaa (1996)
and Jirasek (1998). By introducing a non-local formulation, a length parameter l needs
to be introduced which determines the size of the localization zone. One possible choice
of length parameter when it comes to paper is the width/thickness of the fiber. However,
the number of fibers in the ZD-direction is estimated to be between 20-35, which is in the
vicinity of the mesh size that is adopted in the simulation of creasing and folding in this
work. The material parameters in Paper E have therefore been fitted to the folding curves
for a fixed mesh of 25 elements through the the thickness. However, as an alternative, the
non-local technique described in the next section can be adopted.

18



0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

015

0.25

0.35

0.05

Normalized Displacement, u/t0 (-)

N
om

al
iz

ed
F
or

ce
F
/A

0
(M

P
a)

Increasing number of elements

Figure 17: ZD-tension test where the number of elements through the thickness has varied
according to 1,4,10,20 and 40. Only one element is used in the in-plane dimension. The
displacement is normalized with the initial thickness t0 and the force with the initial cross
section area A0

6 Non-local formulation

The implicit gradient enhancement, proposed in Peerlings et al. (1996) has been adopted
below. This approach has been implemented in the software Abaqus via the UMAT and
UMATHT user subroutines, cf. Abaqus User’s Manual. (2013), together with proposed
elasto-plastic damage model for paperboard. The driving force for the damage in ZD-
direction has been made non-local, i.e. Y1. However, the subscript is dropped from here
on to keep the notation simple . The non-local field Ȳ is obtained by solving an additional
field equation, given by

Ȳ −
l2

2
∆Ȳ = Y. (22)

where ∆ denotes the spatial Laplace operator. A similar non-local technique was adopted
in Isaksson et al. (2004) for modeling of paper. In the evolution of damage, the local
quantity Y will be replaced with the non-local Ȳ . The length parameter l introduced in
(22), will control the size of the localization zone of Ȳ . The length parameter l can also
be defined in an anisotropic manner, but for illustrating the concept, it is defined as an
isotropic quantity. The boundary condition ∇Ȳ · n = 0, where n is the boundary of the
body has been adopted.

The weak form of (22) is the basis for the finite element formulation and is given by
∫

v

l2

2
(δ∇Ȳ ) · (∇Ȳ )dv =

∫

v

(δȲ )(Y − Ȳ )dv (23)

where v is the volume in the spatial configuration. Equation (23) has been implemented in
the commercial software ABAQUS, by utilizing the subroutine UMATHT. The subroutine
UMATHT is actually intended for solving the heat equation with a user-defined constitutive
relation for the heat flux and heat generation. However, by reinterpreting the temperature
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as the non-local variable Ȳ and by defining the heat generation in a specific manner,
equation (23) can be reattained. The weak form of the heat equation is given by

∫

v

(δθ)ρU̇dv −

∫

v

(δ∇θ) · qdv =

∫

v

(δθ)rdv +

∫

s

(δθ)q · nds. (24)

In (24), s denotes the surface area of the structure in the spatial configuration. The
temperature is denoted by θ, heat generation by U , the heat flux by q, the body flux by r
and the density by ρ. By performing a time-discretization, using the boundary condition
q · n = 0 and setting r = 0, the following equation is obtained.

−

∫

v

(δ∇θ) · qdv =
1

∆t

∫

v

(δθ)ρ(Ut+∆t − Ut)dv (25)

The subroutine UMATHT requires Ut+∆t and q as output from the subroutine. By defining
the quantities according to

q = − l2

2∇θ

Ut+∆t = ∆t
ρ (Y − θ) + Ut,

(26)

the heat equation is then given according to
∫

v

l2

2
(δ∇θ) · (∇θ)dv =

∫

v

(δθ)(Y − θ)dv. (27)

If the temperature θ is reinterpreted as the non-local variable Ȳ , then the exact form of
the differential equation (23) used in the regularization is recovered.

6.1 Test of non-local implementation

To verify the implementation of the non-local driving force, Ȳ , a test with three different
mesh sizes of the geometry seen in Fig. 18 has been performed. The geometry is fixed at
the bottom boundary and pulled in the vertical direction with a fixed displacement at the
top boundary.
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Figure 18: The geometry and meshes used to verify the implementation of the non-local
damage driving force Ȳ . The dimensions are given by L = 0.4 mm, W = 0.1 mm and
R = 0.02 mm. The number of elements used are 40, 80 and 160 respectively.

The force-displacement curves using the meshes in Fig. 18 are shown in Fig. 19. The
length parameter l2/2 = 0.01 mm2 has been adopted. The red curve is the result from the
coarsest mesh, while the black and blue curves are used for the medium and finest mesh.
The force-displacement curves from the medium and fine mesh are hard to distinguish
from each other, thereby illustrating that convergent results appears to be obtained. In
Fig. 20a and b, the medium sized mesh has been adopted, but the length scale parameters
have been varied according to l2/2 = {0.1, 0.01, 0.001}. The force-displacement curves are
shown in Fig. 20a while in Fig. 20b the distribution of the conjugate damage force Ȳ as a
function of the vertical position y is shown. The Ȳ has been extracted at a displacement
of u = 0.04 mm.

Clearly, the length scale parameter influences the response in Fig. 20. The lower the
value of the length parameter, the more the non-local conjugate damage force Ȳ localizes
in the center of the geometry. The magnitude of Ȳ also increases as the length parameter
decreases.
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Figure 19: Force displacement curves using the different meshes seen in Fig. 18 using the
l2/2 = 0.1 mm2. The red curve is for the coarsest mesh, blue for medium and black for
finest mesh. The black and blue curves are however difficult to distinguish from each other.
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Figure 20: Force displacement curve and distribution of the non-local conjugate damage
variable Ȳ using the mesh Fig. 18b. The blue, red and black curves have been obtained
using the parameters l2/2 = 0.1, 0.01 and 0.001 mm2 respectively.

7 Implementation

The introduction of damage variables causes the governing equations to become sensitive to
the numerical integration scheme. Accurate integration algorithms are therefore required to
properly model the softening caused by the damage. In Paper D, a numerical scheme which
resembles the radial-return method is adopted to solve the balance of linear momentum
and the constitutive equations. This method is also applied in Paper A.

In the reference configuration, Ω0, the balance of linear momentum can be expressed
as

Rw(u, δw, z, t) =

∫

∂Ω0t

δw · T dS +

∫

Ω0

δw · bdV −

∫

Ω0

δE :SdV = 0 (28)
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which should be satisfied for all admissible virtual displacements δw. In (28), ∂Ω0t denotes
the part of the boundary where the traction vector, T , is prescribed and the body force
vector in the reference configuration is denoted by b. The second Piola Kirchhoff stress is
given by S and the virtual strain is denoted δE and defined as δE = 1/2

(

δF TF + F T δF
)

.
The explicit time dependence present in (28) is due to the applied load and essential
boundary conditions are in general time dependent. By collecting the internal variables
in a vector z, i.e. z = [F p, κ(ν),φ1,φ2], the evolution laws of the internal variables can be
expressed as

Rw = Rw(u, δw, t, z) = 0 ∀δw

ż = λ̇N(z,F )

f(z,F ) = 0.

(29)

during plastic loading. For elastic response, i.e. f(z,F ) ≤ 0 the system (29) is modified
such that λ̇ = 0, i.e. ż = 0. The system described in (29) can be interpreted as a
Differential Algebraic Equation (DAE) system, where the system consists both of ordinary
differential equations (the evolution laws) and algebraic equations (the yield criterion and
balance of linear momentum). The system is spatially discretized using the finite element
method and temporal discretized with the DIRK-method, where a time interval [tn, tn+1]
is considered and the state of the system is assumed to be known at tn. The unknowns
(i.e. nodal displacements in this work) are computed at certain time points, called stages,
denoted by Tn1, Tn2, Tn3 . . . in the time interval. Due to the adopted Runge-Kutta scheme
being diagonally implicit, the unknowns can be retrieved by solving an equation system
that depends only on the current and previously computed stages. This allows the sparsity
of the stiffness matrix from the finite element scheme to be reattained. If a code using the
radial return method is at hand, it is then a small task to add an extra loop over the code
where the displacements are computed at the stages, Tn1, Tn2, ... instead of tn+1. Since an
embedded Runge-Kutta scheme is adopted, an error estimate is obtained at virtually no
extra cost which can be used to control the size of the time step. More details on this topic
can be also be found in i.e. Ellsiepen and Hartmann (2001).

Except for Paper A and D, the material model has been implemented in the commercial
software Abaqus, using the a user material subroutine UMAT. The subroutine requires the
Cauchy stresses and the spatial tangent stiffness matrix, given by

D = J
∂τ

∂F
F T (30)

as output. The quantity ∂τ
∂F

has been computed by utilizing that the stress is a function of
be,m(1),m(2),m(3) and z and applying the chain rule. The evolution equations have been
discretized using the implicit Euler scheme and the resulting equation system is solved using
the Newton-Raphson method. The Jacobian required in the Newton-Raphson scheme has
been computed using numerical differentiation in Paper A but in the remaining papers, an
analytical format has been derived. Some derivations related to the Jacobian and tangent
stiffness matrix is found in Appendix B in Paper B.
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8 Future work

Evidently much more work remains to obtain reliable and efficient models of paperboard.
To gain more knowledge about the paperboard, full-field measurements could be utilized
to greater extent, i.e. X-ray tomographs, ultrasonic measurements, Digital Image Corre-
lations, etc. These techniques could be utilized to carry out in-situ studies of deformation
patterns and extract information such as the change of fiber-orientation. These could be
important inputs for further development of the model of paperboard.

There are also several effects missing in this model. It is well-known that paperboard
is a rate-dependent material and this is important to consider in converting operations.
There is in general a desire to make the converting machines run faster. In addition, the
influence of moisture and temperature in the mechanical properties should be in included
for a complete model of paperboard.

Additional work related to the modeling of damage in paperboard, both in-plane frac-
tures and out-of-plane delamination should be carried out. The CDM-concept can be
utilized to a greater extent, i.e. tensor valued damage variables could be introduced and
the techniques for the regularization can be improved upon. More investigations using the
cohesive zone concept and extended finite elements are interesting to pursue.

The presented continuum model might be too computationally expensive for simulating
the actual converting processes that are adopted in the industry. The use of shell elements
is an interesting topic which could reduce the computational cost. In addition, investigation
of different types of finite elements might be interesting to study in conjunction with the
model.
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9 Summary of the Papers

Paper A: The thermodynamic framework for the model is established. A polyconvex free
energy with a parameter representing the fiber distribution is employed. It is revealed that
when the paperboard has been first pre-strained in e.g. CD and then loaded in MD, a
softer response is obtained compared to when only loading in MD. Several internal vari-
ables are therefore introduced such that the yield surface can harden distortionally in the
stress space. It is shown that the softening of a perpendicular pre-strained paperboard can
be predicted with the model. Digital Image Correlation (DIC) experiments are performed
on a specimen with a central hole. It is shown that despite the heterogenous structure of
paperboard, that the continuum approach for modeling the in-plane behavior is able to
represent the inhomogeneous strain field from the DIC-measurements.

Paper B: In Paper B, the established framework in Paper A is extended such that the
out-of-plane deformations are taken into account by the continuum model. The evolution
of the anisotropy is modeled with the use of two in-plane director vectors and an out-of-
plane director normal. It is shown that the plastic spin is important to specify and is
chosen such that an ideal plastic response in a simple shear situation is recovered. The
line creasing operation is modeled and compared to experimental results. The rotation
creasing procedure present in the industry is modeled to show the potential applications
for the model.

Paper C: The localized deformation developed during in-plane compression and folding
of paperboard is studied using the developed continuum model in Paper B. By tuning the
in-plane yield parameters to the SCT response, it is shown that the global response in
folding can be predicted. The simulations are able to predict the formation of wrinkles and
deformation fields that are in agreement with the measured deformation patterns. The
model predicts a response associated with localized deformation into bands in both the
SCT and folding.

Paper D: The numerical sensitivity of two damage evolution laws and two numerical in-
tegration schemes are investigated. An integration scheme based on a Diagonal Implicit
Runge-Kutta (DIRK) is investigated. The DIRK scheme is applied to the balance of mo-
mentum as well as the constitutive evolution equations. The presented numerical examples
reveal that a significant increase in accuracy can be obtained at virtually no extra cost us-
ing the DIRK scheme.

Paper E: The continuum model is enhanced using the concept of Continuum Damage
Mechanics to model the softening associated with out-of-plane deformations. Two scalar
damage variables are introduced for the degradation in out-of-plane tension and shear.
The creasing and subsequent folding operations are investigated utilizing the model and
compared with measurements.
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Abstract

A distortional hardening elasto-plastic model at finite strains suitable for mod-

eling of orthotropic materials is presented. As a prototype material, paperboard is

considered. An in-plane model is established. The model developed is motivated from

non-proportional loading tests on paperboard where the paperboard is pre-strained

in one direction and then loaded in the perpendicular direction. A softening effect is

revealed in the pre-strained samples. The observed experimental findings can not be

accurately predicted by current models for paperboard. To be able to model the soft-

ening effects, a yield surface based on multiple hardening variables is introduced. It is

shown that the model parameters can be obtained from simple uniaxial experiments.

The model is implemented in a finite element framework which is used to illustrate

the behavior of the model at some specific loading situations and is compared with

strain fields obtained from Digital Image Correlation experiments.
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1 Introduction

Continuum-based constitutive models provide the macroscopic observable properties, e.g.
force and stretch, resulting from the average behavior of the micro-structure. In this work,
an anisotropic continuum-based material model suitable for fibrous materials is considered.
Here focus is on paperboard materials, but the developed model can be used for a range
of orthotropic materials. Paperboard is a heterogeneous material, where the heterogeneity
stems from the manufacturing process where cellulose fibers placed on a traversing web are
dried and pressed. The inhomogeneity and directional material dependence is due to the
distribution and uneven drying of the fibers.

Modeling of paperboard is an active research area driven by the industry to improve
converting and filling processes. In industrial converting operations, the paperboard experi-
ence complex load histories. To accurately predict the material behavior during converting
operations is a challenging task. One important converting operation is the creasing pro-
cess, which has been studied by several authors, and is critical for obtaining well formed
liquid filled packages without defects. The creasing operation reduces the maximal bending
moment and the deeper the scored line is creased, the more the maximal bending moment
is reduced, cf. Cavlin (1988), Cavlin et al. (1997) and Nagasawa et al. (2003). The crease
depth is limited by the occurrence of in-plane surface cracks. Modeling of the in-plane
fracture process in paperboard has been based on cohesive crack mechanisms in Tryding
and Gustafsson (2001), Mäkelä and Östlund (2012) and by continuum damage in Isaks-
son et al. (2004). During creasing the paperboard is stretched in one direction and then
unloaded. In the subsequent forming process, the paperboard is stretched again, however
in a direction perpendicular to the previous stretching direction. To evaluate the effect of
non-proportional loading, simple non-proportional tests has been conducted on paperboard
in the work herein.

Paperboard is classically characterized as an orthotropic material. The orthotropic
directions are the Machine Direction (MD), Cross-machine Direction (CD) and out-of-plane
direction (ZD), cf. Fig. 1. The MD and CD are referred to as the in-plane directions. The
magnitude of the material properties in the MD direction are typically about 2-3 times
larger compared with CD and about 100 times larger compared with ZD, cf. Stenberg
(2002).

v
(1)
0

v
(2)
0

v
(3)
0

Figure 1: Illustration of the different material directions of paperboard due to the man-
ufacturing process. The director vectors are aligned with the Machine(1)-, Cross(2)- and
ZD(3)-directions.
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It has previously been demonstrated that continuum based approaches are able to repre-
sent the mechanical response of paperboard, cf. Xia et al. (2002), Harrysson and Ristinmaa
(2008) and Mäkelä and Östlund (2003). It has been observed by e.g. Harrysson and Ristin-
maa (2008), that after unloading from the non-linear region, non-recoverable strains are
obtained, and therefore the use of plasticity theory is motivated. Since the paperboard is
highly anisotropic, the constitutive model is inevitable required to be anisotropic. More-
over, large rotations and relatively large strains are present in industrial applications such
as creasing and forming.

A number of anisotropic models are based on the Hill (1948) criterion with proportional
expansion of the yield surface cf. Huang and Nygårds (2010). Another well established
yield surface for paperboard is the Tsai-Wu surface, cf. Tsai and Wu (1971) which also
takes into account that the yielding in compression and tension differs. Accurate fit to uni-
axial tests is usually obtained for these models, but investigations on how the actual yield
surface develops in the stress space is usually not compared to experimental evidence. The
experimental tests in this work reveals that the yield surface does not harden proportionally
and therefore non-proportional hardening models are of importance for paperboard.

In Xia (2002), a continuum elasto-plastic model in combination with interfaces were
used to model the creasing operation. This concept has been further studied in Huang
and Nygårds (2010), Nygårds et al. (2009), Beex and Peerlings (2009) and Giampieri et al.
(2011). The elasto-plastic model in this work is based upon the model in Xia et al. (2002)
which is enhanced such that the laws of thermodynamics are fulfilled. The yield surface in
Xia et al. (2002), is based upon the introduction of a set of subsurfaces in the stress-space.
In this work, one internal variable is introduced for each subsurface. This is in contrast to
the model by Xia et al. (2002) where only the effective plastic strain governs the hardening
of all sub-surfaces. The concept of one internal variable to each subsurface allows for an
anisotropic hardening of the yield surface, which is also known as distortion hardening.
The derived model will allow non-proportional load histories to be taken into account, e.g.
where the paperboard is stretched and unloaded in different directions. It is shown that the
generalization of the yield criterion in Xia et al. (2002) to include distortion hardening can
be made naturally in the thermodynamic framework. It is also shown that a calibration of
the model parameters can be made using standard uniaxial tests.

To illustrate the predictive capabilities of the proposed model, the paperboard has been
loaded at different angles in the plane, and also been compared with full-field measure-
ments in two separate loading situations. The full field measurements have been obtained
using Digital Image Correlation (DIC) equipment. DIC-measurements on paperboard have
the potential to increase the understanding of the mechanisms present during loading of
paperboard, cf. Hagman and Nygårds (2012) for a recent contribution on the topic. As
a particular load situation, a paperboard with a central hole has been considered in this
work. The load has been applied parallel to both the MD and CD directions of the paper-
board. The strain fields have been extracted from DIC-measurements and compared with
simulation results using the derived material model.

The article is organized as follows, in section 2 the experimental evidence on non-
proportional tests is presented, section 3 and 4 deals with the kinematic and thermody-
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namic considerations, where tensors will be considered in a Cartesian setting, i.e. following
the work of Ciarlet (1988). Taking into account that the first and second laws of thermo-
dynamics should be fulfilled, physical sound models and constitutive relations is developed.
Section 5 presents the specific model and in section 6 the calibration from uniaxial exper-
iments is presented. In section 7 and 8, results and comparisions from uniaxial tests and
DIC experiments are shown.

2 Experimental Evidences

Non-proportional loading situations are present in many industrial process steps related to
paperboard converting. To the authors knowledge, there is a lack of experimental results
reported in the literature especially for non-proportional load situations of paperboard. As
the present work is aimed to predict non-proportional hardening effects, non-proportional
experimental test will be presented below.

A schematic illustration of the testing procedure of pre-straining the paperboard and
then the subsequent uniaxial test is shown in Fig. 2. The large test sample is pre-strained
(CD/MD) until failure, which corresponded to an average strain of: 6.5 % in CD and 3.1
% in MD. Several specimen are then cut out and loaded in the direction perpendicular to
the original loading direction.

The pre-straining was done with a standard MTS-tensile test machine with a 160 mm
wide paperboard and 145 mm clamped length. All the tests have been performed in a
climate chamber with 50 % moisture content and at room temperature 23oC. The uniaxial
tension tests were performed with the Th1 tensile tester (Lorentzon & Wettre Alwetron),
which follows ISO 1924-3 standard, using w0 = 15 mm wide paper and a clamped length
of L0 = 100 mm. The strain rate was 1.65 %/s. The initial thickness, t0, of the samples
was determined to t0 = 0.38 mm. Sixteen uniaxial tension tests have been conducted in
each direction for the pre-strained and non-prestrained samples.

a) b)

MD

CD

u

u

w0

L0

u

u

CD

MD

Figure 2: Illustration of the loading sequence. a) Uniaxial pre-straining of a larger test-
piece in CD. b) Uniaxial loading of sample in the orthogonal direction to the pre-straining
direction in MD.
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Figure 3: Uniaxial stress-strain curves in CD and MD. Light blue color is used for the
experimental data obtained from samples that were not pre-strained and purple color is
used for the pre-strained samples. Normalized force vs normalized displacement has been
plotted, where A0 is the initial cross section area and L0 is the initial length.

The experimental results are shown in Fig. 3, both for the situation without pre-
straining and when the samples were pre-strained. For the uniaxial MD and CD tests
after pre-straining, a reduction in stiffness is observed as well as reduction in the harden-
ing. The reduction of stiffness is approximately 25% for the MD-direction and 13% in CD.
It is observed that pre-straining in MD changes the uniaxial stress-strain response in CD
to a lesser extent compared with pre-straining in CD, which influences the MD response
significantly. The effect of softening as shown in Fig. 3 is not well known in the literature.
It should also be noted, that the thickness has been shown to remain almost constant
during in-plane loading for several paperboard materials, cf. Stenberg (2002). Therefore a
decoupling of the material response between the in-plane and the out-of-plane directions
is assumed, i.e. zero Poisson’s ratio.

The effect of non-proportional loading, as described above, can not accurately be cap-
tured by elasto-plasticity using a single internal variable (often the effective plastic strain),
cf. Xia et al. (2002), Mäkelä and Östlund (2003). Orthotropic elasto-plastic models with a
single internal variable, will overestimate the stress-strain response for samples that have
been pre-strained in a perpendicular direction to the load direction. The overestimation
stems from the fact that a single internal variable leads to an expansion of the yield surface
and therefore an increased yield stress will be obtained upon reloading in a perpendicular
direction. An attempt to simulate the pre-straining behavior using a standard orthotropic-
elastic-plastic model with a Hill surface and isotropic hardening, cf. Abaqus (2012), is
shown in. Fig 4.

The Hill-model clearly overestimates the response in MD for the pre-strained samples in
CD. The experimental evidence shows a decreased yield stress for the pre-strained samples,
whereas the Hill-model predicts an increased yield stress. Based on the experimental obser-
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Figure 4: Uniaxial stress-strain curves in and MD together with simulation using a standard
Hill-model with isotropic hardening. Light blue color is used for the experimental data
obtained from samples that were not pre-strained and purple color is used for the pre-
strained samples. Black color is used for the simulations. Normalized force vs normalized
displacement has been plotted, where A0 is the initial cross section area and L0 is the
initial length.

vations in Fig. 3, we propose a model in which the yield surface hardens non-isotropically
in the stress-space. This effect is accomplished via the introduction of several internal
variables, i.e. a form of distortion hardening. To reduce the complexity of the model, the
reduction in elastic stiffness visible in the experimental tests will not be considered here.

Another approach for modeling the pre-straining is to use kinematic hardening for the
evolution of the yield surface. Kinematic hardening has however not been considered here,
but can also be introduced in the framework.

3 Kinematics

Consider a material body in the reference configuration Ω0 ∈ R
3 at the time instance t0

and at the deformed configuration Ω ∈ R
3 at time instance t. The non-linear map that

defines the motion is given by ϕ(X, t) : Ω0 × T → Ω, in the time interval T ∈ [t0, t]
and where X denotes the position of a particle in the reference configuration and the
position of the same particle in the current configuration is found as x = ϕ(X, t). The
mapping of vectors in the reference configuration to the current configuration is given by

the deformation gradient F =
∂ϕ

∂X
. To model elasto-plasticity a multiplicative split of the

deformation gradient into an elastic and a plastic part is assumed, i.e.

F = F eF p, (1)
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where F e and F p are the elastic- and plastic-deformation gradients, respectively. The
spatial velocity gradient defined as, l = Ḟ F−1 can be additively be split into

l = le + F eLpF e−1 = le + lp, (2)

where
le = Ḟ

e
F e−1, Lp = Ḟ

p
F p−1, (3)

are referred to as the elastic and plastic velocity gradients. Further on, the polar decom-
position of F e will be exploited and is given by

F e = V eRe, (4)

where Re is the orthogonal elastic rotation tensor and V e is the symmetric positive definite
left elastic stretch tensor. The elastic Finger tensor, be is given by

be = F e(F e)T , (5)

and will be used in the constitutive model. By using (2) and (5) the material time derivative
of be can be expressed as

ḃ
e
= 2sym(lbe)− 2sym(lpbe), (6)

where sym([·]) denotes the symmetric part of [·].
The modeling framework for orthotropy will follow that outlined in Harrysson et al.

(2007) and Harrysson and Ristinmaa (2007). To model orthotropy, a set of director
vectors,(v(α)

0 ,α = {1, 2, 3}), which are aligned with the MD, CD and ZD directions and of
unit length in the reference configuration are introduced. In this work, it is postulated that
the director vectors evolve with the elastic rotation (see also Ask and Ristinmaa (2008)) ,
i.e.

v(α) = Rev
(α)
0 , (7)

where v(α) is the director vector in the spatial configuration. The choice (7), will ensure
that the director vectors will remain at unit length and orthogonal to each other during
deformation. Note that in contrast to Harrysson and Ristinmaa (2007), the evolution of
the director vectors are postulated in a total format instead of an incremental evolution.

A set of second order structural tensors defined as a dyadic product of the director
vectors are introduced as

m(α) = v(α) ⊗ v(α), m
(α)
0 = v

(α)
0 ⊗ v

(α)
0 . (8)

The structural tensors, m(α), will be used to derive the free energy potential introduced
in the next section. Using the symmetry of m(α) along with (7) allows the material time
derivative of the structural tensors to be expressed as

ṁ(α) = 2sym(Ωem(α)), (9)
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where
Ω

e = ṘeReT , (10)

was defined. The material time derivative of the elastic rotation tensor is found from the
polar decomposition of F e. Differentiation of (4) and making use of (2) results in

Ṙ
e
= V e−1(leF e − V̇

e
Re). (11)

The elastic stretch tensor can be written as V e =
√
be and the time derivative of V e can

be expressed as

V̇
e
=
∂
√
be

∂be
ḃ
e
= H

eḃ
e
. (12)

The fourth order tensor H
e can be computed by taking advantage of the spectral decom-

position theorem, cf. Miehe (1998). In this work however,
√
be is computed numerically

with the Denman-Beaver square root iteration scheme, cf. Denman and Beavers (1976).
The fourth order tensor He is determined by first computing

√
be with the Denman-Beaver

scheme, followed by an analytical differentiation.
Furthermore for later purposes, the spin Ω

e will be expressed in terms of l and lp. By
using (11), (12) and (6) in (10), the tensor Ω

e can be rewritten as

Ω
e = V e−1(l − lp)V e − 2V e−1

H
e : (sym(lbe)− sym(lpbe)) . (13)

The stress-strain relation will now be derived on the basis of thermodynamical arguments.

4 Thermodynamic considerations

Although the model is primarily intended for isothermal situations, it should fulfill the
laws of thermodynamics. Ignoring the effects of temperature, the dissipation inequality in
the spatial setting is defined as

d = τ : d− ρ0ψ̇ ≥ 0, (14)

where d is the symmetric part of the spatial velocity gradient, τ is the Kirchhoff stress
tensor and ψ is the Helmholz free energy. The free energy is assumed to be a function of
the elastic Finger tensor, be, the structural tensors, m(α), and a set of internal variables,
κ(γ), which accounts for irreversible effects, i.e. ρ0ψ = ρ0ψ(b

e,m(α), κ(γ)). The dissipation
inequality then takes the form

d = τ : d− ρ0
∂ψ

∂be
: ḃ

e − ρ0
∂ψ

∂m(α)
: ṁ(α) − ρ0

∂ψ

∂κ(γ)
κ̇(γ) ≥ 0. (15)

The superscripts α and γ in the expression above should be interpreted as a summation
over the indices. Using the time derivative of the elastic Finger tensor (6) and the structural

8



tensors (9), we arrive at

d =

(

τ − 2ρ0
∂ψ

∂be
be
)

: d+

(

2ρ0
∂ψ

∂be
be
)

: dp −
(

2ρ0
∂ψ

∂m(α)
m(α)

)

: Ωe − ρ0
∂ψ

∂κ(γ)
κ̇(γ),

(16)
where dp is the symmetric part of the spatial plastic velocity gradient, lp. Inserting (13) in
the dissipation inequality (16) and by making use of Coleman’s arguments Coleman and
Gurtin (1967) the constitutive relation for the Kirchhoff stress tensor becomes,

τ = 2ρ0

(

∂ψ

∂be
be + V e−1

(

∂ψ

∂m(α)
m(α)

)

V e −
(

2V e−1 ∂ψ

∂m(α)
m(α)

)

: (He · be)
)

(17)

The Kirchhoff stress tensor (17) is symmetric, since the Helmholz free energy is assumed to
be an isotropic function of its arguments, cf. Harrysson and Ristinmaa (2007) and Menzel
and Steinmann (2003). The remaining part of the dissipation inequality is given as,

d = τ : dp −K(γ)κ̇(γ) ≥ 0, (18)

where the energy conjugates to the internal variables was defined as

K(γ) = ρ0
∂ψ

∂κ(γ)
. (19)

The specific model will be discussed next.

5 The constitutive model

5.1 Elasticity

The out-of-plane response is assumed to be decoupled from the in-plane response, and as a
consequence only one structural tensor is needed to capture the in-plane behavior. Decou-
pling of the out-of-plane has been verified to be an accurate approximation for paperboard
and used by several authors, cf. Stenberg (2002), Nygårds et al. (2009). Only the in-plane
model will be considered here. The Helmholz free energy is assumed to be split into an
elastic and a plastic part,

ρ0ψ = ρ0ψ
e(be,m(1)) + ρ0ψ

p(κ(γ)). (20)

In the Helmholz free energy, a general structural tensor for transverse isotropy will be
utilized. It is defined as

m = pm(1) + q(I −m(1)), (21)

where I is the second order identity tensor and p and q are material parameters. Note
that m can not be written as a dyadic product of a vector, however it can be Cholesky

9



decomposed as m = HTH , where H is a lower triangular matrix of a general structural
tensor m.

If the aditional requirement p + 2q = 1 is imposed i.e. tr(m0) = 1, then it can be
possible to relate q to a fiber distribution function with a normalizing condition, cf. Gasser
et al. (2006). It turns out that enforcing p + 2q = 1 for the paperboard, that has been
considered here, will give an accurate fit to experimental material data. See also Wahlström
(2009) for a more thorough discussion on fiber distribution of paperboard.

A list of specific free energies that automatically fulfills stress-free reference configura-
tion is given in Schröder et al. (2008). The free energy for the paperboard material has
been chosen according to

ρ0ψ
e = A

(

1

(α + 1)(p+ 2q)α
(Ie1)

(α+1) + Ie2 − (p+ 2q)J

)

, (22)

where A and α a constitutive parameters. The strain invariants in (22) are defined as,

Ie1 = tr(bem)

Ie2 = J2tr(be−1m)

J =
√

det(be).

(23)

Polyconvexity implies that the free energy is a convex function in the arguments
{F e, cof(F e), det(F e)}, where cof(·) is defined by cof(F e) = det(F e)F e−T . Polyconvexity
together with the growth criterion guaranties the existence of at least one minimizer to
the functional of the elastic boundary value problem, cf. Ball (1977). Since the second
derivative of J with respect to J is zero, it is concluded that J is convex. The invariants
Ie1 , I

e
2 can be split into terms involving the director vectors see Appendix A and then the

proof found in Schröder and Neff (2002) can be used when p − q > 0. Alternatively the
proof in Schröder et al. (2008) can be used, cf. also Ebbing (2010) for an extensive review
of polyconvexity using crystallographic structural tensors and the Cholesky decomposi-
tion. Given that A,α, p and q are positive quantities, it is then concluded that (22) is a
polyconvex free energy potential.

5.2 Plasticity

Many models are able to accurately predict the proportional stress-strain response for
paperboard, whereas the predictive capability for non-proportional test are less accurate.
Therefore a yield surface which hardens non-isotropically will be employed. Following the
work in Xia et al. (2002), a set of yield sub-surface tensors n(ν), which are normals to
the yield planes, are introduced. For this purpose a set of dyadic products defined by the
director vectors are introduced as,

n(ν) = n(ν)
11 v

(1) ⊗ v(1) + n(ν)
22 v

(2) ⊗ v(2) + n(ν)
12 (v

(1) ⊗ v(2) + v(2) ⊗ v(1)), (24)
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where n(ν)
11 , n

(ν)
22 and n(ν)

12 are constants. Six tensors, n(v), are introduced in the model, each
associated to a yield plane. The yield planes are associated to the following stress states
(in order from 1 to 6): MD tension, CD tension, positive oriented shear, MD compression,
CD compression and negative oriented shear.

The conjugate variables, K(ν), in (19), will be used as a measure of the distance in
the stress-space, which a yield plane is translated. The plastic part of the free energy is
postulated to be

ρ0ψ
p =

6
∑

β=1

aβ
bβ

(

(bβκ
(β) + 1) ln (bβκ

(β) + 1)− bβκ
(β)

)

. (25)

Using (19), the conjugate quantities then takes the following form

K(ν) = aν ln (bνκ
(ν) + 1). (26)

Note that according to the decoupling present in (25), each hardening variable K(ν) is
associated with one internal variable, κ(ν). To allow for modeling of the non-proportional
loading behavior revealed in the experimental tests, the yield surface proposed in Xia et al.
(2002) will be enhanced. The enhanced part is related to the hardening behavior. The
yield function is given as

f(τ ,n(β), K(β)) =
6

∑

ν=1

χ(ν)

(

τ : n(ν)

τ (ν)

)2k

− 1, (27)

where the stress τ (ν) is defined as

τ (ν) = K(ν)
0 +

6
∑

γ=1

ωνγK
(γ). (28)

In (27), k is a constant natural number and χ(ν) is a switch function, which determines if
a yield plane is active for the current stress state and is defined as

χ(ν) =

⎧

⎨

⎩

1 if τ : n(ν) > 0

0 otherwise.
(29)

The quantity ωνγ in (28) defines a constant positive-definite matrix and it introduces
a coupling between the hardening of the six different sub-yield surfaces, allowing for non-
isotropic hardening. This will enable the model to capture the experimental observed
behaviour shown in Fig. 3. Note that if ωνγ is chosen as the identity matrix, then the yield
surface proposed in Xia et al. (2002) is retained. The yield surface for the situation when
τ 12 = 0 is illustrated in Fig. 5.

The yield surface in Fig. 5 illustrates four yield plane gradients defined by the normals
n(1),n(2),n(4) and n(5) together with a graphical interpretation of τ (1), τ (2), τ (4) and τ (5),
i.e. the shortest distance to each yield plane from the origin. Increasing the exponent k in
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Figure 5: An illustration of the yield surface defined by (27) for τ 12 = 0 for k = 3. The
dotted line represents the yield surface when the exponent k → ∞ and k = 2.

(27) will provide sharper corners in the yield surface, cf. Fig. 5. The value for k can be
determined by considering biaxial stress states. The material parameters will however be
derived from simple uniaxial tests and therefore a value for k has been chosen. The value
k = 3 has been taken in this work, whereas in Xia et al. (2002) the choice k = 2 was made.

The evolution laws are given as

dp = λ̇
∂f

∂τ

κ̇(ν) = −λ̇ω−1
να

∂f

∂K(α)
,

(30)

where α is a summation index and λ̇ will be determined by enforcing f = 0 during elasto-
plastic loading. It is further assumed that the plastic spin skew(lp) = 0. Note that
the inverse of the coupling matrix, ω−1

νγ enters the evolution law for κ(ν) in (30). This
format is chosen to obtain a physical interpretation of the internal variables in terms of the
experimentally measured plastic strains. The dissipation inequality (18) with the evolution
laws in (30) becomes

d =
6

∑

γ=1

2kχ(γ)λ̇Λ2k
γ (1−

K(γ)

τ (γ)
) ≥ 0, (31)

cf. Appendix B for a derivation and the definition of Λγ. A sufficient condition for the
inequality (31) to be fulfilled, is that for all terms γ

K(γ) ≤ K(γ)
0 +

6
∑

α=1

ωγαK
(α), (32)
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where (28) was used. The criterion (32) will be discussed in detail for the specific ωγα that
has been employed in the calibration section.

6 Calibration Procedure

The number of constitutive parameters involved in an orthotropic elastic, orthotropic plas-
tic constitutive model is inevitable large. One strategy for finding the constitutive param-
eters is to make use of inverse modelling in conjunction with optimization methods, cf.
Garbowski et al. (2011). In the present work we will present a simple approximate fitting
procedure that enables the constitutive parameters to be determined from simple uniaxial
tests. It turns out that the response obtained using the estimated parameters fits well to
the experimental uniaxial curves present in the calibration process.

Five uniaxial tests are used to calibrate the in-plane model, i.e. tension tests in MD,
CD and 45o and compression tests in MD and CD. The following stress states are assumed
to be valid in the uniaxial tests:

τ = τMDtm
(1)
0 MD-tension

τ = τCDtm
(2)
0 CD-tension

τ = τMDcm
(1)
0 MD-compression

τ = τCDcm
(2)
0 CD-compression

τ =
τ 45

ot

2

(

m
(1)
0 +m

(2)
0 + v

(1)
0 ⊗ v

(2)
0 + v

(2)
0 ⊗ v

(1)
0

)

45o-tension.

(33)

The 45o tension stress state in (33) is obtained by rotating a uniaxial stress state 45 degrees.
Note that the director vectors are assumed to be constant in the calibration procedure,
i.e. the rotations are assumed negligible. It will turn out that this assumption will provide
a good fit to the uniaxial curves. The Kirchhoff stresses τ have been identified from the
measured force F and the initial cross sectional area, A0, and initial specimen length L0,
as

τ =
F

A0
(1 +

u

L0
). (34)

In the calibration procedure below, the elastic parameters will be considered first, and then
the plastic part.

6.1 Elasticity

The initial (for small strains) orthotropic stiffness tensor, can be written as (in Voigt
notation)
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D =
1

1− ν12ν21

⎡

⎢

⎢

⎣

E11 ν12E22 0

ν21E11 E22 0

0 0 (1− ν12ν21)G12

⎤

⎥

⎥

⎦

, (35)

where E11 and E22 are the elastic modulus in MD and CD, ν12 and ν21 are the Poisson’
ratios and G12 is the shear modulus. Note that the symmetry condition ν12E22 = ν21E11

holds. The expression (35) will be used to relate the elastic parameters present in the
model. The elastic moduli in MD, CD and 45o are deduced from the experimental uniaxial
tension curves and G12, can be found from a standard expression found in Lekhnitskii
(1968). The contraction has been measured from uniaxial DIC-tests and it was found that

√
ν12ν21 ≈ 0.30, (36)

where ν12, ν21 are the Poisson’s ratios in MD and CD respectively. In the experimental
investigation Baum et al. (1981) the value

√
ν12ν21 ≈ 0.293 was found for a range of

paperboards. The result (36) together with the symmetry condition of the compliance
tensor (35) gives that the Poisson’s ratio can be found.

The stiffness tensor resulting from the strain energy (22), for F = I, i.e. initial stiffness,
has been computed numerically with the constraint q = (1 − p)/2. The difference of the
matrix components in D from (35) and from the stiffness resulting from the free energy
(22) has been minimized in a least square sence to obtain the material data. The result of
the fitting procedure is found in table 1.

Elastic parameters
A (MPa) 950
p (-) 0.49
α (-) 4.8

Table 1: Numerical values of the elastic parameters

6.2 Plasticity

The calibration of the plastic parameters is a bit more involved. From the experimental
evidences in Fig. 3, it can be concluded that the pre-strained samples display a softer
response than non-prestrained samples. By decreasing the yield stress perpendicular to
the pre-strained direction, a softening effect can be achieved, cf. Fig. 6.

In Fig. 6 the evolution of the yield surface is shown for uniaxial tension in CD. During
loading in CD-tension, the distance to the yield sub-surface belonging to MD-tension is
decreasing. It turns out that the distortion hardening illustrated in Fig. 6 can be cap-
tured by fitting the ωνγ parameters present in the yield surface (27). However, first the
components of the yield subsurfaces, n(ν)

ij , defined in (24) needs to be determined.
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6.2.1 Yield subsurfaces, n(ν)
ij

The yield plane normals n(ν)
ij determines the shape of the yield surface. Consider first the

MD-tension stress state given in (33). Insertion of (33a) into (30) provides the plastic
velocity gradient. Projection of the plastic velocity gradient on m

(1)
0 and m

(2)
0 gives

dp11 =
λ̇2kΛ2k−1

1 n(1)
11

τ (1)

dp22 =
λ̇2kΛ2k−1

1 n(1)
22

τ (1)
.

(37)

The axial and lateral strain ratio d11/d22 has been shown for many paperboard materials to
remain approximately constant, cf. Xia et al. (2002) and Harrysson and Ristinmaa (2008).
For paperboard, the experimental data available for the yield-surface shape is limited and
therefore the calibration of the n(ν)

ij will be based on the assumption that the plastic strain
rate ratio equals the total strain rate,

dp11
dp22

=
n(1)
11

n(1)
22

= ν12, (38)

i.e. the approximation (38) that was adopted in cf. Xia et al. (2002) has been employed.
Note also that (36) has been utilized in (38). Using the following normalizing condition

√

(n(ν)
11 )

2 + (n(ν)
22 )

2 + 2(n(ν)
12 )

2 = 1, (39)
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and assuming no coupling to the shearing, i.e. n(1)
12 = n(2)

12 = 0 , gives that n(1)
11 and n(1)

22

can be determined. A similar procedure for the CD-stress state can then be made. In
summary, the yield plane normals for the MD- and CD-tension are obtained as,

n(1)
11 =

1
√

1 + ν212

n(1)
22 = −

√

1− (n(1)
11 )

2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

MD

n(2)
22 =

1
√

1 + ν221

n(2)
11 = −

√

1− (n(2)
22 )

2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

CD (40)

For the sub-surfaces associated with the compression states in (33), it has been assumed
that there is no coupling between the axial and lateral plastic strains due to lack of ex-
perimental evidence, therefore n(4)

11 = n(5)
22 = 1 and n(4)

22 = n(5)
11 = n(5)

12 = n(4)
12 = 0 is

adopted. For the yield plane normals associated with the positive and negative shear, it is
assumed n(3)

11 = n(3)
22 = n(6)

11 = n(6)
22 = 0, i.e. the shear sub-surfaces are assumed decoupled

from the normal components. The normalizing condition (39) gives then n(3)
12 = 1/

√
2 and

n(6)
12 = −1/

√
2. The numerical values for the yield plane subsurfaces are summarized in

Table 2.

Subsurface, ν n(ν)
11 n(ν)

22 n(ν)
12

1 0.92 -0.40 0
2 0.20 0.98 0
3 0 0 0.71
4 -1 0 0
5 0 -1 0
6 0 0 -0.71

Table 2: Numerical values of subsurface parameters

6.2.2 The coupling components ωνγ

To achieve the distortional hardening as illustrated in Fig. 6, both ω12 and ω21 must be
negative. Since no experimental data exists for the other directions, it is for simplicity
assumed that the remaining cross terms ωγν = 0, {ν ̸= γ}. Without loss of generality,
the diagonal terms are further assumed to be normalized such that ωγγ = 1. For uniaxial
tension loading in MD and CD, it follows from (33) and (27) that

τ (1)(κ(1), κ(2)) = K(1)
0 +K(1) + ω12K

(2) = τMDtn(1)
11

τ (2)(κ(1), κ(2)) = K(2)
0 + ω21K

(1) +K(2) = τCDtn(2)
11 .

(41)

Furthermore from (30) it follows that,

κ̇(ν) = λ̇2kχ(ν)Λ
2k
ν

τ (γ)
, K(ν) = K(ν)(κ(ν)). (42)

16



The coupling term ω12 is found by considering the yield function (27) for the pre-straining
in CD-tension followed by MD-tension. During uniaxial pre-straining in CD, the evolution
law (30) provides K(1)(κ(1)) = K(1)(0) = 0, due to χ(1) = 0, cf. (42). The state obtained
after the pre-strain loading in CD is given as

τ (1)(0, κ(2)pre) = K(1)
0 + ω12K

(2)
pre

τ (2)(0, κ(2)pre) = K(2)
0 +K(2)

pre.
(43)

where the subscript ’pre’ denotes the value obtained during this loading. The experimental
evidence when loading in MD, i.e. the perpendicular direction, indicates that τ (1)(0, 0) ≥
τ (1)(0, κ(2)pre) cf. also Fig. 6, which requires that yielding starts earlier for the pre-strained
sample. The difference is denoted by

∆τ (1) = τ (1)(0, 0)− τ (1)(0, κ(2)pre) = −ω12K
(2)
pre (44)

where (43) was used. Since ∆τ (1) can be obtained from the experimental data it follows
that

ω12 =
∆τ (1)

−K(2)
pre

, (45)

A similar procedure for ω21 is found by considering the yield function (27) for the MD-
tension stress state followed by CD,

ω21 =
∆τ (2)

−K(1)
pre

. (46)

The parameters are identifed as ω12 = −0.59 and ω21 = −0.071.
Returning to the condition for fullfilling the dissipation inequality, (32), it is required

that
K(1) ≤ K(1)

0 +K(1) + ω12K
(2),

K(2) ≤ K(2)
0 +K(2) + ω21K

(1).
(47)

Consider now uniaxial tension in CD, i.e. (33b). For this stress state, the evolution laws
provides K(1) = 0, which implies that (47b) is automatically fullfilled and only (47a) needs
to be considered. Rewriting (47a) and using (44) gives

∆τ (1) ≤ K(1)
0 (48)

indicating that the decrease of MD-yield subsurface when loading in CD (left hand side),
must be be less than the initial distance to the MD-subsurface (right hand side). A similar
interpretation can be made for ω21.

17



6.2.3 Hardening parameters

The hardening, K(ν), can be identified from the experimental tests using the stress states
in (33). Considering tensile loading in MD it follows from (27) that

τ (1) = K(1)
0 +K(1) = τMDtn(1)

11 . (49)

From the evolution laws (30), the following relations are then obtained,

dp,MDt
11 = λ̇2k

n(1)
11 Λ

2k−1
1

τ (1)

κ̇(1) = λ̇2k
Λ2k

1

τ (1)
,

(50)

where dp,MDt
11 is the component of the symmetric plastic velocity gradient dp projected on

m
(1)
0 . Assuming negligible rotations enables the spatial velocity gradient to be expressed

in terms of the plastic stretch tensor V p, cf. (3), as

˙lnV p,MDt = dp,MDt
11 , (51)

where V p,MDt is the plastic stretch in the MD-tension stress state projected on m
(1)
0 . Time

integration of dp,MDt
11 will then give a relation to the logarithmic plastic stretch tensor. Then

the ratio dp,MDt
11 /κ̇(1) from (50) together with (51) and (49) enables the internal variables

of κ(1) to be determined as

κ(1) =
lnV p,MDt

n(1)
11

. (52)

Thus allowing for τMDt = τMDt(lnV p,MDt) to be established; which has been measured in
the experimental tests. A similiar procedure can be made for the remaining stress states
in (33). To determine the hardening parameters aν and bν , a least square fit in the MD,
CD and 45o tension tests has been made. The numerical values are summarized in table
3.

Subsurface, ν K(ν)
0 (MPa) aν , (MPa) bν , (-)

1 17 13 710
2 7.8 5.0 1200
3 9.3 5.1 1100
4 18 0 0
5 11.6 0 0
6 9.3 5.1 1100

Table 3: Hardening parameters
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7 Numerical Implementation

The backward Euler method is used for the update of the state variables. Consider a time
interval ∆t ∈ [tn, tn+1] between loadstep n and n + 1, where F n+1 is given. First a trial
step is made to check whether plasticity takes place in the elapsed time interval,

F e
trial = F n+1F

p−1
n

v
(α)
trial = Re

trialv
(α)
0

κ(ν)trial = κ(ν)n .

(53)

where Re
trial is obtained from the polar decomposition of F e

trial. Using (53), the trial value of
the yield surface is computed according to f trial

(

τ
(

F e
trial, v

(α)
trial

)

,n(γ)
(

v
(α)
trial

)

, K(ν)(κ(γ)trial)
)

.
For the situation f trial < 0, the updated variables are equal to the trial quantities otherwise
an update is made according to (30). Using the backward Euler scheme, the discrete
evolution equation becomes

F p
n+1 = F p

n +∆λF−1
n+1F

p
n+1

∂f

∂τ

∣

∣

∣

∣

n+1

F p−1
n+1F n+1

κ(ν)n+1 = κ(ν)n −∆λω−1
να

∂f

∂K(α)

∣

∣

∣

∣

n+1

0 = f
∣

∣

n+1

(54)

A summation is done over the index α in the (54). The equation system (54) is solved
using the Newton-Raphson algorithm.

For the numerical treatment of the model, the Algorithmic Tangent Stiffness (ATS)
matrix is needed. The algorithm allows us to derive an implicit expression for F p as a
function of F , i.e. the Kirchhoff stress can be written as τ = τ (F e) = τ (F ,F p(F )). The
ATS matrix is then given as

D = −
[

I⊗τ
]

−
[

I⊗τ
]

+
∂τ

∂F
F T , (55)

cf. Harrysson and Ristinmaa (2007) for a derivation. The non-standard dyadic notation
[

A⊗B
]

: C = A ·CT ·BT and
[

A⊗B
]

: C = A ·C ·BT have been introduced above.
To improve the accuracy of the solution procedure, the Ellsiepens 2-stage Diagonally Im-

plicit Runge-Kutta (DIRK) method has been utilized cf. Hartmann (2005) and Borgqvist
and Wallin (2012) .

8 Verification of calibration and uniaxial response

The model is fitted to uniaxial tension in the MD, CD and 45o directions, as well as uniaxial
compression in MD and CD. The Long Compression Test (LCT) apparatus were used for
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compression tests, which has lateral support to prevent buckling, cf. Cavlin and Fellers
(1975). The paperboard used in the compression tests were, w0 = 25 mm wide and had a
clamp length l0 = 55 mm. The uniaxial tests and pre-straining where performed according
to the description in section 2. To test the calibration procedure, uniaxial finite element
simulations have been performed. One element FEM-simulation where the internal force
and the displacement has been extracted is shown in Fig. 7 for different angles.

-2

-4

-6

-8

-10

-12

-14

-16

-18

-20

-0.001-0.002-0.003-0.004-0.005-0.006-0.007
0

u/L0 (-)

F
/A

0
(-

)

CD

45o

MD

20

10

30

40

50

60

0 0.01 0.02 0.03 0.04 0.05 0.06
u/L0 (-)

F
/A

0
(-

)

MD

15o

30o

45o

60o
75o

CD

Figure 7: Uniaxial stress-strain curves in CD and MD. Light blue and purple color is used
for the experimental data obtained from samples that were not pre-strained and black for
the simulations. Normalized force vs normalized displacement has been plotted, where A0

is the initial cross section area and L0 is the initial length.

As observed from Fig. 7, despite the approximative assumptions in the calibration
procedure, an accurate fit to the uniaxial curves is obtained. Note too that no fitting
has been made for the the intermediate angles, {15o, 30o, 60o, 75o} in tension and 45o in
compression, indicating that the model provides realistic predictions in uniaxial loading
situations. Note that the simplifying assumption of ideal plasticity for the compressive
subsurfaces in MD and CD has been made, even though the slopes of the curves are not
constant up to failure.

The predicted response for the non-proportional situations are shown in Fig. 8, where
it is concluded that the presented model allows the hardening response of the pre-strained
samples to be predicted. Note that the distortion hardening reduces the yield stress for the
pre-strained samples and the simulated hardening response is then predicted by the model.
The change in the initial stiffnesses present in the experiements are not captured by the
proposed elasto-plastic model. Notice also the variation in the response increases when the
samples are pre-strainend. The pre-strained samples fail, however, at approximately the
same displacement as the non-prestrained samples.
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Figure 8: Uniaxial stress-strain curves in CD and MD. Light blue color is used for the
experimental data obtained from samples that were not pre-strained, purple color is used
for the pre-strained samples and black for the simulations. Normalized force vs normalized
displacement has been plotted, where A0 is the initial cross section area and L0 is the
initial length.

9 DIC comparision

Digital Image Correlation (DIC) measurements have been performed with a single camera
on a sample with a central hole. Tests have been conducted when the loading direction
is parallel to CD and when it is parallel to MD. The boundary conditions are given in
Fig. 9a. The resulting strain field from the experimental setup has been compared to the
strain field obtained from the simulations.

The dimensions of the geometry are given by R = 10 mm, 2w = 50 mm, 2L = 80 mm.
The tests has been conducted on a standard MTS-tensile machine with a displacement rate
of 2mm/min. The tests have been performed in climate chamber with moisture content
RH=50% and temperature T=23oC.

Four-node Lagrangian isoparametric elements have been used in the simulations. The
DIC-field have been obtained by using the software VIC-2d (Correlated solutions Inc.).
One high speed camera Gazelle GZL-CL-22C5M-C (Point Grey Inc.), with a resolution
of 2048 times 1088 at 280 frames per second has been used. Before examining the DIC
results, the macroscopic load-displacement curve will be discussed.

The force-displacement curves in the MD and CD directions for both the experiments
(blue) and simulations (red) are shown Fig. 10. The experimental force-displacement
curves are recorded up to the state when a complete fracture occurs. During the softening
part of the force-displacement curve fracture occurs in the samples, and since fracture is not
considered in the current model, the simulation are stopped when the softening is initiated.
A total of 14 experiments were performed in CD and 12 in MD. The boxplots in the Fig. 10
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Figure 9: a) Illustration of the boundary value problem used in the experiments and
numerical simulation. The top and bottom boundaries are constrained at zero displacement
in the x-direction. b) The finite element mesh used in simulations consists of 825 plane
stress elements with 4 nodes. Due to the symmetry, only a quarter of the structure has
been considered in the finite element simulation.
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Figure 10: Force-displacement curves for both the experiments (blue) and simulations
(red) of the global response of the plate with hole when the loading direction is parallel
to MD and CD. The strain fields present in Fig. 11 and Fig. 12 have been taken at the
displacement levels marked with (1)-(3) (same position as the boxplots). The × indicates
the load level where a visible crack is observed in the sample.

indicate the variation of the global-force response for the different samples that have been
tested. A visual comparison between the experiment and simulation curves, shows that
the simulations provide a good prediction of experiments within expected experimental
variation.

Contour plots of the largest principal Green-Lagrange strain from the simulated strain
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fields and experimental DIC-strain fields are shown in Figs. 11a and 12a, respectively.
Typical DIC-fields when loading is applied parallel to CD and MD are shown. The
comparisons are made at the displacement levels, uy = {0.75, 1.00, 1.25} in CD and
uy = {0.45, 0.60, 0.75} in MD. In Fig. 10 the displacement levels are marked from (1)
to (3) in the force-displacement curves.

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

a)

b)

(1) (2) (3)

CD

Figure 11: Contour plots of largest principal Lagrangian strain for loading in the CD-
direction at the displacement levels uy = {0.75, 1, 1.25}. a) Simulation values b) DIC
values

From the DIC-strain fields in Figs. 11b and 12b the black contour indicates the full
geometry of the samples. The experimental strain fields in Figs. 11b and 12b has been
extracted from a single test, and thus some variations in the strain-field arising from the
inherent inhomogeneity of the paperboard are visible in the figures. It is concluded from
Figs. 11 and 12 that the overall strain fields obtained between the simulations and the
experiments are similar. The strain level and distribution at the different displacements
are about the same in the experiments and simulations. In MD, it is noticed that the
strain-field is smeared out more in the vertical direction, whereas in CD the strain field is
smeared more in the horizontal direction. These effects are noticed both in the simulations
and in the experiments.

The inhomogeneity of paperboard was investigated in Hagman and Nygårds (2012)
using DIC for uniaxial testing, where localized strain fields were observed for the uniaxial
load tests. The DIC tests conducted here shows that a continuum model can capture the
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Figure 12: Contour plots of the largest principal Lagrangian strain for loading in the MD
direction at the displacement levels uy = {0.45, 0.6, 0.75}. a) Simulation values b) DIC
values

overall strain fields, even though the paperboard is heterogeneous. The inherent inhomo-
geneity of paperboard does not appear to be crucial for the overall strain field in the load
cases considered here, when comparing the simulations and experiments. Note that typical
fiber lengths are around 1-3 mm with a witdh and thickness around 10-50 µm.

The error between the DIC-samples and the simulations have also been investigated.
The absolute error and a relative error have been defined as

εabs = e(sim)
1 − e(DIC)

1 , εrel =
|e(sim)

1 − e(DIC)
1 |

eDIC
1

(56)

where e(sim)
1 and e(DIC)

1 are the largest principal strains from the simulations and DIC
respectively. The principal strains are compared at approximately the same positions in
the DIC and simulations by averaging the strains at the nodes from simulations within a
radius of r = 1 mm from the corresponding coordinates in the DIC test. The error have
been plotted at the displacement level (3) marked in Fig. 10 for MD and CD.

A similar tendency for the error are observed for MD as well as for CD. The largest
absolute error occurs at the horizontal sides of the holes. This implies that the strain field
at the hole is not perfectly captured. The error plots suggests that at the sides of the
hole along a horizontal central line, the simulation overestimates the principal strains. The
relative error at the same positions, indicates that the relative error next to the hole along
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Figure 13: Contour plot of the error in CD and MD at the displacement level (3) a)
Absoulte error, εabs, for CD loading b) Relative error, εrel, for CD loading c) Absoulte
error, εabs , for MD loading d) Relative error, εrel, for MD loading

the horizontal line is relatively small. Considering now the relative error along the vertical
symmetry line, it is at maximum at the top and bottom of the hole. From the error plots it
can be concluded that the simulations predicts smaller magnitude of the strains at the top
and bottom location of the hole. This might possible be due to out-of-plane deformation
(buckling) which is not visible when using a single camera for the DIC tests or boundary
effects.

10 Conclusions

A distortional hardening elasto-plastic model at finite strains applicable for paperboard
has been presented within a thermodynamically consistent frame work. Non-proportional
experiments have been performed, which shows that paperboard pre-loaded in a perpendic-
ular direction displays a softened response. It is shown that this effect can be modeled by
introducing coupling effects such that a softening takes place in the direction perpendicular
to the loading direction.

The elastic part of the model, utilizes an polyconvex free energy. This introduces
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physical parameters p and q, related to the fiber distribution of the material. In this
work however, the parameters was determined by fitting to the uniaxial force-displacement
response.

For the description of the plastic part of the model, the yield surface in Xia et al.
(2002) is chosen. To allow for a general coupling between the hardening response, multiple
hardening variables together with a coupling matrix between the hardening variables is
introduced. The coupling matrix allows the yield surface to harden distortionally. The
yield surface remains convex despite large distortion of the yield surface during hardening.
It is shown that the dissipation inequality sets constraints on the choice of parameters for
the coupling matrix which are physically logical.

The calibration procedure for the plastic part of the model is shown to be straight-
forward and after that some approximations are introduced, the experimental comparison
does not compromise the predicted response. Only uniaxial tests is needed in the calibra-
tion which significantly reduce the experimental complexity. The subsurface parameters
has been calibrated by assuming the total strain ratio equals the plastic strain ratio. This
assumption needs to be experimentally verified and more investigations are needed to de-
termine the exact shape shape of the yield surface.

Validation experiments of a sample with a central hole has been performed to investigate
performance of the model, i.e. a non-homogeneous strain field. Digital Image correlation
measurements were performed on the samples to allow comparisons of the strain fields
between the simulations and the experiments. The results revealed that a qualitative
match between the simulated strain field and the experimental DIC-field was obtained.
The error between the simulated strain field and the DIC strain field were also compared.
The error was largest at the top and bottom of the holes at the final stages of loading.
The deviation in the strain field can be due to the constitutive model but it can also be
explained by out-of-plane behavior or boundary effects. However, the overall shape of the
strain field from a single plate-hole test is captured. It is concluded that the continuum
approach for the modeling of the in-plane behavior, is able to represent the inhomogeneous
strain field from the DIC-measurements, despite the inherent inhomogeneous structure of
paperboard.
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A Polyconvexity of the free energy

First, it is noticed that Ie1 can be written as

Ie1 = tr(bem) = ptr(bem(1)) + qtr(bem(2)) + qtr(bem(3)). (57)

A similar expression can be obtained for Ie2 and since a sum of convex functions is convex,
it is therefore sufficient to prove that

Ĩe,α1 = tr(bem(α))

Ĩe,α2 = J2tr(be−1m(α))
(58)

are convex for α = {1, 2, 3}. From the polar decomposition theorem, (7) and the symmetry
of V e, it follows that the invariants can be expressed as

Ĩe,α1 = tr((V e)2m(α)) = (V ev(α)) · (V ev(α))

= (F ev
(α)
0 ) · (F ev

(α)
0 ) = |F ev

(α)
0 |2

Ĩe,α2 = J2tr((V e−1)2m(α)) = J2(V e−1v(α)) · (V e−1v(α)) =

= (JF e−Tv
(α)
0 ) · (JF e−Tv

(α)
0 ) = |JF e−Tv

(α)
0 |2 = |cof(F e)v(α)

0 |2

(59)

These invaraints were shown to be polyconvex in Schröder and Neff (2002).

B Derivation of dissipation inequality

Inserting the evolution laws (30) into the dissipation inequality (18) provides

d = τ : λ̇
∂f

∂τ
+K(γ)λ̇ω−1

γν

∂f

∂K(ν)
≥ 0 (60)

where summation is done over γ and ν. To simplify the notation Λν is defined as

Λν =
τ : n

τ (ν)
. (61)

The derivatives are then given by

∂f

∂τ
= 2kχ(γ)Λ

2k−1
γ

τ (γ)
n

∂f

∂K(ν)
= −2kχ(γ)ωνγ

Λ2k
γ

τ (γ)

(62)

27



Insertion into (60) gives

d = τ : λ̇2kχ(γ)Λ
2k−1

τ (ν)
n− λ̇2kχ(γ)K

(γ)Λ2k

τ (γ)

= 2kχ(γ)λ̇Λ2k(1−
K(γ)

τ (γ)
),

(63)

where summation is done over γ.
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Abstract

A continuum model of paperboard material possessing a high degree of anisotropy

is established. To handle the anisotropy, three vectors are introduced which phe-

nomenologically represent the preferred directions of the material. The in-plane di-

rector vectors deform as line segments and the out-of-plane direction deforms as a

normal vector. This allows for a decoupling of the in-plane and the out-of-plane re-

sponses in shearing. The model is developed for large plastic strains and consequently

an expression for the plastic spin has been proposed. The choice of plastic spin allows

for a control of the direction in which permanent deformations will occur. To show

the predictive capabilities of the model, the important industrial process of creasing is

simulated. Both the simplified line crease setup, as well as the actual rotation crease

setup used in industrial applications are studied.
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1 Introduction

Paperboard is a material with a high degree of anisotropy, which stems from the manu-
facturing process where the fibers becomes aligned in preferred directions, which results
in a highly anisotropic structure. In this work, a 3D-continuum elasto-plastic model for
paperboard is established, i.e. a model that captures the in-plane as well as the out-of-
plane responses is developed. Classically, paperboard is characterized as an orthotropic
material where the normals to the symmetry planes are denoted as Machine Direction
(MD), Cross Direction (CD) and out-of-plane direction (ZD), cf. Fig. 1. The magnitude of
the failure stress in the MD direction is typically 2-3 times higher compared with CD and
about 100 times higher compared with the failure stress in the ZD-direction, cf. Stenberg
(2002). Different modeling concepts have traditionally been employed for the modeling of
the in-plane and the out-of-plane responses, such as using a combination of continuum and
cohesive elements, cf. Xia (2002), Beex and Peerlings (2009) and Nygårds et al. (2009b).
In this work, a model, which is able to handle the large degree of anisotropy using a purely
continuum based model, is presented.

v
(1)
0

v
(2)
0

n
(3)
0

Figure 1: Illustration of the different material directions of paperboard resulting the man-
ufacturing process. The preferred directions are aligned with the Machine(1)-, Cross(2)-
and ZD(3)-directions.

Paperboard can be designed as a single-ply or multi-ply material, where the fibers
in the plies are processed mechanically or chemically from wood fibers. The plies are
designed to obtain desired properties through the thickness of the paperboard. The multi-
ply board is a sandwiched structure, which is used to obtain a light weight construction with
as high stiffness as possible without compromising other functionalities such as strength
and convertability. The multi-ply design utilizes strong outer plies with higher bending
resistance to prevent cracks to form, while the middle plies are made weaker such that
the material can easily be folded to form a package. If a single-ply board is used, a
combination of chemical additives can be pressed into the top and bottom ply to obtain a
layered structure. In this work however, focus will be on the modeling of materials with a
high degree of anisotropy, and for that sake the inhomogeneous properties of paperboard
in the thickness direction has not been taken into account. The inhomogenous material
properties can easily be included in the framework by a mapping of the material properties,
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cf. Huang et al. (2014). The different through thickness shear properties can be identified
by using a notched shear test, as developed in Nygårds et al. (2009a) and Nygårds and
Malnory (2010) or by grinding off the plies and testing the material properties of individual
plies cf. Nygårds (2008). Several mechanical characteristics for the in-plane behavior of
paperboard were determined in Allaoui et al. (2009), such as visco-elastic effects, plasticity
and damage. Rate-dependence and damage have not been considered in the current work.

To obtain well formed packages without defects, creasing is an important industrial
converting process and it is crucial for the subsequent folding operation. Creasing has
been studied experimentally by several authors e.g. Cavlin (1988), Cavlin et al. (1997) and
Nagasawa et al. (2003) and also in numerical studies in Beex and Peerlings (2009), Huang
and Nygårds (2010), Nygårds et al. (2009b). The creasing operation reduces the initial
maximal bending moment and the deeper the scored line is creased, the more the maximal
bending moment is reduced. Earlier studies have modeled the simplified 2-dimensional
line crease setup, whereas in this work a rotation crease with a 3-dimensional pattern is
simulated as well. The modeling of the subsequent folding operation of paperboard has
been investigated in Barbier et al. (2005), Huang et al. (2014) and Giampieri et al. (2011).

There exist several modeling techniques for the modeling of fiberous structures such
as paperboard. Network models have been proposed in e.g. Borodulina et al. (2012)
and Kulachenko (2012) where the fiber network was built up by beam elements. Insights
about the mechanics present at the meso- and micro-scale of the fiber-network can be
obtained by using network models. To reduce the computional cost of network models,
the quasicontinuum approach was applied to fiberous materials such as paperboard in
Beex et al. (2014). Continuum models for paperboard have previously been suggested,
e.g. the in-plane models defined in Sawyer et al. (1998) and Mäkelä and Östlund (2003).
Combined continuum and delamination models have been proposed in Beex and Peerlings
(2009), Nygårds et al. (2009b), Huang and Nygårds (2010) and Xia (2002).

The in-plane yield surface in Xia et al. (2002) and further developed in Borgqvist et al.
(2014) has been extended in the present work to take the out-of-plane properties into
account. The yield surface is based on a set of subsurfaces in the stress-space, where each
subsurface is associated with an internal variable. This approach allows the yield surface
to harden distortionally in the stress-space. The yield surface in this work is equipped with
additional subsurfaces such that out-of-plane plasticity is accounted for. It was observed in
Stenberg et al. (2001) and Stenberg (2003), that dilation in the ZD-direction is obtained as
the paperboard is sheared, and that increased shear yield stress is obtained as the material
is compressed. This feature is included in the proposed model. Ideal plasticity will be
assumed at the onset of failure in the out-of-plane direction.

The article is organized as follows, in sections 2 and 3 the kinematic description and the
evolving anisotropy is presented. The thermodynamic framework is established in section
4, where tensors will be considered in a Cartesian setting, i.e. following the work of Ciarlet
(1988). In section 5, the specific model is presented and in section 6, aspects related to the
calibration are discussed. The model is implemented in a finite element framework and the
results from creasing operations are shown in sections 7 and 8.
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2 Kinematics

The motion of a material body from the reference configuration, Ω0 ∈ R3, to the current
configuration Ω ∈ R3 in the time interval T ∈ [t0, t], is given by ϕ(X, t) : Ω0 × T → Ω. It
is assumed that the mapping ϕ is sufficiently smooth. The vector X denotes the position
of a particle in the reference configuration and the position of the same particle at time t in
the current configuration is given by x = ϕ(X, t). The mapping of vectors in the reference
configuration to the current configuration is given by the deformation gradient F = ∇ϕ.
To separate the deformation into an elastic and a plastic deformation, a multiplicative split
of the deformation gradient is assumed, i.e.

F = F eF p, (1)

where F e and F p are the elastic and plastic deformation gradients, respectively. The split
(1) introduces a stress-free intermediate configuration, which is not unique. A rigid body
rotation of the intermediate configuration will leave the intermediate configuration stress
free and therefore the intermediate configuration must be defined with respect to an ar-
bitrary constitutive spin, cf. Dafalias (1998) and Harrysson and Ristinmaa (2007). For
simplicity in this paper, this constitutive spin is set equal to zero, i.e. an isoclinic config-
uration is adopted, as introduced in Mandel (1971). Further on, the elastic deformation
will be defined by the elastic Finger tensor, be = F e(F e)T .

Using (1), the spatial velocity gradient defined as, l = Ḟ F−1, can be additively split
into

l = le + F eLpF e−1 = le + lp, (2)

where
le = Ḟ

e
F e−1, Lp = Ḟ

p
F p−1, (3)

are referred to as the elastic and material plastic velocity gradients, respectively. The
plastic velocity gradient in (2) can further be split into a symmetric part and a skew-
symmetric part, i.e.

lp = sym(lp) + skew(lp) = dp + ωp, (4)

where dp is the plastic rate of deformation tensor and ωp is the Eulerian plastic spin, cf.
Dafalias (1998). The plastic spin, ωp, is important to specify for anisotropic materials that
undergo large plastic deformations, cf. Harrysson et al. (2007). For later purposes, the
symmetric part of the spatial velocity gradient is defined as d = sym(l).

3 Evolving anisotropy

The modeling framework for the anisotropy follows the format outlined in Borgqvist et al.
(2014). To model the in-plane behavior, two director vectors of unit length, v(1)

0 and v
(2)
0 ,

aligned in the MD- and CD-directions in the reference configuration are introduced. These
two vectors are assumed to phenomenologically represent the in-plane preferred directions
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of the material. The director vectors are assumed to be embedded in the continuum (i.e.
the fiber-network) and are chosen to follow the elastic deformation gradient i.e.

v(1) = F ev
(1)
0

v(2) = F ev
(2)
0 .

(5)

Note that due to the intermediate configuration being isoclinic, the director vectors in the
intermediate configuration become equal to v

(1)
0 and v

(2)
0 , i.e. an identity mapping between

the director vectors in the reference configuration to the intermediate configuration. Rather
than using v(3) = F ev

(3)
0 , a normal vector n(3)

0 will be utilized for the out-of-plane behavior.
The normal vector n

(3)
0 in the reference configuration is expressed as

n
(3)
0 = v

(1)
0 × v

(2)
0 , (6)

i.e. a vector normal to the in-plane directions. A normal vector evolve according to the
cofactor of the elastic deformation gradient,

n(3) = JeF e−Tn
(3)
0 , (7)

where Je is the determinant of the elastic deformation gradient, i.e. Je = det(F e). The
use of (7) is motivated by the fact that paperboard in essence is a sandwiched structure,
consisting of layers of fibers stacked on top of each other. It can be imagined that during
shearing, the paperboard response is mechanically similar to that of a deck of cards, as
depicted in Fig. 2.

v
(3)
0

v
(1)
0

n
(3)
0

v(3)

v(1)

n(3)

MD

ZD

Figure 2: Out-of-plane shearing of paperboard, illustrating the idealized deformation pat-
tern.

After the shear deformation, each fiber-layer normal, n(3), is assumed to remain un-
changed, while a director vector, v(3) = F ev

(3)
0 has components in the MD-direction, cf.

Fig. 2. The projection of n(3) on the in-plane directions is therefore zero, i.e. n(3) ·v(1) = 0.
The alignment of v(3) will imply a coupling between the in-plane and the out-of-plane re-
sponse, i.e. v(3) · v(1) ̸= 0. Use of v(3) instead of n(3) will result in that the stronger
in-plane properties will influence the weaker out-of-plane properties, whereas the choice
(7) will reduce the influence of the in-plane properties on the out-of-plane response in the
model.
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In the subsequent derivations, it is convenient to define a set of second order structural
tensors, which are given as dyadic products of the director vectors and the normal, i.e.

m(1) = v(1) ⊗ v(1), m(2) = v(2) ⊗ v(2), m(3) = n(3) ⊗ n(3). (8)

Later on, the evolution of the structural tensors are needed. It is therefore noted that
taking the material time derivative of (5) and (7) and taking advantage of the definition
of (8) and using (2) results in

ṁ(1) = 2sym(lem(1))

ṁ(2) = 2sym(lem(2))

ṁ(3) = 2
(

tr(le)m(3) − sym(leTm(3))
)

.

(9)

The evolution of the elastic Finger tensor is needed as well and by using (2), the material
time derivative of be can be expressed as

ḃ
e
= 2sym(lbe)− 2sym(lpbe). (10)

In the next section, the dissipation inequality will be considered when deriving expressions
for the constitutive relations.

4 Dissipation inequality

The dissipation inequality in the spatial setting under isothermal conditions is given by

d = τ : d− ρ0ψ̇ ≥ 0, (11)

where τ is the Kirchhoff stress tensor and ψ is the Helmholz free energy per unit mass and
ρ0 is the density in the reference configuration. The free energy is assumed to be a function
of the elastic Finger tensor, be, the structural tensors, m(α), and a set of internal variables,
κ(γ), which characterize the plastic response, i.e. ρ0ψ = ρ0ψ(b

e,m(α), κ(γ)). Insertion of
this format of the free energy in the dissipation inequality (11) results in,

d = τ : d− ρ0
∂ψ

∂b
e : ḃ

e
− ρ0

∂ψ
∂m(α) : ṁ

(α) − ρ0
∂ψ
∂κ(γ)

κ̇(γ) ≥ 0. (12)

In (12), summation convention applies to the superscripts α and γ. Using the time deriva-
tives of the elastic Finger tensor (10) and the structural tensors (9) as well as using argu-
ments by Coleman and Gurtin (1967), it is concluded that

τ = 2ρ0

(

∂ψ

∂be
be +

∂ψ

∂m(1)
m(1) +

∂ψ

∂m(2)
m(2) −

∂ψ

∂m(3)
m(3) + (

∂ψ

∂m(3)
: m(3))I

)

, (13)
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where I represents the second order identity tensor. Assuming the Helmholz free energy
to be an isotropic function of its arguments leads to the Kirchhoff stress tensor (13) be-
ing symmetric, cf. Menzel and Steinmann (2003) and Harrysson and Ristinmaa (2007).
Insertion of (13) into (12) allows the dissipation inequality to be written as

d = τ : dp −K(γ)κ̇(γ) ≥ 0, (14)

where the thermodynamic forces, K(γ), are energy conjugates to the internal variables,
κ̇(γ), and defined as

K(γ) = ρ0
∂ψ

∂κ(γ)
. (15)

Based on the presented framework, the specific model will be discussed in the next section.

5 Model

The proposed Helmholz free energy is assumed to be additively split into an elastic and a
plastic part, where the elastic part, in turn, is split into a part associated with the in-plane
properties ρ0ψip, and one part, ρ0ψop, associated with the out-of-plane properties, i.e.

ρ0ψ
e = ρ0ψ

ip + ρ0ψ
op. (16)

The invariants that will be utilized to define the model are given by

I11 =
√
m(1) : I, I12 =

√
m(2) : I, I13 =

1
Je

√
m(3) : bebe

I23 =
√
m(3) : I Je =

√

det(be).
(17)

To interpret the invariants in (17), a transformation to quantities related to the inter-
mediate configuration can be made. Consider e.g. the invariants I13 and I23, using the
transformation of the normal vector (7) together with the definition of the structural tensor
(8), provides that I13 and I23 in (17) can be written as

I13 = |F en
(3)
0 |, I23 = |JeF e−Tn

(3)
0 | (18)

where the Euclidean 2-norm denoted | · | is defined as | · | =
√

[·] · [·]. Since the elastic
deformation gradient maps tangent vectors from the intermediate configuration to the
spatial configuration, I13 will therefore represent the stretch of the vector n

(3)
0 . The term

JeF e−T is the cofactor of the elastic deformation gradient, which maps normals to surface
elements between the configurations, i.e. the Nanson’s relation. Similar arguments for
the remaining invariants in (17) can be made. The invariants I11, I12 and I13 therefore
characterize the stretches in the directions MD, CD and ZD, respectively and the invariant
I23 represents the deformation of an area element with the normal in the ZD direction.
The invariant Je represents the deformation of a volume element. For a detailed discussion
of this topic, the reader is referred to e.g. Schröder and Neff (2002). To define the elastic
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in-plane behavior of the material, the in-plane contribution to the energy, ψip is postulated
to have the format

ρ0ψ
ip = A1

(

I11 +
1
I11

)

+ A2

(

I12 +
1
I12

)

+

A4

(

I11 + I12

)(

1
I11

+ 1
I12

)

+ A5

(

I11 + I12 +
1
I23

)

,

(19)

where A1, A2, A4 and A5 are elastic material parameters. The specific format (19) ensures
that the parameters A1, A2 ,A4 and A5 are positive for the material considered in this work
and that a stress free configuration is obtained for F e = I. The energy is defined such
that it will only contribute to the in-plane components for the initial tangent stiffness. The
out-of-plane part of the free energy, ρ0ψop, is assumed to be given by

ρ0ψ
op = H+ρ0ψ

top + (1−H+)ρ0ψ
cop + ρ0ψ

sop, (20)

where the superscripts top, cop and sop refers to the tension, compression and shearing
out-of-plane parts. The H+ is a switch function, given by

H+ =

{

1 if (I13 − 1) ≥ 0

0 otherwise
(21)

Due to the large difference in the material behavior in ZD-tension and ZD-compression, a
switch is introduced in the free energy, (20). This is an approximation to the actual smooth
transition between compression and tension, however the assumption does not introduce a
significant error. A switching approach was successfully utilized in Nygårds et al. (2009b).
The specific form for ρ0ψtop and ρ0ψcop governing the tensile and compressive behavior are
assumed to be given as

ρ0ψ
top = A3

(

I13 +
1

I13

)

ρ0ψ
cop = A7

(

(I13)
2 +

1

A8
e−A8((I13)2−1)

)

, (22)

respectively. For the compression, the exponential utilized in (22), will provide a stiffening
as the material is compressed. Finally, for the out-of-plane shear part, the model is given
by

ρ0ψ
sop = A6

(

I11 + I12 + I13 − Je

)

. (23)

The specific forms (22) and (23) will similar to the in-plane format (19), provide positive
values for the material constants A3, A6, A7 and A8 for the considered material and a
stress-free state will be obtained for F e = I. The specific form for the stress can now be
established. On the basis of (19), (22) and (23) along with (13), the Kirchhoff stress is
obtained as

τ = P1m
(1) + P2m

(2) + P3m
(3) + P4I + P5

1

(Je)2
bem(3)be (24)
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where

P1 = 1
I11

(

A1 + A5 + A6 + A4(
1
I11

+ 1
I12

)

)

− 1
(I11)3

(

A1 + A4(I11 + I12)

)

P2 = 1
I12

(

A2 + A5 + A6 + A4(
1
I12

+ 1
I11

)

)

− 1
(I12)3

(

A2 + A4(I12 + I11)

)

P3 = A5
(I23)3

P4 = −A5
I23

−A6J
e

P5 = A6
I13

+H+A3

(

1
I13

− 1
(I13)3

)

+ (1−H+)2A7

(

1− e−A8((I13)2−1)
)

(25)

Note that the stress-strain relationship (24) can be represented as a map τ : R9 → R6, i.e.

τ = τ (F e, v(1)(F e), v(2)(F e),n(3)(F e)). (26)

To illustrate the stiffness, the initial material tangent has been determined by assuming
F = F e. The initial stiffness is given by

D = ∂τ
∂FF

T

∣

∣

∣

∣

F=I

, (27)

cf. Harrysson et al. (2007) for a derivation. Consider the split

D = D
ip +D

op, (28)

of the initial tangent matrix. The D
ip provide the stiffnesses for the in-plane components,

i.e. it is obtained from the energy (19) as,

[Dip] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2A1 + 2A4 + 2A5 A5 − 2A4 0

A5 − 2A4 2A2 + 2A4 + 2A5 0

0 0 0

A5

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(29)

The stiffness tensor (29) is expressed using Voigt notation with the order (MD,CD,ZD) in
the indices. It is seen that the elastic parameters, A1, A2, A4 and A5 are decoupled from
the out-of-plane components of [Dip]. The free energies (23) and (22) provide the initial
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stiffness D
op that is given by

[Dop] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −A6 −A6

−A6 0 −A6

−A6 −A6 2A3H
+ + 4A7A8H

−

A6

A6

A6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(30)

As a consequence of (23), the elastic stiffness in MD-ZD and CD-ZD shearing are identical
in the model. Experimental out-of-plane shear tests in MD-ZD and CD-ZD reveal that
the stiffness for the two loading cases are difficult to distinguish one from the other, cf.
Nygårds (2008). The contribution (23) will give rise to a negative Poisson effect between
the in-plane and out-of-plane directions. Negative Poisson ratios have been experimentally
observed for paperboard in Stenberg and Fellers (2002).

The elastic parameters Ai can be obtained by performing tests in the preferred direc-
tions MD, CD and ZD. The calibration procedure is similar to that of standard orthotropic
models, cf. Borgqvist et al. (2014) for a recent example of the calibration procedure.

5.1 Plasticity

The yield-surface proposed in Xia et al. (2002) and further developed in Borgqvist et al.
(2014) will be used to model the plasticity. The proposed yield surface consists of 12 sub-
surfaces, where six subsurfaces belong to the in-plane stress states and six new subsurfaces
belong to the out-of-plane stress states, i.e.

f(τ ,n(β)
s , K(β)) =

12
∑

ν=1

χ(ν)

(

τ : n(ν)
s

τ (ν)

)2k

− 1. (31)

The subsurfaces are defined by the yield-plane normals n
(ν)
s . The yield-plane normals are

defined as the dyadic products of the director vectors and director normal according to

n(ν)
s =

3
∑

i=1

3
∑

j=1

N
(ν)
ij v̄(i) ⊗ v̄(j) (32)

where N
(ν)
ij are the coefficients of the yield normals and v̄(i) represent the normed director

vectors and the normed director normal, i.e.

v̄(1) = 1
|v(1)|

v(1), v̄(2) = 1
|v(2)|

v(2), v̄(3) = 1
|n(3)|

n(3). (33)
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The coefficients N
(ν)
ij are chosen such that the normalizing condition,

√

n
(ν)
s : I = 1, (34)

is fulfilled in the reference configuration when the coordinate system is aligned with the
MD, CD and ZD-directions. The stress τ (ν), in (31) associated with each yield-plane is
defined as

τ (ν) = K
(ν)
0 +K(ν). (35)

The parameter K(ν)
0 is related to the initial yield stress and geometrically represent the ini-

tial distance to the subsurface in the stress space. The change in distance of the subsurface
is associated with the hardening variable K(ν). Each hardening variable is associated with
a conjugate internal variable κ(ν), which allows the subsurfaces to be translated indepen-
dently of each other in the stress space. By introducing a coupling matrix as in Borgqvist
et al. (2014), a connection between the subsurfaces can be introduced. This coupling allows
for modeling of the cross-softening effects, e.g. the softening in the MD-direction due to
previous loading in the CD-direction. However, for simplicity the effects of pre-straining is
ignored in the present model. In (31), k is a constant natural number and χ(ν) is a switch
function, which determines whether a yield-plane is potentially active,

χ(ν) =

⎧

⎨

⎩

1 if τ : n(ν)
s > 0

0 otherwise.
(36)

In the formulations of Xia et al. (2002) and Borgqvist et al. (2014), the yield surface
was used to model in-plane plasticity, i.e. only six subsurfaces were used. In this work,
additional six subsurfaces are introduced. As an example, the yield subsurface connected
to the positive oriented MD-ZD out-of-plane shear is assumed to have the following format

n(ν)
s = N

(ν)
13 v̄(1) ⊗ v̄(3) +N

(ν)
33 v̄(3) ⊗ v̄(3). (37)

The subsurface (37) will introduce a coupling between the shear stress and the normal
stress in ZD-direction, i.e. the slope m̂ in Fig. 3b. This frictional behavior implies that
the material starts to yield at a higher shear stress when simultaneously subjected to a
compression in ZD. The coupling also implies that there will be dilation in ZD-direction
when the material is sheared and associated plasticity is adopted, see also Xia (2002).
Note that N

(ν)
ij in (37) is not symmetric. This non-symmetry is important for specifying

the evolution of the direction of the plastic flow, which will be discussed later on. The
remaining yield surface parameters are summarized in the Appendix. The shape of the
yield surface, (31), is shown in the MD-CD stress space in Fig. 3a and in the ZD and
MD-ZD-shear stress space in Fig. 3b.

The coupling of the ZD-stress, [τ ]33, to the out-of-plane shear stress, [τ ]13, is critical for
modeling of many industrial processes. In the creasing process, both compressive stresses
in the ZD-direction and out-of-plane shearing are present simultaneously, cf. also Beex and
Peerlings (2012) for a discussion on the frictional influences on paperboard.
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Figure 3: a) Typical shape of the yield surface in MD stress-CD stress space, b) Typical
shape of the yield surface in ZD stress-MD-ZD shear stress space.

Hardening variables, κ(ν), are introduced for the in-plane subsurfaces associated with
tension and shear, ν = {1, 2, 3, 6}, as well as for the subsurface associated with the ZD-
compression ν = 7, see Appendix for the abbreviation of ν. For the remaining subsurfaces,
ideal plasticity is used. The conjugate hardening variables are given by

K(ν) = aν ln (bνκ(ν) + 1) ν = {1, 2, 3, 6}

K(ν) = aνκ
(ν) ν = 7

(38)

which can easily be derived from a potential ψp. Associated plasticity is assumed for the
evolution laws, which yields

dp = λ̇ ∂f
∂τ =

∑12
γ=1 χ

(γ) λ̇2kΛ
2k−1
γ

τ (γ)
sym(n(γ)

s )

κ̇(ν) = λ̇ ∂f
∂K(ν) = −χ(ν) λ̇2kΛ2k

ν

τ (ν)

(39)

where

Λν =
τ : n(ν)

s

τ (ν)
(40)

was introduced to simplify the notation.

5.2 Eulerian plastic spin

During e.g. the creasing process, large plastic deformations take place and therefore the
eulerian plastic spin ωp needs to be specified. The eulerian plastic spin is used to control
the direction of the permanent deformation and is chosen as

ωp =
12
∑

γ=1

χ(γ) λ̇2kΛ
2k−1
γ

τ (γ)
skew(n(γ)

s ). (41)

12



The N (ν)
ij associated with the in-plane shear (ν = 3, ν = 6) are symmetric, while the out-of-

plane shear, N (ν)
ij , are not, cf. (37). The plastic deformation in the out-of-plane shearing is

assumed to represent the permanent displacement of the fiber layers relative to each other,
cf. Fig. 2. From (37), the symmetric and skew-symmetric plastic velocity gradients are
proportional to

dp ∝ N
(ν)
13

1
2(v̄

(1) ⊗ v̄(3) + v̄(3) ⊗ v̄(1))

ωp ∝ N
(ν)
13

1
2(v̄

(1) ⊗ v̄(3) − v̄(3) ⊗ v̄(1)).
(42)

By using (32) and the subsurface parameters provided in the Appendix, it can be shown
that plastic velocity gradient lp is independent of v̄(3) ⊗ v̄(1). The plastic velocity gradient
is however proportional to

lp ∝ N
(ν)
13 v̄(1) ⊗ v̄(3). (43)

In a simple shear state, this will imply that the stacked fiber layers are permanently sheared
as they slide over each other v̄(1) · lpv̄(3) ∝ N

(ν)
13 , but can not be plastically sheared in the

direction in which they are stacked, i.e. v̄(3) · lpv̄(1) = 0.
To illustrate the effect of the plastic spin for the situation depicted in Fig. 2, consider

the deformation gradient
Ḟ = γ̇v̄(1) ⊗ v̄(3). (44)

Note that v̄(1) and v̄(3) are orthonormal and will not change during this specific deforma-
tion, as depicted in Fig. 2. To simplify the derivations, it is assumed that the only active
subsurface in (31), is given by

n(9)
s = v̄(1) ⊗ v̄(3). (45)

If Ḟ
e
= 0, the Kirchhoff stress (26) will be constant and an ideal plastic response can be

obtained. Using that at the onset of plasticity F = F e and F p = I, and using (2), (3)
gives

Ḟ
e
= Ḟ − F eḞ

p
. (46)

The deformation gradient provided in (44) together with (4) results in

Ḟ
e
= γ̇v̄(1) ⊗ v̄(3) − (dp + ωp)

(

I + γv̄(1) ⊗ v̄(3)
)

. (47)

With the choice ωp = 0, (47) and taking advantage of (39) and (45) it follows that

Ḟ
e
=

(

γ̇ −
λ̇C

2

)

v̄(1) ⊗ v̄(3) −
λ̇C

2

(

v̄(1) ⊗ v̄(1) + γv̄(3) ⊗ v̄(1)
)

(48)

where it was used that v̄(1) and v̄(3) are orthonormal and C = 2kΛ2k−1
9

τ (9)
was defined. From

(48) it is apparent that Ḟ
e ̸= 0 at the onset of plasticity for the choice ωp = 0. For the

choice (41) however, a similar computation with (47), (39) and (45) yields

Ḟ
e
=
(

γ̇ − λ̇C
)

v̄(1) ⊗ v̄(3). (49)

13



The plastic multiplier λ̇ can be obtained from the consistency condition ḟ = 0. Using that
for this particular load situation that there are no evolution of the director vectors and
director normal gives

ḟ =
∂f

∂τ
:
∂τ

∂be
: ḃ

e
= 0. (50)

Using the expression for ∂τij
∂bekl

provided in the appendix (56), together with (39), (41), (10)

and be = F eF eT , yields

ḟ = 4C

(

(3A3 + A6)γ2 + A6

(γ2 + 1)5/2

)

(

γ̇ − λ̇C
)

= 0 (51)

which provides λ̇ = γ̇
C and as a consequence (49) provides

Ḟ
p
= Ḟ . (52)

The out-of-plane shear load situation for the generalization when all subsurfaces exists
has been simulated. In the simulation, there is no constraint for the displacement in ZD-
direction and the plastic spin has been chosen according to (41) and ωp = 0 and the results
are shown in Fig. 4.
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Figure 4: Result from the out-of-plane shear simulation. The red curve is obtained by
choosing the plastic spin as ωp = 0 whereas ωp according to (41) generates the blue curve.

With the choice ωp = 0, a rapid increase in the shear stress will initially take place, cf.
Fig. 4, while the choice (41) results in that ideal plasticity is obtained. Clearly the choice
of plastic spin has a significant impact on the results.

6 Calibration

A single-ply paperboard, which is assumed to be homogeneous has been used for evaluating
the model, i.e. the same material parameters are used throughout the thickness. A total
of nine tests are needed to calibrate the model and to extract all material parameters. The
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tests include: 3 in-plane tensile tests (MD, CD and 45o), two in-plane compression tests
(MD,CD), two out-of-plane shear tests (ZD-MD, ZD-CD) and out-of-plane tests in tension
and compression (ZD). This set of calibration tests are typical for orthotropic materials.
The calibration procedure outlined in Borgqvist et al. (2014) and Xia et al. (2002) was
used to calibrate the in-plane part of the model. The results from the in-plane calibration
are shown in Fig. 5.
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Figure 5: Uniaxial tests used for calibration of the model, tension tests in MD, CD and 45o

directions. Simulation results obtained from the calibrated model are indicated by black
lines and red lines indicate measured data.

The in-plane compression strengths were determined to be −17.9 MPa in MD and
−11.6 MPa in CD, using the Long Compression Test (LCT) apparatus, which is equipped
with lateral support to prevent buckling, cf. Cavlin and Fellers (1975). These values have
been used as the yield strengths in compression. The in-plane strain ratios between MD
and CD have been determined by using digital image correlation in the uniaxial MD and
CD tests.

The calibration to the out-of-plane compression is shown in Fig. 6. A small hysteresis is
present during unloading cf. Fig. 6, which is not taken into account by the current model.
The hysteresis is however not crucial for the simulations presented in the work herein.

Remaining parameters related to the out-of-plane properties can be found by perform-
ing ZD-tension tests and out-of-plane shear tests. The ZD-tension failure strength was
determined to be 0.4 MPa in a uniaxial ZD-tension test. Due to lack of reliable data for
the out-of-plane shear strength, the initial yield stress has been chosen to fit the force-
displacement curve in creasing. A value of 2.5 MPa for both the MD and CD initial shear
yield stress have been employed. The parameter m̃ related to the paper-paper friction in
Fig. 3b can be found by performing experiments were first an initial ZD-compression state
is applied to the material and then the paperboard is subsequently sheared, cf. Stenberg
et al. (2001). The parameter governing the compression-shear coupling, has been esti-
mated from Stenberg et al. (2001) to m̃ = 0.7, which is similar to the paper-paper friction
coefficient found in Rättö (2012) and Anna Johansson and Haugen (1998).
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Figure 6: Uniaxial test in ZD-compression. Simulation results obtained from FEM-analysis
are indicated by black lines and red lines indicate measured data.

The response under combined compression and shear has been simulated and the result
is illustrated in Fig. 7. A paperboard with intial thickness t0 is compressed in the ZD-
direction with a constant stress and then sheared while keeping the ZD-stress fixed. The
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Figure 7: Simulation of out-of-plane shear subjected to superimposed compression in ZD,
i.e. τ33 = v̄(3) · (τ v̄(3)).

response is similar to that previously reported in the literature. As seen in Fig. 7, the
material can withstand higher stresses as it is compressed, which is typical for frictional
materials like paperboard. The pressure dependent friction parameter, m̃, is important for
the creasing processes, as have been reported in Beex and Peerlings (2012). The elastic
and plastic parameters are summarized in the Appendix.
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7 Line Creasing

Creasing is an important industrial process that is essential for the quality of folded package
material. The creasing process reduces the resistance to bending and prevents surface
cracks from being generated during the subsequent folding process. A simplified creasing
process is often used in the industry to study the behavior of the paperboard, cf. Nagasawa
et al. (2003) and Cavlin (1988). The setup can for instance be used to study the relation
between the crease depth and surface cracks. The line crease setup previously used in
Nygårds et al. (2009b), is depicted in Fig. 8.

x (MD)

z (ZD)
Male die

Paperboard

u u

RR
z = 0

Female die

Figure 8: A schematic of the line creasing procedure.

The webtension is applied by introducing a prescribed displacement, u, as shown in
Fig. 8, such that a certain initial force is obtained. The male die is then moved into
contact with the paperboard and the creasing operation starts. The male die presses the
paperboard into the groove of the female die and when the male die has moved such that
it is aligned with the female die, the displacement of the male die is defined as zero. The
width of the male die is 0.7 mm and the width of the female die is 1.7 mm. The board
is 110 mm long, 38 mm wide and 0.39 mm thick and the strip has been cut out in the
45o-direction.

The material model has been implemented in the commercial software ABAQUS Abaqus
User’s Manual. Dassault Systemes. Abaqus Inc (2013), via the subroutine option UMAT.
The problem is solved using the standard ABAQUS-direct solver, with the linesearch algo-
rithm activated. The evolution equations given by the plastic deformation gradient (3), the
internal variables (39) and the yield condition (31) have been discretized using the back-
ward Euler scheme. The resulting equation has been solved using the Newton-Raphson
algorithm and the algorithmic tangent stiffness has been implemented. The derivation of
the algorithmic tangent stiffness tensor is straight-forward but lengthy and is therefore
included in the appendix. The paperboard has been discretized using eight node 3d-brick
elements with full integration and 29 elements through the thickness. For the contact
between the tools and the paperboard, an exponential over-closure relationship has been
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utilized. To reduce the computational cost, the width of the paperboard specimen was
taken as 2 mm in the simulation, where 5 elements were used through the width. Symme-
try boundary condition has been applied at the center of the male die. The small radius
R, depicted in Fig. 8, has been taken to be 0.05 mm. A static Coulomb friction model
between the tools and the paperboard has been utilized with the friction coefficient 0.4, cf.
also Back (1991). The force applied to the male tool vs the displacement of the tool and
the in-plane forces vs the displacement of the male tool are shown in Fig. 9.
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Figure 9: Simulation (black) and experimental (red-dashed) force displacement curves of
a) Reaction force from male die vs displacement of male die b) In-plane force vs male die
displacement.

From Fig. 9, it can be concluded that the overall shape of the macroscopic force-
displacement curves can be captured. The simulated peak forces correspond well to the
experimental results, however the simulations can not capture the pronounced decrease in
stiffness observed at load level marked with X in Fig. 9a. The decrease in stiffness is due
to the shear failure of the material, but as there is no damage incorporated in the model,
this drop in stiffness can not be captured. The subsequent increase in stiffness after the
initial drop in Fig. 9a, is due to the ZD compression becoming more dominant as the crease
displacement increases. The in-plane forces in Fig. 9b is however captured by the model.
The residual in-plane force after the male die is unloaded, is slightly larger compared with
measured force, indicating that the ideal plastic assumption overestimates the amount of
permanent deformation and as a consequence the paperboard can not be fully relaxed.

As the inclusion of the paper-paper friction parameter m̃ for the continuum is a new
feature in the model compared with previous models cf. e.g. Nygårds et al. (2009b), a
sensitivity analysis with respect to the parameter m̃ has been performed, cf. Fig. 10.

As seen in Fig. 10, the paper-paper friction parameter m̃ has a significant impact on
the macroscopic force-displacement curves. The drop in stiffness in Fig. 10a, becomes
more pronounced as m̃ is decreased, which is due to the magnitude of the shear stresses
decreases. With decreasing m̃, the in-plane forces also increases. It can also be noted that
the in-plane forces after unloading, increases with a decreasing m̃. In addition, it has been
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Figure 10: Sensitivity analysis with respect to material parameter m̃. Dashed red line
indicate measurement data. a) Reaction force from male die vs Displacement of male die
b) In-plane force vs male die displacement.

noted that increasing the friction coefficient between the tools and the paper, gives a softer
response for the in-plane force curve.

To illustrate the shear induced permanent deformations of paperboard, contour plots
of an effective plastic shear strain measure, defined from

κ̇seff =
√

(κ̇(9))2 + (κ̇(10))2 + (κ̇(11))2 + (κ̇(12))2, (53)

is shown in Fig. 11. Note that the indices 9-12 indicate the out-of-plane shear deformations,
cf. Appendix.

 

 

0

0.1

0.2

0.3

0.4

0.5
a) b) c)

κ
s e
f
f

Figure 11: Simulation of line-crease at the displacement levels a) 0mm, b) 3mm (fully
loaded) and c) unloaded. The effective plastic shear strain, κseff , is illustrated.

In Fig. 11c, the final shape of the paperboard after the crease operation is shown.
The shape of the paperboard is similar to that obtained from the physical tests. There is
significant amount of shear induced in the paperboard in Fig. 11, i.e. indicating maximum
plastic shear strains at the order of 50 %. The effective plastic shear strain also develops
during the unloading phase of the male die, cf. Fig. 11c, as was observed in Nygårds et al.
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(2009b) as well. The figure indicates that shear is induced outside the groove of the female
die, as the displacement of the male die becomes greater than 0 mm.

8 3D-Rotation Creasing

Previous studies on creasing have been restricted to the simplified 2-dimensional line crease
setup. To demonstrate the capabilities and numerical robustness of the proposed model,
the industrial relevant rotation creasing operation of paperboard has been simulated. The
modeling of the rotation crease procedure is important for understanding of the complex
interaction between the paperboard and the tools in the actual industrial process. An
illustration of the simulated geometry is shown in Fig. 12.

Male Die

Female Die

Paperboard

Rotation Direction

Rotation Direction

Figure 12: The simulation of the rotation creasing of paperboard.

To fold a corner of a package, a 2-dimensional crease pattern is needed, in contrast to
the line crease examined in section 7. Referring to Fig. 12, it can be seen that the three line
creases that meet defines a K-shaped crease pattern. The crease width of the male die is 0.7
mm whereas the width of the female die is 1.6 mm. A static analysis has been performed
using the material model implemented in ABAQUS. Five elements are used through the
thickness of the paperboard, cf. Fig. 13 for a close up at the mesh in the vicinity of the
crease region. An exponential-overclosure relationship is used for the contact. The male
and female dies have been modeled using rigid body shell elements with the same friction
coefficient as in the line crease simulation, i.e. 0.4 between the paperboard and tools.
The dimensions of the paperboard has been taken as 60 × 28.25 × 0.4 mm, which has
been meshed with 101520 elements. The same material parameters as those in the line
crease setup has been used in the simulation. In the first step of the simulation, a constant
traction of 5 MPa is applied at the edges of the paperboard to mimic the web-tension
present in the process. The magnitude of the applied traction is in the elastic regime and
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of similar magnitude to the initial applied in-plane traction examined in section 7. The
cylinders are then moved vertically into position until a crease depth of 0.2 mm is obtained
and then the crease operation starts by rotating the cylinders in the direction shown in
Fig. 12.

Figure 13: A zoomed section of the mesh around the crease region. Five elements are used
through the thickness and a total of 101520 elements have been used for the paperboard.

With the 2-dimensional crease pattern used in the rotation creasing procedure, signifi-
cant deformations are induced and the stress distribution in the paperboard is not obvious.
Due to the complex stress state, the out-of-plane shear stress distribution has been studied
in detail. The shear-stress field is related to the induced delamination and therefore the
quality of the subsequent fold. The stress-field has been studied at sections with normal
in the MD-direction of the paperboard. A close up of the female die around the corner
crease is shown in Fig. 14. The location of the sections in the paperboard, at which the
out-of-plane shear stresses are studied, are marked in Fig. 14 by the positions (a)-(f).
The CD-out-of-plane shear stresses, v̄(2) · (τ v̄(3)), through the thickness of the paperboard
are shown in Fig. 15. The snapshots corresponds to instants when the male die is fully
penetrated at the positions (a)-(f).

At position (a) in Fig. 15, the out-of-plane shear stress field distribution is similar to
the effective plastic shear strain field, κseff , resulting from the line-crease, cf. section 7.
Note that there is a negative (blue) shear stress field on the left side and a positive (red)
on the right side, which is expected due to the load situation is similar to the line crease
studied in section 7. At position (b), only the right-side of the female die is in contact
with the paperboard and there are only significant shear stresses at that side. The stress
zone is also wider compared with (a), but the magnitude is less. In (c), there are virtually
no shear stresses induced in the paperboard, despite the severe deformation. The shear
stresses have been unloaded, which might be due to that the paperboard is not in contact
with the female die. Thereafter in (d), the paperboard is in contact with the female die
on the left side and shear stresses are being generated close to the contact point. Further
more, it is noticed that the width of the stress zone in (d) is approximately the same as
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MD crease

CD crease

Diagonal crease

Figure 14: Female die around corner crease used in simulation. The dashed lines, (a)-(f),
indicate the position of the cuts in the contour plots of the out-of-plane shear stress in
Fig. 15.

the width in field (b). In (e), the diagonal crease just start to penetrate the board and
there are stresses to the left and right. In (f) again a similar stress distribution as for the
line crease simulation is obtained, both for the diagonal crease and the MD-crease. Due to
the cut for the view, the diagonal crease appears a bit wider than the MD crease in (f).

9 Conclusions

A continuum based model for paperboard consistent with the laws of thermodynamics is
established. The evolution of the anisotropy is modeled with the use of three structural
tensors of which two are associated with the MD and CD directions, and a third which
is associated to an out-of-plane normal vector. A free energy is proposed, which initially
gives rise to a decoupled in-plane and out-of-plane response. This assumption allows the
large difference in the in-plane and out-of-plane elastic parameters to be modeled.

The structural tensors are assumed to be embedded in the continuum and it is shown
that the plasic spin is of importance when large plastic strains are present. The plastic
spin is chosen such that no plastic deformation occurs in the direction n(3) ⊗ v(1) during
shearing, i.e. the stacking direction of the fibers. The plastic deformation in out-of-plane
shearing is assumed to be the result of sliding of the fiber layers.

In contrast to many other models for paperboard, plasticity is modeled using only one
distortional hardening yield surface. For the ZD-compression, linear hardening plasticity
is assumed, while the elasticity has an exponential format. For the in-plane directions
a logarithmic relationship is used for the hardening variables. A good description of the
material response is obtained, despite no degradation of the material properties or rate
dependence are included in the present framework.

To illustrate the performance of the model, the creasing operation has been simu-
lated and compared to experimental results. It is concluded that the macroscopic force-
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Figure 15: The out-of-plane CD-shear stress field, v̄(2) · (τ v̄(3)), at the positions (a)-(f)
marked in Fig. 14. The snapshots are taken when the male die is fully penetrated.

displacement curves from experiments can match the simulated field by using a pure contin-
uum based model. The influence of the paper-paper friction parameter m̃ of the paperboard
on the force-displacement curve is investigated in detail. In addition to the line crease, the
rotation creasing procedure has been modeled as well. The out-of-plane shear stress field
induced in the rotation creasing was studied in detail and it can be concluded that both
the male and female die need to be in contact with the paperboard for a shear stress to be
generated.
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A Material Parameters

The material parameters used in this work are presented in Table. 1, Table. 2 and Table. 3.
The non-zero coefficients of N (ν)

ij are summarized in Table. 1. The exponent k = 3 has
been used in (31).

Stress-state, Subsurface, ν Subsurface component N(ν)
ij

MD-tension 1 N
(1)
11 = 0.9174, N

(1)
22 = −0.3979

CD-tension 2 N(2)
11 = −0.2032, N(2)

22 = 0.9791

MD-CD shear 3 N(3)
12 = 0.7071, N(3)

21 = 0.7071

MD-compression 4 N(4)
11 = −1

CD-compression 5 N(5)
22 = −1

MD-CD shear 6 N
(6)
12 = −0.7071, N

(6)
21 = −0.7071

ZD-compression 7 N(7)
33 = −1

ZD-tension 8 N
(8)
33 = 1

MD-ZD-shear 9 N(9)
33 = 0.704, N(9)

13 = 1.01

MD-ZD-shear 10 N(10)
33 = 0.704, N(10)

13 = −1.01

CD-ZD shear 11 N(11)
33 = 0.704, N(11)

23 = 1.01

CD-ZD shear 12 N(12)
33 = 0.704, N(12)

23 = −1.01

Table 1: Numerical values of the in-plane subsurface parameters

Elastic parameter Value
A1 2020 (MPa)
A2 229 (MPa)
A3 28.4 (MPa)
A4 25.2 (MPa)
A5 1410 (MPa)
A6 78.0 (MPa)
A7 0.365 (MPa)
A8 11.5 (-)

Table 2: Numerical values of the elastic parameters.

Subsurface , ν Initial yield, K0 (MPa) Hardening aν (MPa) Hardening bν (-)
1 16.5 12.2 890
2 4.05 4.75 1570
3 8.03 5.10 1540
4 18.0 - -
5 11.6 - -
6 8.03 5.10 1540
7 1.00 52 -
8 0.40 - -
9 2.51 - -
10 2.51 - -
11 2.51 - -
12 2.51 - -

Table 3: Numerical values of the plastic parameters
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B Algorithmic Tangent Stiffness Matrix

Index notation where the Cartesian basis vectors are assumed to be orthogonal and fixed
is utilized in the description below. The algorithmic tangent stiffness matrix, which has
been used as an output in the UMAT subroutine, is given by

[Dats]ijkl =
1

2

(

[
∂τ

∂F
F T ]ijkl + [

∂τ

∂F
F T ]ijlk

)

(54)

cf. Abaqus User’s Manual. Dassault Systemes. Abaqus Inc (2013). Using τ = τ (be,m(α))
and noting that be = be(F ,F p) and m(α) = m(α)(F ,F p) the first term of the derivative
in (54) can be expressed as

(
∂τ

∂F
F T )ijkl =

∂τij
∂bers

(

∂bers
∂Fkp

+
∂bers
∂F p

tu

∂F p
tu

∂Fkp

)

Flp +
∂τij

∂m
(α)
rs

(

∂m
(α)
rs

∂Fkp
+
∂m

(α)
rs

∂F p
tu

∂F p
tu

∂Fkp

)

Flp (55)

A summation in the superscript (α) is assumed. The derivatives of ∂τij
∂bers

and ∂τij

∂m(α)
rs

in (55)
are lengthy and they are for completeness summarized below,

1
2
∂τij
∂bers

= p1
(Je)2B

(2)
ij (B(1)

rs +B
(1)
sr )− (p1(I13)2 +

p2
(Je)2 )B

(2)
ij be−1

rs

+ p2
2(Je)2 (δirB

(1)
js + δisB

(1)
jr + δjsB

(1)
ir + δjrB

(1)
is )− A6

4 Jeδijb
e−1
rs

1
2
∂τij

∂m
(1)
rs

= p3m
(1)
ij δrs + p4(δirδjs + δisδjr)

+ p5m
(2)
ij δrs +

(A5+A6)
4

(

1
I11

(δirδjs + δisδjr)− 1
(I11)3

m
(1)
ij δrs

)

1
2
∂τij

∂m(2)
rs

= p6m
(2)
ij δrs + p7(δirδjs + δisδjr)

+ p5m
(1)
ij δrs +

(A5+A6)
4 ( 1

I12
(δirδjs + δisδjr)− 1

(I12)3
m

(2)
ij δrs)

1
2
∂τij

∂m
(3)
rs

= p1
(Je)2B

(2)
ij B

(3)
rs + p2

2(Je)2 (b
e
irb

e
sj + beisb

e
rj) +

A5
4(I23)3

δijδrs − 3A5
4(I23)5

m
(3)
ij δrs

+ A5
4(I23)3

(δirδjs + δisδjr)

(56)

In (56) δij denotes Kroneckers delta and the following tensors were introduced to simplify
notation

B
(1)
ij = beikm

(3)
kj

B
(2)
ij = beikm

(3)
kl b

e
lj

B
(3)
ij = beikb

e
kj

(57)

25



Moreover, the scalars p1 − p7 were also introduced

p1 = 1
(Je)2

(

H+A3(
−1

4(I13)3
+ 3

4(I13)5
)− A6

4(I13)3
+ (1−H+)A7A8e

−A8((I13)2−1)
)

p2 = H+A3(
1

2I13
− 1

2(I13)3
) + A6

2I13
+ (1−H+)A7(1− e−A8((I13)2−1))

p3 = A1
4

(

3
(I11)5

− 1
(I11)3

)

+ A4
4 ( 3I12

(I11)5
− 1

(I11)3I12
)

p4 = A1
4

(

1
I11

− 1
(I11)3

)

+ A4
4 ( 1

I11I12
− I12

(I11)3
)

p5 = −A4
4 ( 1

I12(I11)3
+ 1

I11(I12)3
)

p6 = A2
4 ( 3

(I12)5
− 1

(I12)3
) + A4

4 ( 3I11
(I12)5

− 1
I11(I12)3

)

p7 = A2
4 ( 1

I12
− 1

(I12)3
) + A4

4 ( 1
I11I12

− I11
(I12)3

)

(58)

The term ∂F p
tu

∂Fkp
in (55) can be obtained from the inner residual system defined by the

backward Euler discretization of the evolution equations given by Ḟ p, κ̇(ν) and the yield
function f = 0, i.e. equations (3), (39) and (31). The residual equations is defined as R
and F p, κ(ν) and λ are collected in a vector Y . The residual equations can then be seen as
a function of F according

R = R(Y (F ),F ) = 0 (59)

The derivative ∂F p
tu

∂Fkp
in (55) can be obtained from

∂Y

∂F
= −

(

∂R

∂Y

)−1

(
∂R

∂F
). (60)

where the Jacobian ∂R
∂Y

is used when solving the set of residual equations defined by (59)
using the Newton-Raphson algorithm. The remaining terms in (55) can be computed in a
straight forward manner and they are therefore not provided herein.
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Abstract

The localized deformation patterns developed during in-plane compression and
folding of paperboard have been studied in this work. X-ray post-mortem images
reveal that cellulose fibers have been reoriented along localized bands in both the
compression and folding tests. In folding, the paperboard typically fails on the side
where the compressive stresses exists and wrinkles are formed. The in-plane compres-
sion test is however difficult to perform due to the slender geometry of the paperboard.
A common technique to determine the compression strength is to use the so called
Short-Span Compression Test (SCT). In the SCT, a paperboard with a free length
of 0.7 mm is compressed. Another technique to measure the compression strength
is the long edge test where the motion of the paperboard is constrained on the top
and bottom to prevent buckling. A continuum model that previously has been pro-
posed by the authors is further developed and utilized to predict the occurrence of
the localized bands. It is shown that the in-plane strength in compression for paper-
board can be correlated to the mechanical behavior in folding. By tuning the in-plane
yield parameters to the SCT response, it is shown that the global response in folding
can be predicted. The simulations are able to predict the formation of wrinkles and
the deformation field is in agreement with the measured deformation pattern. The
model predicts an unstable material response associated with localized deformation
into bands in both the SCT and folding.
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1 Introduction

Paperboard is a light-weight cellulose based fibrous material, which is suitable for convert-
ing into packaging containers. During converting procedures, the paperboard undergoes a
complex deformation history, which is difficult to experimentally characterize. The pack-
aging industry has traditionally relied on correlating the response in various simplified load
situations with the performance in the converting process. One such technique is the Short-
Span-Compression test (SCT), where a short sample of the paperboard is compressed. The
failure strength in this test, the SCT-value, is considered to be an important measure for
i.e. the foldability of the material, cf. Cavlin (1988), Carlsson et al. (1980) and the box
compression strength, cf. Ristinmaa et al. (2012). However, the deformation mechanisms
that are active during this test have not yet been fully understood.

Paperboard is a material which possesses a high degree of anisotropy. This anisotropy
is due to the manufacturing process where cellulose fibers are sprayed on a traversing web
and thereby becomes stacked in planes. The stacking direction is denoted ZD (out-of-
plane). The fibers are mainly aligned in the Machine Direction (MD) and the transverse
direction to MD is known as the Cross-Direction (CD). The failure stress in ZD is typically
two orders of magnitude smaller than the failure stress in MD, while the failure stress in
CD is about 2-3 times lower than MD. To obtain a low weight, paperboard is commonly
produced as a sandwiched structure, with stronger mechanical properties in the outer-plies
(top and bottom) and weaker properties in the middle. Measurements and simulations
have been performed for a single ply board in this work.

Good foldability implies minimum spring-back and absence of cracks along fold lines,
cf. Cavlin (1988). Due to the bending state present during folding, in-plane compression
strength has been attributed for being the dominant factor affecting the foldability of
paperboard. However, later investigations have confirmed that the out-of-plane shear is an
important mechanism to consider during converting procedures, cf. Nygårds et al. (2009b),
Beex and Peerlings (2009) and Borgqvist et al. (2015). The in-plane compression strength
is difficult to measure due to that structural instabilities (buckling) easily are triggered as
a result of the slender geometry of the paperboard. To overcome the difficulties associated
with the structural stability in compression tests, short span length can be used to prevent
the buckling. An alternative experimental method is based on constraining the deflection in
the out-of-plane direction using lateral support on the top and bottom of the paperboard,
i.e. the long edge compression test, cf. Cavlin and Fellers (1975). In Westerlind and
Carlsson (1992), the peak stress in the long edge compression test and the short-span
compression test were shown to be correlated using a weakest link relation.

A common modeling technique to analyze complicated load situations for paperboard
is to use combination of continuum and interface models, as proposed in Xia (2002). Using
this combined approach, the SCT was simulated in Hagman et al. (2013) and features
such as the maximum peak stress was captured using this concept. Moreover, in Hagman
et al. (2013), the through thickness profile obtained from a notched shear test, cf. Nygårds
et al. (2009a), was correlated to the location of the delamination. However in Hagman et al.
(2013), the displacement at failure in the SCT was not considered in the simulated response.
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A simplified model based on the Hill’s yield criterion was adopted for the continuum, which
does not differentiate between compression and tension. The line creasing and folding
operation have been analyzed using a similar modeling technique in Huang et al. (2014).
In Borgqvist et al. (2015), a pure continuum model for paperboard was established and
the creasing process was investigated for a single ply board. No damage was included in
the model, instead the simplifying assumption of ideal plasticity at the onset of failure was
utilized. In Carlsson et al. (1980) it was suggested that an ideal plastic response for the
in-plane compression could be used to predict the maximal bending moment in folding.

In Carlsson et al. (1980) it was shown that there exists a correlation between the
failure stress in the SCT and the maximal bending moment in folding. In this work, the
deformation during the SCT and line folding operation is investigated. Post-mortem images
have been produced using x-ray tomography to characterize the deformation mechanisms
that have been active during the folding and SCT. The fiber orientation and the distribution
of the fibers are analyzed and the observed deformation patterns are compared to the
numerical predictions.

The deformation during the SCT and the line folding operation are analyzed using the
continuum model previously proposed in Borgqvist et al. (2015). The plastic part of the
model is based on the yield surface proposed by Xia et al. (2002), which utilizes a set
of subsurfaces in the stress-space, where each subsurface is associated with a hardening
variable. The yield surface hardens non-proportionally in the stress space, cf. Borgqvist
et al. (2014) and different yield stresses are used for tension and compression loading. An
alternative is to use kinematic hardening, which was adopted in Tjahjanto et al. (2015) for
a high density fiberous material.

The article is organized as follows, in section 2 the different techniques to measure the
in-plane compression strength are examined, in section 3 the material model is reviewed, in
section 4 the model is calibrated to the SCT-response and the deformation characteristics
are examined, in section 5 and 6 the folding of paperboard is investigated and the response
predicted by the model is presented.

2 In-plane compression of paperboard

Two alternatives to measure the in-plane compression strength are the long edge test and
the SCT, where the latter is the most common technique employed in the industry. The
SCT is fast and widely available since it follows the ISO-standard, cf. ISO:9895:2008
ISO:9895:2008 (2008). Boundary effects can not be neglected, due to the short sample
length in the SCT. To reduce the boundary effects, the long edge test can be used where
the motion is constrained in the lateral direction. The response from both the SCT and
the long edge test have been considered in this work. Measurements and numerical results
have been obtained for a solid bleached single ply board with a thickness of 0.4 mm in this
work. The grammage of the board has been measured to be 315.2 g m−2.
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Figure 1: Schematic of the SCT.

2.1 Short-Span Compression Test

The setup for the short-span compression test is shown in Fig. 1. The clamping area is
30 mm × 15 mm in the SCT and the free span length which separates the two clamps is
0.7 mm. Initially, the two top clamps are displaced in the y-direction such that a clamp
force of Fc = 2300 ± 500 N is obtained. On the basis of the geometry of the clamps, this
force correspond to a clamping pressure of approximately 5 MPa. Due to the applied force
in the y-direction, the paperboard bulges in the free-span zone. After the clamping, the
right clamps in Fig. 1 are displaced in the x-direction which thereby reduces the distance
between the clamps, l0. During the compression, sliding between the paperboard and the
clamps can be observed, cf. also the ISO-standard, ISO:9895:2008 ISO:9895:2008 (2008)
Annex B. As a comparison, in the short-span tensile test typical clamping pressures is in
the order of 50 MPa to prevent sliding, cf.Hägglund et al. (2004).

The force-displacement curves generated during the SCT and tensile tests are shown
in Fig. 2 for both MD and CD. The force and displacement response have been normalized
with the initial cross section area A0, and the initial span length l0, respectively. The
apparent stiffness in the SCT is significantly lower compared to the stiffness from the
tensile tests. In Cavlin and Fellers (1975), the apparent stiffness in the SCT was shown
to be dependent on the free-span length, the clamping pressure and the clamp length.
Due to limitations in the experimental setup it was not possible to record the full force-
displacement curve following the abrupt softening in the SCT. The maximum normalized
peak force in Fig. 2 is 25 MPa in MD and 18 MPa in CD.

Snapshots just before and after the load drop of a typical paperboard in the SCT are
shown in Fig. 3. The paperboard in Fig. 3 has similar material properties as the single ply
board that is otherwise investigated in this work. The paperboard appears to be intact
and no major flaws are observed before the load drop, while delamination is clearly visible
after failure. Part of the energy that is released at the load drop has been consumed by the
separation process of the fiber layers. In Carlsson et al. (1980) it was suggested that ideal
plastic deformation in compression precedes the delamination and this hypothesis will be
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Figure 2: Normalized force vs normalized displacement for MD/CD SCT. The initial cross
section area is denoted A0 and l0 is the initial span-length. Measurements from both tensile
tests and the long edge tests are shown. Only part of the MD tensile curve is shown due
to the high failure stress in MD.

Figure 3: Snapshots of a Duplex paperboard just before and after failure (Stora Enso is
gratefully acknowledged for providing the images.)

investigated further in this work using numerical techniques.

2.2 Comparison long-edge test

In the long-edge test, lateral support to prevent buckling is utilized, cf. Fig. 4. The
paperboard specimens used in the compression tests are 25 mm wide and a clamp length
of l0l =55 mm is adopted. The same apparatus that was utilized in Hagman et al. (2013)
has been used, cf. also Cavlin and Fellers (1975) for additional details regarding the
experimental setup.

The force-displacement responses obtained during the long edge-tests for both MD
and CD are shown in Fig. 5. Measurements from in-plane tensile tests are shown in the
same figure. Comparing the stiffnesses in the long edge compression test with the initial
stiffnesses in the tensile tests, it is noticed that they are almost identical. This indicates
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Figure 5: Normalized force vs normalized displacement has been plotted, where A0 is the
initial cross section area and l0 the initial span-length. Measurements from both tensile
tests and the long edge tests are shown.

that neither boundary effects nor sliding have a significant effect on the load-displacement
curves. The long edge test predicts a failure stress of 18 MPa in MD and 12 MPa in CD,
which are lower compared to the SCT. The softening in the long edge test is irregular and
follows a non-unique path with snap-back behavior.

2.3 Post-mortem analysis of SCT

The single-ply paperboard has been analyzed using x-ray tomography (Zeiss Xradia XRM520)
following the SCT. Low resolution images were initially obtained to identify the area of
interest and then higher resolution (1 µm pixel size) images were generated. During the
scan, approximately 950 images across the width of the paperboard have been generated.

A typical image of the paperboard following the SCT in MD is shown in Fig. 6.
Separation of the fiber layers can be observed, i.e. delamination has occurred and reorien-
tation of the fibers is visible. The delamination is located at the center of the paperboard
and the thickness of the paperboard has increased.
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Figure 6: Typical post-mortem image obtained from the x-ray scan of the SCT.

To investigate the deformation pattern in detail, image processing using the software
ImageJ, cf. Rasband (2015), has been performed. The images have first been binary
processed into black and white color with a single threshold limit. A total of 40 consecutive
images are then summed together at different sections through the width. On the basis of
these averaged images, the fiber orientation is analyzed. The orientation of the fibers is
computed by using the plugin OrientationJ cf. Rezakhaniha et al. (2011), available for the
software ImageJ. The resulting images from the SCT is shown in Fig. 7.

It is observed that the significant reorientation of the fibers occurs in localized bands.
The width of the bands ranges between 50 and 100 µm and a reorientation of approximately
± 25◦ degrees is observed. Two possible failure mechanisms of the fiber network are the
buckling of fiber segments and plastic micro-buckling such as plastic kinking of the fibers,
cf. Fleck (1997) and Christer Fellers, Richard E. Mark (Editor) (1983). From Fig. 7 it is
evident that individual fibers are subjected to significant bending. It can also be noted
that there is a difference in the deformation pattern through the width of the paperboard,
even though the boundary conditions are almost planar .

3 Material model

The material model adopted is based on the thermodynamic consistent model proposed in
Borgqvist et al. (2015) and is briefly summarized in this section. The deformation gradient
is assumed to be multiplicative split into an elastic and a plastic part, i.e. F = F

e
F

p. The
plastic velocity gradient is defined through L

p = Ḟ
p
F

p−1 where the spatial plastic velocity
gradient follows from l

p = F
e
L

p
F

e−1. To model anisotropy, three vectors of unit length
are introduced which phenomenologically represent the MD, CD and ZD directions in the
reference configuration. The MD, CD and ZD directions are respectively given by v

(1)
0 , v

(2)
0

and n
(3)
0 . The transformation from the reference to the spatial configuration of the vectors
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Figure 7: Processed tomograph images from SCT in MD. Images taken at different cross
sections through the width of the same sample. The color map indicates the local orienta-
tion in the image according to the scale given on the bottom right.

are given by the following relations,

v(1) = F
e
v
(1)
0

v(2) = F
e
v
(2)
0

n(3) = JeF
e−T

n
(3)
0 ,

(1)

where Je is the determinant of the elastic deformation gradient. On the basis of (1) it can
be observed that, the ZD-direction, n(3) remains orthogonal to the MD and CD directions
in the spatial configuration. Structural tensors are adopted in the model and they are
defined by dyadic products of the director vectors according to

m
(1) = v

(1) ⊗ v
(1), m

(2) = v
(2) ⊗ v

(2), m
(3) = n

(3) ⊗ n
(3). (2)

The following invariants will be used to define the model,

I11 =
√
m(1) : I, I12 =

√
m(2) : I, I13 =

1
Je

√
m(3) : bebe

I23 =
√
m(3) : I Je =

√

det(be),
(3)
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where the left elastic Cauchy-Green tensor is defined as b
e = F

e(F e)T . The potential
governing the relationship between the stresses and the kinematical quantities are given
by the free energy ρ0ψ = ρ0ψ

ip + ρ0ψ
op. A slightly different format of ρ0ψ compared to

Borgqvist et al. (2015) is proposed, such that the Poisson’s effect between the in-plane
and out-of-plane directions initially is zero, which will result in good agreement between
the simulated and measured response in the SCT. The two parts of the free energy are
proposed to be,

ρ0ψ
ip = A1

(

I11 +
1
I11

− 2
)

+ A2

(

I12 +
1
I12

− 2
)

+ A4

(

I11 + I12 +
1
I23

− 3
)

ρ0ψ
op = HA3

(

I13 +
1
I13

− 2
)

+ (1−H)A6

(

(I13)2 +
1
A7
e−A7((I13)2−1) − 2

)

+

A5

(

I11I12I13 − Je

)

(4)

where A1, A2, . . . A7 are elastic material parameters and H is the step function defined
as 1 when I13 − 1 ≥ 0 and zero otherwise. The material parameters Ai, {i = 1, 2, . . . 7}
should be positive to ensure that each term is increasing, i.e. the energy is increasing for
an arbitrary deformation.

From thermodynamical arguments in an isothermal setting, it can be shown that the
Kirchhoff stress can be obtained from the potential ρ0ψ according to

τ = 2ρ0

(

∂ψ

∂be
b
e +

∂ψ

∂m(1)
m

(1) +
∂ψ

∂m(2)
m

(2) −
∂ψ

∂m(3)
m

(3) + (
∂ψ

∂m(3)
: m(3))I

)

, (5)

where I represents the second order identity tensor. Utilizing that the initial stiffness is
given by (cf. Harrysson et al. (2007)),

D = ∂τ
∂FF

T

∣

∣

∣

∣

F=I

, (6)

the following stiffness tensor for the energy (4) is obtained (in Voigt notation with the
order MD,CD,ZD)

[D] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2A1 + 2A4 A4

A4 2A2 + 2A4

2HA3 + 4(1−H)A6A7

A4 + A5

A5

A5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

A zero entry is indicated by a blank space in (7).
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To model the threshold for the irreversible deformations of the material, a yield surface
is utilized, where f < 0 defines the elastic domain. The explicit format for f is given by

f(τ ,n(β)
s , K(β)) =

12
∑

ν=1

χ(ν)

(

τ : n(ν)
s

τ (ν)

)2k

− 1, (8)

where the subsurfaces n
(ν)
s are given as dyadic products of the normed director vectors,

n
(ν)
s =

3
∑

i=1

3
∑

j=1

N
(ν)
ij v̄

(i) ⊗ v̄
(j). (9)

The parameters N
(ν)
ij in (9) are the coefficients of the yield normals and v̄(i) are given by

v̄(1) = 1
|v(1)|

v(1), v̄(2) = 1
|v(2)|

v(2), v̄(3) = 1
|n(3)|

n(3). (10)

The abbreviation for the terms given by index ν is summarized in Table. 1 in Appendix
A, along with the calibrated material parameters. In (8), k is a constant natural number
and χ(ν) is a switch function, which for a given stress state τ determines if a subsurface is
potentially active,

χ(ν) =

⎧

⎨

⎩

1 if τ : n(ν)
s > 0

0 otherwise.
(11)

The distance to each subsurface in (8) is given by τ (ν) where

τ (ν) = τ
(ν)
0 +K(ν). (12)

The initial distance from the origin in the stress space, to the subsurface is given by τ (ν)0 ,
indicating the initial yield stress in a certain loading direction (e.g. MD-tension for ν = 1).
The conjugate hardening variables, K(ν), represents the change in distance from the origin
to a subsurface due to plastic loading. The non-zero conjugate hardening variables are
functions of internal variables, κ(ν), according to

K(ν) = aν ln (bνκ(ν) + 1) ν = {1, 2, 3, 6}

K(ν) = aνκ
(ν) ν = 7.

(13)

where aν and bν are material parameters. The distance from the origin in the the stress-
space to the sub-surfaces corresponding to tension in MD/CD, in-plane shear and compres-
sion in ZD will increase according to (13). The remaining sub-surfaces, ν ∈ {4, 5, 8, 9, 10, 11, 12}
are associated with the out-of-plane directions and the in-plane compression and the cor-
responding sub-surfaces will remain fixed. As a consequence an ideal plastic response will
be obtained for the corresponding uniaxial stress states.

10



Finally, the evolution laws governing the irreversible deformation behavior are postu-
lated as

l
p =

∑12
γ=1 λ̇Hγn

(γ)
s

κ̇(ν) = λ̇Hν

(

τ :n(ν)
s

τ (ν)

)

,
(14)

where

Hν =
2kχ(ν)

τ (ν)

(

τ : n(ν)
s

τ (ν)

)2k−1

, (15)

and λ̇ is a Lagrange multiplier.
The model parameters associated with the out-of-plane directions and the tensile in-

plane directions have been calibrated from uniaxial tests following the procedure in Borgqvist
et al. (2015) and Borgqvist et al. (2014). The parameters related to in-plane plastic com-
pression has been chosen to fit the response in the SCT described in the next section.

4 Numerical investigation of SCT

The SCT has been numerically simulated using the material model presented in the pre-
vious section. The model has been implemented in the commercial software ABAQUS
Abaqus User’s Manual (2013), via the subroutine option UMAT. Details regarding the
numerical implementation of the model is provided in Borgqvist et al. (2015). In the nu-
merical model, the paperboard is homogeneous and therefore possess constant material
parameters through the width and thickness. The geometry of the SCT is shown in Fig. 8.

x (MD/CD)

y (ZD)

l0 = 0.7 mm

lm = 1.625 mm

RElement

Figure 8: Finite element mesh of the SCT at the center of the specimen. Element size is
0.01mm ×0.01 mm in the finer meshed region. The marked position indicates the element
in which the stress state has been examined in Fig. 12. All four clamps have been rounded
with a small radius R = 0.02 mm.

The problem is modeled using 3D fully integrated 8-node bi-linear continuum elements.
To reduce the computational cost, the width of paperboard has been taken as 3 mm
and meshed with one element. A structured mesh is originally generated where the size
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of the elements in the x and y directions are 0.01 mm×0.01 mm in the finer meshed
region of the paperboard and 0.5 mm×0.01 mm in the other regions, cf. Fig. 8. The
clamps have been modeled as rigid analytic bodies. To capture the observed steady sliding
between the clamps and the paperboard, a linear relationship between the friction force
and displacement is initially assumed (elastic slip) before gross sliding occurs, cf. Oden
and Pires (1983). The friction law is available in ABAQUS, cf. Abaqus User’s Manual
(2013). The maximum allowed elastic slip has been taken as 0.085 mm and an anisotropic
static coefficient of friction equal to 0.16 in MD and 0.21 in CD has been adopted. The
standard ABAQUS-direct solver is utilized, with a quasi-static solution procedure.

Material instability effects make the problem mesh dependent and therefore a per-
turbation field has been added to the geometry. The nodes in the finer meshed region, cf.
Fig. 8, have been given initial y-coordinates according to

y = y0 + h sin (
N2πx

lm
) (16)

where y0 is the original y-coordinate of the node from the structured mesh without the
perturbation, N = 5 is the period, h = 0.0005 mm the magnitude of the perturbation and
lm the length defined in Fig. 8.

In the SCT simulation, the clamps are initially displaced such that a clamping force
Fc = 460N is obtained. The applied force has been adjusted to take into account that only
3 mm of the width of the paperboard is used in the simulation. The clamps on the right
side in Fig. 8 are in the next step displaced until a drop in the force displacement curve
occurs. The simulated force-displacement responses are compared to the experimental data
in Fig. 9.
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Figure 9: Force-displacement curves obtained from the SCT- simulation and measure-
ments. Reaction force on the clamps normalized with the initial cross-section area of the
paperboard and the displacement are shown.

Both the MD and the CD simulation tests in Fig. 9 shows good agreement with the
experimental data. To fit the data, the in-plane compression strength is taken as τ (4)0 = 29

MPa in MD and τ
(5)
0 = 21 MPa in CD, which are slightly higher compared to the failure
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(κs
eff )
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0.5

1
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Figure 10: Deformation fields in MD at the marked load levels in the global force-
displacement response in Fig. 9. In a) the deformation field before failure is shown and in
b) after failure.

stresses observed in the global response of the SCT. The apparent modulus between the
tests and the simulations are matched as well as the maximum peak force. The displace-
ment at failure is however slightly underestimated by the simulation. The failure is due to
the local material instability and is possible to be predicted by the model, even though no
explicit damage variable is included in the modeling framework.

The deformation patterns predicted by the simulation are illustrated in Fig. 10 and
corresponds to the two points marked in the force-displacement curve, cf. Fig. 9. To
visualize the localized shear deformation, a contour plot indicating the accumulated
effective plastic shear, defined from

κ̇seff =
√

(κ̇(9))2 + (κ̇(10))2 + (κ̇(11))2 + (κ̇(12))2, (17)

is shown in Fig. 10. The superscript (9)-(12) in (17) are related to permanent deformations
in out-of-plane shear, cf. Table 1 in Appendix A. Before the initiation of failure (cf.
Fig. 10a), the deformation is relatively uniform and only limited permanent shear in the
vicinity of the edges of the clamps can be observed. After the failure point, cf. Fig. 10b,
a sudden change in the deformation pattern is observed, where localized shear bands have
been formed, cf. also the states shown in Fig. 3. Some elements along the band running
from top-left to bottom right have been severely stretched, resembling a delamination type
of deformation.

The predicted reorientation of the MD-direction, i.e. φ = arccos (v̄(1) · v(1)
0 ) is shown

in Fig. 11 at the unloaded state in a similar color map as was shown for the post-mortem
tomograph images in Fig. 7. The width and location of the plastic shear bands in Fig. 11
are similar to that of the fiber-orientation bands measured in the tomograph images. The
magnitude of the rotation is however slightly overestimated in the simulation compared to
the x-ray tomograph images. However, the paperboard might have been affected during
the transfer from the SCT device to the x-ray tomograph. The main deformation features
are captured by the model, such as the localized bands of fiber-reorientation.
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-80-80 -60 -40 -20 0 20 40 60 80
MD-Rotation

Figure 11: Rotation of the MD-direction at the unloaded state of the SCT. The color map
coincides with the color map used in Fig. 7.

The in-plane and out-of-plane stress states at the center of the paperboard, indicated in
Fig. 8, have been examined to determine the state of the paperboard during the simulation.
The in-plane and out-of-plane stresses are defined by projecting the Kirchhoff stress tensor
on the in-plane and out-of-plane directions respectively, i.e. τip = v(1) · τ · v(1) and τop =
v(3) · τ · v(3). The stresses τip and τop are shown in Fig. 12 for the MD simulation.
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Figure 12: The in-plane Kirchhoff stress a) τip = v(1) ·τ ·v(1) and the out-of-plane Kirchhoff
stress b) τop = v(3) · τ · v(3) at the center of the board indicated in Fig. 8 as a function of
the displacement of the clamps. The dashed line at displacement of uy = 80 µm indicates
the onset of plastic deformation in compression for the element.

Due to the clamping procedure, the in-plane stress τip in Fig. 8a, is negative at zero
displacement (u = 0 µm). The clamping pressure used in the test is therefore important
to consider. As the distance between the clamps is decreased, the in-plane stress decreases
until the limit τ (4)0 = 29 MPa is reached at a displacement of uy = 80 µm, which is well
before the failure displacement at uf = 115 µm.

Referring to the ZD-stress τop in Fig. 8b, it is observed that also a compression stress
state is induced due to the clamping procedure. The stress then increases slightly until
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the displacement uy = 80 µm is reached. Upon further loading, the stress changes rapidly
from a compression state to a tension state where a stress of 0.32 MPa is reached which
is very close to the ZD-initial yield stress τ (8)0 = 0.4 MPa. The stress state in the element
therefore becomes associated with both plastic deformation in out-of-plane tension and
in-plane compression. At this stress state, unstable material response is obtained and
the deformation becomes localized into bands. The strength in ZD can therefore have an
influence on the failure displacement uf but it is also clear that the in-plane stress has a
significant influence.

To further illustrate how the stress state is associated with plastic deformations, the
in-plane stress τip vs out-of-plane stress τop of the element is shown in Fig. 13. The yield
surface is shown in the same figure with a dashed line. It is noted that due to the clamping
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Figure 13: The stress path during SCT belonging the element marked in Fig. 8. The
in-plane Kirchhoff stress τip = v(1) · τ · v(1) and the out-of-plane Kirchhoff stress τop =
v(3) · τ · v(3) is shown. The dashed line indicates the yield surface.

procedure, the stress state reaches the yield sub-surface associated with ZD-compression.
Further on, when the clamps are displaced in the x-direction, the stress path is in the
elastic regime until the stress state reaches the subsurface belonging to MD-compression,
i.e. uy = 80 µm. Upon further loading, the stress state moves along the MD-compression
subsurface until it reaches the corner of the yield surface that is connected by the MD
and ZD subsurface. The final stress state prior to the material instability is marked with
an × in Fig. 13. At this stress state, the out-of-plane stress τop cannot increase anymore
without decreasing the in-plane stress τip.

5 The line folding operation

In the 3-dimensional mechanical modeling of paperboard, the in-plane and out-of-plane
response have typically been separated by using a combination of continuum and interface
elements, cf. i.e. Xia (2002), Beex and Peerlings (2009), Nygårds et al. (2009b), Huang
et al. (2014) and Hagman et al. (2013). This approach works well to study the typical
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deformation in folding of creased paperboards. However, the out-of-plane permanent de-
formations are controlled by the interface elements. Another approach was adopted in
Borgqvist et al. (2015), by instead allowing the continuum elements to deform plastically
in the out-of-plane directions and allowing more localized type of deformations to be pre-
dicted that is not restricted to the location of interface elements. The formation of wrinkles
during folding can then be predicted, which to the authors knowledge have not previously
been modeled for paper-based materials.

In the experimental setup for the line-folding operation, the paperboard is clamped at
one side with a pressure of 0.2 MPa whereas the other side is constrained by a load-cell
acting as a rigid support. A bending moment is applied by rotating the clamps. The width
of the paperboard is 38 mm and the distance between the clamps and the rigid support is
10 mm. The paperboard is folded until an angle of 90 degrees is reached and then unloaded.
The force as well as the bending angle are measured during the test. This folding apparatus
is commonly used to correlate the performance of paperboard in converting processes. The
L & W creasability tester (AB Lorentzen & Wettre, Stockholm, Sweden) has been utilized
in this work.

l0 = 10 mm

Paperboard

Load cell

Clamp

Wrinkle

x (MD/CD)

y (ZD)

Figure 14: Schematic of line folding operation.

The bending moment varies linearly in the paperboard with respect to the position
from the load cell, cf. Fig. 14. For small bending angles, before plasticity is initiated,
the in-plane stress will vary linearly through the thickness of the sample (if the material
properties are homogeneous). Evidently, the top side and bottom side are subjected to
tension and compression respectively and the difference in strength between tension and
compression for paperboard is therefore of importance to consider during folding, cf. Cavlin
(1988).

5.1 Post-mortem analysis of folded samples

A post-mortem x-ray analysis has been performed after folding a sample in MD. Again
approximately 950 images have been acquired across the width of the paperboard with a
1 µm pixel size. A typical post-mortem image of a folded sample is shown in Fig. 15. A
distinct wrinkle is seen in Fig. 15 with delamination at the center of the wrinkle. The
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100 µm

Figure 15: Typical post-mortem image obtained from the x-ray scan of the folding.

fiber-orientation field has been analyzed using the same technique as for the SCT images
in Fig. 7 and the resulting images are shown in Fig. 16.

+90o−90o

0o−45o +45o

100 µm
100 µm

100 µm

Figure 16: Processed tomograph images from the folding test. The images are taken at
different cross sections through the width of the same sample. The local reorientation is
indicated according to the color map given on the bottom right.

Localized bands where the fibers haven been reoriented can be observed in Fig. 16. As
expected, wrinkles occur only on the side of the paperboard that has been subjected to
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compression. The reorientation appears somewhat larger compared with the post-mortem
images from the SCT, around ± 45◦ with a band width typically ranging between 75-
150 µm. Note too that the wrinkles do not have the same shape and size at the different
sections through the width. In the top left image in Fig. 16 one distinct wrinkle is observed
and then a gradual transition into a two wrinkles on the top right image has occurred and
finally only a single large wrinkle is visible, indicating that folding is actually a fully 3-
dimensional event. The fibers inside the wrinkle have become bent similar as to the fibers
in the SCT.

6 Predictions of the line folding operation

In the following simulation, the same type of elements as in the SCT is used with sim-
ilar mesh size, i.e. one element used through the width of a 3 mm wide specimen and
0.01mm×0.01 mm mesh size in an area close to the clamps and a 0.5mm ×0.01mm other-
wise. The initial geometry is shown in Fig. 17, where the location of the center of rotation
is marked by a red cross. The clamps and the load cell are modeled as rigid analytic

0.5 mm

lfm = 2.75 mm

Figure 17: Geometry of simulated line folding zoomed in around the finer meshed region.

surfaces and the corners of the clamps and load cell have been rounded with a small radius
R = 0.02 mm, i.e. same radius as in the SCT has been used. The distance between the
load cell and the clamps is 10 mm. Similar to the SCT, the geometry has been perturbed
according to (16) but now with lm replaced by lfm = 2.75 mm and N = 10.

The clamps are initially vertically displaced such that a pressure of 0.2 MPa is obtained
in the board and then the clamps are rotated an angle of 90 degrees. The resulting moment-
rotation response is shown in Fig. 18. The simulated response (solid line) shows good
agreement with the experimental results in the CD-direction. The stiffness as well as the
maximum bending moment are reasonable predicted by the model. The simulated MD
response displays a more serrated shape compared to the experiments. The serrated shape
can be correlated to the formation of unstable shear bands, i.e. the force drop when a shear
band is formed after an incremental increase in the bending angle. The bending force for
the MD-simulation is overestimated at bending angles in the span 30-60 degrees, however
in this region the bending moment is sensitive to where the wrinkles are triggered. The
bending stiffness and moment are insensitive to the choice of perturbation but the size,
shape and the number of wrinkles are influenced by the perturbations. In the simulation
it assumed that the paperboard is homogeneous through the width, which likely has an

18



influence on the results. If the in-plane compression threshold is chosen to fit the maximal
compression strength from the long edge test, the dashed curve in Fig. 18b is obtained.
The dashed line underestimates the measured response and it is clear that the in-plane
plastic parameters have a large influence on the bending moment.

The deformation patterns of the folded paperboards in the MD and CD directions
are shown in Fig. 19 at the positions marked in Fig. 18. The model is able to predict the
formation of wrinkles and shear bands on the compression side. The predicted deformation
fields in MD and CD display many similarities but also some differences. Shear bands are
formed both in the MD and CD simulations and they are formed in either a stable or an
unstable manner. The shear band either grows continuously as the bending angle increases,
or instantaneously after an incremental increase in the bending angle. The instantaneous
shear band formation is associated with a drop in the moment-rotation curve, cf. Fig. 18.
Referring to Fig. 19 at load level (1) for CD, a single shear band is propagating in a stable
manner, but at load level (2) after the slight drop in the bending moment has occurred,
a distinct wrinkle has formed and a second shear band is observed. Elements inside the
wrinkle have stretched several hundreds of percents, resembling a delamination type of
deformation. At load level (3) the wrinkle has grown in size.

Examining the deformation field for MD, it is noticed that at load level (1) two shear
bands are propagating close to the corner of the lower clamp. The paperboard is compressed
and bends inwards at the junction where the two shear bands are in contact on the bottom
side. This in-plane compression deformation is not observed in the CD-simulation. At load
level (2) a wrinkle and several shear bands have been formed which explains the serrated
response in MD. At load level (3) the bending moment has dropped compared to load level
(2) and a second larger wrinkle has been formed.

The reorientation of MD direction after the line folding is shown in Fig. 20. From the
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Figure 18: Simulated and measured rotation-moment curves of paperboard. In a) (solid
line) have been obtained by fitting the in-plane compression yield thresholds,τ (4)0 = 29

MPa and τ (5)0 = 21 MPa such that the measured SCT response is captured. In b) (dashed
lines) the yield thresholds have been chosen to match the maximal peak forces from the
long edge test τ (4)0 = 18 MPa and τ (5)0 = 12 MPa.
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Figure 19: Deformation in line folding operation. The accumulated effective plastic shear
is shown at three load levels marked in Fig. 18a for MD (bottom) and CD(top) .

-80-80 -60 -40 -20 0 20 40 60 80 MD-Rotation

Figure 20: The rotation of the MD-direction is plotted at the unloaded state of the folding
in MD. A similar color map as that in Fig. 16 is used.

figure it is seen that the reorientation of the fibers is similar to that observed in the bottom
left tomograph image in Fig. 16. The wrinkle and the delamination pattern is slightly
overestimated by the model, but the shape and the fiber reorientation angles are similar.
Since the material is assumed to be homogeneous, the post-mortem tomograph images, cf.
Fig. 16, can not be expected to be exactly captured at the different cross-sections through
the width. The model is however able to predict the localized deformation into bands, the
formation of the wrinkles and the global moment-rotation curves when calibrated to fit the
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response in the SCT.

7 Conclusions

The SCT-value is a common measure to characterize the quality of paperboards during
industrial packaging applications. The deformation mechanisms that are active during the
SCT has therefore been identified and highlighted in this paper. It has been shown that
a continuum model can be used to predict the localized deformation patterns occurring in
both the SCT and folding. A continuum model has been enhanced such that a free energy
with no initial Poisson effect between the in-plane and out-of-plane directions is obtained.
Prior to failure in the simulated SCT, a stress state that is associated with permanent
deformations in both in-plane compression and out-of-plane tension is occurring. It is
therefore important to consider both the in-plane and the out-of-plane yielding. After the
maximum out-of-plane stress is reached, an unstable material response is predicted by the
model, where the deformation becomes localized into bands. Similar localized deformation
fields are revealed from the post-mortem x-ray tomograph images.

The deformation mechanisms that become active during folding is evidently important
for forming packages. The model predicts that the shear bands either grow in a stable or
an unstable fashion. Formation of wrinkles in the model is associated with the instanta-
neous growth of the shear bands. From the x-ray tomograph images it is observed that
the deformation localizes into bands inside the wrinkles, which is also predicted by the
model. The in-plane material parameters related to yielding in compression has a signifi-
cant influence on the folding response. By fitting the in-plane compression parameters to
the SCT response, the model is able to predict the folding process. Inside the wrinkle, the
elements are severely stretched in the out-of-plane direction, resembling a delamination
type of deformation.

The simplifying assumption of ideal plasticity is used both for the in-plane compression
response and out-of-plane response in the model. This assumption allows the unstable
material behavior observed both in the SCT and folding to be predicted. In addition, the
bending moment measured from the folding operation is in agreement with the simulated
response with this assumption. However, the ideal plastic assumption in the out-of-plane
direction overestimates the internal forces in the delaminated zones. By including out-
of-plane softening into the model, it is expected that the delamination will be in better
agreement with experimental results, which will be of importance when folding creased
paperboards.
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A Material parameters and calibrations

The material parameters used in this work are presented in Tables. 1, 2 and 3. The non-
zero components of N (ν)

ij are summarized in Table. 1. The exponent k = 3 has been used
in (8). The density for the paperboard is 788 kg/m3.

Stress-state, Subsurface, ν Subsurface component N(ν)
ij (-)

MD-tension 1 N
(1)
11 = 0.925, N

(1)
22 = −0.379

CD-tension 2 N(2)
11 = −0.215, N(2)

22 = 0.977

MD-CD shear 3 N(3)
12 = 0.7071, N(3)

21 = 0.7071

MD-compression 4 N
(4)
11 = −1

CD-compression 5 N(5)
22 = −1

MD-CD shear 6 N
(6)
12 = −0.7071, N

(6)
21 = −0.7071

ZD-compression 7 N(7)
33 = −1

ZD-tension 8 N
(8)
33 = 1

MD-ZD-shear 9 N(9)
33 = 0.704, N(9)

13 = 0.502

MD-ZD-shear 10 N(10)
33 = 0.704, N(10)

13 = −0.502

CD-ZD shear 11 N
(11)
33 = 0.704, N

(11)
23 = 0.502

CD-ZD shear 12 N(12)
33 = 0.704, N(12)

23 = −0.502

Table 1: Numerical values of the in-plane subsurface parameters

Elastic parameter Value
A1 1690 (MPa)
A2 292 (MPa)
A3 28.4 (MPa)
A4 1333 (MPa)
A5 78.0 (MPa)
A6 0.365 (MPa)
A7 11.5 (-)

Table 2: Numerical values of the elastic parameters.
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Subsurface , ν Initial yield, K0 (MPa) Hardening aν (MPa) Hardening bν (-)
1 20.4 12.2 690
2 11.7 5.10 435
3 9.91 6.63 334
4 29.1 - -
5 21.0 - -
6 9.91 6.63 435
7 1.00 49 -
8 0.40 - -
9 2.51 - -
10 2.51 - -
11 2.51 - -
12 2.51 - -

Table 3: Numerical values of the plastic parameters
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Abstract

The present paper is concerned with the numerical integration of finite strain
continuum damage models. The numerical sensitivity of two damage evolution laws
and two numerical integration schemes are investigated. The two damage models
differ in that one of the models includes a threshold such that the damage evolution is
suppressed until a certain effective plastic strain is reached. The classical integration
scheme based on the implicit Euler scheme is found to suffer from a severe step-
length dependence. An alternative integration scheme based on a Diagonal Implicit
Runge-Kutta (DIRK) scheme originally proposed by Ellsiepen (1999) is investigated.
The DIRK scheme is applied to the balance of momentum as well as the constitutive
evolution equations. When applied to finite strain multiplicative plasticity the DIRK
scheme destroys the plastic incompressibility of the underlying continuum evolution
laws. Here, the evolution laws are modified such that the incompressibility of the
plastic deformation approximately is preserved. The presented numerical examples
reveal that a significant increase in accuracy can be obtained at virtually no cost
using the DIRK scheme. It is also shown that for the model including a discontinuous
evolution law the superiority of the DIRK scheme over the IE-scheme is reduced.
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Introduction

The material degradation associated with ductile fracture can be modeled using micro-
mechanical approaches (Gurson (1975)) or Continuum Damage Mechanics (CDM) (cf.
Kachanov (1958)) based approaches or a combination thereof (cf. Wallin et al. (2008)). In
both approaches the degradation of the material is modeled using an internal state vari-
able that captures the influence of micro-voids, micro-cracks and other micro-defects. Since
micro-defects nucleate and evolve when subjected to applied load an originally isotropic
material can after loading attain an anisotropic micro-structure, cf. Hayhurst (1972). The
development of anisotropic damage models is an active research field and an early approach
is given by Chow and Wang (1987). Some more recent approaches employing anisotropic
Gurson type models are given by e.g. Leblond et al. (1994); Steglich et al. (2008, 2010)
whereas anisotropic continuum damage models have been considered by Menzel et al.
(2005); Benzerga et al. (2002); Menzel and Steinmann (2001). Anisotropic damage models
requires the internal state variable being represented by a dyadic product of vectors or
higher order tensors. The complexity of anisotropic damage models is significantly higher
than that of isotropic damage models where the damage is represented by a scalar internal
variable. Since anisotropic damage models are associated with the same numerical diffi-
culties as the isotropic damage models we will here restrict ourselves to consider isotropic
damage models only. We refer to Besson (2010) for an extensive review on the state of the
art of damage models and their predictive capability.

The elasto-plastic boundary value problem is governed by balance of momentum and
constitutive evolution equations that control the material response locally. The numerical
solution of the balance of momentum is exclusively based on the finite element method.
Depending on load duration, problem size etc., the time integration can be implicit or
explicit. The implicit solution procedure is typically based on a multi-level Newton scheme
where the solution of the ’global level’ requires the sensitivity of the ’local level’. The
sensitivity is denoted the algorithmic tangent stiffness tensor (cf. Runesson and Booker
(1982), and Simo and Taylor (1985)). An alternative to the multi-level approach is to
adopt the Schur’s complement approach (cf. Hartmann (2005) and Kulkarni et al. (2007))
where the local constitutive iterations are eliminated thus leading to significant speedups
for complex constitutive models. The time steps in the Newton procedure is typically
governed by the number of Newton iterations in the previous step using a heuristic rule.
This rule is evidently not related to the accuracy of the solution of the boundary value
problem.

The elasto-plastic damage evolution equations need to be integrated over a finite time
step when implemented into a finite element code. Algorithms for integration of path-
dependent material response is currently used and has been subject for intense research
for many decades. The motivation for this research is that robust and at the same time
numerically efficient algorithms are of great importance for both industry and academy.
Robustness implies that the numerical scheme should produce a solution for a wide range of
loading conditions without interference of the user. Efficiency is a measure of the accuracy
in relation to the computational work spend. When evaluating the accuracy of an elasto-
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plastic boundary value problem the accuracy of the constitutive model is often separated
from the accuracy of the solution of the balance of momentum.

The canonical numerical method for performing the integration of the constitutive laws
was proposed by Wilkins (1964) and is based on a backward Euler approximation of the
evolution equations in combination with enforcement of the yield condition at the end
of the integration interval. The resulting time-discretized evolution equations comprise
a set of non-linear equations that is solved using a Newton or quasi-Newton method, cf.
e.g. Ekh and Menzel (2006). The Wilkins’ type of integration scheme is often, due to
it’s geometrical interpretation, referred to as the radial return method or the closest point
projection method (CPPM). The reason for the radial return method being widely used is
that the method, although its simplicity, shows good accuracy and stability properties for
important models like kinematic hardening von Mises plasticity models, cf. e.g. Kouhia
et al. (2005). For complex constitutive models, e.g. finite strain anisotropic hardening
models the simplicity is lost. Based on this observation alternate integration schemes have
been developed.

One alternative approach is based on sub-stepping schemes where a differentiated form
of the yield condition is employed (cf. Sloan (1987); Sloan and Booker (1992), Wallin
and Ristinmaa (2001), Menzel and Steinmann (2001) and Wallin and Ristinmaa (2008)).
The major advantages of this class of methods are its algebraic simplicity and accuracy
for sensitive constitutive models. When used in an implicit finite element context these
explicit algorithms suffers from having a high cost for calculating the algorithmic tangent
stiffness tensor.

In contrast to the methods above where the update is obtained from a direct approxima-
tion of the evolution laws, the updating procedure can be based on variational principles.
For general non-associated plasticity these algorithms are still under development and we
refer to Mosler (2010) for a recent contribution on variational updates for non-associated
kinematic hardening finite strain plasticity.

In the radial-return based schemes, sub-stepping schemes and the variational based
schemes, the integration of the constitutive equations are considered as being independent
of the balance of momentum. However, in Fritzen (1997) the elasto-plastic boundary
value problem was identified as being a set of differential algebraic equations (DAE). In
Ellsiepen and Hartmann (2001) it was shown that the low-order embedded Diagonally
Implicit Runge-Kutta (DIRK) schemes (e.g. Ellsiepen (1999), Cash (1979)) together with
the multi-level Newton-Raphson algorithm is particular suitable for solving elasto-plastic
boundary value problems. This class of methods preserve the sparsity present in the
canonical implicit solution procedure and it has also proven to have superior accuracy
over the classical implicit solution procedure. Moreover, since the method is embedded it
provides an error estimation of the local error which enables an efficient step-length control.
The method has previously been successfully applied to: visco-plasticity small strains
(Ellsiepen and Hartmann (2001)); finite strain viscoelasticity (Hartmann (2002)); metal
powder plasticity (Hartmann and Bier (2008)) and incompressible materials (Hartmann
et al. (2008)).

In the present work the numerical sensitivity of the classical damage evolution law
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proposed by Lemaitre (1985) and Lemaitre and Chaboche (1990) will be compared to the
damage evolution law proposed by Bonora (1997) and Bonora and Milella (2001). It should
be noted that in contrast to the Lemaitre model, the Bonora model involves a threshold
for the damage evolution. This threshold poses a problem for both integration schemes
and it is of particular interest to investigate the performance of the DIRK scheme for this
model. To evaluate the performance of the numerical schemes and models use will be made
of structural iso-error plots where the accuracy of the entire boundary value problem is
evaluated. This contrasts many previous studies where iso-error plots have been used to
illustrate the accuracy of the constitutive equations only. Moreover, the damage evolution
in a fixed point during tensile loading is also considered.

Kinematics

To set the stage we start by considering the finite strain kinematics required to formulate
the constitutive model. A particle is identified by its position X in the reference configu-
ration, Ω0 ∈ R3. The position x of the particle X in the current configuration, Ω ∈ R3, is
obtained from the mapping χ : Ω0×R → Ω which can be expressed as x = χ(X, t) = X+u
X from Ω0 to Ω, i.e. u = x−X. The deformation gradient, F : Ω0 ×R → Ω that defines
the deformation in the neighborhood of x ∈ Ω is defined as

F =
∂χ

∂X
= 1+

∂u

∂X
. (1)

To define the elastic and plastic portion of the deformation we make use of the multiplica-
tive split (cf. Kröner (1960)) of the deformation gradient, F , into an elastic and a plastic
part, i.e.

F = F eF p (2)

where F e and F p represent the elastic and plastic deformation gradients, respectively. Due
to notational simplicity, the inner product of the two second order tensors in (2) was not
explicitly indicated. This format will be employed in the following. The elastic Cauchy-
Green deformation tensor is defined as Ce = (F e)TF e, where the superscript T indicates
transpose. The irreversible evolution laws are formulated as rate quantities and, based on
(2), the spatial velocity gradient, L = Ḟ F−1, can be decomposed into

L = le + F elpF e−1 (3)

where the elastic and plastic velocity gradients le and lp are defined as

le = Ḟ
e
F e−1 and lp = Ḟ

p
F p−1. (4)

In the relations above a superposed · denotes the material time derivative and the super-
script −1 the inverse. The degradation of the material is characterized by a scalar damage
variable α which in a macroscopic sense represents the ratio of damaged material to the
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undamaged material. To define the kinematic hardening use is a made of a deformation
gradient F k associated with the micro-structure.

The evolution law for the kinematic hardening is defined as

Ḟ
k
= F kβ (5)

where β can be interpreted as a velocity gradient to F k. For further details regarding the
evolution law (5), we refer to Wallin et al. (2003) and Wallin and Ristinmaa (2005). Fur-
thermore, the Cauchy-Green deformation tensor associated with the kinematic hardening
is defined as Ck = (F k)TF k. The effective plastic strain εpeff defined as

ϵ̇peff =
1

1− α

√

2

3
lp : lp (6)

will be used to define the damage evolution. It should be noted that ϵpeff can be used to
define isotropic hardening. This effect is, however, without loss of generality omitted in
the present study.

To separate the volumetric deformation from the isochoric deformation the deformation
gradient is split into

F = (J)1/3 F i (7)

where J = det(F ) represents the volumetric deformation and where the isochoric defor-
mation gradient F i fulfills det(F i) = 1. Note that the volumetric/isochoric decoupling (7)
applies to all deformation gradient type variables present in the formulation, i.e.

F p = (Jp)1/3 F p
i , F e = (Je)1/3 F e

i , F k =
(

Jk
)1/3

F k
i (8)

where Jp = det (F p), Je = det (F e) and Jk = det (F k).

Governing equations

The elasto-plastic boundary value problem is governed by the equilibrium as well as the
constitutive model governing the local material behavior. The equilibrium will be expressed
in terms of the principle of virtual work whereas the constitutive equations are formulated
in terms of evolution equations.

Constitutive model for damage coupled to elasto-plasticity

The damage model presently explored is an extension of the finite strain kinematic hard-
ening model proposed by Wallin et al. (2003) and Wallin and Ristinmaa (2005). That
model is in the present work augmented such that the effect of elastic degradation caused
by plasticity induced damage evolution is included. The internal variables that defines the
model are the plastic deformation gradient F p, the kinematic deformation gradient F k and
a scalar damage variable α. It is assumed that the free energy ψ can be decomposed into
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an elastic ψe(Ce,α) and a plastic part ψp(Ck) where the damage variable, α, is restricted
to only influence the elastic part of the free energy. In the present work ψe is chosen as

ρoψ
e =

1

2
(1− α)K(Ie1)

2 + 2(1− α)GJe
2 (9)

where the K and G are elastic parameters that for small strains correspond to the bulk
and shear modulus respectively. The dilatational invariant Ie1 and the isochoric invariants
Je
2 present in (9) are defined as

Ie1 =
1

2
tr(lnCe) = ln Je and Je

2 =
1

8
(lnCe)dev : (lnCe)dev. (10)

From (9) it follows that the damage variable, α, degrades the elastic parameters such that
no residual elastic stiffness being present for α = 1.

Although it is straight forward to introduce ϵpeff in the free energy it is for simplicity
omitted. To ensure that the constitutive model does not violate the laws of thermodynam-
ics the reduced isothermal dissipation inequality

θ = Σ : lp −B : β − Y α̇ ≥ 0 (11)

must be satisfied. The Mandel stress, Σ, the Mandel-type back-stress, B and the damage
stress, or energy release rate, Y , driving the irreversible evolution are defined as

Σ = 2ρoC
e ∂ψ

∂Ce , B = 2ρoC
k ∂ψ

∂Ck , Y = ρo
∂ψ

∂α
(12)

where ρ0 is the density in the reference configuration. Using (9) together with (12a) and
(12c) enables the Mandel stress, Σ, and the damage stress, Y , to be identified as

Σ = Kd ln J
e1+Gd lnC

e
i , Y = −

ψe

1 − α
(13)

where Kd = (1 − α)K and Gd = (1 − α)G. Furthermore, let us also emphasize that the
isochoric part of the Mandel stress is deviatoric; since lnCe

i = ln(F eT
i F e

i ) = (lnCe)dev.
The non-symmetric Mandel stress Σ, is related to the second Piola Kirchhoff stress, S, via
S = F p−1

(

ΣCe−1
)

F p−T .
The plastic part of the free energy ψp per unit mass is given by

ρ0ψ
p(Ck) = hJk

2 (14)

where h is a material parameter governing the kinematic hardening. The invariant Jk
2 is

in analogy to (10b) defined as

Jk
2 =

1

8
(lnCk)dev : (lnCk)dev (15)
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where we similar to the elastic deformation note that (lnCk)dev = lnCk
i = ln(F k,T

i F k
i ).

Use of (14) together with the definition of the Mandel type back-stress, (12b) results in

B =
1

2
h(lnCk)dev (16)

which reveals that the back-stress being purely deviatoric, i.e. B :1 = 0.
Rate-independent plasticity is adopted and the yield function f that defines the elastic

domain is given by

f = σeff − σy, σeff =

(

3

2
Σ̄ : Σ̄

)1/2

(17)

where σy represents the yield stress and where the effective stress Σ̄ is defined as

Σ̄ =
Σdev

1− α
−B (18)

Note that the damage is assumed to not influence the backstress and as a consequence Σ̄

does not vanish when the material has fully degraded. A similar choice can for example be
found in Besson (2010) and the work by Nayebi and Abdi (2008). During plastic response
f = 0 whereas elastic response takes place for f ≤ 0. To ensure that the dissipation
inequality (11) is satisfied, the evolution laws are chosen as

lp = λ̇
∂g

∂Σ
= λ̇N p, β = −λ̇

∂g

∂B
= λ̇N k, α̇ = −λ̇

∂g

∂Y
= λ̇Nα (19)

where g is convex a potential function satisfying g(Σ,B,α)−g(0, 0, 0) ≥ 0. This choice for
g ensures the dissipation defined in (11) being fulfilled, i.e. θ ≥ 0. The plastic multiplier, λ̇,
introduced in (19) is assumed to be given by the Karush-Kuhn-Tucker (KKT) conditions

λ̇ ≥ 0, f ≤ 0, f λ̇ = 0. (20)

The potential function g is split into one plastic part, gp, and one part, gd, that governs
the damage evolution, i.e. g = gp + gd. Two different damage models will be considered.
The first model (Model A) is due to Lemaitre (1985) and Lemaitre and Chaboche (1990)
and is given by

gd =
SA

(1 +mA)(1− α)

(

−
Y

SA

)1+mA

(21)

where SA and mA are material parameters. Based on (19) and (21) we conclude that the
evolution law for the damage variable takes the following form in Model A

α̇ = λ̇
1

(1− α)

(

−
Y

SA

)mA

. (22)

The second model (Model B) that will be considered was proposed by Bonora (1997);
Bonora and Milella (2001) and is defined by

gd =
1

2

(

−
Y

SB

)2 SB

1− α

(αcr − α)(mB−1)/mB

(ϵpeff )
(2+n)/n

H(ϵpeff − ϵpth) (23)
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where H represents the Heaviside step function and SB, mB,αcr, ϵ
p
th and n are material

constants. This form for gd leads to that the damage evolution in Model B takes the form

α̇ = −λ̇
Y

SB(1− α)

(αcr − α)(mB−1)/mB

(ϵpeff )
(2+n)/n

H(ϵpeff − ϵpth). (24)

The two formats (22) and (24) differ in that Model B includes the effective plastic strain,
ϵpeff and that it also includes the critical amount of damage, αcr at failure. Moreover, in
the latter model (Model B) the damage evolution is suppressed until the effective plastic
strain reaches the threshold value ϵpth. Although other formats for the damage evolution
exist (cf. e.g. Pires et al. (2004)), the evolution laws (22) and (24) are sufficient in the
present study.

In accordance with Chaboche (1986) the potential function gp governing the plastic
deformation is chosen as

gp = f +
3

4B∞

B :B (25)

where the saturation of the kinematic hardening is denoted B∞. Using (25), (17) and (19)
allow us to identify the evolution laws for lp and β as

lp = λ̇
3Σ̄

2σy(1− α)
, β = λ̇

(

3Σ̄

2σy
−

3B

2B∞

)

. (26)

For completeness the constitutive model is summarized in Box 1. The evolution equations
governing the material response can now be written in the compact format

ż =

⎡

⎢

⎢

⎢

⎣

Ḟ
p

Ḟ
k

ϵ̇peff
α̇

⎤

⎥

⎥

⎥

⎦

= λ̇

⎡

⎢

⎢

⎣

N p

N k

N ε

Nα

⎤

⎥

⎥

⎦

= λ̇N . (27)

Based on (19), (26), (22), (24) and (6) we conclude that the generalized direction of the
plastic flow, N , is a function of the internal variable z and the deformation gradient, F , i.e.
N = N(z,F ). Differentiation of the yield condition ḟ = 0, enables the plastic multiplier
λ̇, to be expressed in terms of the state variables z, the displacement field u and the rate
of the displacement field u̇. However, instead of using ḟ = 0 the yield condition, f = 0,
will serve as an algebraic constraint equation that sets the magnitude of λ̇.

Balance of momentum

The balance of linear momentum is governed by the (static) principle of virtual work in
the reference configuration, Ω0, i.e.

∫

∂Ω0t

δw · T dS +

∫

Ω0

δw · bdV =

∫

Ω0

δE :SdV (28)
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· Constitutive relations:

Σ = Kd ln J
e1+Gd lnC

e
i

B =
1

2
h(lnCk)dev

Y = −
ψe

1− α

· Evolution laws:

Ḟ
p
= λ̇

(

3Σ̄

2σy(1− α)

)

F p = λ̇N p

Ḟ
k
= λ̇F k

(

3Σ̄

2σy
−

3B

2B∞

)

= λ̇N k

α̇ = −λ̇
∂gd

∂Y
= λ̇Nα

ϵ̇peff =
λ̇

1− α
= λ̇N ε

where λ̇ is obtained from ḟ = 0

Box 1: Summary of the constitutive model.

which should be satisfied for all admissible virtual displacements δw. In (28) ∂Ω0t denotes
the part of the boundary where the traction vector, T , in the reference configuration is
prescribed. Moreover, the body force vector in the reference configuration is denoted b.
The virtual strain is denoted δE and is defined as δE = 1/2

(

δF TF + F T δF
)

where

δF = ∂(δw)

∂X . Rearranging (28) and noting that the stress depends on the internal variables
z and the displacement field u, results in

Rw(u, δw, z, t) =

∫

∂Ω0t

δw · T dS +

∫

Ω0

δw · bdV −
∫

Ω0

δE :SdV = 0 (29)

which should hold for all admissible virtual displacements δw. The explicit time de-
pendence present in (29) is a manifestation of the applied load and essential boundary
conditions in general being time dependent.

Numerical solution procedure

Let us now bring the balance law and the constitutive model together and form the system
governing the elasto-plastic boundary value problem. From (27) and (29) we conclude that
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during plastic response the system is governed by

Rw = Rw(u, δw, t, z) = 0

ż = λ̇N(z,F )

f(z,F ) = 0.

(30)

For elastic response, i.e. f(z,F ) ≤ 0 the system (30) is modified such that λ̇ = 0, i.e.
ż = 0. The spatial discretization in (30) will be performed using the finite element method
whereas an embedded Runge-Kutta scheme will be employed for the time discretization.
Finally we note that the system (30) can be interpreted as a semi-explicit DAE-system of
index 2.

Spatial discretization- FE formulation

A displacement based finite element formulation is adopted and the interpolation for the
displacement field is expressed as u = Nma where Nm represents a matrix that contains
the shape functions and a the nodal displacements. A Galerkin approach is adopted,
i.e. the virtual displacements are given by δw = Nmδa where δa represents the virtual
nodal displacements. Inserting δw = Nmδa into (29) allows the FE formulation to be
established, i.e.

∫

∂Ω0t

NT
mT dS +

∫

Ω0

NT
mbdV −

∫

Ω0

BT
mSdV = R = 0 (31)

where Bm is defined from δE = Bmδa. Note that in (31) and in the following we will for
simplicity not distinguish between tensors and matrices. An important feature of the finite
element method is that the method allows the integrals in (31) to be evaluated element-
wise, i.e. the domain Ω0 is discretized into Nelm elements, i.e. Ω0 = ∪α=1..Nelm

Ωα
0 . The

integrals over the elements, Ωα
0 , is evaluated using Gauss quadrature, i.e.

∫

Ωα
0

[·] dV =

Ngp
∑

i=1

wi [·]i (32)

where wi represents the Gauss integration weights and Ngp is the number of integration
points per element. Based on (32) it is concluded that the internal state variables, z are
required in all, Ngp ·Nelm, integration points throughout the body, i.e. zα. The spatially
discretized form of (30) can be expressed as

R = R(a, zα, t) = 0

żα = λ̇αNα(zα,a)

f(zα,a) = 0

(33)

where α = 1..Ngp · Nelm. To complete the solution procedure the time discretization will
be addressed in the next section.
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c1 a11 0 . . . 0
c2 a21 a22 . . . 0
...

...
...

. . .
...

cs b1 b2 . . . bs
b1 b2 . . . bs

Table 1: Diagonally Implicit Runge-Kutta method

Temporal discretization- Runge-Kutta based integration scheme

The temporal discretization of (33b) will be based on a Runge-Kutta based integration
scheme. Let us therefore briefly recapture some of the basic features of the Runge-Kutta
methods used for integration of ordinary differential equations. An approximate solution
to the initial value problem ẏ = f (y, t), y(tn) = yn at t = tn+1 is given by the quadrature
rule

y(tn+1) ≈ yn+1 = yn +∆tn

s
∑

i=1

bif (t+ ci∆tn,y(tn + ci∆tn)) (34)

where bi are weight factors and ci coefficients that determine the location of the quadrature
points, stages. The number of stages is denoted s are defined by Tni = tn+ci∆t. To evaluate
(34) the stage values y(tn + ci∆tn) are required. The stage values are approximated in a
manner similar to (34), i.e.

y(tn + ci∆tn) ≈ Y ni = y(tn) +∆tn

s
∑

j=1

aijẎ nj (35)

where a new set of weighting factors aij were introduced. The stage derivatives, Ẏ nj ,
present in (35) are defined as

Ẏ nj = f (Tnj,Y nj) (36)

Note that the quadrature points Tnj in (36) coincides with the quadrature points in (34).
Insertion of (36) into (35) results in a non-linear system in the stage variables Y ni, i.e.
r(Y n1,Y n2, ...,Y ns) = 0. This system can be solved for the stage variables Y n1, Y n2,
...,Y ns and once the stage variables are calculated the updated state yn+1 can be calculated
using (34).

A general Runge-Kutta algorithm is not suitable for finite element formulations since
the sparse structure of the FE method is not preserved, cf. Ellsiepen and Hartmann (2001).
A group of methods that has proven to be very useful are the Diagonally Implicit Runge
Kutta (DIRK) schemes, cf. Tab. 1. A DIRK method has the properties asi = bi and aij = 0
for i < j. The DIRK schemes are referred to as stiffly accurate since the last stage Y ns

coincides with the new solution yn+1, a property that guarantees the algebraic constraints
being fulfilled at the solution yn+1 (cf. Ellsiepen and Hartmann (2001)). Due to the
diagonal structure of the DIRK scheme the stage i can be decoupled from the previously
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calculated stages, i.e.

Y ni = yn +∆tn

i
∑

j=1

aijẎ nj = Sni +∆tnaiiẎ ni (37)

where the ’start value’ Sni, is defined as

Sni = yn +∆tn

i−1
∑

j=1

aijẎ nj. (38)

The reason for introducing the quantity Sni is to emphasize that it only depends upon the
stage derivatives calculated from the previous stages. This property is crucial for the use
of DIRK schemes in a FE context since it decouples the stages and as a consequence of
this decoupling the sparse structure of the original FE-system is preserved. Isolating Ẏ ni

from (37) results in

Ẏ ni =
Y ni − Sni

∆tnaii
(39)

i.e. once the stage value Y ni is calculated the stage derivative Ẏ ni is provided by (39). In
the context of elasto-plasticity the unknown y is comprised by the displacement field a and
the internal variables zα. Defining y = {zα, a} and the stage variable Y ni = {Zα

ni, Ani}
results in that (33) for each stage can be expressed as

R = R(Ani,Z
α
ni, Tni) = 0

Zα
ni −Zα

S,ni = ∆λαniN (Zα
ni,Ani)

f(Zα
ni,Ani) = 0

(40)

where ∆λαni = ∆tnaiiλ̇αni was defined. It should be noted that in load step n and stage i we
associate Y ni, Z

α
ni and Ani with y, zα and a. The start values for the internal variables

Zα
S,ni, are extracted from the start values Sni =

{

Zα
S,ni,AS,ni

}

. The non-linear system
system (40) is solved at each stage and once the solution Y ni is determined the stage
derivative Ẏ ni is calculated via (39) thus allowing the procedure to be advanced to the
next stage i+ 1. Note that in general the boundary conditions are time dependent and as
a consequence the starting value for the displacement field AS,ni will drive the deformation
in a displacement controlled problem.

In Ellsiepen and Hartmann (2001) a three stage RK-method (Cash’s method) was con-
sidered. Since the underlying elasto-plastic problem is non-smooth, it was concluded that
Cash’s method was not able to provide third order accuracy and therefore only Ellsiepen’s
two stage method will be considered in this investigation. The two stage DIRK-method
proposed by Ellsiepen (1999) is given in Tab. 2. Besides being an efficient higher order
integration scheme the DIRK scheme also provides an error control which can be used to
determine a suitable time step. Assume that ŷn+1 is the solution at tn+1 from a RK-method

12



γ γ
1 1− γ γ

1− γ γ
1− γ̂ γ̂

γ = 1− 1
2

√
2

γ̂ = 2− 5
4

√
2

Table 2: Butcher tableau for the two stage DIRK-method proposed by Ellsiepen (1999)

of order q and that yn+1 is the solution from a RK-method of order q + 1. Subtracting
yn+1 from ŷn+1 provides an estimate for the local integration error, i.e.

κ = ŷn+1 − yn+1 (41)

The error estimation κ can be determined at virtually no extra cost using an embedded
Runge Kutta method since ŷn+1 is calculated using the same stages as for the lower order
method yn+1. For Ellsiepen’s method the bi coefficients for the embedded method given in
the last row of the tableau Tab 2. The error estimation for an embedded scheme is given
by

κ = ∆tn

s
∑

i=1

(b̂i − bi)Ẏ ni. (42)

Let us now apply the presented DIRK-discretization to the system (33) explicitly. Using
the Ellsiepen’s method presented in Tab. 2 a system leading to the stage variable Y n1 can
be obtained, i.e.

R = R(An1,Z
α
n1, Tn1) = 0

Zα
n1 − zα

n = ∆λαn1N(Zα
n1,An1)

f(Zα
n1,An1) = 0

(43)

where ∆λαn1 = γ∆tnλ̇αn1. Based on the solution Y n1 = {Zα
n1, An1} to (43) the stage

derivative Ẏ n1 is calculated from (39). The start value Sn2 for stage 2 can then be formed
as

Sn2 = yn + (1− γ)∆tnẎ n1. (44)

Noting that the solution of stage 2 coincides with the updated state which allows Y n2 to
be identified as Y n2 = {Zα

n2, An2} =
{

zα
n+1 an+1

}

. Based on the starting value calculated
in (44) the system governing stage 2 can be formed, i.e.

R = R(an+1, zα
n+1, tn+1) = 0

zα
n+1 −Zα

S,n2 = ∆λαn2N(zα
n+1,an+1)

0 = f(zα
n+1,an+1)

(45)

where ∆λαn2 = γ∆tnλ̇αn2. By only considering one stage and taking the butcher tableau as
a1 = b1 = c1 = 1, the implicit Euler scheme is obtained. It can thus be concluded that the
solution of the DIRK-method is obtained by solving two systems of identical structure as
the implicit Euler method.

13



Updating of the internal variables

Let us now consider the updating procedure for the elasto-plastic damage model previously
described. Referring to (40) the internal variables at stage i should be updated according
to

Zα
ni −Zα

S,ni = ∆λαniN (Zα
ni,Ani)

0 = f(Zα
ni,Ani).

(46)

It should be noted that the structure in (46) is identical to the structure of the classical
radial return scheme. As for the backward Euler scheme a check whether elastic or plastic
response takes place must be performed. This check is performed by introducing the trial
state which is obtained from the start values (38), i.e. Zα

ni,trial = ZS,ni together with the
displacement field at the stage Ani. If f(Zα

ni,trial,Ani) ≤ 0 elastic response takes place
and the internal variables are updated according to Zα

ni = Zα
n,trial. For the situation

f(Zα
ni,trial,Ani) > 0 the response is plastic and the internal variables must be updated

accordingly, cf. (46).
The discontinuity in the damage evolution in Model B calls for extra attention. The

damage evolution is suppressed until εpeff < εpth and it is not possible to determine whether
εpeff = εpth is reached during a load step a priori. If the starting value for εpeff is less than
εpth the evolution equations are first updated assuming α̇ = 0. Based on the updated state,
a check if the threshold value has been passed is made. If the threshold value εpth is reached
the system is solved again but using α̇ > 0.

For incompressible plasticity the exponential update for the plastic deformation gra-
dient is often preferred, (cf. Weber and Anand (1990)) since it inherently preserves the
plastic incompressibility, i.e. det(F p) = 1. As noted by Hartmann et al. (2008) this up-
date is not applicable for the DIRK schemes and therefore alternative approaches must
be considered. Combining (26a) together with (18) reveals that tr(lp) = 0 which implies
that the plastic deformation is incompressible (cf. also Box 1). With this condition let us

consider the volumetric/isochoric split (cf. (8)) of F p in detail. Based on tr(lp) = ˙ln(Jp)
(4) can be formulated as

Ḟ p =

(

dev(lp) +
1

3
˙ln Jp1

)

F p. (47)

Hartmann et al. (2008) made use of a projection technique to preserve plastic incompress-

ibility. In the present paper the evolution law for ˙ln Jp is augmented such that incompress-

ibility approximately is preserved. Instead of ˙ln Jp = 0 we will make use of ˙lnJp = κp in
the evolution law for F p. For an exact integration κp vanishes, however, since the RK-
scheme introduces numerical error, κp will be used to ensure the plastic incompressibility
being fulfilled. The evolution law for F p will now take the form

Ḟ
p
=

(

dev(lp) + κp1

)

F p. (48)

The parameter κp can be determined from the condition Jp = 1. However, to avoid
additional equations in the solution procedure, we will estimate κp in each stage. The
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estimation for κp will be based on

˙ln Jp =
J̇p

Jp
≈

Jp
ni − Jp

S

aii∆tnJ
p
ni

. (49)

By making use of Jp
ni = 1, we obtain the following estimation for κp

κp =
1

3

1− Jp
S

aii∆tn
. (50)

From (50) we conclude that by introducing κp the deviation 1− Jp
S is corrected such that

Jp
ni = 1 is approached. The estimation (50) has been used in the current investigation and

the volumetric plastic formation Jp has been monitored; the deviation det(F p)− 1 found
in the simulations is typically of the order 10−7 − 10−9.

Since the structure of the kinematic hardening evolution law is similar to that of lp the
concept presented in (48) is applied to the kinematic evolution laws, i.e.

Ḟ
k
= F k

(

κk1+ dev(βα)

)

. (51)

An estimate for κk similar to κp can be obtained by replacing Jp
S by Jk

S in (49). To
summarize the following system has to be solved in each stage for all gauss points

ϕp = F p −
(

(1−∆tnγκ
p)1−∆λdev(N p)

)

−1

F p
S = 0

ϕk = F k − F k
S

(

(1−∆tnγκ
k)1−∆λdev(N k)

)

−1

= 0

ϕα = α− αS +∆λ
∂gd

∂Y
|α=αni

= 0

ϕε = ϵpeff − ϵpeff,S −
∆λ

1− α
= 0

ϕf = f(F p,F k,∆λ,α) = 0 (52)

where subscripts S indicates start values extracted from ZS,ni. In (52) the subscript ni
for the stage values and the index α for the gauss points have for simplicity been omitted.
The system (52) may be written as

ϕ(Z̃
α

ni;F ) = 0 (53)

where Z̃
α

ni is defined as Z̃
α

ni = {Zα
ni,∆λ

α
ni}. It should be noted that ψϵ can be omitted for

Model A since this model has no explicit ϵpeff dependence. The system (53) is solved using
the Newton-Raphson iteration scheme, i.e.

Z̃
α

ni

∣

∣

k+1
= Z̃

α

ni

∣

∣

k
− J−1ϕ|k (54)
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where J denotes the Jacobian J =
∂ϕ

∂Z̃
α

ni

∣

∣

k
and the subscript k the iteration number.

Let us now return to the solution of the equilibrium equations, i.e. (40a). A consistent
linearization of (40a) and using Z̃

α

ni = Z̃
α

ni(Ani) results in the Newton-Raphson iteration
scheme for the displacement field, i.e.

Ani

∣

∣

k+1
= Ani

∣

∣

k
−

([

∂R

∂Ani
+

∂R

∂Z̃
α

ni

∂Z̃
α

ni

∂Ani

] ∣

∣

∣

∣

∣

k

)

−1

R
∣

∣

k
. (55)

To obtain the sensitivity of the internal variables with respect to the displacement field we
return to (53). Since ϕ(Z̃

α

ni;F ) = 0 for all F we obtain

∂Z̃
α

ni

∂F
= −

[

∂ϕ

∂Z̃
α

ni

]

−1 ∂ϕ

∂F
(56)

Noting that F = F (Ani) we conclude that (56) provide
∂
˜Z

α

ni

∂Ani
and therefore the algorithmic

tangent stiffness tensor present in (55) can be calculated.

Numerical example

To investigate the numerical sensitivity of the constitutive model in conjunction with the
presented numerical integration scheme the boundary value problem depicted in Fig. 1 will
be considered.
The measures of the considered structure is given by

R

t
=

500

12
,

w

R
= 3,

L

w
= 2

where t is the thickness. Fully integrated 4-node quadratic plane strain elements have been
employed. To avoid locking due to incompressibility, a mixed formulation of the balance
of momentum (29) has been used cf. Wallin and Ristinmaa (2005). It should be noted
that the softening associated with the damage evolution results in mesh-dependence. To
reguralize the problem a length-scale can be introduced into the formulation via a non-local
formulation, cf. e.g. H̊akansson et al. (2006). This approach is out of the scope of the
present study, and is therefore not considered. The constitutive parameters used in the
simulations are given in Tab. 3 and Tab. 4.

G Kb h B∞ σy SA m
(GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (-)
80 164 12000 350 400 2.67 2

Table 3: Constitutive parameters used in Model A
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Figure 1: Illustration of the boundary value problem used in the numerical simulation. Two
different boundary conditions are considered: a) Prescribed displacement in y-direction b)
prescribed displacements in both x- and y-directions c) The finite element mesh used in
all simulations consists of 384 plane strain elements. Due to the symmetry, only a quarter
of the structure has been considered.

G Kb h B∞ σy SB mB n εth αcr

(GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (-) (-) (-) (-)
80 164 12000 350 400 300 0.1 10 0.005 1

Table 4: Constitutive parameters used in Model B

For completeness the force-displacement relation following from the parameters in Tab.
3 and Tab. 4 is given in Fig. 2. The boundary conditions used in the simulation is shown
in Fig. 1a. The corresponding stress and damage distributions are shown in Fig. 3 and in
Fig. 4. Clearly the chosen parameters results in almost identical mechanical response.

Local damage evolution

In this example the boundary conditions shown in Fig. 1a are considered. To control the
time step in the Implicit Euler-method (IE) the following heuristic rule based on the global
Newton iterations has been used

∆tn+1 = ∆tnfinc

(

fiter
Nnewt

)v

(57)
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Figure 2: Total applied force along the top boundary versus displacement for Model A
(dashed line) and Model B (solid line) using the boundary conditions shown in Fig. 1a.
Note that the responses are almost identical and thus difficult to distinguish from each
other.

where Nnewt is the number of Newton iterations in the current load step and finc, fiter
and v are time stepping parameters. The heuristic rule (57) is augmented so that if the
solution diverges, the load step is restarted using a time step that is reduced by a factor
2. For the RK-method we adopt the time stepping procedure presented in Ellsiepen and
Hartmann (2001). The estimate for the error κ is separated into the displacements κu

and the internal variables κz. The 2-norm will be used for the displacements κu and the
maximum norm for the internal variables κz. Based on κu and κz the following error
measure will be employed

em = max

⎛

⎜

⎝

1

Ndof

√

√

√

√

Ndof
∑

l=1

(

κlu
Rrel · ul +Rl

u

)2

, max
k=1...Nelm·Ngp

(∣

∣

∣

∣

κkz
Rrel · zk +Rk

z

∣

∣

∣

∣

)

⎞

⎟

⎠
(58)

where Rrel is a relative tolerance, Rl
u and Rk

κ are absolute tolerances. Ndof is the number
of degree of freedoms in the structure. The new step size is calculated on the basis of the
error measure em according to:

∆tnew = ∆tn

{

max(fmin, fs · e−1/(q+1)
m ) if em > 1

min(fmax, fs · e−1/(q+1)
m ) if em ≤ 1

)

(59)

The safety factor fs prevents oscillations in the step sizes whereas fmin and fmax sets
maximal step size changes.

In Fig. 5a and Fig. 6a the damage evolution in one gauss point in one element (cf.
arrow in Fig. 1c) is plotted versus the displacement uy. The reference solution (solid line)
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Figure 3: Contour plot of effective stress distribution with a)Model A and b) Model B at
the end of the simulation. The boundary conditions given in Fig. 1a has been used.

is obtained by taking 1500 load steps using the RK-method. The difference |α − αref |,
where αref is the damage obtained from the reference solution have been plotted in Fig. 5b
and Fig. 6b to emphasize the difference between the integration schemes.
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Figure 4: Contour plot of the damage distribution with a) Model A and b) Model B at the
end of the simulation. The boundary conditions given in Fig. 1a has been used.

The numerical parameters used to generate Fig. 5 and Fig. 6 are given in the appendix.
In Fig. 5 a distinct difference between the two integration schemes can be observed. For
simulations using approximately the same number of Newton iterations the RK-scheme
shows a significant higher accuracy than the IE-scheme (cf. × and ◦ in Fig. 5a). It is
noted that the RK-scheme using 8 steps (◦) shows a higher accuracy than the IE-scheme
using 82 (+) load steps. Note too that the RK-scheme (!) completed the simulation using
3 load steps while having approximately the same accuracy as the IE-scheme using 15 load
steps.

For Model B the difference in performance is less pronounced. Due to the discontinuity
in the damage evolution the integration becomes highly dependent on the location of
the damage initiation. As an example, the time stepping parameters used in the RK-
simulations marked with ⋄ and ! only differ in the initial time step ∆t1 and one can
conclude that this difference results in a significant different solution. Similarly for the IE-
scheme one can observe that the simulation using 33 load steps (×) shows less deviation
from the reference solution than the simulation using 42 (+) load steps.

To evaluate the approximation (49) the maximum deviation from detF p−1 was moni-
tored. As an example the the maximum deviation found in the simulation ! in Fig. 6 was
det(F p)− 1 = 4.5 · 10−6.

Iso-error plots

Iso-error plots have been generated by structurally displacing the geometry using the
boundary conditions shown in Fig. 1b. The structure is initially displaced by an amount ux

and uy in the x- and y-directions. At this level of initial deformation significant plasticity
is generated and the maximum damage in the structure is about 4.4 % in Model A and
4.3 % in Model B. After this initial displacement, the structure is further displaced by
an amount ∆ux and ∆uy and the internal variables together with the displacements are
stored in yxy. During the displacement from (ux, uy) to (ux +∆ux, uy +∆uy), one step is
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Figure 5: Damage evolution for Model A in one gauss point for the element marked in Fig.
1c. Solid line is the reference solution and solutions indicated by ◦, ! are obtained from
the RK-solution. The solutions × and + are obtained from the IE-solution. The difference
between the reference solution and the simulations is shown in b).
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Figure 6: Damage evolution for Model B in one gauss point for the element marked in Fig.
1c. Solid line is the reference solution and solutions indicated by ◦, ! , ⋄ are obtained from
the RK-solution. The solutions ×, + are obtained from the IE-solution. The difference
between the reference solution and the simulations is shown in b).
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made using the RK-method and two steps with the IE-method. This will ensure that the
two methods are using approximately the same number of Newton iterations. Based on
the solution at each increment (ux +∆ux, uy +∆uy)) a contour plot of eerr, defined as

eerr =

(
∫

A

(yref
xy − yxy)D(yref

xy − yxy)dA

)
1

2

(60)

is made. The matrix D is chosen as a diagonal matrix and determines the weight of the
variables in yxy. The reference solution yref

xy has been obtained by taking 20 steps when
using the RK-method from (ux, uy) to (ux +∆ux, uy +∆uy) and 40 steps when using the
IE-method. The iso-error plots are shown in Figs. 7-8 for Model A and Figs. 9-10 for Model
B.
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Figure 7: Iso-error plots using Model A. The matrix D is chosen so that only the damage
variables are weighted. a)Runge Kutta method and b) Implicit Euler method.
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Figure 8: Iso-error plots using Model A. The matrix D is chosen so that all the variables
are weighted equal. a) Runge Kutta method and b) Implicit Euler method.

Referring to Fig. 7 it can be concluded that the RK-based integration schemes shows
significant higher accuracy than the IE based integration scheme; the error when only the
damage distribution is considered is one magnitude lower than the IE based scheme. It is
also emphasized that the computational cost is almost identical for the simulations shown
in Fig. 7a and Fig. 7b. Furthermore using an error measure where the displacements and
all the internal variables are considered (Fig. 8), the accuracy is improved when using the
RK-scheme instead of the IE-scheme.

For Model B the improvement using the RK-scheme is reduced. Both Fig. 9a and Fig. 9b
shows an error that is about the same. It is also noted that the iso-error plots for Model
B is not as smooth as for Model A. This effect is due to that the error varies depending
on when damage is initiated. When all the internal variables and the displacements are
accounted for (Fig. 10) the RK-scheme shows a higher accuracy and the improvement using
the RK-scheme is similar to that found for Model A.

Conclusions

We have presented a finite strain continuum damage kinematic hardening model. Two
different forms for the damage evolution law was considered and the numerical sensitivity
evaluated. It was concluded that the damage evolution is very sensitive to the step length
when using classical Implicit Euler scheme. As an alternative to the canonical Implicit-
Euler scheme a solution procedure based an a DIRK algorithm was considered. The ef-
ficiency and accuracy of the DIRK scheme was compared to that of the backward-Euler
scheme using structural iso-error plots and also via comparison of the damage evolution
at a fixed position in the material. The two methods for both models were evaluated us-
ing approximately the same number of Newton iterations and it was found that the DIRK
based integration scheme is superior to the backward Euler scheme when a smooth damage
evolution is considered. However, for a model involving a discontinuous damage evolution,
the improvement using the RK-scheme was reduced.
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Figure 9: Iso-error plot using Model B. The matrix D is chosen so that only the damage
variables are weighted. a) Runge Kutta method and b) Implicit Euler method.
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Figure 10: Iso-error plot using Model B. The matrix D is chosen so that all the variables
are weighted equal. a) Runge Kutta method and b) Implicit Euler method.
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Appendix: Numerical data used in the simulations

Model Type Rrel Ru RF p RF k Rε Rα fmin fmax fsafety ∆t0
A ◦ 0 0.1 0.1 0.1 − 0.001 0.05 1.1 0.9 0.2
A ! 0 1 1 1 − 0.1 0.5 2 0.9 0.25
B ◦ 10−3 0.1 0.1 0.1 10−4 10−3 0.4 1.2 0.9 0.05
B ! 10−4 0.01 0.01 0.01 10−4 10−5 0.3 1.3 0.9 0.1
B ⋄ 10−4 0.01 0.01 0.01 10−4 10−5 0.3 1.3 0.9 0.061

Table 5: Time stepping parameters for RK method used to generate Fig. 5 and Fig. 6.

Damage Model Type finc fiter v ∆t1
A × 1.01 4.8 1.5 0.2
A + 1.02 3.8 2.5 0.1
B × 1.01 4.5 1.2 0.1
B + 1.01 4.1 1 0.06

Table 6: Time stepping parameters for IE method used in Fig. 5 and Fig. 6.

Damage Model Type Newton iterations Load Steps
A ◦ RK 79 8
A × IE 81 15
A ! RK 39 3
A + IE 321 82
B ◦ RK 146 16
B × IE 157 33
B ! RK 274 36
B ⋄ RK 366 49
B + IE 182 42

Table 7: Number of Newton iterations and load steps used to generate Fig. 5 and Fig. 6
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Abstract

An anisotropic continuum elasto-plastic-damage model has been developed. The

considered material is paperboard, which possess a high degree of anisotropy be-

tween the in-plane and out-of-plane mechanical material properties. In-plane direc-

tor vectors and a normal vector are utilized to model the anisotropic behavior of the

material. A yield surface, which hardens and softens distortionally is adopted. The

model uses two scalar internal variables to model the degradation of material proper-

ties in out-of-plane tension and shear, respectively. Using the developed model, the

important industrial testing method of creasing and subsequent folding is examined.

The deformation patterns are examined using the model and compared with mea-

surements. It is shown that both out-of-plane tension and shear deformations are

significant during the folding of creased paperboard.
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1 Introduction

Material modeling is becoming increasingly important in product development processes.
The models can be used to study specific industrial applications and thereby increase the
knowledge about the process. The models need to be sufficiently advanced to represent
the actual behavior of the material, but at the same time being simple enough to reduce
the computational cost. A continuum based anisotropic material model that can model
damage and permanent deformations at finite strains has been developed in this work. An
anisotropic format for the elastic, the plastic and the damage parts of the model is utilized.

The developed model in this work is an extension of a model presented in Borgqvist
et al. (2015). Effects of damage and degradation will be taken into account, such that the
softening associated with delamination can be modeled. The specific material that will be
considered is paperboard, having a layered fibrous structure and possessing a high degree
of anisotropy. The developed model is however general and might be suitable for modeling
of other layered structures, such as composites.

The high degree of anisotropy in paperboard stems from the manufacturing process
where a fiber mixture is sprayed on a traversing web. The velocity difference between the
web and the mixture (as the mixture hits the web) causes a majority of the fibers to align
with the Machine Direction (MD). The fibers are typically stacked on top of each other
and the stacking direction is called out-of-plane (ZD). Orthogonal to MD in the in-plane
direction is the Cross Direction (CD). The stiffness in MD is typically 2-3 times higher
compared to CD and about 100 times higher compared to ZD, cf. Stenberg (2002).

The industrial application that will be examined is the folding of creased paperboard.
To obtain a straight fold line without in-plane cracks, it is crucial to first perform creasing.
In the creasing process, a male tool presses the paperboard into the groove of a female tool.
The creasing inflicts permanent deformation and damage in the paperboard, such that the
crease zone will act as a plastic hinge during folding operation. To asses the quality of
paperboard, it is common to measure the reduction of maximal bending moment between
an uncreased and creased paperboard, cf. Nagasawa et al. (2003), Giampieri et al. (2011)
and Cavlin (1988). Experimental tests of folding uncreased and creased paperboard have
been performed, which have been compared to predictions obtained in simulations.

One early attempt to use continuum modeling to simulate the converting of paperboard
was performed in Xia (2002), where continuum and interface elements were combined. A
similar technique have been adopted in Nyg̊ards et al. (2009), Beex and Peerlings (2009),
Beex and Peerlings (2012), Huang et al. (2014) and Hagman et al. (2013) using the inter-
face/continuum approach. Since the continuum elements are too stiff in the out-of-plane
directions, the out-of-plane deformation is typically restricted to the interfaces, which are
a-priori defined in these modeling approaches. In Borgqvist et al. (2015), a continuum
model which takes into account the large anisotropy between the in-plane and out-of-plane
directions was presented. In this work, the model presented Borgqvist et al. (2015) is ex-
tended such that softening in the out-of-plane directions can be modeled. This extension
is important when modeling folding of creased paperboard, as the degradation obtained
during the creasing process reduces the load carrying capacity of the material.
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A Continuum Damage Mechanics (CDM) concept, where damage is approximated to
be smeared out in the material, will be used to model the degradation of material proper-
ties. The concept was introduced in Kachanov (1958) and has since then been extensively
developed, e.g. Chaboche (1981), Lemaitre (1985), and Al-Rub and Voyiadjis (2003). For
general anisotropic damage evolution, second order or fourth order tensor needs to be
adopted. However, to reduce the complexity in the model, only scalar damage variables
are used in the work herein. An excellent review on the different damage concepts is pre-
sented in Besson (2010). The scalar damage will only weaken the material parameters
associated with out-of-plane deformation, and thereby allowing softening present during
delamination to be recovered. Previously, Isaksson et al. (2004) applied the CDM concept
to model the in-plane behavior of paper.

The article is structured as follows, first the kinematical and thermodynamic frame-
works are established. Tensors will be considered in a Cartesian setting, i.e. following
the work of Ciarlet (1988). Section 4 presents the specific model and in section 5 it is
demonstrated that the material model can be calibrated to uniaxial tests when a single
element is used. The creasing and folding processes are reviewed in the final section and
compared with results obtained from simulations.

2 Kinematics

The framework adopted in Borgqvist et al. (2014, 2015) will be used to model the anisotropic
material. The vector X denotes the position of a particle in the reference configuration
and the position of the same particle at time t in the current configuration is given by the
mapping x = ϕ(X, t), defined in the time interval T ∈ [t0, t]. The mapping of vectors in
the reference configuration to the current configuration is given by the deformation gradi-
ent F = ∇Xϕ. To separate the deformation into elastic and permanent deformations, a
multiplicative split of the deformation gradient is assumed, i.e.

F = F eF p. (1)

To model the elastic response, use is made of the left Cauchy-Green tensor, given by
be = (F e)TF e. The spatial velocity gradient is defined as, l = Ḟ F−1 and can be additively
split according to

l = le + F eLpF e−1 = le + lp. (2)

The elastic and material plastic velocity gradients introduced in (2), were defined according
to

le = Ḟ
e
F e−1, Lp = Ḟ

p
F p−1. (3)

The plastic velocity gradient in (2) can further be split into a symmetric part and a skew-
symmetric part, i.e.

lp = sym(lp) + skew(lp) = dp + ωp, (4)
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where dp is the plastic rate of deformation tensor and ωp is the Eulerian plastic spin, cf.
Dafalias (1998). For later purposes, the symmetric part of the spatial velocity gradient is
defined as d = sym(l).

To model anisotropy, two director vectors which phenomenologically represent the MD
and CD directions are introduced. The vectors are given by v

(1)
0 and v

(2)
0 respectively, and

they are of unit length and orthogonal. An isoclinic configuration is adopted, implying that
the director vectors in the reference configuration and the intermediate configuration are
identical, cf. Mandel (1971), Dafalias (1998) and Harrysson and Ristinmaa (2007). The
mapping of the in-plane directions to the spatial configuration are assumed to be given by

v(1) = F ev
(1)
0

v(2) = F ev
(2)
0 .

(5)

Following Borgqvist et al. (2015), the ZD-direction is chosen such that it is normal to the
in-plane directions in the deformed configuration, i.e. n(3) = v(1)×v(2). Due to the chosen
format in (5), it can be shown that the transformation of the ZD-direction can be written
as

n(3) = JeF e−Tn
(3)
0 , (6)

where Je is the determinant of the elastic deformation gradient and JeF e−T the cofactor
of F e.

A set of second order structural tensors are used in the subsequent derivations, which
are given as dyadic products of the director vectors and normal vector, i.e.

m(1) = v(1) ⊗ v(1), m(2) = v(2) ⊗ v(2), m(3) = n(3) ⊗ n(3). (7)

The constitutive relations adopted in the model will be described next.

3 Constitutive framework

The dissipation inequality in an isothermal setting is given by

d = τ : d− ρ0ψ̇ ≥ 0, (8)

where τ is the Kirchhoff stress tensor and ψ is the Helmholtz free energy per unit mass
and ρ0 is the density in the reference configuration. Two scalar damage variable φ1 and φ2

are introduced to model the effect of degradation of the elastic parameters in the out-of-
plane direction. In Borgqvist et al. (2015), the free energy, ρ0ψ, is taken as a function of
the elastic deformation be, the structural tensors m(α) and a set of internal variables, κ(ν)

that governs the hardening. In the present work this model is extended such that the free
energy also depends on the damage variables φ1 and φ2, i.e.

ψ = ψ(be,m(α), κ(ν),φ1,φ2), (9)
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Using arguments by Coleman and Gurtin (1967) it can be shown that the Kirchhoff stress
tensor can be expressed as, (cf. Borgqvist et al. (2015))

τ = 2ρ0

(

∂ψ

∂be
be +

∂ψ

∂m(1)
m(1) +

∂ψ

∂m(2)
m(2) −

∂ψ

∂m(3)
m(3) + (

∂ψ

∂m(3)
: m(3))I

)

. (10)

Making use of (8), (9) and (10) along with (2) and (4), the dissipation inequality can be
reduced to

d = τ : dp −K(γ)κ̇(γ) + Y1φ̇1 + Y2φ̇2 ≥ 0, (11)

where the thermodynamic forces, K(γ), Y1 and Y2 were introduced. The forces, K(γ), Y1

and Y2 are energy conjugates to the internal variables, κ̇(γ) and damage variables φ̇1 and
φ̇2 respectively, and defined as

K(γ) = ρ0
∂ψ

∂κ(γ)
Y1 = −ρ0

∂ψ

∂φ1
Y2 = −ρ0

∂ψ

∂φ2
. (12)

The free energy is further assumed to be split into an elastic and a plastic part according
to ρ0ψ = ρ0ψ

e(be,m(α),φ1,φ2) + ρ0ψ
p(κ(γ)).

4 Specific Model

The specific model that will be adopted in the simulations will be described next. First the
constitutive equations governing the reversible (elastic) response are described and then
the relations governing the irreversible response are introduced.

4.1 Reversible deformations

The invariants that will be utilized to define the model are given by

I11 =
√
m(1) : I, I12 =

√
m(2) : I, I13 =

1

Je

√
m(3) : bebe

I23 =
√
m(3) : I Je =

√

det(be),

(13)

where I represent the second order unit tensor. The invariants, I1α can be interpreted
as the stretch in the directions (α) and I23 represents the change of an area element with
normal in the ZD-direction. The elastic part of the Helmholtz free energy is split according
to

ρ0ψ
e = ρ0ψ

ip + ρ0ψ
cop + ρ0ψ

top + ρ0ψ
sop, (14)

where the superscripts refers to ip: in-plane, cop: compression out-of-plane, top: tension
out-of-plane and sop: shear out-of-plane. The first two terms in (14) are given by

ρ0ψ
ip = A1

(

I11 +
1

I11
− 2

)

+ A2

(

I12 +
1

I12
− 2

)

+ A4

(

I11 + I12 +
1

I23
− 3

)

ρ0ψ
cop = (1−H1)A6

(

(I13)
2 +

1

A7
e−A7((I13)2−1) − (1 +

1

A7
)

)

,

(15)
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where the elastic parameters are defined by Aα ≥ 0 and H1 is a step function defined as 1
when I13 − 1 ≥ 0 and zero otherwise. The scalar damage variables, φ1 and φ2, will enter
the terms ρ0ψ

top and ρ0ψ
sop according to

ρ0ψ
top = (1− φ1)

nρ0ψ̃
top, ρ0ψ

sop = (1− φ2)
nρ0ψ̃

sop (16)

where

ρ0ψ̃
top = H1A3

(

I13 +
1

I13
− 2

)

ρ0ψ̃
sop = A5

(

I11I12I13 − Je

)

.

(17)

With the format (16), the material constants that govern the initial stiffness in the out-of-
plane directions will be degraded with a factor (1−φ1)

n in out-of-plane tension and (1−φ2)
n

in out-of-plane shear and as a consequence, a softening response can be modeled. By
combining (12) and (16) and due to the additive format of the free energy, the conjugated
damage variables are given by

Y1 = n(1− φ1)
n−1ρ0ψ̃

top

Y2 = n(1− φ2)
n−1ρ0ψ̃

sop.
(18)

The conjugated forces Y1 and Y2 are the driving forces for the evolution of the damage due
to tension in ZD and out-of-plane shear, respectively.

To illustrate the influence of the material constants on the initial stiffness, the spatial
stiffness tensor is computed according to (cf. Harrysson et al. (2007)),

D =
∂τ

∂F
F T

∣

∣

∣

∣

F=I

(19)

Using (15) and (17), the following initial stiffness tensor is obtained (in Voigt notation
with the order MD, CD, ZD)

[D] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2A1 + 2A4 A4

A4 2A2 + 2A4

2H1Ā3 + 4(1−H1)A6A7

A4 + Ā5

Ā5

Ā5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (20)

where Ā3 = (1 − φ1)
nA3 and Ā5 = (1 − φ2)

nA5 and a zero entry is indicated by a blank
space in (20). From (20), it can be concluded that the free energy ψip will provide an
initial stiffness for the MD and CD directions whereas the parts ψcop,ψtop and ψsop of the
free energy will define the initial stiffness in the out-of-plane direction.
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4.2 Irreversible deformations

The yield surface originally proposed in Xia et al. (2002) and later used for fiberous ma-
terials in e.g. Nyg̊ards et al. (2009), Tjahjanto et al. (2015), Garbowski et al. (2011) and
Borgqvist et al. (2014), will be utilized. A set of sub-surfaces in the stress space are utilized
to define the yield surface. The normals to the sub-surfaces are given by n(ν)

s where for in-
stance ν = 1 refers to the subsurface associated with positive stresses in the MD-direction.
The explicit format of the yield surface is given by

f =
12
∑

ν=1

χ(ν)

(

τ : n(ν)
s

τ (ν)

)2k

− 1. (21)

The sub-surfaces 1 . . . 7 are associated with in-plane stresses while 8 . . . 12 are associated
with out-of-plane stresses. The normals to the sub-surfaces are given by n(ν)

s and are
defined by dyadic products of the normed director vectors and normal, i.e.

n(ν)
s =

3
∑

i=1

3
∑

j=1

N
(ν)
ij v̄(i) ⊗ v̄(j). (22)

The parameters, N (ν)
ij introduced in (22), define the yield normals and v̄(i) are given by

v̄(1) =
1

|v(1)|
v(1), v̄(2) =

1

|v(2)|
v(2), v̄(3) =

1

|n(3)|
n(3), (23)

where | · | denotes the Euclidean 2-norm. The material parameters N (ν)
ij was calibrated in

Borgqvist et al. (2015) and are found in Table 1 in the Appendix. In (21), the exponent k
is a constant natural number and χ(ν) is a switch function, which for a given stress state
τ determines if a subsurface is potentially active,

χ(ν) =

⎧

⎨

⎩

1 if τ : n(ν)
s > 0

0 otherwise.
(24)

The distance from the origin to each subsurface in (21) is given by τ (ν) where

τ (ν) = hν(φ1,φ2)(τ
(ν)
0 +K(ν)). (25)

The initial distance from the origin to the subsurface is given by τ (ν)0 , i.e. the initial yield
stress in a certain loading direction. The conjugated hardening variables, K(ν), represents
the change in distance from the origin to a subsurface due to plastic loading and the
function hν(φ1,φ2) represents the change in distance to the subsurface due to damage
evolution. To reduce the complexity of the model, it is assumed that the distances to
the sub-surfaces will either increase due to plastic loading or decrease due to the damage
evolution, i.e. either hardening or softening will occur for each yield sub-surface. The
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hardening parameters have been chosen in a similar format as in Borgqvist et al. (2015),
i.e.

K(ν) = aν ln (bνκ
(ν) + 1) ν ∈ {1, 2, 3, 6}

K(ν) = aνκ
(ν) ν = 7

K(ν) = 0 ν ∈ {4, 5, 8, 9, 10, 11, 12},

(26)

where aν and bν are material parameters. During plastic deformation, the sub-surfaces
corresponding to tension in MD/CD, in-plane shear and compression in ZD will therefore
translate in the stress-space according to (26). The functions governing the softening of
the subsurfaces are chosen as

hν(φ1,φ2) = (1− φ1)
nc ν ∈ {4, 5}

hν(φ1,φ2) = (1− φ1)
nt ν = 8

hν(φ1,φ2) = (1− φ1)
ns(1− φ2)

ns ν ∈ {9, 10, 11, 12}

hν(φ1,φ2) = 1 ν ∈ {1, 2, 3, 6, 7}.

(27)

Note that different material constants nt, ns and nc enters in (27). The specific choice
in (27) is motivated from finite element simulations and tests of the creasing and folding
operation. The subsurfaces associated with tension in ZD, out-of-plane shear and compres-
sion in MD/CD will as a consequence of (27) give rise to a softening response as damage
evolves.

Projections of the yield surface in the ZD-MD/ZD shear stress space for different values
of the damage variables φ1 and φ2 are given in Fig. 1. The out-of-plane stress, τop and the
out-of-plane shear stress τsop are defined according to τop = v(3)·τ ·v(3) and τsop = v(1)·τ ·v(3)

in Fig. 1. The yield surface approaches a Coulomb type surface when φα increases, as
illustrated in Fig. 1. The shape of the yield surface in Fig. 1 will ensure that the material can
withstand increasing shear stresses as the compressive stresses τop increases, i.e. frictional
type behavior is modeled. A slope of η = 0.7 has been adopted in the simulations, which
remains constant as the damage increases.

To simplify the notation the quantity Λν is introduced as

Λν =
τ : n(ν)

s

τ (ν)
. (28)

A non-associated format is adopted for the evolution laws. The potential which governs
the evolution of the internal variables and damage is assumed to be given by

g =
∑

ν∈Ων

χ(ν)Λ2k
ν + copχ

(8)Λ2k
8 +H2

S1

m+ 1

(

Y1

S1

)m+1

+
S2

m+ 1

(

Y2

S2

)m+1

(29)

A set Ων = ν ∈ {1, 2, . . . 12}\{8} is defined in (29), which contains all the sub-surfaces
except the one belonging to ZD-tension. The parameter cop controls the amount of per-
manent deformation and the parameters S1, S2 and m are associated with the damage
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Figure 1: A projection of the yield surface f = 0 for different value of damage φα ∈
{0, 0.5, 0.99}. The damage variables changes proportionally, i.e. φα = φ1 = φ2.

evolution. The H2 is a step function which takes τop is argument and is defined as 1 when
τop > 0 and zero otherwise. Non-associative evolution laws are assumed and are given by

dp = λ̇
∂g

∂τ
=

∑

γ∈Ων

χ(γ) λ̇2kΛ
2k−1
γ

τ (γ)
sym(n(γ)

s ) + copχ
(8) λ̇2kΛ

2k−1
8

τ (8)
sym(n(8)

s )

κ̇(ν) = λ̇
∂g

∂K(ν)
= −χ(ν) λ̇2kΛ

2k
ν

τ (ν)

φ̇1 = λ̇
∂g

∂Y1
= λ̇H2

(

Y1

S1

)m

, φ1 < φmax
1

φ̇2 = λ̇
∂g

∂Y2
= λ̇

(

Y2

S2

)m

, φ2 < φmax
2

(30)

The proposed form for the damage variables follows the format proposed in i.e. Lemaitre
(1985). Note that damage evolution will only take place as long as the damage variables
are less than a threshold value φmax

α . Once the damage threshold is reached, the evolution
of the damage variable is suppressed, φ̇α = 0. The φmax

α are needed to obtained numerically
stable results and finite elements that do not degenerate.

In addition to (30), the eulerian plastic spin also need to be chosen, and it is chosen in
a similar format as in Borgqvist et al. (2015),

ωp =
∑

γ∈Ων

χ(γ)
λ̇2kΛ2k−1

γ

τ (γ)
skew(n(γ)

s ) + copχ
(8) λ̇2kΛ

2k−1
8

τ (8)
skew(n(8)

s ), (31)

motivated from a simple shear load situation. To evaluate the capabilities of the model,
it has been implemented in a finite element code and compared to experimental results.
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The software ABAQUS, Abaqus User’s Manual (2013) has been utilized with the user
material subroutine, UMAT to implement the model. The constitutive model has been
numerically integrated using the backward Euler scheme. Details regarding the numerical
implementation of the model is provided in Borgqvist et al. (2015).

5 Single element out-of-plane simulations

To verify the qualitative performance of the model, uniaxial tests in the out-of-plane di-
rections have been performed with a single element. The in-plane material properties
and out-of-plane compression test been calibrated to uniaxial measurements according to
Borgqvist et al. (2015) and Borgqvist et al. (2014). The simulations in this section will
provide results where damage is approximated as being smeared out over the entire element
(since only one element is used). Experimental data from a tensile test in the out-of-plane
direction and results from simulations are shown in Fig. 2.

0
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0.4

0.50 1 1.5

Normalized Displacement, u/t0

N
or
m
al
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ed
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rc
e,

F
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0

Figure 2: Experimental data (blue lines) and simulated response (black line) of a tension
test in ZD. The simulation has been performed with a single element. The displacement is
normalized with the initial thickness, t0, and the force is normalized with the initial cross
section area A0.

Similarly, simulations in out-of-plane shear has been performed, cf. Fig. 3a and b. In
Fig. 3b, simulations of shearing with a super-imposed normal pressure in ZD is shown.
The experimental measurements are however limited in this direction, cf. i.e. Stenberg
et al. (2001) and therefore no experimental measurements are shown. A good agreement
between the measured and simulated response is seen in Fig. 3a. From the measurement, it
is observed that the initial post-peak loading of the curve has failed to be recorded. This is
likely due to instability triggered by the localization of failure. In Fig. 3b, a frictional type
behavior is obtained, where increasing shear stresses are obtained as the normal pressure
increases.
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Figure 3: Out-of-plane shear test of paperboard a) in MD-ZD (blue: experimental data,
black: simulated response) and CD-ZD (red: experimental data, grey: simulated response)
direction and b) with a superimposed out-of-plane compression stress. The displacement
is normalized with the initial thickness, t0 and the force is normalized with the initial cross
section area, A0. The simulations have been performed with a single element.

6 Creasing and Folding

The introduction of damage does introduce a pathological mesh sensitivity. The remaining
simulations of the creasing and folding process will therefore be performed on a fixed mesh.
Alternatives to reduce the mesh-dependency are for instance to introduce non-local internal
variables as in e.g. Pijaudier-Cabot and Bažant (1987) and Strömberg and Ristinmaa
(1996) or modify the parameters associated with the softening according to the mesh size,
Bažant and Oh (1983). A length parameter that is related to the width of a localization
zone typically needs to be introduced and for paper-based materials one possible choice
could be the thickness of the fiber. In this work no explicit length scale parameter is used,
instead a fixed mesh size of 25 elements through the thickness are used in the simulations.
This element size is in the same order as the thickness of a fiber. The out-of-plane material
parameters related to the softening have been fitted to creasing and folding response for
the given mesh.

To evaluate the quality of paperboard, simplified testing setups are commonly adopted
in the industry. Two such testing setups are the line creasing and line folding operations.
The results obtained from these tests are commonly correlated to the performance of
the paperboard in the converting operations. One indicator correlated to the success
of forming a package, is the maximum bending moment. The large local deformations
generated during creasing and folding have been investigated using the proposed model.
The adopted creasing setup is sketched in Fig. 4.

The web-tension is applied by introducing a prescribed displacement, uw, as shown
in Fig. 4, such that a certain initial force is obtained. An initial web-force of 58 N,
corresponding to a web-tension of 1.5 kN/m, has been adopted in this work. After the
application of the web-tension, the male die die presses the paperboard into the groove of
the female die. The displacement of the male die is defined as zero when the male die is
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uw uw

Figure 4: Schematic of the creasing process, showing the geometry of the simulated setup.

aligned with the female die (indicated by the dotted line in Fig. 4). The width of the male
die is Wm = 0.9 mm and the width of the female die is Wf = 1.7 mm. The board is 110
mm long, 38 mm wide and 0.39 mm thick. The radius R on the male and female tools in
Fig. 4 has been chosen as 0.1 mm. The reaction force of the male die and the displacement
has been recorded during the test. The process is called a MD-crease when the x-direction
in Fig. 4 is co-linear with MD and with similar definition for CD-crease.

After the creasing operation, the paperboard is folded according to the setup sketched
in Fig. 5. In the setup for the line-folding operation, the paperboard is clamped at one

l0 = 10 mm

Paperboard

Load cell

Clamp

x (MD/CD)

y (ZD)

Figure 5: Schematic of line folding operation of a creased paperboard. The rotation center
is marked with a red cross.

side with a pressure of 0.2 MPa whereas the other side is constrained by a load-cell acting
as a rigid support. A bending moment is applied by rotating the clamps. The distance
between the clamps and the load cell is 10 mm and the paperboard is folded until an angle
of 90 degrees is reached and then unloaded. During the test, both the force as well as
the bending angle are measured. The L & W creasability tester (AB Lorentzen & Wettre,
Stockholm, Sweden) has been utilized in this work. Snapshots of the folding of creased
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paperboard in MD at a depth of 0.15 mm for different folding angels are shown in Fig. 6.
Delamination is clearly visible in the images in Fig. 6 and significant damage has been

a) b) c)

Figure 6: Folding of creased paperboard. The bending angles are approximately (from left
to right) 10, 20 and 60 degrees.

introduced in the board.

7 Simulations of creasing and folding

The folding process has been numerically simulated using the presented material model.
In the numerical simulations, the paperboard is assumed to be homogeneous and therefore
possess constant material parameters through the width and thickness.

The problem is modeled using 2d, fully integrated plane strain bi-linear continuum ele-
ments. All tools have been modeled as rigid analytic bodies and static Coloumb coefficient
of friction equal to 0.3 between the tools and the paperboard is adopted. The standard
ABAQUS-direct solver is utilized, with a quasi-static solution procedure. Paperboard
creased and folded in both MD and CD have been tested and simulated.

The reaction force and displacement obtained from the experimental tests are compared
to the simulation results in Fig. 7. As seen in Fig. 7, the overall shape of the macroscopic
force-displacement curves can be captured in both MD and CD. The peak forces predicted
by the model correspond well to the experimental results, with a slight overestimation of
the peak force in MD.

The deformed shape of the paperboard at a crease depth of 0.18 mm and after it has
been unloaded are shown in Fig. 8. The threshold values for the damage have been taken
as φmax

1 = 0.7 and φmax
2 = 0.4. Significant damage is induced in the paperboard during

creasing, cf. Fig. 8a. The shear damage starts to develop at a displacement of around -
0.35 mm in the simulations, which can be compared to the global force-displacement curves
in Fig. 7 where a drop in stiffness can be observed around the same displacement. The
magnitude and distribution of φ2 are similar when comparing Fig. 8a and 8b. The shear
damage has reached φmax

2 close to the corners of the male and female tools. During the
unloading phase, damage related to ZD-tension, i.e. φ1, starts to develop at the bottom of
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Figure 7: Reaction force vs displacement of male die in the creasing operation. The blue
curves indicates experimental data and the black curves the simulation predictions. Both
MD and CD creasing are shown.
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Figure 8: a) MD creasing of paperboard at a crease depth of 0.18 mm and b) after it has
been unloaded. The damage variable φ2 is indicated by the color contours.

the board. This was not observed in the measured response and might be a consequence of
that homogeneous material properties are assumed through the thickness in the modeling.

The response during folding for creased and uncreased paperboard are shown in Fig. 9.
The general shape of the global force-bending angles curves are captured by the model,
both in MD and CD. The reaction force obtained from the folding simulation of uncreased
paperboard corresponds well with the measured data in CD, but is slightly underestimated
in MD. The shape is more serrated in the simulations compared to the measured data,
which can be correlated to the formation of shear bands. Examining the folding response
of the creased paperboard in MD, it is observed that the simulations predict a change in
stiffness around a bending angle of 5 degrees. This change occurs earlier in the simulations
compared to the measured data. It is also noted that the reaction force is lower in the
simulations than the measured data for bending angles less than 50 degrees. The reaction
force is continuously increasing in the simulations, while in the measurements the force is
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Figure 9: Response during folding of creased and uncreased paperboard in MD and CD.
The blue curves indicates experimental data and the black curves the simulation predic-
tions. The bending angle vs the reaction force at the load cell is shown.

nearly constant after a bending angle of around 10 degrees. The creased folding curve in
CD has similar tendencies as MD, but the reaction force is lower.

For the three load levels marked in the MD-creased curve in Fig. 9, the deformation
pattern of the paperboard has been examined in detail, cf. Fig. 10. To visualize the shear
deformation, the accumulated effective plastic shear, defined from

κ̇seff =
√

(κ̇(9))2 + (κ̇(10))2 + (κ̇(11))2 + (κ̇(12))2, (32)

is shown in Fig. 10 together with the damage φ1.
In Fig. 10, it can be observed that some elements are stretched several hundreds of

percent, indicating a deformation similar to that of delamination. The damage φ1 starts
to develop at a bending angle of around 5 degrees, i.e. slightly before load level (1) at
10 degrees. At this load level, the bending stiffness has become lower compared to the
initial bending stiffness. As the paperboard is further folded, cf. load level (2) and (3),
the damage is increasing. As seen in Fig. 8b, not only the damage in ZD is significant, but
also the shear deformation is continuously increasing.

The final shape of the paperboard obtained from the experimental test and the simu-
lation after the folding process is compared in Fig. 11. Large localized deformation in the
elements at the center of the paperboard is observed, resembling the delamination seen in
Fig. 11b. The permanent deformations appears however to be overestimated in the model
and the paperboard is thicker compared with the measurements.

As large shear deformations appears to be present in the folding of creased paperboard,
a sensitivity analysis with respect to the parameter η has been performed, cf. Fig. 1.
Note that η determines how much the shear strength increases under super-imposed ZD-
compression (i.e. a friction parameter), but it also determines the amount of dilation in
the ZD-direction during plastic shear deformation due to the choice of flow rules. The
force-displacement response for the values η ∈ {0.35, 0.7, 1.4} are shown in Fig. 12.

As seen in Fig. 12, the η parameter has a significant effect on the response. The reaction
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Figure 10: The deformation during folding of creased paperboard. The images are taken
at the load-levels marked in Fig. 10. In a), the magnitude of φ1 is shown and in b) the
accumulated plastic shear, κeffs .
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Figure 11: The final shape of the creased paperboard in MD compared with the observed
deformation.

force becomes larger as the slope η increases. The deformed shape of the paperboard is
also significantly different as η is changed, which is illustrated in Fig. 13. Higher value of
η implies increased curvature of the lower boundary of the crease zone, cf. Fig. 13. As the
value of η decreases, the shape of the crease is more rectangular which is in better agreement
with experimental observations. It can also be noted that fewer elements expand in the
ZD-direction at the corners of the crease zone as η increases. The properties related to out-
of-plane shearing therefore appears to be of importance for folding of creased paperboard.

Finally, simulations have been performed where the damage evolution is suppressed
to illustrate the effect of introducing damage. The force-displacement curves with and
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Figure 12: Folding of creased paperboard in MD for different values of the paper fric-
tion parameter η. The blue curve indicates experimental data and the black curves the
simulation predictions. The bending angle vs the reaction force at the load cell is shown.
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Figure 13: Deformed shape of paperboard at a bending angle of 60 degrees for different
values of η. The values are (from left to right) η = 0.35, η = 0.7 and η = 1.4.

without damage are shown in Fig. 14. As expected, the damage reduces the predicted
reaction force, cf. Fig. 14. The reaction force is continuously increasing at a higher rate
when no damage is included in the model.

17



1

2

3

0 20 40 60 80
Bending angle, degrees, (-)

R
ea
ct
io
n
fo
rc
e,

F
(N

)
With damage

No damage

Figure 14: Bending angle vs the reaction force for folding curves of creased paperboard
where the damage has been suppressed (dashed line) and when damage is included (solid
line). The blue line indicate the measurements.

8 Conclusions
An anisotropic material model has been established. The model has been developed in a
thermodynamic setting, fulfilling the dissipation inequality. The directional dependence
is modeled by the introduction of director vectors and a normal vector that represent the
characteristics directions of the material, MD, CD and ZD. A yield surface that hardens
and softens distortionally has been used to model permanent deformations. Two scalar
damage variables have been introduced to model the softening associated with out-of-plane
tension and shear deformations. The material model has been applied to paperboard and
it is shown that the model can capture the uniaxial response.

The model has been used to simulate the creasing and folding operations. The defor-
mation and global force-displacement curves have been compared to measured data. The
simulated deformation patterns and the force-displacement curves are in qualitative agree-
ment with the measured data. It is shown that the introduction of damage variables are
necessary to reduce the reaction force in bending.

The parameters associated with the softening have been fitted for a fix mesh in the
creasing and folding operations. The deformation pattern is highly complex and involves
several deformation modes. It has been observed that both out-of-plane tension and out-
of-plane shear are important deformation mechanisms in folding creased paperboard. The
out-of-plane shear-friction parameter η has a significant influence on the folding response
and it can be concluded that the strength in out-of-plane shear is therefore important
for forming packages. The simulated folding response matches qualitatively the measured
data, but there are some differences. The reaction force is initially underestimated by
the model, but then a continuous increase in the force is predicted while the measured
data indicates approximately constant force after a bending angle of approximately 10
degrees. The permanent deformation in the out-of-plane direction are overestimated in
the model. Nevertheless, adopting continuum for predicting the full field behavior of
paperboard appears to be a viable approach, but more work remains to obtain better
correspondence with the measured data.
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A Material parameters

The material parameters used in this work are presented in Tables. 1, 2 and 3. The non-
zero components of N (ν)

ij are summarized in Table. 1. The exponent k = 3 has been used
in (21). The density of the paperboard is 780 kg/m3.

Stress-state, Subsurface, ν Subsurface component N
(ν)
ij (-)

MD-tension 1 N(1)
11 = 0.925, N(1)

22 = −0.379

CD-tension 2 N
(2)
11 = −0.215, N

(2)
22 = 0.977

MD-CD shear 3 N(3)
12 = 0.7071, N(3)

21 = 0.7071

MD-compression 4 N(4)
11 = −1

CD-compression 5 N(5)
22 = −1

MD-CD shear 6 N(6)
12 = −0.7071, N(6)

21 = −0.7071

ZD-compression 7 N
(7)
33 = −1

ZD-tension 8 N(8)
33 = 1

MD-ZD-shear 9 N
(9)
33 = 0.704, N

(9)
13 = 0.502

MD-ZD-shear 10 N(10)
33 = 0.704, N(10)

13 = −0.502

CD-ZD shear 11 N(11)
33 = 0.704, N(11)

23 = 0.502

CD-ZD shear 12 N(12)
33 = 0.704, N(12)

23 = −0.502

Table 1: Numerical values of the in-plane subsurface parameters

Elastic parameter Value
A1 1690 (MPa)
A2 292 (MPa)
A3 28.4 (MPa)
A4 1333 (MPa)
A5 110 (MPa)
A6 0.365 (MPa)
A7 11.5 (-)

Table 2: Numerical values of the elastic parameters.

Subsurface , ν Initial yield, K0 (MPa) Hardening aν (MPa) Hardening bν (-)
1 20.4 12.2 690
2 11.7 5.10 435
3 9.91 6.63 334
4 29.1 - -
5 21.0 - -
6 9.91 6.63 435
7 1.00 49 -
8 0.5 - -
9 2.5 - -
10 2.5 - -
11 2.5 - -
12 2.5 - -

Table 3: Numerical values of the plastic parameters
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Damage parameter Value
n 3.15 (-)
nt 0.85 (-)
ns 1.5 (-)
nc 1 (-)
S1 0.1 (MPa)
S2 25 (MPa)
c 0.1 (-)
m 0.39 (-)

Table 4: Numerical values of the damage parameters.
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Isaksson, P., Hägglund, R., and Gradin, P. (2004). Continuum damage mechanics applied
to paper. International Journal of Solids and Structures, 41, 4731–4755.

Kachanov, L. M. (1958). Rupture time under creep conditions. Izv. Akad. Nauks SSSR
Otd. Tech. Nauk, 8, 26–31 (In russian). English translation: Rupture time under creep
conditions. International Journal of Fracture, Vol. 97, No 1–4 , pp. xi–xviii, 1999.

Lemaitre, J. (1985). A continuous damage mechanics model for ductile failure. Journal of
Engng. Mat. and Tech., 107, 83–89.

Mandel, J. (1971). Plasticite Classique et viscoplasticity. CISM course No.97. Udine.

Nagasawa, S., Fukuzawa, Y., Yamaguchi, T., Tsukatani, S., and Katayama, I. (2003).
Effect of crease depth and crease deviation on folding deformation characteristics of
coated paperboard. Journal of Materials Processing Technology, 140, 157–162.

21



Nyg̊ards, M., Just, M., and Tryding, J. (2009). Experimental and numerical studies of
creasing of paperboard. International Journal of Solids and Structures, 46, 2493–2505.
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