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Abstract

In this paper, we introduce a �rst order accurate resonance model based on a

second order Padé approximation of the re�ection coe�cient of a narrowband

antenna. The resonance model is characterized by its Q factor, given by the

frequency derivative of the re�ection coe�cient. The Bode-Fano matching the-

ory is used to determine the bandwidth of the resonance model and it is shown

that it also determines the bandwidth of the antenna for su�ciently narrow

bandwidths. The bandwidth is expressed in the Q factor of the resonance

model and the threshold limit on the re�ection coe�cient. Spherical vector

modes are used to illustrate the results. Finally, we demonstrate the funda-

mental di�culty of �nding a simple relation between the Q of the resonance

model, and the classical Q de�ned as the quotient between the stored and

radiated energies, even though there is usually a close resemblance between

these entities for many real antennas.

1 Introduction

The bandwidth of an antenna system can in general only be determined if the im-
pedance is known for all frequencies in the considered frequency range. However,
even if the impedance is known, the bandwidth depends on the speci�ed threshold
level of the re�ection coe�cient and the use of matching networks. The Bode-Fano
matching theory [4, 11] gives fundamental limitations on the re�ection coe�cient
using any realizable matching networks and hence a powerful de�nition of the band-
width for any antenna system. However, as it is an analytical theory it requires
explicit expressions of the re�ection coe�cient for all frequencies.

The quality (Q) factor of an antenna is a common and simple way to quantify the
bandwidth of an antenna [2, 7, 14]. The Q of the antenna is de�ned as the quotient
between the power stored in the reactive �eld and the radiated power. There are
several attempts to express the Q factor in the impedance of the antenna, see e.g.,
[14] with references. In [14], an approximation based on the frequency derivative of
the input impedance, Q ≈ ω|Z ′|/(2R), is introduced and shown to be very accurate
for some antennas.

In this paper, we employ a Padé approximation to show that the Bode-Fano
bandwidth of a narrowband antenna is determined by the amplitude of the fre-
quency scaled frequency derivative of the re�ection coe�cient, ω0|ρ′|. Moreover,
Qρ = ω0|ρ′| = ω|Z ′|/(2R) is identi�ed as the Q factor of a �rst order accurate
approximating resonance model of the antenna. We observe that the classical Q-
factor, de�ned as the quotient between the stored and radiated energies, of the
antenna system is not utilized nor needed in the analysis. However, there is a close
resemblance between the Q-factor derived from the di�erentiated re�ection coe�-
cient, Qρ, and the classical Q-factor, Q. It is shown that Q ≈ Qρ for the spherical
vector modes if Q is su�ciently large. This is also seen from the approximation of
the Q-factor Q ≈ ω|Z ′|/(2R) = Qρ considered in [14]. However, a simple example is
used to demonstrate that there are no simple relation between Q and Qρ for general
antennas.
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Figure 1: Lumped circuits. a) the series RCL circuit. b) the parallel RCL circuit.
c) a lattice network.

The rest of the paper is outlined as follows. In Section 2, the Q factor and lumped
RCL circuits are reviewed. The Padé approximation of the re�ection coe�cient is
introduced in Section 3. In Section 4, the Bode-Fano bandwidth of the resonance
model and the bandwidth of the corresponding antennas are analyzed. The results
are illustrated using spherical vector modes in Section 5. In Section 6, an antenna
constructed with a �at re�ection coe�cient is used to demonstrate the fundamental
di�culties of �nding a simple relation between Q and Qρ for general antennas.
Conclusions are given in Section 7.

2 Q factor and resonance circuits

The Q factor (quality factor, antenna Q or radiation Q) is commonly used to get an
estimate of the bandwidth of an antenna. Since, there is an extensive literature on
the Q factor for antennas, see e.g., [2, 3, 6, 7, 14], only some of the results are given
here. The Q factor of the antenna is de�ned as the quotient between the power
stored in the reactive �eld and the radiated power [2, 7], i.e.,

Q =
2ω max(WM, WE)

P
, (2.1)

where ω is the angular frequency, WM the stored magnetic energy, WE the stored
electric energy, and P the dissipated power. At the resonance frequency, ω0, there are
equal amounts of stored electric energy and stored magnetic energy, i.e., WE = WM.

The Q factor is also fundamentally related to the lumped resonance circuits [11].
The basic series (parallel) resonance circuit consists of series (parallel) connected
inductor, capacitor, and resistor, see Figure 1ab. With a resonance frequency ω0

and resistance R, we have L = RQ/ω0 and C = 1/(RQω0) and L = R/(Qω0) and
C = Q/(Rω0) in the series and parallel cases, respectively. It is easily seen that the
Q factor de�ned in (2.1) is consistent with the lumped resonance circuits [11].

The transmission coe�cient of the resonance circuits in Figure 1ab, is

tRCL(s) =
1

1 + Q
2

(
ω0

s
+ s

ω0

) , (2.2)
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where s = σ +iω denote the Laplace parameter. It has one zero at the origin, s = 0,
and one zero at in�nity, s =∞. The corresponding re�ection coe�cient is

ρRCL(s) =
Z(s)−R

Z(s) + R
= ± 1 + (s/ω0)

2

1 + (s/ω0)2 + 2s/(ω0Q)
(2.3)

where the + and − minus signs correspond to series and parallel circuits, respec-
tively. The zeros and poles of the re�ection coe�cient are

λo1,2 = ±iω0 and λp1,2 =
ω0

Q

(
−1± i

√
Q2 − 1

)
, (2.4)

respectively. We also observe that di�erentiation of the re�ection coe�cient with
respect to iω/ω0 gives Q, i.e.,

∂ρRCL

∂ω

∣∣∣∣
ω=ω0

=
±iQ

ω0

(2.5)

and hence Q = ω0|ρ′RCL(ω0)|.

3 Padé approximation of the re�ection coe�cient

Here, we consider a local approximation of a given re�ection coe�cient, ρ̃, of an
antenna. We assume that the resonance frequency, ω0, and the frequency derivative
of the re�ection coe�cient, ρ̃′(iω0) are known. The model, ρ, is required to be a
local approximation to the �rst order, i.e., it is tuned to the resonance frequency

ρ(iω0) = ρ̃(iω0) = 0, (3.1)

and its frequency derivative is speci�ed

∂ρ

∂ω

∣∣∣∣
ω=ω0

=
∂ρ̃

∂ω

∣∣∣∣
ω=ω0

= ρ̃′. (3.2)

We also require that the model is unmatched far from the resonance frequency

|ρ(0)| = |ρ(∞)| = 1. (3.3)

The error in the approximation can be estimated with the second order derivative of
the re�ection coe�cient. We assume that the re�ection coe�cients are continuously
di�erentiable two times. This gives an error of second order in β = 2(ω − ω0)/ω0,
i.e.,

|ρ(iω)− ρ̃(iω)| = O(β2). (3.4)

Observe that a curve �tting techniques might be more practical for experimental
data, see e.g., [10].

We start with a Padé approximation of the re�ection coe�cient. A general Padé
approximation of order 2,2 is

ρ(s) = γ
1 + a1s + a2s

2

1 + b1s + b2s2
(3.5)
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where a1, a2, b1, b2 are real valued constants. As the re�ection coe�cient has an
arbitrary phase at resonance, it is necessary to consider a complex valued coe�cient
γ. We interpret this as a slowly varying function γ̃(s) where γ̃(iω) ≈ γ over the
considered frequency interval. The requirement (3.3) gives |γ| = 1 and |a2| = |b2|.
We also have γ̃(−iω) ≈ γ∗ for any physically realizable model. The resonance
frequency imply a1 = 0 and a2 = ω−2

0 . Di�erentiation with respect to the angular
frequency gives

γ
− 2

ω0

1 + b1iω0 − b2ω2
0

= ρ̃′ (3.6)

and hence b2 = ω−2
0 and b1 = 2/(ω0Qρ), where we have introduced the Q factor in

the resonance approximation as

Qρ = |ρ̃′(iω0)ω0| (3.7)

in accordance with (2.5). We observe the resemblance with the approach in [14]
showing that the Q factor of some antennas, Q, can be approximated with the
frequency derivative of the impedance, i.e.,

Q ≈ ω0
|Z ′

1|
2R

= ω0|ρ̃′| = Qρ. (3.8)

The Padé approximation of the re�ection coe�cient can be written

ρ(s) =
−iρ̃′

|ρ̃′|
1 + (s/ω0)

2

1 + (s/ω0)2 + 2s/(ω0Qρ)
. (3.9)

The special case with arg ρ̃′ = π/2 (arg ρ̃′ = −π/2) gives the classical lumped
series (parallel) RCL circuit approximation. Observe that Qρ is the Q factor of the
approximating resonance circuit and not the Q factor of the original system.

We can interpret the general cases with Re ρ̃′ 6= 0 as the result with a cas-
cade coupled RCL circuit and a transmission line with characteristic impedance
R. A transmission line with length d rotates the re�ection coe�cient an angle
φ = −2dk0 = −2dω0/c0 in the complex plane. It is also possible to consider a lattice
network that rotates the re�ection coe�cient [13]. A lattice network with capaci-
tance, C, and inductance, L = R2C, as shown in Figure 1, has re�ection coe�cient
ρL(s) = 0 and transmission coe�cient

tL(s) =
1− sRC

1 + sRC
=

1− αs/ω0

1 + αs/ω0

, (3.10)

where we have introduced the dimensional free parameter α = ω0RC. The re�ection
coe�cient of the cascaded lattice and RCL circuit is

ρ(s) = t2L(s)ρRCL(s) = ±
(

1− αs/ω0

1 + αs/ω0

)2
1 + (s/ω0)

2

1 + (s/ω0)2 + 2s/ω0/Qρ

(3.11)

where it is seen that the lattice network rotates the re�ection coe�cient an angle
φ = −4 arctan(α). It is easily seen that α = − tan(φ/4) and hence 0 < α < 1 as it
is su�cient to consider −π < φ < 0. The transmission coe�cient of the cascaded
system is given by t = tLtRCL.
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Figure 2: Illustration of the lossless matching networks. The matching network
has the re�ection coe�cients r1 and r2 and transmission coe�cient t. The same
matching network is used in the two cases. a) the resonance circuit with re�ection

coe�cient ρ gives Γ. b) the antenna with re�ection coe�cient ρ̃ gives Γ̃.

4 Bandwidth and matching

The re�ection coe�cient (3.11) provides a local approximation of the re�ection co-
e�cient of the antenna. Assume that the error of the re�ection coe�cient of the
approximate circuit is of size ε, i.e.,

|ρ(iω)− ρ̃(iω)| ≤ ε (4.1)

over the frequency band of interest. We consider a general lossless matching network
to determine the bandwidth of the antenna and the approximate resonance circuits
as illustrated in Figure 2. The error in the re�ection coe�cient after matching is
estimated as

|Γ− Γ̃| = |t|2
∣∣∣∣ ρ

1− r2ρ
− ρ̃

1− r2ρ̃

∣∣∣∣ = |t|2 |ρ− ρ̃|
|1− r2ρ||1− r2ρ̃|

≤ 1− |r2|2

(1− δ|r2|)2
ε ≤ ε

1− δ2
, (4.2)

where δ = max(|ρ|, |ρ̃|). It is observed that the approximate circuit can be used in
the matching analysis as long as the error, ε, is su�ciently small and the re�ection
coe�cients are less than unity. The re�ection coe�cient of the matched antenna is
estimated by the triangle inequality as∣∣|Γ̃| − |Γ|∣∣ ≤ |Γ− Γ̃| ≤ ε

1− δ2
= O(β2), (4.3)

where we used (3.4).
The Bode-Fano theory is used to get fundamental limitations on the matching

network [4, 12]. The Bode-Fano theory uses Taylor expansions of the re�ection
coe�cient around the zeros of the transmission coe�cient to get a set of integral
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Figure 3: Illustration of the Bode-Fano limits. The model gives the threshold
Γ0. The threshold level of the corresponding antenna is estimated with (4.3). The
dashed curve illustrates an unattainable re�ection coe�cient.

relations for the re�ection coe�cient. We start with the lumped RCL circuit. The
transmission coe�cient (2.2) of the RCL circuit has a single zero at the origin and
a single zero at in�nity. The Bode-Fano theory gives the integral relations

2

π

∫ ∞

0

1

ω2
ln

1

|Γ(iω)|
dω =

∑
i

λ−1
oi − λ−1

pi − 2λ−1
ri =

2

ω0Q
− 2

∑
i

λ−1
ri (4.4)

and
2

π

∫ ∞

0

ln
1

|Γ(iω)|
dω =

∑
i

λoi − λpi − 2λri = 2
ω0

Q
− 2

∑
i

λri (4.5)

by a Taylor expansion around s = 0 and s = ∞, respectively. Here, λoi, λpi, and
λri denote the zeros (2.4) of ρRCL, the poles (2.4) of ρRCL, and arbitrary complex
valued numbers with positive real part, respectively. We assume that the matching
is symmetric around the resonance frequency, i.e., the frequency range ω0−∆ω/2 ≤
ω ≤ ω0 + ∆ω/2 is considered. The relative bandwidth, B, is given by B = ∆ω/ω0.
Set

K = inf
| ω
ω0
−1|≤B

2

2

π
ln

1

|Γ(iω)|
=

2

π
ln

1

sup| ω
ω0
−1|≤B

2
|Γ(iω)|

(4.6)

to simplify the notation [4].
The integrals in (4.4) and (4.5) are estimated from below giving

B

1−B2/4
K ≤ 2

Q
− 2

∑
i

ω0

λri

and BK ≤ 2

Q
− 2

∑
i

λri

ω0

, (4.7)
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where the coe�cients λri have a positive real-valued part. Both inequalities can be
satis�ed with a complex conjugated par, λr1 = λ∗r2. This reduces the inequalities to

K ≤ 2

BQ

(
1− B2

4

)
. (4.8)

Hence, the re�ection coe�cient is bounded as

sup |Γ(iω)| ≥ Γ0 = e−
π

QB
(1−B2/4) = e−

π
QB +O(B/Q) (4.9)

for any realizable Γ where we introduced the Bode-Fano threshold limit, Γ0, on the
re�ection coe�cient. The inequality (4.9) states that it is not possible to construct a
lossless matching network such that |Γ| is strictly smaller than Γ0 over the considered
frequency range. The Bode-Fano threshold limit, Γ0, and an unattainable re�ection
coe�cient are illustrated in Figure 3. The corresponding wideband and narrowband
Bode-Fano bandwidths are given by

B =
√

Q2K2
0 + 4−QK0 ∼

π

Q ln Γ−1
0

+O(Q−3) (4.10)

where K0 = 2 ln Γ−1
0 /π. The decibel scale of the re�ection coe�cient, ΓdB =

20 log Γ0, simpli�es the narrowband bandwidth to

B ≈ 27

Q|ΓdB|
. (4.11)

The re�ection coe�cient, ρRCL, together with its Bode-Fano limits, Γ0, are illus-
trated in Figure 4. The frequency scaling β = 2(ω − ω0)/ω0 is used to emphasize
the character of the re�ection for di�erent values of Q. The parameter β can be
interpreted as the relative bandwidth, i.e.,

B =
∆ω

ω0

= 2
ω − ω0

ω0

= β, (4.12)

if ω is considered to be the upper frequency limit. The Bode-Fano limits (4.10) are
shown for the maximal re�ection coe�cient Γ0 = −10,−20,−30 dB and Q factors
2, 4, 10,∞. It is observed that the curves are indistinguishable for Q > 10.

In the general case of a RCL circuit and the lattice network, the transmission co-
e�cient has an additional zero at σ = ω0/α. Observe that the appropriate re�ection
coe�cient in the Bode-Fano theory is given by (2.3) since the re�ection coe�cient
of the lattice network is zero for all frequencies. This gives the additional integral
relation ∫ ∞

0

σ

σ2 + ω2
ln

1

|Γ|
dω =

π

2
Aσν

0 −
π

2
Re
∑

i

−λ∗ri − σ

−λri − σ
(4.13)

where Aσν
0 = ln |ρRCL(σ)|−1. We solve these equations in a similar way as for the

RCL circuit. For simplicity, we start with a complex conjugated pair of zeros in the
right half plane λri/ω0 = x± iy. This gives the inequality

K arctan
αB

1 + α2(1−B4)
≤ ln

1 + α2 + 2β/Q

1 + α2
− 2

(α−1 + x)2 − y2

(α−1 + x)2 + y2
. (4.14)
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Figure 4: Re�ection coe�cient of a resonance circuit for di�erent Q factors and
Bode-Fano matching networks. The Q factors Q = 2, 4, 10,∞ and the Bode-Fano
limits corresponding to −10,−20,−30 dB are shown.

A narrow band assumption B � 1 and Q� 1 gives

KB ≤ 2

Q
− 4α

Q2(1 + α2)
− 2 (α + 1/α)

(α−1 + x)2 − y2

(α−1 + x)2 + y2
+O(B3) +O(Q−3). (4.15)

We observe that the second order correction, −4Q−2α/(1+α2), can be compensated
with a large imaginary part, y, of the zeros in the right half plane. It gives the result
KB ≤ 2/Q as for the case of the narrowband RCL circuit. The e�ect of the rotation
is hence negligible for large Q factors.

The Bode-Fano limits give fundamental limitations on the relation between the
magnitude of the re�ection coe�cient and the bandwidth for the resonance models
considered here. The relations can be extended to the antenna with estimates (4.1)
and (4.3). The re�ection coe�cient of the antenna after matching is estimated
by (4.3) as

sup |Γ̃| = Γ̃0 ≥ Γ0 −
ε

1− δ2
= e−

π
QB +O(ε). (4.16)

Invert to get an estimate of the bandwidth

B ≤ π

Qρ ln(Γ̃0 + ε/(1− δ2))−1
≈ π

Qρ ln Γ̃−1
0

(
1 +

ε

Γ̃0 ln Γ̃−1
0 (1− δ2)

)
=

π

Qρ ln Γ̃−1
0

+O(ε) =
π

Qρ ln Γ̃−1
0

+O(B2), (4.17)

where we used the estimate (4.3). Hence, the bandwidth of the antenna can be
estimated by the Q factor, Qρ = ω0|ρ̃′|, of the approximating resonance model as



9

long as the bandwidth is su�ciently narrow giving

B ∼ π

Qρ ln Γ̃−1
0

, for B � 1. (4.18)

5 Approximation of spherical vector waves

An arbitrary electromagnetic �eld can be expanded in spherical vector waves [1, 8, 9]

E(r) =
∑∞

l=1

∑l
m=−l

∑2
τ=1 aτml vτml(kr) + fτml uτml(kr) (5.1)

H(r) = i
η0

∑∞
l=1

∑l
m=−l

∑2
τ=1 aτml vτ̄ml(kr) + fτml uτ̄ml(kr) (5.2)

The terms labeled by τ = 1, l, and m identify magnetic 2l-poles and the terms
labeled by τ = 2, l, and m identify electric 2l-poles. The outgoing spherical vector
waves u are given by

u1ml(kr) = h
(2)
l (kr)A1ml(r̂) (5.3)

u2ml(kr) =
1

k
∇×

(
h

(2)
l (kr)A1ml(r̂)

)
(5.4)

where h
(2)
l denotes the spherical Hankel function and A denote the spherical vector

harmonics. There are several common de�nitions of the spherical vector harmon-
ics [1, 8, 9]. For τ = 1, 2, we use

A1ml(r̂) =
1√

l(l + 1)
∇× (r Y

m
l (r̂)) (5.5)

A2ml(r̂) = r̂ ×A1ml(r̂), (5.6)

where Ym
l denotes the spherical harmonics [1, 8, 9].

The impedance of a TM mode normalized with the intrinsic impedance, η0, is
(ξ = ka = ωa/c0)

Z = R + iX = i
(ξh

(2)
l (ξ))′

ξh
(2)
l (ξ)

=
1

|ξh(2)
l |2

+ i Re
(ξh

(2)
l )′

ξh
(2)
l

(5.7)

where we used the Wronskian h
(2)
l h

(2)
l

′∗ − h
(2)
l

∗h
(2)
l

′ = 2iξ−2. The series expansions
of the Hankel functions [1] gives the expansions

R(ξ) ∼ ξ2l l!2l

(2l)!
and X ∼ − l

ξ
(5.8)

for small ξ. Tune the impedance with a series inductor, i.e., ω0L = −X. This
gives the impedance Z1 = Z + iωL. Di�erentiate the impedance with respect to the
angular frequency ω

Z ′
1 = −2R

a

c0

Re
(ξh

(2)
l )′

ξh
(2)
l

+ i
a

c0

(
n(n + 1)

ξ2
− 1− Re(

h
(2)
l

′

h
(2)
l

+
1

ξ
)2 +

c0

a
L

)

= −2αRX + iα

(
n(n + 1)

ξ2
− 1 + R2 −X2 − X

ξ

)
(5.9)
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Figure 5: Illustration of the resonance circuit approximations. The frequencies
corresponding to Qρβ = −4,−2,−0.5, 0.5, 1, 2, 4 are indicated with a star and a
circle for the modes and the resonance models, respectively. TM cases with Qρ = 5
and Qρ = 18 and TE cases with Qρ = 182 and Qρ = 1859 are shown. a) without
transmission line. b) with a λ0/(2π), i.e., k0d = 1, long transmission line.

The frequency derivative of re�ection coe�cient, ρ̃ = (Z1−R)/(Z1 +R), is given by

ω
∂ρ̃

∂ω
= ωρ̃′ = ω

Z ′
1

2R
= −kaX +

ika

2R

(
n(n + 1)

k2a2
− X

ka
−X2 − 1 + R2

)
(5.10)

The derivatives (5.10) is used to get resonance models of the TE and TM re�ec-
tion coe�cients, Qρ = ω|ρ̃′(ω)|. The TM (TE) case gives series (parallel) circuits
combined with lattice networks. In Figure 5a, the re�ection coe�cient, ρ̃, together
with their resonance models (3.11) are depicted for spheres with radius k0a = 0.4
and k0a = 0.65. The TM and TE cases are shown for l = 1 and l = 2, respectively.
The Q factors in the resonance model are Qρ = 5, 18, 182, 1859. The frequencies
Qρβ = −4,−2,−0.5, 0.5, 1, 2, 4 are indicated with a star and a circle for the modes
and the resonance models, respectively. It is only for the lower values of Qρ, we
can observe a small discrepancy between modes and their models. The curves are
indistinguishable for the higher values of Qρ. This is also seen in Figure 6 where
the error ‖ρ(iω) − ρ̃(iω)‖ = supω |ρ(iω) − ρ̃(iω)| is depicted. The error is of second
order in B, i.e., 40 dB for each decade in B, in accordance with (3.4).

We also consider the case where the TM and TE modes are connected to a
transmission line with length λ0/(2π). The transmission line rotates the re�ection
coe�cients as seen in Figure 5b. This require a larger compensation with the lattice
network in the model. We observe that the di�erences between the model and the
rotated modes increases. However, the error is still very small for the larger values
of Qρ as seen in Figure 6.

As the error can increase by the matching network we consider the error of the
matched re�ection coe�cient, i.e., ‖Γ − Γ̃‖. The error is estimated by (4.2). It
is observed that the error increases as the magnitude of the unmatched re�ection
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Figure 6: Errors in the resonance models corresponding to Figure 5. The model
error is given by |ρ−ρ̃| and (4.2) is used to estimate the error, |Γ−Γ̃|, after matching.

coe�cient increases. This is also illustrated by the solid and dashed curved in
Figure 6. The additional error by the matching, 1/(1−δ2), are negligible for QρB �
1 and increases to approximately 2 dB for QρB = 1 and 14 dB for QρB = 4.

It is also illustrative to compare the Q factor of the resonance model with the Q
factor of the radiating system. The Q factor of the TE and TM modes can either be
determined by the equivalent circuits [2, 7] or by an analytic expression functions [3].
The Q of the TMlm or TElm mode is given by

Q = ξ +
ξ

2Rl

(
l(l + 1)

ξ2
− Xl

ξ
−X2

l −R2
l

)
. (5.11)

The Q factor depends only on the l-index and there are 2(2l + 1) modes for each l
index. The six lowest order modes have Q = (ka)−3+(ka)−1. By combination of one
TEm1 mode and one TMm1 mode the Q factor is reduced to Q = (ka)−3/2+(ka)−1.
The Q factor has the asymptotic expansion Q ∼ (2l)!l/(ξ(2l+1)l!2l). The resonance
circuit approximation has a Q factor, Q = |ω0ρ̃

′|. We get

ω0ρ̃
′

iQ
= 1 +

ξ(Z − 1)

Q
∼ 1 + (−ξ + li)

ξ(2l+1)l!2l

(2l)!l
(5.12)

where we see that the resonance circuit approximation of the Q factor is very good
for small ξ or equivalently large Q-values.

We consider the Bode-Fano fractional bandwidth of the TMm1 and TEm1 modes
to determine the errors in the Q-factor approximations [5]. The transmission coe�-
cient of the TMm1 and TEm1 modes has a double zero at s = 0. The corresponding
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re�ection coe�cient is

Γ1(s) =
1

1 + 2sa
c0

+ 2s2a2

c20

(5.13)

without zeros λoi but with the two poles λp1,2 = (−1± i)c0/(2a). The coe�cients of
the Taylor series around s = 0 give the two integral relations

2

π

∫ ∞

0

ω−2 ln
1

|Γ(iω)|
dω =

∑
i

λ−1
oi − λ−1

pi − 2λ−1
ri =

(
2a

c0

− 2
∑

i

λ−1
ri

)
(5.14)

and

2

π

∫ ∞

0

ω−4 ln
1

|Γ(iω)|
dω =

−1

3

∑
i

1

λ3
oi

− 1

λ3
pi

− 2

λ3
ri

=

(
4a3

3c3
0

+
2

3

∑
i

λ−3
ri

)
, (5.15)

where the coe�cients λri have a positive real-valued part. Assuming a bandwidth
and K as in (4.6) gives

K
B

1−B2/4
≤ 2k0a− 2

∑
i

ω0

λr

(5.16)

and

K
B + B3/12

(1−B2/4)3
≤ 4(k0a)3

3
+

2

3

∑
i

ω3
0

λ3
r

(5.17)

where k0 = ω0/c0. It is noted that it is enough to consider one coe�cient λr or a
complex conjugated pair. These equations can be solved numerically with respect
to B and λr.
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Figure 8: Illustration of the antenna prototype. A transmission line is used to
connect the shielded power supply, the microwave network, and the simple antenna.

The fractional bandwidth, B, given by (5.16) and (5.17) is compared with the
fractional bandwidth, BQ, determined by the resonance approximation (4.10) to
determine the error in the resonance approximation. We consider the Q factors de-
termined by the stored and radiated �elds (2.1), i.e., (5.11), and by the resonance
approximation (3.7), i.e., (5.10). The relative error |B −BQ|/B is depicted in Fig-
ure 7 for the threshold re�ection coe�cient Γ0 = 1/3. It is observed that the errors
are small for large Q factors and that they approach 0 as Q → ∞ as known from
the asymptotic expansions. We also observe that the narrowband approximation
in (4.10) is good for large Q factors. The error of the resonance approximation,
Qρ, decays faster than the error in the Q-approximation as Q increases. This is in
accordance with the construction of the resonance approximation as a local approx-
imation of the re�ection coe�cient.

6 Q factor of general antennas

There have been several attempts to express the Q factor of a general antenna in
the impedance of the antenna, see [14] and references there in. Common versions
are

Q ≈ ω0

2R(ω0)
|X ′(ω0)| (6.1)

and
Q ≈ ω0

2R(ω0)
|Z ′(ω0)| = ω0|ρ′(ω0)| = Qρ (6.2)

where the antenna is assumed to be tuned to resonance at ω0. We observe that (6.2)
reduces to (6.1) for the special case of R′(ω0) = 0. We consider the more general
approximation (6.2) as it is invariant to shifts in the reference plane in the feed line.
This approximation has been extensively tested and it is con�rmed that it is a good
approximation for many antennas. However, this does not mean that it is a good
approximation for a general antenna.

To better understand the requirements on the antennas where (6.2) is good
and at the same time, why it is di�cult to prove these types of approximations for
general antennas we consider an antenna model as depicted in Figure 8. The antenna
model is composed by a shielded power supply, a microwave network, and a simple
antenna. With the simple antenna we mean an antenna with known characteristic,
e.g., dipole, spherical vector mode, or resonance model. A transmission line with a
propagating TEM mode is used to connect the di�erent components. We consider
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Figure 9: Circuit model of the antenna with an arbitrary small ρ′(ω0).

two possible reference planes denoted by S1 and S2. The impedance properties of
the simple antenna are de�ned in the reference plane S1, here modeled with the
re�ection coe�cient ρ1. We use the reference plane, S2, to de�ne a more complex
antenna characterized with the re�ection coe�cient ρ2. Observe that, although it
might be more practical to consider this as an antenna together with a matching
network, it also possible to consider it as a single antenna. The Maxwell equations
on the region outside the reference planes can be used to determine the properties
of both antennas. The only di�erence is that, in reality, it might be more practical
to use simpler equations and approximations to determine the properties of the
microwave network.

For simplicity, we assume that the simple antenna can be approximated with
a resonance model (3.11) around the resonance frequency, speci�cally we assume a
series RCL circuit with Q factor Q1. Let the microwave network be modeled with a
parallel LC circuit, as seen in Figure 9. The re�ection coe�cient at S2 is given by

ρ2 = ρQ2 +
t2Q2

ρQ1

1− ρQ1ρQ2

, (6.3)

where ρQi
is de�ned by (2.3) and tQ2(ω0) = 1. The frequency derivative of ρ2 at the

resonance frequency is

ρ′2(ω0) = ρ′Q2
(ω0) + ρ′Q1

(ω0) =
i

ω0

(Q1 −Q2). (6.4)

Here, it is observed that it is possible to construct antennas with an arbitrary small
frequency derivative of the re�ection coe�cient. Obviously, this is just an example
of a matching network giving a �at re�ection coe�cient [11]. The Q-factor of the
antenna is on the contrary increasing. The Q-factor of the circuit model is Q =
Q1 + Q2. This simple example indicates that it is very di�cult to �nd a simple
relation between the frequency derivative of the re�ection coe�cient (or equivalently
the impedance) and the Q-factor of general antennas. However, as shown with the
Padé approximation in this paper and the results in [14], the approximation is very
accurate for many common antennas.

7 Conclusions

In this paper, the Q factor of antennas are analyzed from an approximation the-
ory point of view. The re�ection coe�cient of an antenna is approximated with a
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second order Padé approximation around the resonance frequency. This resonance
model is �rst order accurate, and hence good for narrow bandwidths. The reso-
nance model is characterized by a Q-factor of an underlying RCL circuit, de�ned as
Qρ = ω|ρ′(ω)|. The Bode-Fano matching theory is used to determine the bandwidth
of the approximate model. Moreover, it is shown that the original antenna has the
same bandwidth for su�ciently narrow bandwidths.

Even if the Q-factor, de�ned by the stored and radiated energies, of the antenna
system is not used in the analysis, there is a close resemblance between the Q-factor
derived from the di�erentiated re�ection coe�cient, Qρ, and the classical Q-factor,
Q. It is shown that Q ≈ Qρ for each spherical vector mode if Q is su�ciently
large. This is also seen for many antennas from the approximation of the Q-factor
Q ≈ ω|Z ′|/(2R) = Qρ considered in [14]. However, a simple example is used to
illustrate that the there is not a simple relation between Q and Qρ for every antenna.
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