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Abstract

Using exact dispersion relations for electromagnetic wave propagation in lay-
ered, periodic media, consisting of two phases, we derive explicit asymptotic
solutions for small wavenumbers. These solutions are compared to the nu-
merical solutions of the exact dispersion relations, and applications to ho-
mogenization problems are discussed. The results can be used as test cases
for homogenization techniques intended for finite scale homogenization, that
is, where the wavelength is not assumed infinitely large compared to the mi-
croscale.

1 Introduction

Many interesting problems in wave propagation depend on the dispersion relation,
i.e., a relation between the frequency ω and the wavenumber k. The problem that
has motivated the research presented in this paper is homogenization, where the
goal is to model a material with a complicated microstructure with a homogeneous
medium, making it easy to treat the wave propagation. The problem is to compute
the properties of the fictitious homogeneous medium, which is usually done in the
limit of infinitely long wavelength. Many ways have been designed to compute the
homogenization, but the one that most directly concerns the dispersion relation is
the effective mass approximation, where the effective permittivity is computed by
differentiating the dispersion relation ω(k) at k = 0. This technique has recently
gotten considerable attention from mathematicians, see for instance [2, 3, 8, 10]. For
a more thorough review of homogenization techniques, we refer to the books [4, 7, 14].

Some recent contributions [3, 10, 11, 15, 16] have shown that it is possible to do
some homogenization even when the wavelength is not infinitely long. This corre-
sponds to studying the dispersion relation for k 6= 0. In this paper, we first show
that the homogenized permittivity is linked to the dispersion relation through a very
simple formula in the case of nonmagnetic, stratified media. We then use the exact
expressions for the dispersion relation for piecewise constant media given in [18]
(maybe more easily accessible in [12, Appendix A]), to find the asymptotic solution
when k → 0. This provides explicit expressions for the homogenized permittivity
up to a given order in k, although we only give a few terms. The results can be used
as test cases for more general homogenization approaches.

Wave propagation in onedimensional periodic structures is described by Hill’s
equation [6, p. 178], with Mathieu’s equation as a special case. More information
on Mathieu functions can be found in, for instance, [1, Ch. 20] but we do not need
much of the deep properties of these functions.

2 Basic equations

We study layered media, periodic in the z-direction with period a. The Floquet-
Bloch theorem [5, 9] then states that the typical wave can be written (ignoring the
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x and y dependence)

E(z) = eikzzẼ(z) (2.1)

where Ẽ is periodic in z. This implies pseudoperiodic boundary conditions, E(z +
a) = eikzaE(z). The wavenumber kz is called the Bloch wave number, and is a free
parameter in the range kz ∈ [−π/a, π/a].

Inserting (2.1) into Maxwell’s equations, the dispersion relation is determined
from the eigenproblem

∇×E = iωµ0H (2.2)

∇×H = −iωε0ε(z)E (2.3)

where we assumed an isotropic, nonmagnetic medium depending only on z. The
fields are given in SI units, µ0 is the permeability of vacuum, and ε0 is the permit-
tivity of vacuum. The eigenvalue ω depends on the wavenumber kz through the
pseudoperiodic boundary conditions.

We apply a Fourier transform in x and y to write

(∂zẑ + ikxy)×E = iωµ0H (2.4)

(∂zẑ + ikxy)×H = −iωε0ε(z)E (2.5)

where the Fourier variable kxy can take any value in R2, although we are particularly
interested in small values in homogenization problems. Eliminating H implies

(∂zẑ + ikxy)× [(∂zẑ + ikxy)×E] = c−2ω2ε(z)E (2.6)

where c = 1/
√

ε0µ0 is the speed of light in vacuum. The left hand side is

(∂zẑ + ikxy)× [(∂zẑ + ikxy)×E] = (∂zẑ + ikxy)× (∂zẑ ×E + ikxy ×E)

= ∂2
z ẑ × (ẑ ×E) + ∂zẑ × (ikxy ×E) + ikxy × (∂zẑ ×E) + ikxy × (ikxy ×E)

= −∂2
z [I3− ẑẑ] ·E + ikxy∂z[ẑ× (k̂xy ×E) + k̂xy × (ẑ×E)] + k2

xy[I3− k̂xyk̂xy] ·E
(2.7)

where we use a hat to indicate unit vectors. Writing E = Ezẑ +Ekk̂xy +E⊥ẑ× k̂xy

implies ẑ × (k̂xy ×E) + k̂xy × (ẑ ×E) = k̂xyEz + ẑEk, and we have

−ikxy∂zEk + (c−2ω2ε(z)− k2
xy)Ez = 0 (2.8)

∂2
zEk − ikxy∂zEz + c−2ω2ε(z)Ek = 0 (2.9)

∂2
zE⊥ + (c−2ω2ε(z)− k2

xy)E⊥ = 0 (2.10)

where (2.10) is Hill’s equation, see for instance [6, p. 178]. A special case is Mathieu’s
equation, when ε(z) = ε1 + ε2 cos(2πz/a). Combining the first and second equation
results in

∂z

[
c−2ω2ε(z)

c−2ω2ε(z)− k2
xy

∂zEk

]
+ c−2ω2ε(z)Ek = 0 (2.11)

and we remind of the pseudoperiodic boundary conditions Ek(z + a) = eikzaEk(z)
and E⊥(z + a) = eikzaE⊥(z).
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3 Implications for homogenization

This investigation is motivated by the problem of homogenization, where we extract
effective material parameters from a given geometry by considering propagation
of waves with long wavelength, i.e., small wavenumbers. In a physical sense, the
effective permittivity is defined by the relation〈

ε · (e−ik·xE)
〉

= εeff ·
〈
e−ik·xE

〉
(3.1)

where the mean value is taken over the unit cell and the field E is pseudoperiodic,
i.e., E(x + a) = eik·aE(x) where a is a lattice vector. In our case, the field E is
the solution to the equations at the end of Section 2. Note that this definition is
not a strict mathematical one, but is rather based on physical intuition. However,
as is shown in [15, 16], it is mathematically motivated in our case.

Starting with the E⊥-field, we can use equation (2.10) to find

〈
ε(z)e−ikzzE⊥

〉
=

1

c−2ω2

〈
e−ikzz(k2

xy − ∂2
z )E⊥

〉
=

1

c−2ω2

〈
(k2

xy + k2
z − ∂2

z )e
−ikzzE⊥

〉
=

k2
xy + k2

z

c−2ω2

〈
e−ikzzE⊥

〉
(3.2)

where we used that e−ikzz∂zE⊥ = (∂z + ikz)e
−ikzzE⊥ and that the mean value of the

derivative of a periodic function, ∂ze
−ikzzE⊥, is zero.

For Ek and Ez, matters are a bit more messy. These fields are described by
equations (2.8) and (2.9), and using the same technique as above we can prove

〈
ε(z)e−ikzzEk

〉
=

k2
z

c−2ω2

〈
e−ikzzEk

〉
− kxykz

c−2ω2

〈
e−ikzzEz

〉
(3.3)〈

ε(z)e−ikzzEz

〉
=

k2
xy

c−2ω2

〈
e−ikzzEz

〉
− kxykz

c−2ω2

〈
e−ikzzEk

〉
(3.4)

As is explained in [16], it is sufficient to consider only field components orthogonal
to the propagation direction, since these are the only ones concerned with the wave
propagation. Since the wave vector is kxyk̂xy + kzẑ, the orthogonal polarization is

proportional to kzk̂xy − kxyẑ, which corresponds to a combination of Ek and Ez

proportional to kzEk − kxyEz. This combination satisfies

〈
ε(z)e−ikzz(kzEk − kxyEz)

〉
=

k2
xy + k2

z

c−2ω2

〈
e−ikzz(kzEk − kxyEz)

〉
(3.5)

Thus, for both polarizations we have the conclusion

εeff =
k2

xy + k2
z

c−2ω2
(3.6)

which is also used in [17] and [14, pp. 227–228]. With the asymptotic dispersion
relations (5.2) and (5.3) derived in Section 5, this can be used to obtain explicit
results for the effective permittivity. We remark that this result is different from
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the effective mass approximation, where the effective permittivity is obtained by
differentiating the dispersion relation as

(ε−1
eff )ij =

1

2

∂2[c−2ω(k)2]

∂ki∂kj

(3.7)

This formula is based on the idea that the group velocity should be the same for
waves propagating in the heterogeneous medium and in the fictitious homogeneous
medium. The results are identical at the origin (kxy = kz = 0), which is the classical
homogenization regime.

4 Piecewise constant media

With ε(z) being piecewise constant, say, ε1 for 0 < z < a1 and ε2 for a1 < z < a, we
have the following equations for E⊥ and Ek:{

E ′′ + (c−2ω2ε1 − k2
xy)E = 0 0 < z < a1

E ′′ + (c−2ω2ε2 − k2
xy)E = 0 a1 < z < a

(4.1)

In the following, we use the notation a2 = a−a1 to indicate the thickness of material
2 when appropriate. Introducing k2

1 = c−2ω2ε1 − k2
xy and k2

2 = c−2ω2ε2 − k2
xy, the

general solution is

E(z) =

{
Aeik1z + Be−ik1z 0 < z < a1

Ceik2z + De−ik2z a1 < z < a
(4.2)

Looking at the original equations, it is clear that we must require E⊥, ∂zE⊥, Ek,

and c−2ω2ε(z)
c−2ω2ε(z)−k2 ∂zEk to be continuous across the boundaries. Taking into account

the pseudoperiodicity E⊥(z + a) = eikzaE⊥(z), the conditions for E⊥ implies

(A + B)eikza = Ceik2a + De−ik2a (4.3)

Aeik1a1 + Be−ik1a1 = Ceik2a1 + De−ik2a1 (4.4)

(ik1A− ik1B)eikza = ik2Ceik2a − ik2De−ik2a (4.5)

ik1Aeik1a1 − ik1Be−ik1a1 = ik2Ceik2a1 − ik2De−ik2a1 (4.6)

This system of equations has nontrivial solutions only if the following determinant
is zero:

0 =

∣∣∣∣∣∣∣∣
eikza eikza −eik2a −e−ik2a

eik1a1 e−ik1a1 −eik2a1 −e−ik2a1

k1e
ikza −k1e

ikza −k2e
ik2a k2e

−ik2a

k1e
ik1a1 −k1e

−ik1a1 −k2e
ik2a1 k2e

−ik2a1

∣∣∣∣∣∣∣∣ (4.7)

It is shown in [18] that this is equivalent to the condition (see also [12] and [6, pp.
181–186])

0 = cos(kza)− cos(k1a1) cos(k2a2) +
1

2

(
k1

k2

+
k2

k1

)
sin(k1a1) sin(k2a2) (4.8)
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where a = a1 + a2. Requiring Ek and c−2ω2ε(z)
c−2ω2ε(z)−k2

xy
∂zEk to be continuous implies

(A + B)eikza = Ceik2a + De−ik2a (4.9)

Aeik1a1 + Be−ik1a1 = Ceik2a1 + De−ik2a1 (4.10)

(
iε1

k1

A− iε1

k1

B)eikza =
iε2

k2

Ceik2a − iε2

k2

De−ik2a (4.11)

iε1

k1

Aeik1a1 − iε1

k1

Be−ik1a1 =
iε2

k2

Ceik2a1 − iε2

k2

De−ik2a1 (4.12)

with the corresponding determinant condition

0 =

∣∣∣∣∣∣∣∣
eikza eikza −eik2a −e−ik2a

eik1a1 e−ik1a1 −eik2a1 −e−ik2a1

ε1
k1

eikza − ε1
k1

eikza − ε2
k2

eik2a ε2
k2

e−ik2a

ε1
k1

eik1a1 − ε1
k1

e−ik1a1 − ε2
k2

eik2a1 ε2
k2

e−ik2a1

∣∣∣∣∣∣∣∣ (4.13)

which can be simplified to [12, 18]

0 = cos(kza)− cos(k1a1) cos(k2a2) +
1

2

(
ε1k2

ε2k1

+
ε2k1

ε1k2

)
sin(k1a1) sin(k2a2) (4.14)

5 Asymptotic solutions

When looking for small eigenvalues ω, it is reasonable to assume the dimensionless
quantities kxya, kza, and c−1ωa to be small. This allows for a Taylor expansion of
the determinant conditions, and we use the program Maple to handle the lengthy
calculations necessary in this section. Observe that we explicitly include the scale a
in this section, in order to obtain dimensionless quantities in the series involved.

The procedure is as follows: we assume that kxya and kza both scale as a generic
parameter ka, and that the solution ω can be written as

(c−1ωa)2 = α0(ka)2 + α1(ka)4 + O((ka)6) (5.1)

We then substitute this together with k2
1,2 = c−2ω2ε1,2 − k2

xy in the exact dispersion
relations (4.8) and (4.14), and let Maple compute the series expansion with respect
to ka. Solving the dispersion relation for each level of ka, we find the following
asympotic solution, where we write f1 = a1/a and f2 = a2/a to indicate the volume
fractions of the materials,

(c−1ωa)2 =
(kxya)2 + (kza)2

f1ε1 + f2ε2

− 1

12

(ε1 − ε2)
2(f1f2)

2

(f1ε1 + f2ε2)3

[
(k2

xya)2 + (kza)2
]2

+ O((ka)6)

(5.2)
for (4.8), and

(c−1ωa)2 = (f1ε
−1
1 + f2ε

−1
2 )(kxya)2 + (f1ε1 + f2ε2)

−1(kza)2

− 1

24

(ε1 − ε2)
2(f1f2)

2

(ε1ε2)2(f1ε1 + f2ε2)3

[
(f1ε1 + f2ε2)

2(kxya)2 − ε1ε2(kza)2
]2

+ O((ka)6) (5.3)
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kxy

kzΓ

ML

X

Figure 1: Definition of the wave vector points used in figures 2, 3, and 4. Γ is the
origin, X corresponds to (kza, kxya) = (π, 0), M corresponds to (kza, kxya) = (π, π),
and L corresponds to (kza, kxya) = (0, π). Since there is no welldefined period in x
and y, the limits for kxy are arbitrary and have been chosen for symmetry.

for (4.14). The second term, proportional to (ka)4, in these expressions is the
dominating contribution to the spatial dispersion for large wavelengths. We see
that this term is zero in both cases if ε1 = ε2, corresponding to a homogeneous
material.

In (5.2), there is no formal difference between the wavenumber kxy, concerned
with propagation in the xy-plane, and the wavenumber kz, concerned with propa-
gation in the z-direction. Thus, (5.2) is an isotropic dispersion relation.

But in (5.3), there is clearly a difference between kxy and kz, and the dispersion
relation is anisotropic. Furthermore, it is seen that the second term in (5.3) can
be forced to zero by choosing kz = kxy(f1ε1 + f2ε2)/

√
ε1ε2. This means there exists

directions of propagation where the spatial dispersion is minimal.

5.1 Numerical illustrations

In this subsection, we compare numerical solutions to the dispersion relations (4.8)
and (4.14) with the asymptotic solutions (5.2) and (5.3). The plots in figures 2, 3,
and 4, show c−1ωa as a function of kza and kxya in the meaning that these parameters
are varied linearly between the points Γ, X, M, and L, depicted in Figure 1.

The results are given for three different contrasts. In each case, we choose f1 =
f2 = 1/2 and ε1 = 1, and choose ε2 = 2, 10, and 50. It can be seen that the
asymptotic solution is very good for small wave numbers (large wavelengths), but
may fail miserably for large contrasts and high wavenumbers. Higher order terms
are necessary in these cases.

The isotropy of the asymptotic dispersion relation (5.2) causes the dashed blue
curves in the top part of the figures to be symmetric. It is interesting to note, that
the exact solution (solid red curves) is not symmetric.
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0

1

2

3

Γ X M L Γ

0

1

2

3

Γ X M L Γ

Figure 2: Dispersion relations for f1 = f2 = 1/2, ε1 = 1, and ε2 = 2. The solid red
curve in the upper diagram is the exact solution (4.8), and the dashed blue curve is
the asymptotic solution (5.2). The solid red curve in the lower diagram is the exact
solution (4.14), and the dashed blue curve is the asymptotic solution (5.3).

5.2 Homogenized permittivity

As described in Section 3, the effective permittivity is given by

εeff =
k2

xy + k2
z

c−2ω2
(5.4)

for both polarizations. We insert the asymptotic dispersion relations (5.2) and (5.3)
in this formula to obtain

εeff =
[
(kxya)2 + (kza)2

]{
(kxya)2 + (kza)2

f1ε1 + f2ε2

− 1

12

(ε1 − ε2)
2(f1f2)

2

(f1ε1 + f2ε2)3

[
(k2

xya)2 + (kza)2
]2

+ O((ka)6)

}−1

= f1ε1 + f2ε2 +
1

12

(ε1 − ε2)
2(f1f2)

2

f1ε1 + f2ε2

[
(k2

xya)2 + (kza)2
]
+ O((ka)4) (5.5)



8

0

0.5

1

1.5

Γ X M L Γ

0

1

2

3

Γ X M L Γ

Figure 3: Dispersion relations for f1 = f2 = 1/2, ε1 = 1, and ε2 = 10. The spike
in the solid red curve in the lower diagram is due to numerical difficulties in solving
(4.14) for ω.

for the E⊥ field, and

εeff =
[
(kxya)2 + (kza)2

]{
(f1ε

−1
1 + f2ε

−1
2 )(kxya)2 + (f1ε1 + f2ε2)

−1(kza)2

− 1

24

(ε1 − ε2)
2(f1f2)

2

(ε1ε2)2(f1ε1 + f2ε2)3

[
(f1ε1 + f2ε2)

2(kxya)2 − ε1ε2(kza)2
]2

+ + O((ka)6)

}−1

=
(kxya)2 + (kza)2

(f1ε
−1
1 + f2ε

−1
2 )(kxya)2 + (f1ε1 + f2ε2)−1(kza)2

+
1

24

(ε1 − ε2)
2(f1f2)

2

(ε1ε2)2(f1ε1 + f2ε2)3

[(f1ε1 + f2ε2)
2(kxya)2 − ε1ε2(kza)2]

2
[(kxya)2 + (kza)2][

(f1ε
−1
1 + f2ε

−1
2 )(kxya)2 + (f1ε1 + f2ε2)−1(kza)2

]2

+ O((ka)4) (5.6)

for the Ek and Ez fields. The dominating terms correspond to classical homoge-
nization results. For polarizations parallel to the material interfaces, the effective
material is simply the arithmetic average of the permittivity. For polarizations or-
thogonal to the interfaces, we obtain the harmonic average, which is easiest seen
by setting kz = 0 in (5.6), corresponding to a dominating Ez component. The first
term for the effective permittivity in (5.6) is the classical formula for the effective
permittivity for propagation of extraordinary rays in uniaxial media [13, p. 340],
with the arithmetic average and the harmonic average as the principal values of the
permittivity matrix.
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0

0.2

0.4

0.6

Γ X M L Γ

0

0.5

1

1.5

Γ X M L Γ

Figure 4: Dispersion relations for f1 = f2 = 1/2, ε1 = 1, and ε2 = 50. Note that
the asymptotic solution (dashed blue curve) only gives imaginary solutions in a large
interval.

The terms proportional to (ka)2 in the equations above do not lend themselves
easily to interpretation. However, they both share the property of being proportional
to (ε1−ε2)

2(f1f2)
2. This means they are small whenever the contrast is small, or the

volume fraction of one material is small. Thus, spatial dispersion can be expected
to be more important for composite materials with high contrast and sizable volume
fractions, than for almost homogeneous materials with low contrast.

6 Conclusions

The exact and asymptotic versions of the dispersion relations for layered media
presented in this paper can be used to check homogenization procedures intended
for finite scale homogenization. In particular, the formulas in [16] can be further
investigated using these results, and further information on the validity range of ho-
mogenization results may be obtained. Also, further comparisons should be made to
the classical results from the effective mass approximation, where the homogenized
matrix is found from the Hessian matrix of ω(k) at k = 0.

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions.
Applied Mathematics Series No. 55. National Bureau of Standards, Washington
D.C., 1970.



10

[2] G. Allaire and C. Conca. Bloch wave homogenization and spectral asymptotic
analysis. J. Math. Pures Appl., 77, 153–208, 1998.

[3] G. Allaire, Y. Capdeboscq, A. Piatnitski, V. Siess, and M. Vanninathan. Ho-
mogenization of periodic systems with large potentials. Arch. Rational Mech.
Anal., 174, 179–220, 2004. doi:10.1007/s00205-004-0332-7.

[4] A. Bensoussan, J. L. Lions, and G. Papanicolaou. Asymptotic Analysis for
Periodic Structures, volume 5 of Studies in Mathematics and its Applications.
North-Holland, Amsterdam, 1978.
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