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Abstract

In recent years, wave splitting in conjunction with invariant imbedding and
Green’s function techniques has been applied with great success to a number
of interesting inverse and direct scattering problems. The aim of the present
paper is to derive a wave splitting for the Timoshenko equation, a fourth
order PDE of importance in beam theory. An analysis of the hyperbolicity
of the Timoshenko equation and its, in a sense, less physical relatives—the
Euler-Bernoulli and the Rayleigh equations—is also provided.

1 Introduction

During the last decade, time domain approaches to inverse scattering problems
based on so called wave splitting have been highly successful. Particularly, in the
field of electromagnetics, but also in the context of continuous mechanical systems,
wave splitting in conjunction with invariant imbedding or Green’s function technique
has been used to solve a number of interesting inverse scattering problems [6]. The
systems considered have in general been such that they can be modeled by hyperbolic
second-order differential equations, but wave splitting has also been performed on
some non-hyperbolic equations [15]. Of particular interest for us in the present
context is the wave splitting of the fourth-order Euler-Bernoulli (E-B) equation
given in [15].

In the analysis of stationary vibrations of beams, it is in many cases considered
sufficient to model the beams by means of the Euler-Bernoulli equation. This simple
model can be found in many textbooks on vibrations and waves [3]. It is even used
for cases of anharmonic loading by means of a Fourier decomposition of the fields [5].
The Euler-Bernoulli equation is an equation which in many respects resembles the
parabolic heat equation. While being a perfectly respectable equation for vibrations
of not too short a wavelength, it shares one clearly undesirable feature of the latter
equation; for transient phenomena it predicts an infinite speed of propagation. As
for the heat equation, it is perhaps fair to say that few people have cared about this,
since the equation is sufficiently accurate for most of the problems considered by
engineers. However, in the context of inverse scattering problems, it turns out that
the infinite speed of propagation causes serious problems [15]. It is in fact fatal in
the sense that it apparently precludes the possibility of reconstructing the material
properties from scattering data. This is due to the fact that the reflection operator
for all times will depend on the material properties of the entire scattering region,
which makes imbedding approaches less likely to be effective.

While the Euler-Bernoulli equation is unsuitable for inverse dynamical problems,
it should be mentioned that the inverse problem for the static Euler-Bernoulli equa-
tion, with a sought non-linear deflection-dependent load, admits an, in fact entirely
elementary, solution [11].

The unphysical nature of the dynamic Euler-Bernoulli equation has perhaps been
of little concern to most investigators, but for other reasons more accurate equations
have been developed. The standard derivation of the Euler-Bernoulli equation has
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at a preliminary stage a term containing the effects of rotational inertia of the
beam sections (see, e.g., [3]). This term is usually discarded as being in some sense
small. As pointed out in Ref. [2], the Euler-Bernoulli equation with the rotational
inertia term included, commonly referred to as the Rayleigh (R) equation, has the
advantage over the “plain” Euler-Bernoulli equation of having an upper bound on
the phase velocity. This does, however, not save it from being unphysical in precisely
the same manner as the Euler-Bernoulli equation. But what is even more surprising
is that the Rayleigh equation even has an upper bound on its group velocity, and
still allows an infinite speed of propagation. This somewhat confusing circumstance
will be clarified in an appendix.

A considerable improvement from this point of view is offered by the Timoshenko
(T) equation, derived in [13]. In this equation, the effects of both rotational inertia
and shearing of the beam sections are taken into account. Incidentally, Timoshenko
shows that as far as the calculation of eigenfrequencies is concerned, the shearing
term in a typical case is roughly four times as important as the rotational inertia
term. From the present point of view, the shearing term is all-important, as it makes
the equation hyperbolic and thus removes the infinite wave speed.

There are some considerations on the accuracy of the Timoshenko equation which
should be made. The Timoshenko equation (as well as the Euler-Bernoulli and
Rayleigh equations) is derived under the assumption that the wave-length is greater
than the extension of the cross section of the beam. If this assumption is not
fulfilled the three-dimensional equations of linear elasticity should presumably have
to be used, the beam acting as an elastic wave-guide. This probably means that
when inverse problems for a beam is considered, the results of reconstructing various
quantities, varying with the length coordinate, could only be known to be accurate
to within this approximation. One would not expect the results to be accurate
(compared to three-dimensional theory) at length scales less than the transverse
extension of the beam.

Timoshenko has made some comparisons of the eigenfrequency predictions from
the Timoshenko equation with those from three-dimensional elasticity in the case of
very slender or very flat beams of rectangular cross section [14]. An analysis along
similar lines, i.e., a comparison with exact solutions, could be used to assess the
accuracy of an inverse solution based on the Timoshenko equation. The point to be
made is that, while a procedure for reconstructing the beam properties based on the
Timoshenko equation can be “exact”, the results can still be inaccurate to within
the limits posed by the accuracy of the Timoshenko equation itself.

Recent years have witnessed a renewed interest in the derivation of the various
beam equations and their appropriate boundary conditions. Two examples of this
are Ref. [12], wherein the beam equations are derived in a novel fashion starting
from non-linear continuum mechanics, and Ref. [7], in which a careful analysis from
three-dimensional elasticity reveals flaws in some commonly employed boundary
conditions.

In electromagnetics, the problem of wave splitting in wave-guides has recently
been solved [8]. This opens the possibility that a similar analysis could be performed
for an elastic wave-guide, offering a more accurate, but of course more complicated,
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basis for attacking inverse problems on a beam. However, an analysis along these
lines falls outside the scope of the present paper.

The aim of this paper is to present a wave splitting for the Timoshenko equa-
tion, as well as to analyze the hyperbolicity of the Timoshenko equation and its less
physical relatives, the Euler-Bernoulli and Rayleigh equations, see also Ref. [2]. We
emphasize again that the purpose of deriving the wave splitting is to provide a nec-
essary tool for subsequent developments, i.e., the application of invariant imbedding
and Green’s function techniques to transient wave propagation problems in beam
theory.

2 Basic equations

The T equation, which includes both rotational inertia and shear, for a uniform
symmetric beam is [12], [10, Sect. 10](

∂2

∂z2
− 1

c2
1

∂2

∂t2

) (
∂2

∂z2
− 1

c2
2

∂2

∂t2

)
u(z, t) +

1

r2
0c

2
2

∂2u(z, t)

∂t2
= 0 (2.1)

The z-axis is the undeformed length axis of the beam. Perpendicular to this axis
there are the x- and y-axes, respectively, which coincide with the principal axes of
inertia of the cross-sectional area. The y-axis, denoted the vertical axis, is oriented
so that every cross section is symmetric with respect to x = 0. The vertical dis-
placement u(z, t) is measured in the y-direction. All fields in this paper are assumed
quiescent at time t < t0, where t0 is a fixed time. The two velocities c1 (effective
shear velocity) and c2 (rod velocity) are defined by




c1 =

√
αG

ρ

c2 =

√
E

ρ

and the radius of gyration of the beam section is defined as

r0 =

√
I

A

In these definitions E is Young’s modulus, ρ the density of the beam, G is the shear
modulus. The factor α is a geometrical quantity given by

α =
bI

SA

where

S =

∫
y≥0

y dA = −
∫
y<0

y dA
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is the static moment of the upper portion of the beam section. The coordinate
y is the height coordinate measured from the geometrical center-line of the beam.
Furthermore, b = width of the beam at y = 0. This is measured in the direction
perpendicular to the length of the beam and perpendicular to the y direction. I and
A are the moment of inertia and the area of the beam section, respectively. For a
rectangular beam section α = 2/3, and for a circular beam section α = 3/4.

The T equation (2.1) is hyperbolic with two families of characteristic curves, see
the analysis in Appendix A 


t = ± z

c1

+ constant

t = ± z

c2

+ constant

If shear can be ignored, the T equation (2.1) simplifies to the R equation

∂4u(z, t)

∂z4
+

1

r2
0c

2
2

∂2u(z, t)

∂t2
− 1

c2
2

∂4u(z, t)

∂z2∂t2
= 0

If also the rotational inertia is ignored the E-B equation is obtained

∂4u(z, t)

∂z4
+

1

r2
0c

2
2

∂2u(z, t)

∂t2
= 0

Neither the E-B nor the R equation are hyperbolic in the t-direction, see Appendix A.
These equations imply infinite propagation speed, and for this reason they are not
appropriate as models for transient wave propagation phenomena.

The T equation (2.1), which is of fourth order, can be written as a system of
equations in (u, ∂zu, ∂2

zu, ∂3
zu)t.

∂

∂z




u
∂zu
∂2
zu

∂3
zu


 =




0 1 0 0
0 0 1 0
0 0 0 1

− 1
c21c

2
2

∂4

∂t4
− 1

r20c
2
2

∂2

∂t2
0

(
1
c21

+ 1
c22

)
∂2

∂t2
0







u
∂zu
∂2
zu

∂3
zu




For the sake of future studies of the inhomogeneous beam it is appropriate to
formulate the analysis in terms of u(z, t) (the vertical displacement of the centerline
of the beam) and ψ(z, t) (the angle of rotation of the cross section of the beam) and
their first z-derivatives, rather than in (u, ∂zu, ∂2

zu, ∂3
zu)t. With these dependent

variables the T equation for an inhomogeneous beam reads

∂

∂z




u
ψ

∂zu
∂zψ


 =




0 0 1 0
0 0 0 1

1
c21

∂2

∂t2
∂ log(αGA)

∂z
−∂ log(αGA)

∂z
1

0 1
c22

∂2

∂t2
+

c21
r20c

2
2

− c21
r20c

2
2

−∂ log(EI)
∂z







u
ψ

∂zu
∂zψ




Notice that this equation only contains four independent quantities r0, c1, c2 and
EI, since

αGA =
EIc2

1

r2
0c

2
2
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For a homogeneous beam, the T equation simplifies to

∂

∂z




u
ψ

∂zu
∂zψ


 =




0 0 1 0
0 0 0 1

1
c21

∂2

∂t2
0 0 1

0 1
c22

∂2

∂t2
+

c21
r20c

2
2
− c21
r20c

2
2

0







u
ψ

∂zu
∂zψ


 (2.2)

which contains only three independent quantities r0, c1, c2.

3 Wave splitting

3.1 Wave splitting in terms of the eigenvalue operators

The purpose of this section is to introduce a transformation which diagonalizes the
homogeneous T equation in (2.2). To this aim, introduce a transformation of the
dependent variables 


u+

1

u+
2

u−1
u−2


 = P




u
ψ

∂zu
∂zψ


 (3.1)

with formal inverse 


u
ψ

∂zu
∂zψ


 = P−1




u+
1

u+
2

u−1
u−2


 (3.2)

The intended result of this transformation is to bring the T equation to the following
form:

∂

∂z




u+
1

u+
2

u−1
u−2


 =



−λ1 0 0 0
0 −λ2 0 0
0 0 λ1 0
0 0 0 λ2







u+
1

u+
2

u−1
u−2


 (3.3)

where the operators λi are the eigenvalues of the T equation. Explicit representations
of these operators are found in Section 3.2. The matrix P−1 expressed in these
operators is

P−1 =




1 1 1 1
−λ1 (1− Uλ2

2) −λ2 (1− Uλ2
1) λ1 (1− Uλ2

2) λ2 (1− Uλ2
1)

−λ1 −λ2 λ1 λ2

λ2
1 − 1

c21

∂2

∂t2
λ2

2 − 1
c21

∂2

∂t2
λ2

1 − 1
c21

∂2

∂t2
λ2

2 − 1
c21

∂2

∂t2




where the operator U is defined as

Uf(t) =
r0c

2
2

c1

[
sin

(
c1·
r0

)
∗ f(·)

]
(t)
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Time convolutions are defined by a star (∗) throughout this paper, i.e.,

(f(·) ∗ g(·)) (t) =

∫ t

−∞
f(t− t′)g(t′) dt′

The operators λ2
1 and λ2

2 that occur in the definition of the matrix operator P−1

above can also be represented as


λ2
1 =

1

c2
1

∂2

∂t2
− V (·)∗

λ2
2 =

1

c2
2

∂2

∂t2
+ V (·)∗

where the function V (t) is

V (t) =
1

r0c2t2
H(t)I2(t/τ)

and where

τ =
r0(c

2
2 − c2

1)

2c2
1c2

and I2 is the modified Bessel function of order 2, and H(t) is the Heaviside step
function.

In order to express the operator P in a simple way, it is convenient to introduce
the functions Q(t) and S(t) (I0 is the modified Bessel function of order 0, and J1 is
the Bessel function of order 1)



Q(t) =
r0c2

4
H(t)

t/τ∫
0

I0(ξ
′) dξ′

S(t) =
c1

r0

H(t)

c1t/r0∫
0

J1(ξ
′)

ξ′
dξ′

and then define the operators Q and S as the time convolutions

Qf(t) = (Q(·) ∗ f(·)) (t)

Sf(t) =
c1

c2

[f(t) + (S(·) ∗ f(·)) (t)]

The operator Q satisfies

2Q
(
λ2

1 − λ2
2

)
= 2

(
λ2

1 − λ2
2

)
Q = 1

The operator P in (3.2) can be represented as

P = Q



−

(
λ2

2 − 1
c21

∂2

∂t2

)
−Sλ2 Sλ2 − λ1 1

λ2
1 − 1

c21

∂2

∂t2
Sλ1 − (Sλ1 − λ2) −1

−
(
λ2

2 − 1
c21

∂2

∂t2

)
Sλ2 − (Sλ2 − λ1) 1

λ2
1 − 1

c21

∂2

∂t2
−Sλ1 Sλ1 − λ2 −1



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3.2 Representation of the eigenvalue operators

Explicit representations of the matrix entries in (3.3) can be obtained in a systematic
fashion by a simple ansatz. Specifically, the representations of λ1 and λ2 are


λ1u

+
1 (z, t) =

1

c1

∂u+
1

∂t
+

(
F1(·) ∗ u+

1 (z, ·)
)
(t)

λ2u
+
2 (z, t) =

1

c2

∂u+
2

∂t
+

(
F2(·) ∗ u+

2 (z, ·)
)
(t)

(3.4)

The functions Fi(t), i = 1, 2 are identically zero for negative time. In the equations
below, only a positive time argument t is considered, and thus a Heaviside function
H(t) is suppressed in some formulae. A power series expression of, e.g., F1(t) in t
can be obtained from the identity


√

1

2

(
c−2
2 + c−2

1

) ∂2

∂t2
+

√
1

4

(
c−2
2 − c−2

1

)2 ∂4

∂t4
− r−2

0 c−2
2

∂2

∂t2


u+

1 (z, t)

=
1

c1

∂u+
1 (z, t)

∂t
+

(
F1(·) ∗ u+

1 (z, ·)
)
(t)

Formally squaring the operators, rearranging and balancing terms lead to a system
of expressions from which coefficients of arbitrarily high order can be obtained. The
explicit expressions up to sixth order in t are



F1(t) =− c3
1(1 + q)

r2
0c

2
2

{
1

4
+

3 + 2q

64

c4
1(1 + q)t2

r2
0c

2
2

+
7 + 10q + 4q2

3072

(
c4
1(1 + q)t2

r2
0c

2
2

)2

+
77 + 172q + 140q2 + 40q3

1474560

(
c4
1(1 + q)t2

r2
0c

2
2

)3

+ O(t8)

}

F2(t) =
c2
1(1 + q)

r2
0c2

{
1

4
− 3− 2q

64

c2
1(1 + q)t2

r2
0

+
7− 10q + 4q2

3072

(
c2
1(1 + q)t2

r2
0

)2

− 77− 172q + 140q2 − 40q3

1474560

(
c2
1(1 + q)t2

r2
0

)3

+ O(t8)

}

(3.5)
where the constant q is

q =
c2
2 + c2

1

c2
2 − c2

1

Based upon physical considerations, the constant q is taken to be larger than 1 or

q > 1⇐⇒ c2

c1

> 1

This condition is met if the following reasonable assumptions are valid:

α < 2 and ν ≥ 0
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The first assumption is motivated by the fact that α is the ratio between the average
shear stress and the shear stress at y = 0. The latter is approximately equal to the
maximum shear stress, so in most reasonable cases α does not exceed 1. The second
assumption is related to the Poisson ratio ν

ν =
E − 2G

2G

which for “ordinary” media is larger than 0. The exceptions are few, e.g., cork and
some composites, and for the beam applications addressed in this paper this is not
a strong limitation.

The asymptotic behavior of the functions Fi(t), i = 1, 2 for large time t can
readily be obtained by Laplace transform techniques. The result is



F1(t) =
et/τ√
πc1τ 2

{
−

(
8t3q(q + 1)/τ 3

)−1/2
+

3(1 + q2)

8q2

(
8t5q(q + 1)/τ 5

)−1/2

+ O
(
(t/τ)−7/2

)}

F2(t) =
et/τ√
πc2τ 2

{(
8t3q(q − 1)/τ 3

)−1/2 − 3(1 + q2)

8q2

(
8t5q(q − 1)/τ 5

)−1/2

+ O
(
(t/τ)−7/2

)}
(3.6)

where

τ =
r0c2

c2
1(q + 1)

=
r0(c

2
2 − c2

1)

2c2
1c2

This asymptotic behavior seems to suggest that the functions Fi(t), i = 1, 2 are
related to the modified Bessel functions. This surmise is confirmed by another
series representation of the functions Fi(t), i = 1, 2.


F1(t) =

1

c1τ 2

∞∑
k=1

(
1
2

k

)
(−1)k(q + 1)−kWk(t/τ)

F2(t) =
1

c2τ 2

∞∑
k=1

(
1
2

k

)
(q − 1)−kWk(t/τ)

where (
1
2

k

)
=

Γ(3
2
)

k!Γ(3
2
− k)

are binomial coefficients, and the functions Wk(ξ) are integrals over the modified
Bessel functions of order k, i.e.,

Wk(ξ) = ∂−k+1
ξ

kIk(ξ)

ξ
, k = 1, 2, 3, . . .
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where the anti-derivative ∂−1
ξ is

∂−1
ξ f(ξ) =

∫ ξ

0

f(ξ′) dξ′

The series expansions of the functions Wk(ξ) are

Wk(ξ) =
∞∑
j=0

k (k + 2j − 1)!

2k+2j j! (k + j)! (2k + 2j − 2)!
ξ2k+2j−2

This series expansion provides an independent derivation of the power series expan-
sions of Fi(t), i = 1, 2 given in (3.5).

For numerical purposes, and to present an alternative derivation of the asymp-
totic behavior of the functions Fi(t), i = 1, 2, the recurrence relations of the functions
Wk(ξ) are derived. This is most conveniently done by rewriting the functions Wk(ξ)
as 



W1(ξ) =
I1(ξ)

ξ

Wk(ξ) =
k

(k − 2)!

ξ∫
0

(ξ − ξ′)k−2 Ik(ξ
′)

ξ′
dξ′, k = 2, 3, 4, . . .

For large arguments, the functions Wk(ξ) behave as ξ−3/2eξ. To see this, use the
recurrence relations for modified Bessel functions to derive

Wk(ξ) = ik−2,k(ξ)− ik−1,k+1(ξ) (3.7)

where

im,n(ξ) = ∂−mξ In(ξ), m = −1, 0, 1, 2, 3, . . . , n = 1, 2, 3, . . .

The functions im,n(ξ) can be found recursively, up and down, by combining the
following two formulae [9]:


m(1−m)im+1,n(ξ) = 2ξ(1−m)im,n(ξ)−

[
(m− 1)2 − n2 − ξ2

]
im−1,n(ξ)

+ ξ(2m− 3)im−2,n(ξ)− ξ2im−3,n(ξ)

2im,n(ξ)− im+1,n+1(ξ)− im+1,n−1(ξ) = 0

The asymptotic behavior of the functions im,n(ξ) is calculated in Ref. [9, page
215]. This provides an independent way of computing the asymptotic behavior of the
functions Fi(t), i = 1, 2 given in (3.6). The dominant terms on the right hand side
of (3.7), which are proportional to ξ−1/2eξ, cancel, and the leading term is therefore
proportional to ξ−3/2eξ, which agrees with the result presented above in (3.6).

The connections between the functions Fi(t), i = 1, 2 and the modified Bessel
functions alluded to above can also been seen in another way. Specifically, it is
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possible to express the functions Fi(t), i = 1, 2 in a series expansion in terms of
Ik(t/τ), k = 0, 1, 2, . . ., since (see Ref. [1, replace z with iz in eq. 11.2.4]).



k = 1 : i−1,1(ξ) =
∂I1(ξ)

∂ξ
=

1

2
(I0(ξ) + I2(ξ))

k = 2 : i0,2(ξ) = I2(ξ)

k ≥ 3 : ik−2,k(ξ) =
2k−2

(k − 3)!

∞∑
j=0

(k + j − 3)!

j!
(−1)jI2k+2j−2(ξ)

By expressing the functions Wk(ξ) in terms of modified Bessel functions it is
obvious that the functions Fi(t), i = 1, 2 can be expressed as a series expansion of
modified Bessel functions. For small arguments this choice is as good as the power
series expansion given in (3.5). However, for large arguments the modified Bessel
functions Ik(t/τ), contrary to the functions Wk(t/τ), have incorrect asymptotic be-
havior and large cancellation effects are expected.

Appendix A Hyperbolicity of the Timoshenko eq-

uation

A.1 The Timoshenko equation

The T equation (2.1) of Section 2 is(
∂2

∂z2
− 1

c2
1

∂2

∂t2

) (
∂2

∂z2
− 1

c2
2

∂2

∂t2

)
u(z, t) +

1

r2
0c

2
2

∂2u(z, t)

∂t2
= 0

The underlying characteristic properties of this PDE are determined by studying
the polynomial P (x, y) in the xy-plane.

P (x, y) = x4 − a2y2 − b2x2y2 + c4y4

which is obtained by replacing z- and t-derivatives with ix and iy, respectively. The
positive constants a2, b2 and c4 are



a2 =
1

r2
0c

2
2

b2 =
1

c2
2

+
1

c2
1

c4 =
1

c2
2c

2
1

Notice that

b4 − 4c4 =

(
1

c2
2

− 1

c2
1

)2

= d4 ≥ 0
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The principal part of the PDE corresponds to the monomial Pm(x, y)

Pm(x, y) = x4 − b2x2y2 + c4y4 =

(
x2 − b2y2

2

)2

− d4y4

4

The four distinct roots of Pm(x, y) = 0 are


x = ±y

√
b2 + d2

2
= ± y

c2

x = ±y

√
b2 − d2

2
= ± y

c1

These four roots determine the characteristic curves of the PDE in the zt-plane.
Specifically, the normal n̂ to the characteristic curve satisfy Pm(nx, ny) = 0.


nx = ±ny

c2

nx = ±ny
c1

The PDE is hyperbolic in the n̂-direction if [4, p. 349]

• The complex roots of P (x + nxτ, y + nyτ) = 0 satisfy Im τ ≥ γ for all real x
and y and some constant γ.

• Pm(nx, ny) �= 0

If the PDE is hyperbolic in the n̂-direction, the Cauchy problem has one and only
one solution in the half space {r · n̂ ≥ 0}.

One generic case is n̂ = (0, 1). This corresponds to specifying Cauchy data on
t = constant. The roots of P (x, y + τ) = 0 are

τ = −y ±

√
a2 + b2x2 ±

√
(a2 + b2x2)2 − 4c4x4

2c4

which implies that all roots are real

Im τ = 0

and the PDE is hyperbolic in the direction n̂ = (0, 1).
The second case is n̂ = (1, 0), which corresponds to specifying Cauchy data on

z = constant. The roots of P (x + τ, y) = 0 are

τ = −x±

√
b2y2

2
±

√
d4y4

4
+ a2y2

which implies that Im τ = 0 or

Im τ =


y

√√
b4

4
− c4 + a2

y2
− b2

2
, |y| ≤ a

c2

0, |y| ≥ a
c2

which is bounded and the PDE is hyperbolic in the direction n̂ = (1, 0).
The analysis presented in this section can be compared to the results in Ref. [2].



12

A.2 The Rayleigh equation

An analogous analysis of the R equation

∂4u(z, t)

∂z4
+

1

r2
0c

2
2

∂2u(z, t)

∂t2
− 1

c2
2

∂4u(z, t)

∂z2∂t2
= 0

implies that the polynomials are

P (x, y) = x4 − a2y2 − b2x2y2

and
Pm(x, y) = x4 − b2x2y2 = x2

(
x2 − b2y2

)
The positive constants a and b are 


a =

1

r0c2

b =
1

c2

These polynomials are obtained from the analysis above by letting the velocity
c1 →∞ (c4 → 0).

The four roots of Pm(x, y) = 0 are


x = 0

x = ±yb = ± y

c2

This equation is not hyperbolic in the direction n̂ = (0, 1), since Pm(0, 1) = 0. It is,
however, still hyperbolic in the (1, 0), since Pm(1, 0) = 1 and the complex roots of
P (x + τ, y) = 0 are

τ = −x±

√
b2y2

2
±

√
b4y4

4
+ a2y2

which implies that Im τ = 0 or

Im τ =
yb

2

√√√√√
1 +

4a2

b2y2
− 1

which is bounded for all y.
It is interesting to notice that in fixed frequency analysis of the Rayleigh equation

the group velocity is bounded for all frequencies. This seems to contradict the infinite
speed of propagation entailed by the above analysis. However, it should be recalled
that the group velocity is at most a measure of the average energy transport velocity.
It provides no upper bound on the maximum energy transport velocity.
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A.3 The Euler-Bernoulli equation

The E-B equation
∂4u(z, t)

∂z4
+

1

r2
0c

2
2

∂2u(z, t)

∂t2
= 0

implies that the polynomials are

P (x, y) = x4 − a2y2

and
Pm(x, y) = x4

The positive constant a is

a =
1

r0c2

These polynomials are obtained from the analysis above by letting both velocities
c1, c2 →∞ (c4, b2 → 0).

The only root of Pm(x, y) = 0 is x = 0 and this equation is not hyperbolic in
any direction.
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