
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Java Simulations of Embedded Control Systems

Farias, Gonzalo; Cervin, Anton; Årzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

Published in:
Sensors

DOI:
10.3390/s100908585

2010

Link to publication

Citation for published version (APA):
Farias, G., Cervin, A., Årzén, K.-E., Dormido, S., & Esquembre, F. (2010). Java Simulations of Embedded
Control Systems. Sensors, 10(9), 8585-8603. https://doi.org/10.3390/s100908585

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.3390/s100908585
https://portal.research.lu.se/en/publications/8a11a789-b959-4dce-993c-63b5a5b3719b
https://doi.org/10.3390/s100908585

Sensors 2010, 10, 8585-8603; doi:10.3390/s100908585
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Java Simulations of Embedded Control Systems
Gonzalo Farias 1,⋆, Anton Cervin 2, Karl-Erik Årzén 2, Sebastián Dormido 1 and
Francisco Esquembre 3

1 Department of Computer Science and Automatic Control, UNED, Juan del Rosal 16, Madrid 28040,
Spain; E-Mail: sdormido@dia.uned.es (S.D.)

2 Department of Automatic Control , Lund University, Box 118, Lund SE-221 00, Sweden;
E-Mails: anton@control.lth.se (A.C.); karlerik@control.lth.se (K.Å.)

3 Department of Mathematics, Murcia University, Murcia 30071, Spain; E-Mail: fem@um.es (F.E.)

⋆ Author to whom correspondence should be addressed; E-Mail: gfarias@bec.uned.es;
Tel. +34-913987147.

Received: 1 July 2010; in revised form: 26 August 2010 / Accepted: 26 August 2010 /
Published: 15 September 2010

Abstract: This paper introduces a new Open Source Java library suited for the simulation of
embedded control systems. The library is based on the ideas and architecture of TrueTime,
a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the
performance of control processes which run in a real time environment. Such simulations
can improve considerably the learning and design of multitasking real-time systems. The
choice of Java increases considerably the usability of our library, because many educators
program already in this language. But also because the library can be easily used by Easy
Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used
in the field of Control Education. EJS allows instructors, students, and researchers with
less programming capabilities to create advanced interactive simulations in Java. The paper
describes the ideas, implementation, and sample use of the new library both for pure Java
programmers and for EJS users. The JTT library and some examples are online available on
http://lab.dia.uned.es/jtt.

Keywords: control education; embedded control systems; virtual labs; TrueTime;
Easy Java Simulations

Sensors 2010, 10 8586

1. Introduction

As computers become smaller, faster, and cheaper, their application scope increases to reach almost
every aspect of modern life. In earlier times, computers were used by scientists to solve just a simple
equation in execution times that lasted as much as needed. But nowadays they are present in practically
any scientific and technological field, controlling as many processes as possible, and with an increasing
demand of performance [1]. One important practical application of computing is that of embedded
control systems. An embedded control system consists of the use of a dedicated computer whose
main task could be to apply a control algorithm in order to keep a signal from a piece of equipment
or a process inside prescribed safety margins, despite disturbances. The control task typically executes
periodically and under limited implementation resources (CPU time, communication bandwidth, energy,
memory. . .). If the limited resource is the CPU time, then the system is generically called a
real-time system.

Academic interest in real-time systems and in control theory have both a long, but separated, tradition.
Research on real-time scheduling dates back to the beginning of the 1970s, and nowadays reaches far
even into unconventional areas of application on industry [2–4]. However little of this work has focused
on control tasks. On the other hand, digital control theory, with its origin in the 1950s, has not addressed
the problem of shared and limited resources in the computing system until very recently [5,6]. Instead,
it is commonly assumed that the controller executes as a single loop in a dedicated computer.

Typically, the control engineer does not know (or care) about will happen in the implementation phase
of the control algorithm. The common assumption is that the computing platform can provide periodic
sampling and the computation delay of the controller is either negligible or constant. Reality tends to
be far different. Today, processors are built with caches and pipelines, software is divided into several
modules, signals need to be communicated through networks, and there is a strong trend towards the use
of commercial, off-the-shelf (COTS) hardware and software. These factors contribute to make the time
response of the computing platform, which is shared among many tasks, unpredictable.

On the other side of the problem, the computer engineer who implements the control system can also
make wrong assumptions. It is commonly assumed that controllers have a fixed execution-time, that all
control loops are periodic, or that controllers deadlines are critical.

In reality, many control systems have varying execution time demands, such as model predictive
controllers. Besides, some control systems are not sampled against time, such as the combustion engines
controllers or the use of event-based control schemes, where the existence of traditional periodic sensors
is replaced by send-on-delta [7] strategies in order to optimise (in terms of economic or energy costs) the
exact moment when signals have to be sampled. Finally, in many situations a single missed deadline in
a control system does not necessarily cause system failure.

This misunderstanding between both types of engineers is now been addressed by an emerging
interdisciplinary approach, where control and real-time issues are discussed at each design level.
The development of algorithms for co-design of control and real-time systems requires new
tools, one of the most successful being the freeware Matlab toolbox TrueTime [8,9]. However,
this tool requires Matlab/Simulink [10] to carry out the simulations, which limits its use to
Matlab users. In order to make the study of embedded control systems possible for a

Sensors 2010, 10 8587

wider audience, we have implemented an Open Source Java library, which we call JTT (Java
TrueTime) [11]. This Java library uses the key concepts and architecture of the TrueTime toolbox
to make the simulation of embedded control systems easier for Java programmers. Besides,
typically simulations created with JTT present a better performance to those developed with
TrueTime. Simulation of wired and wireless networking features such as described in [12] and in
TrueTime [13] are not yet implemented.

We chose Java as the implementation language because it is currently one of the most popular
programming languages. This is specially true in the educational world, which is benefiting noticeably
from the pedagogical advantages of the use of computer simulations in the learning process [14–16].
Moreover, because some control educators find it difficult to program a simulation in plain Java, we
designed the library so that it is easy to use with Easy Java Simulations (EJS) [17,18]. EJS is an
open source modeling and authoring tool that greatly facilitates the creation of advanced simulations
in Java with high-level graphical capabilities and an increased degree of interactivity. Figure 1 shows a
sophisticated simulation of an embedded control system for three inverted pendulums created with EJS
and our library JTT.

Figure 1. A virtual lab built with EJS and JTT. Three inverted pendulums controlled by three
periodic controllers running on the same computer.

The rest of this paper is organized as follows. Section II revises the main concepts and design
problems of embedded control systems. Section III introduces the library, and discusses its Application
Programming Interface (API) and its implementation. In Section IV a complete Java example shows
how the library is used in the simulation of a simple DC servo system controlled by an embedded PID
controller. Section V shows how the JTT library is used in the creation of an EJS simulation (with an
advanced visualization) of the same DC servo system. Finally, Section VI presents the main conclusions
and discusses future work.

Sensors 2010, 10 8588

2. Embedded Control Systems

In an embedded control system, the (usually multiple) tasks are normally executed in what is called
real-time. A system is said to be real-time if the total correctness of the operation depends not only upon
its logical correctness, but also upon the time in which it is performed [1]. Real-time systems can be
classified in two subcategories: hard real-time systems, in which the completion of an operation after its
deadline may lead to a critical failure of the complete system and soft real-time systems, which tolerate
such lateness and may respond with decreased service quality (such as a longer settling time).

A simple example is that of stabilizing an inverted pendulum (see Figure 1) by moving its base
back and forth (the academic version of the how the Segway Personal Transporter keeps its verticality).
Suppose our operation requirements specify that the pendulum must recover its verticality as soon as
possible after suffering any moderate perturbation. If the sampling period of the vertical angle of the
pendulum is 80 ms, with a time delay of 20 ms for the engines to act on the base, a reasonable design
could require that the control algorithm is executed every 80 ms and has a worst case execution time
of 60 ms. For the system to avoid the pendulum from falling, the control algorithm must be both correctly
designed and must be applied in time.

Real-time tasks such as our control of verticality can be periodic, aperiodic, or sporadic, and are
characterized by different parameters, among which are:

• release time: which indicates the next instant in time when a task should be executed.

• finish time: to indicate when a task has finished its execution.

• execution time: which is the duration of the task execution.

• period: to indicate the amount of time at which a periodic task has to be released. When the task
is periodic, the release time is always a multiple of the period.

• deadline: which indicates the maximum allowed execution time to ensure correct execution. It is
common to take the period as the deadline of a periodic task.

Typically a control task executes in parallel with several other tasks, including other control tasks.
This puts focus on the scheduling policy of the system, which is the algorithm that decides which task to
execute at a given time. The presence of a scheduling policy introduces a new parameter for a task, its
priority or preference with respect to other tasks in the system.

In our example above, the control of the pendulum’s verticality would typically be a top-priority,
periodic task with a period of 80 ms and execution time smaller than 60 ms, which makes a deadline
of 80 ms reasonable. In cases where there are more tasks competing for CPU resources, a smaller
deadline could be prescribed.

Under a scheduling policy tasks may be in one of the three following states: running, preempted or
blocked and sleeping. Running means that the task is actually executing. Preempted means that the
task needs to be executed, but it is not being executed because another task is running (usually one with
higher priority). Sleeping indicates that the task has finished and is waiting for its next release time. A
schedule plot such as the one shown in Figure 2 is a graphical used to illustrate the evolution of the states
of the tasks in time.

Sensors 2010, 10 8589

The scheduling policy can be static or dynamic. For instance, Rate Monotonic (RM) is a popular
static scheduling policy that assigns the priorities of the tasks on the basis of their period: the shorter the
period, the higher the priority of the task. Earliest Deadline First (EDF) is a dynamic scheduling policy
that places tasks in a priority queue. Whenever a scheduling event occurs (a task finishes, a new task is
released, etc.) the queue is searched and the process closest to its deadline is scheduled for execution.

Figure 2. Schedule plot: three periodic tasks are running on the same CPU, tasks 1
and 3 have the highest and lowest priority respectively. Up arrows in a task plot indicate
the released times of that task, down arrows indicate the task finish times. The initials R, P,
and S indicate the possible states of the tasks. Note that the task 1 is never pre-empted.

3. Simulating an Embedded Control System

Given the variability of practical situations, the designer of an embedded control system needs to think
carefully and test the possible configurations of the tasks and their parameters. Setting correct priorities
and configuring the tasks appropriately can have a great impact on the total correctness of the system. In
particular, the control tasks can be split into code segments, so that only a part of the control algorithm
is applied during each periodic execution of the task.

Also, during the test process, the designer may want to play with the actual execution times of the
tasks in order to test the robustness of the control to variations caused by the CPU being involved in other
processes. The final goal is to design a control algorithm that meets the needs and resists the variations
caused by the actual implementation and unpredictable real situations.

Inspired by the successful ideas and architecture of the TrueTime toolbox for Matlab, we created
our JTT Java library to simulate code execution and scheduling of tasks in a real time environment.
The library allows converting a Java simulation of a control process into an embedded control system
by defining one or several kernels (which simulates a computer) that execute tasks according with a
given scheduling policy, including RM and EDF. Similar to TrueTime, the code of a task is divided into
segments as shown in Figure 3. The kernels, tasks and policies are also highly configurable. Since JTT is
a Java library, the systems can be implemented using pure Java code. The programmer creates and adds
the system components using the library’s API, and the library manages automatically all the internal
data structures and organizes the execution of the tasks. Non-programmers can use the library via Easy
Java Simulation, as discussed in Section V.

Sensors 2010, 10 8590

Figure 3. TrueTime code model. The execution of task code (or user code) is modelled by a
sequence of code segments that are executed in sequence by the kernel.

3.1. JTT’s Application Programming Interface

The JTT package provides four public classes and one abstract class. The three most important are:
RTenv, Kernel and Task (see Figure 4).

Figure 4. Main classes in the JTT package.

A real-time Java environment is an object of the public class jtt.RTenv, which provides the basic
functionality for implementing of the real-time environment. jtt.RTenv is a singleton class that can not
be instantiate from another class. A kernel is an object of the class jtt.Kernel that simulates a computer
which can execute one or more tasks. Kernels are instantiated using the constructor: Kernel();.

Kernels are added to the real-time environment using the static method: RTenv.addKernel(Kernel
kernel);. A task is obtained by using the public constructor of jtt.Task class: Task();.

Tasks can be later customized using standard setter and getter methods. Following TrueTime’s code
model, tasks in the JTT library are divided into code segments. A code segment is an object, programmed
by the user that extends the jtt.CodeSegment abstract class. Segments can also be added or removed from
the task after instantiation using convenience task methods.

This object-oriented structure provides a flexible and powerful way to create sophisticated tasks.
Alternatively, for simple situations, the task’s code can be also defined by using reflection. This option
can use suitable methods to run the code of the task. The method can include calls to the convenience
static method RTenv.endSegment(double time) to divide the code of the method into code segments.

With this information, the kernel object manages two internal queues to control the execution of the
tasks. The first queue is sorted by priority and keeps the identifiers of tasks which are ready to be
executed by the kernel. The second queue is sorted by release time and keeps the identifiers of tasks
which are waiting to be released. The kernel uses this task to determine the release time of the next task
and to execute the task segments according to the scheduling policy.

Sensors 2010, 10 8591

Authors can use this API to modify an existing simulation which they can step in time. They can
modify their initialization to create and add the required kernels and tasks, and then the main loop to
request the time of the scheduling event of the closer task in all kernels. If this time is closer to the
desired step, the program passes over the control of the execution to the kernel to execute the task code.

The classes Kernel and Task are implemented using Java threads. This implementation choice allows
interrupting the execution of a task and restart it when it is next released. To coordinate the execution
of the tasks, each kernel object has an object of the private class jtt.Token. When the kernel receives
the request to run, it gives its token to the task that is to be released. The task returns the token to
the kernel when it finishes the execution of a code segment and the kernel returns the control to the
calling program.

3.2. Sample Implementation

To exemplify briefly this structure, let’s suppose the original program consists of the following, rather
simplistic pseudo-code shown in Listing 1.

Listing 1. Original simulation.
1 p u b l i c c l a s s MyProcess {
2 / / I n i t i a l i z e s t h e p r o c e s s
3 p u b l i c MyProcess () {
4 . . .
5 }
6 / / S t e p s t h e p r o c e s s f o r an i n c r e m e n t o f t i m e
7 p u b l i c vo id s t e p (double d t) {
8 . . .
9 }

10 / / S i m u l a t e t h e p r o c e s s
11 s t a t i c p u b l i c vo id main (S t r i n g [] a r g s) {
12 double t ime = 0 , t F i n a l = 1 . 0 , d t = 0 . 0 0 1 ;
13 MyProcess p r o c e s s = new MyProcess () ;
14 whi le (t ime< t F i n a l) {
15 p r o c e s s . s t e p (d t) ;
16 t ime += d t ;
17 / / o u t p u t p r o c e s s v a r i a b l e s
18 . . .
19 }
20 } / / end o f c l a s s

To convert this process into an embedded control system, the programmer needs to modify this class
as the Listing 2 shows. Here some API methods for creation and configuration of the tasks and kernels
were used. Note how the simulation of the embedded process is done in the static method main. Next
subsection will discuss this in detail.

Listing 2. Modified simulation, version 1.
1 import j t t . ∗ ; / / Im po r t t h e JTT package
2 p u b l i c c l a s s MyProcess {
3 / / I n i t i a l i z e t h e p r o c e s s

Sensors 2010, 10 8592

4 p u b l i c MyProcess () {
5 . . .
6 / / c r e a t e a t a s k
7 Task t a s k 1 = new Task () ;
8 t a s k 1 . s e t P e r i o d (0 . 0 8) ; / / p e r i o d 80 ms
9 t a s k 1 . s e t P r i o r i t y V a l u e (0) / / Top p r i o r i t y

10 / / add code t o a t a s k
11 t a s k 1 . addCode (new CodeSegment () {
12 / / code o f t h e f i r s t segment
13 p u b l i c double code () {
14 . . .
15 re turn 0 . 0 3 ; / / e x e c u t i o n t i m e
16 }
17 }) ;
18 . . .
19 / / c r e a t e a n o t h e r t a s k
20 Task t a s k 2 = new Task () ;
21 t a s k 2 . s e t P e r i o d (0 . 1) ; / / p e r i o d 100 ms
22 t a s k 2 . s e t P r i o r i t y V a l u e (1) / / p r i o r i t y
23 / / add code t o a n o t h e r t a s k
24 . . .
25 / / c r e a t e k e r n e l and add i t t h e t a s k s
26 Ker ne l k e r n e l = new Ke rn e l ()
27 k e r n e l . s e t S c h e d u l i n g P o l i c y (K e r n e l . FP) ;
28 k e r n e l . addTask (t a s k 1) ;
29 k e r n e l . addTask (t a s k 2) ;
30 / / add t h e k e r n e l t o t h e r e a l t i m e e n v i r o n m e n t
31 RTenv . addKerne l (k e r n e l) ;
32 }
33 / / S t e p t h e p r o c e s s f o r an i n c r e m e n t o f t i m e
34 p u b l i c vo id s t e p (double d t) {
35 . . .
36 }
37 / / S i m u l a t e t h e p r o c e s s
38 s t a t i c p u b l i c vo id main (S t r i n g [] a r g s) {
39 double t ime = 0 , t F i n a l = 1 . 0 , d t = 0 . 0 0 1 ;
40 MyProcess p r o c e s s = new MyProcess () ;
41 whi le (t ime< t F i n a l) {
42 double n e x t E v e n t = RTenv . n e x t E v e n t () ;
43 i f (nex tEven t<t ime + d t) {
44 p r o c e s s . s t e p (nex tEven t−t ime) ;
45 RTenv . r u n K e r n e l () ;
46 t ime = n e x t E v e n t ;
47 } e l s e {
48 p r o c e s s . s t e p (d t) ;
49 t ime += d t ;
50 }
51 / / o u t p u t p r o c e s s v a r i a b l e s
52 . . .

Sensors 2010, 10 8593

53 }
54 } / / end o f c l a s s

The Listing 2 uses one way to add code to the tasks, i.e., overriding the class CodeSegment. However,
as we said before, there is another way much more simple that can be preferred by non-programming
authors. That way is called reflection.

The using of reflection provides to beginner programmers an easy way for adding code to a task.
Listing 3 shows how it can be done. Observe that reflection is chosen because we have added at the
beginning of the process’ initialization the method setReflectionContext. The input parameter of this
method is used to define the Java object where actually the code exist, in this case in the same class
MyProcess. Adding code to a task is done by using the method addCode, where the input parameter
sets the name of the Java method that has to be run when the task is executed. Note how the method
endSegment is used to split the task’s code in code segments. The input parameter of endSegment is used
to return the execution time of a code segment.

Listing 3. Modified simulation, version 2.
1 import j t t . ∗ ; / / Im po r t t h e JTT package
2 p u b l i c c l a s s MyProcess {
3 / / I n i t i a l i z e t h e p r o c e s s
4 p u b l i c MyProcess () {
5 / / S e t s r e f l e c t i o n
6 RTenv . s e t R e f l e c t i o n C o n t e x t (t h i s) ;
7 . . .
8 / / c r e a t e a t a s k
9 . . .

10 / / add code t o a t a s k
11 t a s k . addCode (” mycode ”) ;
12 / / c r e a t e k e r n e l and add i t t h e t a s k s
13 . . .
14 }
15 . . .
16 / / code o f a t a s k
17 p u b l i c vo id mycode () {
18 / / code o f t h e f i r s t segment
19 . . .
20 RTenv . endSegment (0 . 3) ; / / e x e c u t i o n t i m e
21 . . .
22 / / code o f t h e l a s t segment
23 . . .
24 RTenv . endSegment (0 . 1) ; / / e x e c u t i o n t i m e
25 }
26 } / / end o f c l a s s

Both ways for adding task’s code can be used indistinctly in the most of cases. However, reflection
could be easier to use for beginner programmers, whereas that overriding the class CodeSegment could
be much more useful if the task’s code is modified at runtime.

Sensors 2010, 10 8594

3.3. Integration of JTT in Advanced Simulations

In general, the simulation of an embedded control system consists of two main parts: the computer and
the physical system. First part simulates a computer (i.e., a kernel) where the control task is executing,
while the second part simulates the model of the physical system or the process to be controlled. As we
have seen, the JTT package allows authors to simulate the computer behaviour but, the simulation of the
physical system has to be provided by authors, who have to write the required Java code or to use other
suitable Java packages or tools like EJS.

Normally physical systems are modelled using Ordinary Differential Equations (ODE), for that reason
typical simulators have various ODE solvers (also called, numerical or integration methods) to simulate
these ODE models. The implementation in Java of a simple ODE solver simulator should not be a
difficult labour for even a beginner Java programmer, in fact, there are many open source code available
on Internet [19] (e.g., http://www.opensourcephysics.org). However probably, to write all the Java code
required for creation of highly visual and interactive simulations could be a hard (or at least a time
consuming) task.

Considerer for instance, the ODE model given by (1). In this system the derivatives are given by
the function f() and the initial state of the system is represented by xn. To solve an ODE model
means to advance the system from an initial state xn to a final state xn+1. The experimented reader
have surely noted that this action is implemented by the method step() in our sample simulation of
Listing 1. There are many solvers for ODE models, one of the most popular ODE solver is the
Runge-Kutta fourth-order. This algorithm calculates the final state xn+1 by means a weighted average
given by (2). This approximation is fifth-order accurate in the step size for a single step. The constants
k1, k2, k3 and k4 represent the derivative at beginning and middle time. The step size corresponds to the
interval time between the initial and final time.

ẋ = f(t, x), x(tn) = xn (1)

xn+1 ≈ xn +
k1 + 2k2 + 2k3 + k4

6
(2)

The coordination of both elements, kernel and solver, can be easily done by a simulator just executing
repeatedly the ODE solver and the kernel at specific times, see Figure 5.

When both solver and kernel are executed by the simulator, they internally set their next time to be
called by the simulator. In the case of the solver this next invocation time is the next integration step
determined by the algorithm that implements the solver. In the case of the kernel, the next invocation
time is based on the time of the next scheduling event. An event in the kernel can be for instance a task
that has finished a code segment, or a task that was sleeping and should be released.

Obviously, the simulator runs the system at the time given by the minimum of both next invocation
times. Note that when when the kernel has to be invoked, the simulator has also to call to the solver in
order to get the state of the ODE model at that time. Note also that the control execution of the kernel is
done by the primitive runKernel(), while the method nextEvent() has to be used in order to get the next
scheduling event of the kernel. These ideas about the kernel and solver integration, are clearly exposed
in the static method main of our modified simulation of Listing 2.

Sensors 2010, 10 8595

Figure 5. Diagram of an embedded control system simulation with JTT. Kernel simulation
is provided by JTT, Solver and View have to be programmed or facilitated by other Java tools
like EJS.

4. JAVA-JTT Approach

In this section we present a virtual lab of an embedded control system. First, the model of a DC servo
motor is presented. Then, the Java code to simulate the system is commented. The objective of this
virtual lab is just to show how to create the simulations of embedded control systems using Java and the
JTT library.

4.1. Embedded Control of a DC Servo

In this subsection we introduce a DC servo system controlled by an embedded PID controller [20].
The pedagogical purpose of the virtual lab is to show how the execution time of the controller induces a
delay in the feedback loop that might deteriorate the performance.

The embedded system consists of a periodic task controlling a simple DC servo system. The physical
system to be controlled is modelled as an ODE given by (3) and (4). ẋ1

ẋ2

 =

 0 1

0 −1

 x1

x2

+

 0

1000

u (3)

y =
[
1 0

]  x1

x2

 (4)

The controller is described by a periodic task divided in two subtasks or code segments. First code
segment computes the control action using a PID algorithm. Second code segment takes the computed
control action and sends out this signal to the servo system. Since the first subtask consumes much more
time from CPU than the second one, we can assume that only first code segment spends time.

4.2. Simulation of the Embedded Servo in Java

For simplicity, the simulation of the servo motor follows the same structure presented in Listing 2.
However, also two new methods are added to this listing: getRate(double[] state, double[] rate) and
step(double dt). Part of the new modified simulation is presented in the Listing 4.

Sensors 2010, 10 8596

Listing 4. Modified simulation, version 3.
1 import j t t . ∗ ; / / I mp or t t h e JTT package
2 p u b l i c c l a s s MyProcess {
3 / / I n i t i a l i z e t h e p r o c e s s
4 p u b l i c MyProcess () {
5 / / c r e a t e a t a s k (a PID c o n t r o l l e r)
6 Task t a s k = new Task () ;
7 t a s k . s e t P e r i o d (0 . 0 1 2) ; / / p e r i o d = 12 ms
8 / / add code t o t a s k
9 t a s k . addCode (new CodeSegment () {

10 p u b l i c double code () {
11 c o n t r o l A c t i o n = c a l c u l a t e (r e f e r e n c e , o u t p u t) ;
12 re turn 0 . 0 2 ; / / 20 ms
13 }
14 }) ;
15 t a s k . addCode (new CodeSegment () {
16 p u b l i c double code () {
17 i n p u t = c o n t r o l A c t i o n ;
18 re turn 0 ; / / 0 ms
19 }
20 }) ;
21 / / c r e a t e k e r n e l and add i t t h e t a s k . . .
22 }
23 / / Ge ts r a t e o f t h e ODE model
24 p u b l i c vo id g e t R a t e (double [] s t a t e , double [] r a t e){
25 r a t e [0] = s t a t e [1] ;
26 r a t e [1]=− s t a t e [1]+1000∗ i n p u t ;
27 r a t e [2] = 1 ;
28 }
29 / / S t e p t h e p r o c e s s f o r an i n c r e m e n t o f t i m e
30 p u b l i c vo id s t e p (double d t){
31 g e t R a t e (s t a t e , r a t e s 1) ;
32 f o r (i n t i =0 ; i<numEqn ; i ++)
33 k1 [i]= s t a t e [i]+ s t e p S i z e ∗ r a t e s 1 [i] / 2 . 0 ;
34 g e t R a t e (k1 , r a t e s 2) ;
35 f o r (i n t i =0 ; i<numEqn ; i ++)
36 k2 [i]= s t a t e [i]+ s t e p S i z e ∗ r a t e s 2 [i] / 2 . 0 ;
37 g e t R a t e (k2 , r a t e s 3) ;
38 f o r (i n t i =0 ; i<numEqn ; i ++)
39 k3 [i]= s t a t e [i]+ s t e p S i z e ∗ r a t e s 3 [i] ;
40 g e t R a t e (k3 , r a t e s 4) ;
41 f o r (i n t i =0 ; i<numEqn ; i ++)
42 s t a t e [i]= s t a t e [i]+ s t e p S i z e ∗ (r a t e s 1 [i]+2∗ r a t e s 2 [i]+2∗ r a t e s 3 [i]+ r a t e s 4 [i]) / 6 . 0 ;
43 }
44 / / Computes t h e PID
45 p u b l i c double c a l c u l a t e (r , y){
46 P = Kp∗ (b e t a ∗ r−y) ; I = I o l d ; D = Td / (N∗h+Td)∗ Dold+N∗Kp∗Td / (N∗h+Td) ∗ (yold−y) ;
47 I o l d = I o l d + Kp∗h / Ti ∗ (r−y) ; Dold = D; yo ld = y ;
48 re turn (P + I + D) ;

Sensors 2010, 10 8597

49 }
50 / / S i m u l a t e t h e p r o c e s s
51 . . .
52} / / end o f c l a s s

The method getRate(double[] state, double[] rate) is shown in Listing 4 line 23. This method is used
to describe the servo as an ODE, and also to update the derivatives (or rates) given by (3). The ODE
model of the DC servo has two states (x1 and x2), but, for practical reasons, we consider the time as
other state of the model. So for our convenience, the servo has three states (x1, x2 and time). The states
are coded by the array of doubles state, where x1 is state[0], x2 is state[1] and time is state[2]. Note
that the rate of the third state (time) is computed in the last rate.

Second method, step(double dt), is added to step the process for an increment of time (dt). This
method, see Listing 4 line 29, implements the Runge-Kutta algorithm to solve the ODE model of the
servo. The method uses the variable state and the method getRate defined previously.

The task code of the PID controller is added in the simulation in listing 4 line 8. In the first segment,
the task gets the control action (by calling to calculate), which is used in the second segment to feed the
input of servo. Variables reference, input and output represent the reference, the input and the output of
the process. Note that the code was added overriding the class CodeSegment.

The rest of the simulation is similar to the first modified version (see Listing 2). Although this version
is quite simple, just to show how to use the JTT package in Java, authors with programming skills could
use the Java packages awt and swing to create a more visual and interactive version, only adding a few
lines of code to this simulation (see an example in http://lab.dia.uned.es/jtt).

5. EJS-JTT Approach

Here we present two examples using JTT library in EJS. The first example is the same simulation
of the previous embedded control system but, using now JTT and EJS. This option could be speciality
useful for authors who prefer to use all the facilities provided by EJS to build simulations with a high
level of interaction and visualization. The second example describes some details about the simulation
of the three inverted pendulums shown in Figure 1.

5.1. Simulation of the Embedded Servo in EJS

In EJS, every application is divided in two main parts: the Model and the View. In the Model we
initialize the embedded system, and also we describe the ODE model and the code function of the task.
In the View we use the visual elements of EJS to build the GUI of the simulation. Before starting with
the code, we have to import the JTT package and to declare the variables. To import the JTT package,
EJS provides of a special dialog window to browse the file jtt.jar and to enter the corresponding import
statement. To declare the variables, we have to move to the section Variables and there, the kernels and
tasks variables have to be defined.

In Listing 5 the script for Initialize the Embedded System is shown. This script is written in the section
Initialization in EJS. Note that the code for Initialize the Embedded System is almost the same that the
code shown in previous listings. However here, we specify that the schedule data must be available for

Sensors 2010, 10 8598

plotting purposes. This is done using the methods setSchedule and setScheduleWindow. The second
method allows to define the time extension of the schedule data available.

Regarding to the task code, the reader can see that the reflection was selected as a way to implement
the embedded system. As Listing 3, the method setReflectionContext defines that this is the object where
the code function of the task is located. This should be the general situation in EJS, since methods
defined by users, like the code function taskcode, are normally located in the section Custom. Obviously
the other way for adding task’s code is also possible in EJS.

Listing 5. Creation of the kernel and task in EJS.
1 / / I n i t i a l i z e t h e Embedded Sys tem
2 RTenv . s e t R e f l e c t i o n C o n t e x t (t h i s) ;
3 k e r n e l =new Ke r n e l () ;
4 k e r n e l . s e t S c h e d u l e (t rue) ;
5 k e r n e l . se tScheduleWindow (0 . 5) ;
6 t a s k =new Task () ;
7 t a s k . s e t P e r i o d (0 . 0 1 2) ;
8 t a s k . addCode (” t a s k c o d e ”) ;
9 k e r n e l . addTask (t a s k) ;

10 RTenv . addKerne l (k e r n e l) ;

Listing 6 shows the method that implements the code function of the taskcode. Note that taskcode is
quite similar to the previous version of the simulation. However, since we are using reflection, the task
code is divided now into code segments using the method endSegment. Input parameter of endSegment
represents the execution time of the code segment as it has been said. Other user methods like calculate,
which returns the computed control action, are also implemented in the section Custom.

Listing 6. The method ”taskcode” used by the periodic task.
1 p u b l i c vo id t a s k c o d e () {
2 / / Update Outpu t
3 o u t p u t =x1 ;
4 / / C a l c u l a t e A c t i o n
5 c o n t r o l A c t i o n = c a l c u l a t e (r e f e r e n c e , o u t p u t) ;
6 RTenv . endSegment (e x e c u t i o n T i m e) ;
7 / / Send Out C o n t r o l S i g n a l
8 i n p u t = c o n t r o l A c t i o n ;
9 RTenv . endSegment (0) ;

10 }

In the section Evolution of the Model we have to write all the code that should be executed
continuously by the simulation, i.e., the solver and kernel events, and also the plotting of the
schedule data.

Regarding to the solver and the plant dynamics, EJS provides an ODE editor to describe the ODE
model given by (3) (see Figure 6). There are many solvers available in EJS, including the Runge-Kutta
algorithm commented previously in Section 3.

EJS has also a way to detect events using the method of bisection. This feature will be useful in our
case for detection of scheduling events. The events in EJS are adding by pressing the Events button (see
Figure 6) and defining two parts. First part represents the called zero cross function, which has to return

Sensors 2010, 10 8599

zero when the event has to be triggered. The second part of the event represents the action of the event,
which is a set of statements that has to be executed when an event is triggered. Take into account that
solvers in EJS always update the state of the ODE model before to call any event.

Figure 6. Ordinary differential equations of the model system using the editor of EJS. The
ODE models are defined in the section Evolution in EJS.

Four our purposes, the detection of the kernel event is quite simple. The zero cross function is just the
remaining time to the next scheduling event, i.e., return RTenv.nextEvent(t);. The action is also simple,
because the only one statement needed to call the corresponding kernel is RTenv.runKernel();.

To capture the schedule data the Listing 7 is also put on the section Evolution, but in other evolution
page called getSignals (see Figure 6). This script uses the method getSchedule to get schedule data
(arrays time and value) of the task. This data will be used by a polygon (a visual element of EJS) to plot
the schedule state of the task in the GUI of the simulation.

Listing 7. Getting the schedule data of the task.
1 . . .
2 / / ∗∗∗∗∗∗∗ Capture S c h e d u l e S i g n a l s ∗∗∗∗∗∗
3 t a s k S c h e t = t a s k . g e t S c h e d u l e (” t ime ”) ;
4 t a s k S c h e v = t a s k . g e t S c h e d u l e (” v a l u e ”) ;
5 p o i n t s = t a s k S c h e v . l e n g t h ;
6 . . .

After to implement the code in the Model, we have to use the visual elements provided by EJS to build
the GUI of the simulation. There are good references that describe very well this action in detail [18],
for that reason we just show in the Figure 7 the final result of using the visual elements of EJS. Four kind
of elements are quite important in this view. The PlottingPanels used to show the axis of coordinates.
The traces: output, reference and control, used to plot the output, control and reference signals of the
system. The polygon state used to graph the schedule data. And finally the slider executionTime which
allows end users to modify the execution time of the first code segment of the controller (see Listing 6).
Note that the exchange of data between the real-time tasks and the GUI is done when either a solver step
or a kernel event is executed.

Sensors 2010, 10 8600

Figure 7. Section View of the EJS. Elements on the right are provided by EJS to build the
tree-like structure on the left, which describes the GUI of the simulation of Figure 8.

The GUI of the simulation is shown in Figure 8. The virtual lab has two plots. Upper plot shows the
signals reference, control and output of the system. Bottom plot, presents the schedule data of the task.
There is also a slider to control the execution time and three buttons to control the simulation. In the
GUI we can see how the increasing of execution time of the controller affects negatively to the control
performance. This can be notice in the GUI, because the execution time has been changed from 2 ms
to 8 ms at 1.5 s.

Figure 8. GUI of the virtual lab developed using the JTT-EJS approach.

5.2. Control of Three Inverted Pendulums

This virtual lab simulates a more advanced example than the previous ones. In this case, three
inverted pendulums of different lengths should be controlled by a computer with limited computational
resources [6]. Control objectives of the system are to reach a desired position for the cart, while the

Sensors 2010, 10 8601

pendulum keeps its verticality. A linear digital controller is designed (by state-space method) for each
pendulum [21,22]. The pendulum lengths motivate different periods for the three controllers. Other
parameters such as control gains or execution times should be similar in all cases.

As the previous example, the control task is divided in two code segments, one segment to compute
the control action (given by a state feedback control strategy) and another one to send out, to each
pendulum, the computed control action.

The GUI of this virtual lab is shown in Figure 1. On the left side, an animation of the three inverted
pendulum is presented. Students can select different types of references, modify manually desired
position points and even apply disturbances to the angle of the pendulums. At the right side, users
can modify the parameters of all tasks such as, period, execution time and priority. There is also possible
to select one of the three scheduling policies among other options.

Main goal of this virtual lab, from the pedagogical point of view, is to show how the scheduling
policy affects the control performance. For instance the Figure 1 shows the state of the pendulums two
seconds later that a moderate disturbance was apply. Note that two pendulums have totally recovered
the verticality, however the largest pendulum is still trying to stabilize. This fact, is a consequence of the
selected scheduling policy. As the Rate Monotonic (RM at the GUI) was selected, the task’s priorities
are sorted by the period. The largest pendulum has the largest period and so, the lowest priority. This
introduces variables delays in the execution of the controller due to the interruption of the other two
pendulums (see the schedule plot at the GUI). If the scheduling policy is changed to Earliest Deadline
First (EDF at the GUI), the CPU is shared between the task in a more fair way, and so the verticality of
all pendulums can be achieved approximately at the same time. More details about the system can be
found in [6].

6. Conclusions and Further Work

Control theory and real-time systems have both a long, but separated, tradition. Typically, an
embedded control system have been implemented in two unconnected phases by two kind of engineers:
a control engineer and a computer engineer. Both engineers have made wrong assumptions about each
phase. Computation delay of the controller is negligible or controller deadlines are always critical, are
wrongly assumed as true.

This misunderstanding have required of new simulation tools to study the real-time control systems.
One of them is the successful Matlab-based toolbox TrueTime. However the toolbox is limited to Matlab
users, which can be an important restriction for many students. For that reason, we have created a library
called JTT, which have been implemented in Java to take advantages of this language specially from the
pedagogical point of view. Interactivity and rich graphical contents can be also added to these simulations
in order to help specially to the learning process of embedded control systems.

Non-programming instructors, who are not use to Java, can still build simulations by using the JTT
library with Easy Java Simulations. This approach facilitates enormously the creation of simulations
with a high degree of interactivity and visualization.

To show how to use the library JTT, three virtual labs have been presented in the article, one built
completely in Java, and the others two by using Easy Java Simulations. Some important effects, about

Sensors 2010, 10 8602

the real-time parameters in the embedded control systems are also discussed in that simulations. More
examples can be found in http://lab.dia.uned.es/jtt/.

The framework for embedded control simulations is still under developing, and to switch from the
simulation environment to the real implementation is not direct and easy. Many work in this sense is still
required, so further work could involve the development of new functionalities to, for instance, interact
properly with data acquisition cards in order to control real equipment from real-time tasks. Other further
work could be the supporting of wired and wireless communication networks between the kernels of the
real-time environment.

References

1. Burns, A.; Wellings, A. RealTime Systems and Programming Languages, 3rd ed.; Addison Wesley:
Dorset, UK, 2001.

2. Nolte, T.; Passerone, R. Guest Editorial Special Section on Real-Time and (Networked) Embedded
Systems. IEEE Trans. Ind. Inf. 2009, 5, 198-201.

3. Buttazzo, G.; Kuo, T.W. Guest Editorial: Special Issue on Real-Time Systems Part II. IEEE Trans.
Ind. Inf. 2009, 5, 1-2.

4. Ma, L.; Xia, F.; Peng, Z. Integrated Design and Implementation of Embedded Control Systems with
Scilab. Sensors 2008, 8, 5501-5515.

5. Cervin, A.; Henriksson, D.; Lincoln, B.; Eker, J.; Årzén, K. How does Control Timing Affect
Performance? IEEE Contr. Syst. Mag. 2003, 23, 16-30.

6. Cervin, A. Integrated Control and Real-Time Scheduling. PhD Thesis, Lund Institute of
Technology: Lund, Sweden, 2003.

7. Miskowicz, M. Send-On-Delta Concept: An Event-Based Data Reporting Strategy. Sensors 2006,
6, 49-63.

8. TrueTime’s home page. http://www.control.lth.se/truetime (accessed on 2 September 2010).
9. Ohlin, M.; Henriksson, D.; Cervin, A. TrueTime 1.5 Reference Manual, Manual. Department of

Automatic Control, Lund University: Lund, Sweden, 2007
10. The Matworks, Matlab’s home page. http://www.mathworks.com. (accessed on 02 September

2010).
11. Farias, G.; Cervin, A.; Årzén, K.; Dormido, S.; Esquembre, F. Multitasking Real-Time Control

Systems in Easy Java Simulations. In Proceedings of the 17th IFAC World Congress, Seoul , Korea,
6–11 July 2008.

12. Xia, F.; Tian, Y.; Li, Y.; Sung, Y. Wireless Sensor/Actuator Network Design for Mobile Control
Applications. Sensors 2007, 7, 2157-2173.

13. Andersson, M.; Henriksson, D.; Cervin, A.; Årzén, K. Simulation of wireless networked control
systems. In Proceedings of the 44th IEEE Conference on Decision and Control and European
Control Conference ECC, Seville, Spain, 12–15 December 2005.

14. Heck, B.S. ed; Special Report: Future Directions in Control Education. IEEE Contr. Syst. Mag.
1999, 19, 35-58.

15. Dormido, S. Control Learning: Present and Future. IFAC Annual Rev. Control 2004, 28, 115-136.

Sensors 2010, 10 8603

16. Sánchez, J.; Dormido, S.; Esquembre, F. The Learning of Control Concepts Using Interactive Tools.
Comput. Appl. Eng. Educ. 2005, 13, 84-98.

17. Esquembre, F. Easy Java Simulations. Available online: http://fem.um.es/Ejs (accessed on 2
September 2010).

18. Esquembre, F. Easy Java Simulations: A Software Tool to Create Scientific Simulations in Java.
Comp. Phys. Comm. 2004, 156, 199-204.

19. Christian, W. Open Source Physics: A User’s Guide with Examples; Pearson Education: San
Francisco, CA, USA, 2007.

20. Åström, K.J.; Hägglund, T. Advanced PID Control. ISA The Instrumentation, Systems, and
Automation Society, Research Triangle Park, NC, USA, 2005.

21. Ogata, K. Modern Control Engineering, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA,
2006.

22. Dorf, R.; Bishop, R. Modern Control Systems, 10th ed.; Prentice Hall: Upper Saddle River, NJ,
USA, 2004.

c⃝ 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)

	Introduction
	Embedded Control Systems
	Simulating an Embedded Control System
	JTT's Application Programming Interface
	Sample Implementation
	Integration of JTT in Advanced Simulations

	JAVA-JTT Approach
	Embedded Control of a DC Servo
	Simulation of the Embedded Servo in Java

	EJS-JTT Approach
	Simulation of the Embedded Servo in EJS
	Control of Three Inverted Pendulums

	Conclusions and Further Work

