LUND UNIVERSITY

A low logic depth complex multiplier

Berkeman, Anders; Owall, Viktor: Torkelson, Mats

1998

Link to publication

Citation for published version (APA):
Berkeman, A., Owall, V., & Torkelson, M. (1998). A low logic depth complex multiplier. 204-207. Paper
presented at European Solid-State Circuits Conference (ESSCIRC), 1998, Hague, Netherlands.

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/44d1cce2-29cc-42cd-82ad-ef73e6b1d7e4

Download date: 15. Jan. 2026

A Low Logic Depth Complex Multiplier

Anders Berkeman, Viktor Owall and Mats Torkelson

Department of Applied Electronics, Lund University
Box 118, SE-221 00 Lund, Sweden
Tel. +46 46 2229377, Fax. +46 46 129948
E-mail: Anders. Berkeman@tde.lth.se

Abstract

A complex multiplier has been designed for use
in a pipelined fast fourier transform processor. The
performance in terms of throughput of the processor
is limited by the multiplication. Therefore, the
multiplier is optimized to make the input to output
delay as short as possible. A new architecture based
on distributed arithmetic and Wallace-trees has been
developed and is compared to a previous multiplier
realized as a reqular distributed arithmetic array.
The simulated gain in speed for the presented multi-
plier is about 100%. For verification, the multiplier
is fabricated in a three metal-layer 0.5u CMOS
process using o standard cell library. The fabricated
multiplier chip has been functionally verified.

1. Introduction

A pipelined Fast Fourier Transform (FFT) proces-
sor has been designed for use in an Orthogonal Fre-
quency Division Multiplex (OFDM) system. Multi-
plication is often the most time-critical and area con-
suming operation in a digital signal processor. There-
fore, effort has to be made to decrease the number of
multipliers and to increase their speed. In the de-
signed FFT processor the critical path consists of
a complex multiplier in series with a butterfly unit
performing addition and subtraction. A part of the
FFT pipeline is shown in figure 1. Since the butterfly
processors are much faster than the complex multi-
plier, the maximum clock frequency of the processor
strongly depends of the multiplier delay.

This paper present a novel multiplier architecture
based on distributed arithmetic and Wallace trees.
The new architecture is by simulation compared to a
multiplier realized as a regular array, and the speed
improvement is approximately 100%. The multiplier
is fully parameterized, so any configuration of input
and output wordlengths could be elaborated. The
tree multiplier has been fabricated and verified for
functionality. However, no performance measure-
ments have been made.

JShI=
pipiin]

Figure 1: Part of the FFT processor pipeline. The but-
terfly processors are named “BF I” and “BF II”. Shaded
boxes are combinatorial blocks without pipeline.

w

2. The FFT processor

In the early versions of the FFT-processor, a com-
plex array multiplier was used [1]. The array multi-
plier is a highly regular structure resulting in a min-
imal wire-length, which is important for high-speed
design in sub-micron processes where wiring delay
gives a significant contribution to the overall delay.
However, in a process where cell delay dominates wire
delay, the logic depth of the design is more important
than regularity. In the complex array multiplier the
logic depth is proportional to the input wordlength
N. In the adder tree multiplier, on the other hand,
the depth is proportional to log N [2]. Even for short
worldlengths this leads to a substantial reduction in
delay.

A way to decrease the critical path of the FFT pro-
cessor would be to pipeline the multiplier into two or
more stages. However, due to the pipelined struc-
ture of the FFT processor, complexity of the control-
ling hardware would increase [3]. Furthermore, the
wordlengths of the data paths are wide, due to the
application of the processor, and all operators use
complex arithmetic. A multiplier in this application
has between 44 and 52 inputs, and a pipeline register
inserted somewhere in the middle of the multiplier
would need a word length of more than a hundred
bits, due to the internal ’carry save’ number represen-
tation. This would increase area, routing and clock
load and is not a preferable solution. Instead, the
multiply operation is entirely combinatorial.

The FFT processor is implemented using the
R2?DIF FFT-algorithm [3]. In this algorithm, every
second multiplication can be exchanged to a multiply
by —j, which for an 8192-point FFT leaves only
six complex multipliers. This is to be compared
to thirteen using a straightforward implementation.
The multiplication by —j is realized without a
multiply by real-imaginary swap and negation of
the imaginary part. This is the reason for the two
different butterfly processors, “BF I” and “BF II”,
in figure 1. By using this algorithm, the number of
instanciated multipliers is minimized compared to an
ordinary radix-2 FFT without any loss in throughput.

3. Multiplier algorithm

A complex multiplier calculates two inner prod-

ucts,
{ Zr = ARWgr — AfW; 1)
Zr = AW + AWk,
In the case of the FFT-processor, W = Wg + jW} are
the twiddle-factors stored in a ROM. The wordlength
of Wg and W; is denoted M. According to equa-
tion (1), four real multiplications and two additions
are required.

With the exception of logic minimization, there are
two methods to decrease multiplication delay if it is
assumed that multiplication is performed by summa-
tion of partial products. The first is to reduce the
number of partial products, and the second is to use
a faster adder strategy to sum all the partial prod-
ucts together [2]. Both methods have been combined
in the presented architecture.

Distributed arithmetic [4] was chosen as a means to
reduce the number of partial products, and a Wallace
tree adder was selected for adding the partial prod-
ucts together. By using distributed arithmetic, the
complex multiplication is treated as two independent
inner products Zg and Z;. Each of the inner products
will be calculated using one distributed arithmetic
multiplier, as explained in section 3. This should be
compared to a multiplier realized using equation (1),
in which case four real multiplications are required.

As an alternative to distributed arithmetic, mod-
ified Booth-encoding was considered. However, as
the number of partial products are about the same
for both methods, modified Booth-encoding requires
more logic gates to implement. This is due to that in
the modified Booth algorithm, three variables have to
be decoded to select the proper partial product. In a
complex multiplier based on distributed arithmetic, a
simple two-input xor-gate does the selection.

When using distributed arithmetic, the twiddle-
factors have to be transformed from Wgx and W; to
Ws and Wp, where

Ws =Wr +W; @)
Wp = Wg — Wr.

This transformation does not cause any problems
in the implementation, since the twiddle-factors
are pre-calculated in the W5 and Wp format before
realization. However, it is important that Ws and
Wp are calculated using floating-point arithmetic
before they are converted to fixed point. Otherwise,
accuracy is reduced.

4. Mathematical background

This section gives a mathematical background to
the operation of the multiplier. In the equations that
follow, a bit-variable is treated as a variable holding
the arithmetic value of 0 or 1. In this way, bits can
be used together with arithmetic variables and op-
erators. If A is an N-bit fractional number in two’s
complement, the value of A is calculated according to

N-1
A=—ao+ Z a;27°". (3)
i=1
By using the identity
[A—-(-4)] (4)
and the rule for negating a two’s complement number

—A=A 42" (N-1), (5)

equation (3) can be written as
N-1 .
A=—(ap—a0)2 '+ Y (ai—a)2 " 1—2". (6)
=1

Introduce ap = (@g — ao), and for k # 0, ar = (a, —
ay), note that all a, € {—1,+1}. Using this notation,
A can be written as

A=A — 2_N, (7
where
N-1
A = Z a; 271, (8)
i=0

The relationship between a; and «; is

_J +1,ifa;zg=10rag =0
al_{ —1,ifa,-¢0=00ra0=1 (9)

Using this encoding the complex product can be writ-
ten as
N—-1
Zr =Y (Weari—Wiar) 2™ " = (We—W1) 2" (10)
=0
N-—-1
Zr = Z (Wragi +Wran) 27 71— (Wi +We) 2™ Y. (11)
=0

Wp

Ar

Ws

Figure 2: The multiplier for Zg or Zr, the complete com-
plex multiplier consists of two of these. Partial inner prod-
uct generator at the top, adder tree in the middle, and fast
carry-lookahead adder at the bottom.

The expression Wrag; + Wgray; is, for i # 0, ex-
amined in the following table,
ari ari | ari an | Wiari + Wraus

-1 -1 0 0 —Ws
-1 1 0 1 Wp
1 -1 1 0)
1 1 1 1 Ws

where W5 and Wp were introduced in equation (2).
From the table it is clear that p = (ag; ® ar;) can
be used to select Ws or Wp. Using p, Ws and Wp,
equation (10) and (11) can be written as

(_1)ﬁ [pWS VﬁWD] 9—i—1 _ Wp 2_N =

Zr=") (-1)*® [pWp VpWs] 271 —Ws 27N =

N-1
Y (@rio©pWp V pWs]+am) 2~ - Ws 27V, (13)
1=0

When evaluating the sums, the powers ag; and ar;
should be replaced with ag; and ay; for the casei = 0,
since these bits represent the sign in two’s comple-
ment representation. The partial inner product

ar; ® [pWp V DWs] + ar; (14)

is suitable for hardware mapping. It is realized as
a multiplexer selecting +Ws or £Wp, depending on
the value of p = (ar; ® ar;). If arizo = 0 (or aro =
1), an inverted version of the coefficients is chosen,

Figure 3: All partial product bits by significance for Zg
or Z7. Input wordlength is N and coefficient wordlength
is M.

and a ’1’ in the least significant position is added,
corresponding to a two’s complement negation. The
expression

ar; ® [pWs vV pWp) + ar; (15)

is treated similarly. Figure 3 shows all the partial
product bits that has to be added to generate Zgr
or Zy. The wordlength for the twiddle factor, W, is
M bits and for the data, A, it is N bits, in this case
10 and 16 bits respectively. The top sixteen lines in
the figure is the partial products generated inside
the sum of equation (12) or (13), and the third line
from bottom is the ones that form the corresponding
two’s complement of these products. The last two
lines is the —Wgp2™ term.

5. Implementation

The proposed multiplier consists of two distributed
arithmetic blocks, one calculating Zg, and the other
Z7. The two blocks are similar and the difference
is basically the sign in equation (1). Each block is
divided into three parts, partial inner product gener-
ator, adder tree and carry lookahead adder, see fig-
ure 2.

The multiplier is synthesized to a 0.5y cell library
that does not contain any dedicated half or full adder
cells. Estimated delay for a 10+10 by 16+16 mul-
tiplier using a worst case industrial environment is
about 16 nanoseconds, compared to 34 nanoseconds
for the array multiplier using the same cell libraries
and comparable design methodology. About 55% of
the total delay is due to the adder tree. The partial
inner-product generator contributes with 20% and
the carry-lookahead adder 25% of the total delay.
Most of the delay is spent in the adder tree, and by us-
ing dedicated adder cells this delay can be decreased.
However, the target cell library does not contain any
such cells and such improvements have not been im-
plemented, which is the case for both designs.

When designing the adder tree, a generic tree gen-
erator was used. This generator produces a tree with
y inputs of wordlength z, that is a rectangle of z by
y input bits. This rectangle has to be large enough
to cover all the partial product bits of figure 3, i.e.
x=M+N—-1and y= N + 3. For certain sizes of N
and M, the two last lines in figure 3 can be joined with
two of the N first lines, minimizing y to N+ 1. Unfor-
tunately, almost 50% of the inputs to the adder tree
are unused or used for sign extension, and extra logic
will be generated. Therefore, the area for the tree
multiplier is approximately 75% larger than for the
array multiplier. The number of gates for the array
multiplier is 3000, while the tree multiplier uses 6200
gates, of which 4400 belongs to the two adder trees.
Theoretically, the area for a dedicated tree generator
should be only slightly larger than for the array mul-
tiplier. Both multipliers have been fabricated and the
die photo for the tree multiplier is shown in figure 4.

When data flows through the pipeline of the FFT
processor, the wordlength has to increase to keep ac-
curacy in the calculations. For the current applica-
tion the input wordlength is 12-+12 bits (real + imag-
inary) and the output wordlength is 16+16 bits. The
twiddle-factors are kept constant at 10410 bits at all
stages of the pipeline. Different wordlengths in the
datapath means that a set of multipliers of differ-
ent wordlengths have to be instantiated if the longest
wordlength is not to be used for all multipliers with a
corresponding increase in area. Also, as FFT pro-
cessors will be built for different applications the
wordlength is subject to change. Therefore, the mul-
tiplier is fully parameterized and a multiplier of spe-
cific wordlength can be elaborated when needed.

For our application, the output wordlength should
equal the input wordlength, i.e. some of the least
significant bits of the result are cut away. A sim-
ple rounding scheme is applied to lower the distor-
sion when the output is truncated. A rounding bit is
added to the right of the rightmost bit to be kept af-
ter truncation, causing a carry to propagate when the
most significant position of the bits cut away is a one.
A feature of the adder tree is that this bit can be in-
serted together with the partial inner products at the
top of the tree, see figure 3. In the array multiplier,
an additional row of half-adders had to be included to
handle rounding. As rounding includes addition of a
one with the product, arithmetic overflow at the out-
put is possible. Therefore, a saturation unit is placed
at the output of the carry-lookahead adder. This unit
checks the most significant bits of the result and mod-
ifies the output if an overflow has occurred.

6. Conclusion

A Wallace-tree based complex multiplier has been
designed and simulated with a speed improvement

Figure 4: Plots of the tree multiplier. The array multi-
plier is similar. The pad-frame is 3.2x2.9 mm? and equal
for both designs.

of approximately 100% compared to a previously de-
signed array multiplier. In a worst case industrial
environment, the delay of a 10+10 by 16+16 multi-
plier is about 16 ns. This is when synthesized to a
three metal-layer 0.5y process with a standard cell li-
brary (Mietec MTC35000) that does not contain any
dedicated half- or full-adder cells. The figure is an es-
timation without post-layout delay information. Un-
der equal conditions the complex array multiplier cur-
rently being used has a delay of 34 ns.

Since the multiplier, together with an
adder/subtractor, is located in the critical path
of the FFT-processor, throughput is expected to
increase with approximately 80%. The multiplier
is fully parameterized so any configuration of input
and output wordlengths can be elaborated and
synthesized. Both the array and the tree multiplier
have been fabricated on the same die.

References

[1] S. He and M. Torkelson. “A Complex Array Multiplier
Using Distributed Arithmetic”. In Proc. of IEEE Cus-
tom Integrated Circuits Conference, 1991.

[2] C.S. Wallace. “A Suggestion for a Fast Multiplier”.
IEEE Transactions on Electronic Components, Vol.
EC-13, Feb 1964.

[3] S.He and M. Torkelson. “A New Approach to Pipeline
FFT Processor”. In Proc. of IEEE International Par-
allel Processing Symposium, 1996.

[4] S.G. Smith and P.B. Denyer. “Efficient Bit-Serial
Complex Multiplication and Sum-Of Products Com-
putation Using Distributed Arithmetic”. In Proc. of
IEEE ICASSP, 1986.

