LUND UNIVERSITY

Object-Tokens in High-Level Grafchart

Johnsson, Charlotta: Arzén, Karl-Erik

1996

Link to publication

Citation for published version (APA):
Johnsson, C., & Arzén, K.-E. (1996). Object-Tokens in High-Level Grafchart. Paper presented at CIMAT,
Grenoble, France.

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/24b26f8d-824b-44e8-b13f-d0f1539b9e42

OBJECT TOKENS IN HIGH-LEVEL GRAFCHART

Charlotta Johnsson and Karl-Erik Arzén

Department of Automatic Control,
Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden,
lotta@control.lth.se, karlerik@control.lth.se

Abstract:

The paper presents an high-level extension to Grafchart, a Grafcet-based toolbox

for supervisory control applications. The extension allows tokens to be objects with attributes.
Contrary to most high-level extensions to Petri Nets and Grafcet it is not based on arc inscriptions.

Keywords:

1. Introduction

Grafchart is the name of a toolbox for sequential su-
pervisory control applications that has been devel-
oped at the Department of Automatic Control since
1991 [Arzén, 1991], [Arzén, 1994b]. Grafchart is imple-
mented in G2 [Moore et al., 1990], an object-oriented
graphical programming environment developed for su-
pervisory control applications. Grafchart is based on
the graphical syntax of Grafcet [David, 1995]. Grafcet
originally developed in France during the 1970s as
a formal specification method for logical controllers.
It has since become the basis for Sequential Func-
tion Chart (SFC) language through the international
standards (IEC 848) and (IEC 1131-3). In SFC the
emphasis has gradually shifted towards providing a
graphical programming language for sequential con-
trol problems. Grafchart continues this development.
It is aimed at supervisory control applications of a se-
quential nature. This can either mean that the process
is of a sequential nature, e.g., a process with different
operating modes, or that the application itself can be
decomposed into sequential steps.

Grafchart is used industrially in an oil refinery appli-
cation [Arzén, 1994a]. The system uses expert system
techniques coupled with numerical optimization in a
decision-support system that gives on-line advice re-
garding the distribution of hydrogen resources in the
refinery. In [Lépez Gonzdlez et al., 1994], Grafchart
is used to implement a flexible manufacturing cell.
Here, Grafchart is used in a four-layered hierarchical
structure to represent the plant-wide operating phases
of the control system, to describe the sequences of
tasks to be executed to manufacture the parts, to de-
scribe the tasks at the workstation level, and, finally,
to describe the different services offered by the device
drivers in the cell. Grafchart has also been used to
implement a prototype of a training simulator for a
sugar crystallization process [Nilsson, 1991].

Grafcet, Petri nets, High-Level Petri Nets, Supervisory Control

High-Level (H-L) Grafchart is an extension to
Grafchart that is currently under implementation.
H-L Grafchart combines the graphical language of
Grafcet/SFC with object-oriented programming lan-
guage constructs and ideas from High-Level Petri
Nets. The features that are new in H-L Grafchart,
compared with Grafchart, are parameterization,
methods and message passing, object tokens, and
multi-dimensional charts. The first two of these addi-
tions are presented in [Arzén, 1996b]. The topic of this
paper is the third addition, object tokens. Here the
tokens of the function chart are objects that carry in-
formation similar to tokens in High-Level Petri Nets.
An application of H-L Grafchart for recipe-based
batch control is presented in [Johnsson and Arzén,
1994] and in [Johnsson and Arzén, 1996]. Alarm fil-
tering based on H-L Grafchart is presented in [Arzén,
1996a).

Grafchart and the parameterization and message pass-
ing features of H-L Grafchart are presented in Section
2. The object token extension of H-L Grafchart is pre-
sented in Section 3. A difference from High-Level Petri
Nets [Jensen and Rozenberg, 1991] and previous work
on Coloured Grafcet [Agaoua, 1987], [Suau, 1989] is

that arc inscriptions are not used.

2. High-Level Grafchart

Grafchart is based on the graphical syntax of Grafcet
summarized in Fig. 1. A step represent a state, phase
or mode that can be active or inactive. Associated
with the step are actions that are performed when the
step is active. Steps are connected by transitions. Each
transition has an associated receptivity that could be
a logical condition, an event or an combination of an
event and a logical condition. When the receptivity
of a transition becomes true the transition fires i.e.
deactivates the steps preceding it and activates the
steps succeeding it. Grafchart supports alternative

Initial
step—
Iternative branches
/Transmon Parallel branches
Token
Step .
Figure 1. Grafcet example

branches (distribution OR) and parallel branches
(distribution AND) in the same way as Grafcet.

Function charts

All the basic building blocks in Grafchart are defined
as G2 objects and the arcs are implemented as G2
connections. A Grafchart function chart can either be
closed or terminated by a sink transition. Optionally,
a function chart can be encapsulated by a Grafchart
process object. The user can define subclasses to
all Grafchart elements, e.g., Grafchart processes or
steps, and in these subclasses add attributes. In this
way the elements can be specialized. The attributes
of an element act as parameters whose values can
be referenced and changed from step actions and
referenced from transitions of the function chart.

Steps

The main difference between Grafcet and Grafchart
concerns the way step actions are represented. Since
Grafcet has been developed as a logical controller the
actions that can be done in a step are of a boolean
nature. Different types of actions are allowed, e.g.
normal (level) actions, stored (impulse) actions, time-
delayed actions and time-limited actions.

The actions that can be associated with a step in
Grafchart are more general; they can be compared
with the statements of a conventional programming
language. A Grafchart action can be of four basic
types: always, initially, finally and abortive. All ac-
tions can be conditional or unconditional.Always ac-
tions are executed periodically while the step is ac-
tive. Initially actions are executed once when the step
becomes active. Similarly, finally actions are executed
once immediately before the step becomes deactivated
and abortive actions are executed once immediately
before the step is aborted. The actions are represented
by action templates. These are text strings that dur-
ing compilation are translated into the correspond-
ing G2 rules. The actions that may be performed in
a step action are the action types provided by G2,

Initially

‘ Action Template
conclude that n = sup.x

Compiled
G2 Rule into

Figure 2. Grafcet example

e.g., assignments, procedure invocations, object cre-
ation and deletion, animation actions, etc. The ac-
tion templates can reference parameters with the dot
notation sup.attribute. During compilation this is
translated into the appropriate G2 expression, i.e. a
reference to an attribute. Lexical scoping is used. The
situation is shown in Fig. 2

Transitions

Each transition contains two attributes: event and
condition. Here, the user enters the event expression
and/or the logical condition telling when the transi-
tion should fire. The sup.attribute notation may be
used. During compilation this is translated into the
appropriate G2 rule (compare step actions). A transi-
tion that contains an event expression will give rise to
a so called whenever rule that is fired asynchronously
when the event occurs. A transition with only a logical
condition give rise to a scanned rule with the shortest
scan interval possible.

Execution Model

The formally correct way of executing Grafcet is
defined by an interpretation algorithm [David and
Alla, 1992]. The algorithm is based on the hypotheses
that external events never occur simultaneously and
that the logical controller is always faster than the
process it controls. When Grafcet is implemented in
a Programmable Logic Controller (PLC) the step-
transition structure and the step actions are translated
into PLC language, e.g. ladder logic or instruction
lists. In this case the previous hypotheses may no

longer hold.

The execution model of Grafchart is tightly cou-
pled to G2’s execution model. Steps and transitions
are defined as G2 objects that have activatable sub-
workspaces. A workspace is visualized as a virtual,
rectangular window upon which various G2 items such
as rules, procedures, objects, displays, and interaction
buttons can be placed. A workspace can also be at-
tached to an object. In this case the workspace is called
a subworkspace of that object. When a subworkspace
is deactivated, all the items on the workspace are inac-
tive and “invisible” to the G2 execution system. This
means, e.g., that rules placed on a deactivated sub-
workspace cannot be invoked. The step actions of a
step are internally represented as rules that are placed

Subworkspace
+ Enter step
Macro
step ®
+ Exit step
Subworkspace
Grafchart .
procedure
Procedure g
Procedure| @ call |
step
Subworkspace
Grafchart /|
| Proces procedure
Process O creation
step
Figure 3. Macro step, procedure step and process

step.

on the subworkspace of the step. These rules may
only be invoked when the associated step is active and
hence the subworkspace is activated. The receptivity
of a transition is also internally represented as a rule
that is placed on the subworkspace of the transition.
This subworkspace in only active when the transition
is enabled. When the transition fires, i.e., the rule con-
dition becomes true, the rule starts a procedure that
takes care of the activation and deactivation of steps
and transitions.

Hierarchical abstractions

Macro steps are used to represent steps that have
an internal structure of (sub)steps, transitions and
macro steps. The internal structure is placed on the
subworkspace of the macro step, see Fig. 3 (top).
Special enter-step and exit-step objects are used to
indicate the first and the last substep of a macro step.
When the transition preceding a macro step becomes
true, the enter-step upon the subworkspace of the
macro step and all the transitions following that enter-
step are activated. The transitions following a macro
step will not become active until the execution of the
macro step has reached an exit-step. A macro step
may also contain actions. The initial action of a macro
step are executed before the initial steps of the enter
step of the macro step. The finally actions of a macro
step are executed after the finally actions of an exit
step of the macro step. Always actions are executed
all the time the macro step is active independently

of which substep that is active. Abortive actions on
the macro level are executed when the macro step is
aborted.

Sequences that are executed in more than one place
in a function chart can be represented as Grafchart
procedures, see Fig. 3 (mid). The procedure body is
stored on the subworkspace of the procedure. The
Grafchart procedure may have parameters that are
visible in the procedure body. The call to a procedure
is represented by a procedure step. The procedure
step contains a procedure attribute that contains the
name of the procedure that should be called and a
parameters attribute which is used to set the values
of the parameters in the procedure. It is possible both
to pass in parameter values to the procedure and to
pass out parameter values from the procedure.

A Grafchart procedure can also be a method of a gen-
eral G2 object. For example, a G2 object representing
a chemical batch reactor can have Grafchart methods
for charging, discharging, agitating, heating, etc. In-
side the method body, it is possible to reference the
object itself and the attributes of this object using
the self and self.attribute notation. A method is
called from a procedure step by changing the value of
the procedure attribute of the procedure step to the
form <object> <method> where <object> is a refer-
ence to the object and <method> is a reference to the
method name.

The Grafchart procedures are reentrant. Each proce-
dure invocation executes in its own local copy of the
procedure body. This makes recursive procedure calls
possible.

A procedure step is the equivalent of a procedure call
in an ordinary programming language. Sometimes it
is useful to start a procedure as a separate execution
thread, i.e., to start the procedure as a separate
process. This is possible with the process step, see
Fig. 3 (bottom). The transitions after a process step
become firable as soon as the execution has started
in the Grafchart procedure. An outlined circle token
is shown in the process step as long as the process is
executing.

Exception Transitions

Grafchart supports ezception transitions, a special
type of transition that may only be connected to
macro steps and procedure steps. This transition is
enabled all the time while the macro step is active.
If the exception transition becomes firable while the
corresponding macro step is executing the execution
will be aborted, abortive actions, if any, are executed,
and the step following the exception transition will
become active. Macro steps and procedure steps “re-
member” their execution state from the time they
were aborted and it is possible to restart them from
that state. Grafchart also supports various types of
macro actions.

Firing Rules
Grafcet has three firing rules:

1. All firable transitions are immediately fired.

2. Several simultaneously firable transitions are
simultaneously fired.

3. When a step must be simultaneously activated
and deactivated, it remains active.

The second one is the one that distinguishes Grafcet
from Petri Nets the most. In an distribution OR
situation, in Grafcet, the transitions in the both
branches can simultaneously be firable. In this case
both the transitions will fire and both the ”alterna-
tive” branches will be executed. This is often not the
intention of the designer and it is recommended that
these transitions are made mutually exclusive (in SFC
it is required). Grafchart treats this situation by non-
deterministically chosing one of the transitions. Con-
cerning Rule 3, Grafchart executes the initially and
finally actions for all steps also if they are part of an
unstable situation.

3. Object Tokens

In Grafcet a token is simply an boolean indicator that
tells if the step is active or not. In the object token
extension to H-L Grafchart that is currently imple-
mented, a token is an object that carries information,
i.e. has attributes. A step may contain multiple tokens
that are of the same or of different class. It is possi-
ble to reference and change the attributes of a token
object from step actions and and reference attributes
of a token object that enables a transition from the
receptivity of the transition.

Object tokens are inspired by Coloured or High-Level
Petri Nets [Jensen and Rozenberg, 1991] in which the
tokens are abstract data types or objects. The main
advantage of High-Level Petri Nets is that they allow
a compact modeling of large systems that consist of
several similar substructures.

Arc inscriptions

Most of the existing work on High-Level Petri Nets
and Coloured Grafcet, [Agaoua, 1987], [Suau, 1989],
is based on arc inscriptions. Arc inscriptions can be of
two main types. In the function representation, [David
and Alla, 1992] and [Jensen, 1981], the arc inscriptions
are functions that are associated with the input arcs
and output arcs of a transition. Associated with each
transition is a set of firing colours. Each of these in-
dicates a firing possibility of the transition. The func-
tions on the input arcs determine the numbers and
the colours of the tokens that will be removed from
the input places when the transition fires with respect
to a certain firing colour. Similarly, the functions on
the output arcs determine how many and which colour
types that will be added to the output places of the

transition. Hence, firing a transition conceptually cor-
responds to deleting tokens in the input places and
creating tokens in the output places. The ezpression
representation instead uses arc expressions in combi-
nation with transition guards [Jensen, 1990]. It has
been shown that the two approaches are equivalent
and can be transformed into each other.

A major reason why arc inscriptions are necessary in
H-L Petri Nets is that each transition may have mul-
tiple input places and multiple output places. The arc
inscriptions are needed to specify how the different
input places should contribute to the enabling of the
transition and how the different output places should
be affected when the transition is fired. If each tran-
sition only had one input place and one output place
arc inscriptions would be unnecessary. Then the same
information could be encoded in the transitions. If
we consider Grafcet without parallelism (Distribution
AND and Junction AND), each transition has only
one input step and one output step. The firing of a
transition can now be seen as moving a token from
the input step to the output step. This is the approach
taken in H-L Grafchart. Each transition is viewed as
if it only has one input step and one output step. If
the transition is followed by a distribution AND then
all the output steps of the transition are treated as a
single step by the transition. Similarly if the transi-
tion is preceded by a junction AND then all the input
steps of the transition are treated as a single step by
the transition. Due to this it is not necessary to use
arc inscriptions in High-Level Grafchart.

Even though arc inscriptions are not allowed in High-
Level Grafchart this does not restrict the different
ways of firing a transition. By instead allowing the
receptivities of the transition to be written in several
different ways the same performance, as the one
achieved using arc inscriptions in H-L Petri Nets, can
be achieved. Colortransformations, attribute changes
and deletion and creation of tokens are all possible
to do. Using arc inscriptions one easily looses the
clarity of the net. Since one of the main advantages
of Grafcet is its clear and intuitively understandable
way of representing sequences it is undesirable to use
arc inscriptions in H-L Grafchart.

Transitions and Receptivities

Each transition has one receptivity for each token class
that it can be enabled by, see Fig. 4. The receptivity of
token class P of transition t becomes enabled as soon
as one instance of class P arrives in the input place
of t. The condition of the receptivity may refer to
the attributes of the token class instance that enables
the receptivity. It may also refer to the presence of
other tokens in the input step. When the receptivity
becomes firable an operation is performed on the
tokens that are referenced by the receptivity. In the
standard case the operation would be that a token
is moved from the input step to the output step. In
sink and source transitions the operation will be to

delete and create object tokens and to initialize their
attributes. The operations can also be more complex
e.g. an attribute of the token can be changed at the
same time as the token is move from the input step
to the output step, an other token placed in the input
step can be deleted or a new token can be created
and placed in the output step. It is also possible to
move, not only the token that enables the receptivity
but also one or several of the tokens referred to in the
condition part of the receptivity.

Q
P |/
Receptivity: Receptivity:
/ Token class: p: P Token class: q: Q
\ Event: ... Event: ...
\ Condition: ... Condition: ...
\ Action: Move p Action: Move q
\
\
Figure 4. Transition with multiple receptivities
Parallelism

Parallelism, using object tokens, is handled in a similar
way as parallelism using ordinary tokens. When the
transition preceding an Distribution AND is fired the
moved token is "duplicated” and added to the first
step in all the parallel branches. It is, however, still
the same token object in all the parallel branches. The
reason for this is that the actual token is only a pointer
to the token object that it represents. After the firing
the tokens in all the parallel branches will point to
the same object token according to Figure 5. In this
way, if a token object attribute is changed in one of
the branches this will directly be visible for all tokens
in all branches.

Object Token

[Class:Q |

|
‘ |attrt: ... |
/\ attr2: .. }

|

a” | 0 - |

— Action: Move q \ == Action: Move q

Q Q

Before firing After firing

Figure 5. Distribution AND

The transition after a synchronization (junction AND)
can only become enabled with respect to a token class
C if all the input steps of the transition contains tokens
that points at the same token object of class C.

A problem with the described approach is that it
does not allow a distribution AND case that involves
different token objects and where the different tokens
follow different branches. The corresponding Petri Net
situation is shown in Fig. 6 (left).

Q
P

== Cond(P,Q)

Cond(P,Q)

Dummy

/\ == True(P) == True(Q)

Before firing

After firing

Figure 6. Distribution AND as Distribution OR

After firing, the P token should follow the left path
and the Q token should follow the right path.

In H-L Grafchart this is solved by translating the
distribution AND case into an distribution OR case
and introducing an empty dummy step according
to Figure 6 (right). The first transition contains a
receptivity with a condition denoted Cond(P,Q), that
involves both object tokens of class P and object
tokens of class Q. The receptivity could, e.g., be

Receptivity:

Token class: p: P

Event:

Condition: 3 q: Q | p.x = q.y
Action: move p , move q

Alternatively the token class could be Q with a
condition testing if a token of class P is present and
if the y attribute of Q equals the attribute x of P.
The transitions after the dummy step are immediately
firable with respect to P (the left transition) and with
respect to Q (the right transition). In the same way a
junction AND involving multiple token object classes
is translated into a junction OR plus a dummy step.

Step actions

To each step actions can be associated. The action
types are the same as in Grafchart. The difference is
that in High-Level Grafchart each action is associated
with a token class, see Fig. 7. An initially (finally)
action is executed when an instance of its token class
enters (leaves) the step. An always action is executed
when an instance of its token class is present in the
step. The action may contain conditions that depend
on the presence of tokens of other classes and on the
values of their attributes.

Initial Marking

With more than one token class it is necessary to be
able to have multiple initial steps and to be able to
specify which object tokens that they should initially

Token class: p: P Token class: p: P
Initially Always ...
conclude that p.x =0

Token class: q: Q

Finally
\ conclude that q.y = 1000
\
\

Figure 7.

Token class: q: Q
Always ...

Step actions

contain and what the initial values of their attributes
should be.

Procedure steps

A procedure step is a step from which a procedure
or a method is called. In Grafchart a procedure step
has associated with it, a certain procedure or method.
In High-Level Grafchart the procedure step can be
used in two different ways. The first is to let the token
contain information about the procedure that should
be called. Tokens of different classes may then cause
calls to different procedures. The second way is to
restrict the token to only contain the attributes sent
to the procedure and not the procedure itself. Which
procedure that should be called is in the latter case
determined by the procedure step alone. Which way
that will be implemented is still an open question.

4. Conclusions

In this article we have shown how object tokens, i.e
tokens containing information in terms of attributes,
can be used in High-Level Grafchart. An approach
without arc inscriptions has been described. Instead
the transition expressions (the receptivities) may be
more complicated. The object token extension to H-L
Grafchart increases the reusability and can be of great
use in many applications.

This work was supported by the TFR project “In-
tegrated Control and Diagnosis”, TFR-92-956 and by
the NUTEK REGINA project “High-Level Grafcet for
supervisory sequential control”.

5. References

Agaoua, S. (1987): Spécification et commande des
systémes a événements discrets, le grafcet coloré. PhD

thesis, Grenoble University (INPG).

Arzén, K.-E. (1991): “Sequential function charts for
knowledge-based, real-time applications.” In Proc.
Third IFAC Workshop on AI in Real-Time Control,
Rohnert Park, California.

Arzén, K.-E. (1994a): “Grafcet for intelligent supervisory
control applications.” Automatica, 30:10.

Arzén, K.-E. (1994b): “Parameterized high-level Grafcet
for structuring real-time KBS applications.” In
Preprints of the 2nd IFAC Workshop on Computer
Software Structures Integrating AI/KBS in Process
Control Systems, Lund, Sweden.

Arzén, K.-E. (1996a): “A Grafcet based approach to alarm
filtering.” In Proc. of the IFAC World Congress 1996.
Submitted to.

Arzén, K-E. (1996b): “Grafchart: A graphical language for
sequential supervisory control.” In Proc. of the IFAC
World Congress 1996. Submitted to.

David, R. (1995): “Grafcet: A powerful tool for specifica-
tion of logic controllers.” IEEE Transactions on Con-
trol Systems Technology, 3:3, pp. 253-268.

David, R. and H. Alla (1992): Petri Nets and Grafcet:
Tools for modelling discrete events systems. Prentice-

Hall International (UK) Ltd.

Jensen, K. (1981): “Coloured Petri Nets and the invari-
ant method.” Theoretical Computer Science, North-
Holland, 14, pp. 317-336.

Jensen, K. (1990): “Coloured Petri Nets: A high level lan-
guage for systems design and analysis.” In Rozenberg,
Ed., Advances in Petri Nets 1990, volume 483 of Lec-
ture Notes in Computer Science, pp. 342-416. Springer,
Berlin Heidelberg New York.

Jensen, K. and G. Rozenberg (1991): High-level Petri Nets.
Springer Verlag.

Johnsson, C. and K.-E. Arzén (1994): “High-level Grafcet
and batch control.” In Symposium ADPM’94—
Automation of Mixed Processes: Dynamical Hybrid
Systems, Brussels, Belgium.

Johnsson, C. and K.-E. Arzén (1996): “Batch recipe
structures using High-level Grafchart.” In Proc. of the
IFAC World Congress 1996. Submitted to.

Lépez Gonzélez, J. M., J. I. Llorente Gonzélez, J. M. San-
tamaria Yugueros, O. Pereda Martfnez, and E. Alvarez
de los Mozos (1994): “Graphical methods for flexible
machining cell control using G2.” In Proc. of the Gen-
sym European User Society Meeting, Edinburgh, Oc-
tober.

Moore, R., H. Rosenof, and G. Stanley (1990): “Process
control using a real time expert system.” In Preprints

11th IFAC World Congress, Tallinn, Estonia.

Nilsson, B. (1991): “En on-linesimulator fér oper-
atorsstdd,” (An on-line simulator for operator sup-
port). Report TFRT-3209, Department of Automatic
Control, Lund Institute of Technology.

Suau, D. (1989): Grafcet colore: Conception et realisation
d’un outil de generation de simulation et de commande
temps reel. PhD thesis, Universite de Montpellier
(Montpellier II) Sciences et Techniques du Languedoc.

