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Chapter 1

Introduction

With some effort, it is possible to identify two main topics for the work
in this thesis. The first topic is image-based localization, where the aim
is to answer the question: Where was this photo taken? To be able to
answer, two things are needed. First, you need a model of the world, or at
least those parts of it, which are relevant for the application at hand, and
secondly you need a method to relate the new image to the model. This
thesis presents new algorithms for both parts.

The second part of the thesis is concerned with image registration. The
goal of image registration is to find a transformation between two images
depicting the same, or similar, objects. The area of focus is registration of
two- and three-dimensional medical images.

A main concern during the development of several of the methods
presented in the thesis has been the ability to produce reliable results in the
presence of high levels of noise and large amounts of outliers in the data.
In order to tackle these kinds of problems, recent theoretical advances in
optimization have been used and extended.

1.1 Organization of the thesis

To put the thesis in perspective, Chapter 2 goes through some relevant
theory and related work. The rest of the thesis is divided into two parts,
reflecting the two main topics.

Part I - Localization. The focus of the first part of the thesis is image-
based localization, i.e., the problem of localizing a novel image with re-
spect to a model of the scene. The first step to build a localization sys-
tem, is to construct a model of the geometry and appearance of the scene.
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CHAPTER 1. INTRODUCTION

In Chapter 3, a method for building such models is presented that uti-
lizes both image information and positional cues, e.g., GPS-measurements.
This method was previously published in [105]. The next chapter, Chap-
ter 4, turns to the localization problem itself. More precisely, it presents
a method for image-based localization that also utilizes gravitational mea-
surements. The main contributions are a fast approximate outlier rejection
scheme, that enables us to handle large datasets with very large amounts
of outliers, and an optimal algorithm for inlier optimization, that runs in
polynomial time. This chapter is based on [104]. Chapter 5 discusses
some possible extensions to these methods for the case of known camera
height.

Part II - Registration. The second part of the thesis is concerned with
image registration and starts with a short introduction to the problem of
image registration. Next, Chapter 7 presents two methods for registration
of 2D-point sets. This work is based on [5]. Chapter 8 considers the
registration problem for three-dimensional medical images. This is based
on material in submission. The thesis is concluded with a chapter on
nonrigid 2D image registration. This is based on [106].

2



Chapter 2

Background

This chapter introduces some relevant theory and related work to make
the rest of the thesis easier to understand and put it in perspective. Sec-
tions 2.1-2.4 concerns standard concepts common to computer vision and
image analysis while Sections 2.5-2.7 introduce some results from robust
model estimation, polynomial equation solving and convex optimization.

2.1 Images, feature points and matching

What is an image? In the computer vision literature, the concept is a
floating one and trying to impose a strict definition here is likely to do
more harm than good. Sometimes it will be sufficient to view an image as
an array or possibly a function from index pairs in N2 to intensities in R.
But working on different resolutions or detecting structures with sub-pixel
accuracy, we need the notion of a continuous image. In this work we will
move freely between the different notions.

Many computer vision problems are difficult both to formulate and
solve if working directly with the image as an array of intensity values.
Hence, it is common to reduce the image information into something
more abstract. A strategy that is common in computer vision, and in this
thesis, is to use something called point features. A point feature is often
made up of a position in the image, along with a description of the appear-
ance of its neighborhood.

The most frequent use of point features is to identify similar structures
in different images. The aim can be to find group similar images, or to find
the same physical point in a scene photographed from different angles.

Feature detection. The first step of feature extraction is detection. The
purpose of this step is to determine a set of discrete points in the image

3



CHAPTER 2. BACKGROUND

for which to extract descriptor vectors. An important property of feature
detectors is repeatability, i.e., that the same object or detail in different
images is detected. This means that we want features to be well localized,
since otherwise we will not be able to pinpoint the same position in both
images. We also want to estimate the scale of detected feature, to be able
to match objects despite viewing them at difference distance or scale. In
many applications, it is also desirable to estimate some kind of characteris-
tic feature orientation, that can be used to achieve rotation invariance.

The Difference-of-Gaussians detector, which is one of the most pre-
vailing ones, has these properties. As the name suggests, interest points are
obtained from scale-space extrema of a difference-of-Gaussians operator,
as originally proposed in [15]. This produces a set of interest points in
scale space. The detected scale is used to achieve scale invariance in feature
matching.

Another common feature detector used in this thesis is called Maxi-
mally Stable Extremal Regions (MSER), see [76]. This detector was de-
signed to match features under large perspective distortions. A maximally
stable extremal region is a stable connected component of level sets in the
image. From these regions, it is possible to get scale and orientation esti-
mates of detected features.

Feature description. Now we want to compute descriptors for each fea-
ture point. Apart from being highly distinctive, we also often want a de-
scriptor to be invariant to changes in illumination and 3D viewpoint. To
facilitate matching of features, it is common to represent their appearance
by a vector in a high dimensional space, and then measure similarity by
using some distance metric in that space.

One such descriptor is called scale-invariant feature transform (SIFT)
[72]. In short, SIFT works by placing a 4-by-4 grid above the feature,
covering an area slightly larger than the blob that the detector found. If
rotation invariance is desired, the grid is aligned with an estimated dom-
inant direction. In each grid block, an 8-bin histogram of orientations is
populated by image gradient measurements. Finally, the bin values from all
histograms are stacked together, resulting in a 4 · 4 · 8 = 128 dimensional
feature vector.

Speeded Up Robust Features (SURF) [7] is another feature descrip-
tor. It has some similarities to SIFT, but codes gradient information in a

4



2.2. CAMERA MODELLING

Figure 2.1: The coordinate system of a (calibrated) pinhole camera.

different way.

Feature matching. To measure similarity of features, a metric is used in
feature space; often simply the Euclidean distance. When trying to find
matching features between two images, for each point in one image, we
find the point in the other image with smallest distance and pose this as a
tentative match, or correspondence.

This strategy leads to a lot of wrong matchings. To remedy this, Lowe
[73] proposed a simple criterion to filter out probable miss-matches: Reject
a match if the ratio between the distance to the closest point, and the
distance to the next closes point, is greater than some threshold (Lowe uses
0.8). This strategy has proved very effective and is widely used. Still, a
lot of miss-matches are not caught by this criterion, and will need to be
handled further down the pipeline.

2.2 Camera modelling

In this thesis we will use the pinhole-camera model. One important as-
sumption of this model is that all light rays pass through one common
point, the focal point of the camera. This point will serve as the camera
centre. The image is generated by light from the scene being projected
onto a plane in the camera we call the image plane.

Let a point, U , in the scene have the coordinates (Ux, Uy, Uz) ∈ R3.

5



CHAPTER 2. BACKGROUND

The camera is placed at origin, looking down the positive z-axis. In real
cameras the image plane usually lies behind the focal point. To get an
upright image, we instead place the image plane in front of the camera, in
the plane z = 1. The projection of point U in this image plane is given
by the intersection of the image plane, and the line passing through U and
the camera centre. This line can be described by the equation

v = γU. (2.1)

The intersection with the image plane is given by the condition vz = 1.
The final relation between the 3D-pointU and the image point u is usually
written as

λu = U, (2.2)

where λ is chosen such that uz = 1.
In the general case, the 3D-points are not given in the coordinate

system of the camera, meaning that their coordinates first need to be
transformed to the camera coordinate system before the projection is per-
formed. If the camera is positioned at a point C, with an orientation
described by the rotation matrix R, the camera equation stated in matrix
form is

λu = R(U − C). (2.3)

All u satisfying this equation with λ > 0 are valid representations for
the image point. Instead of placing an image plane at a given z-coordinate,
it is also common to choose u such that ||u||2 = 1. This yields an image
sphere, rather than an image plane.

2.2.1 Camera calibration

So far we have been studying what is called a calibrated camera. For real
cameras, the image is usually given in pixels with a coordinate system orig-
inating in one corner of the image, and with a focal length (distance be-
tween image plane and focal point) different from 1. The change of co-
ordinate system between pixel coordinates and calibrated coordinates is a
transformation x → Kx, where K is called the calibration matrix. In its
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2.2. CAMERA MODELLING

simplest form it contains only scaling and translation and can be written
as

K =

f 0 px
0 f py
0 0 1

 , (2.4)

where f is the focal length of the camera and (px, py) is the principal point
(the point on the image plane intersected by the optical axis of the camera).
For some cameras, the above calibration matrix is not enough. If a camera
has non-square pixels (aspect ratio α 6= 1), or if the coordinate system is
not orthogonal, with skew s, the calibration matrix is given by

K =

f s px
0 αf py
0 0 1

 . (2.5)

We can now write the camera equation for an uncalibrated camera as

λu = KR(U − C). (2.6)

If we instead use homogeneous coordinates for the 3D-points, Û =
[
U 1

]T
,

we can rewrite the camera equation more compactly as

λu = PÛ, (2.7)

where P =
[
KR −KRC

]
.

The pinhole-camera model is not entirely adequate, not even for many
ordinary cameras. Modern cameras use lens systems to allow more light to
reach the image plane. These lenses give rise to distortions that we are
unable to model in a satisfactory way using linear models. However, often
the only distortion that we cannot neglect is so called radial distortion
[44]; distortion that only depends on the pixels’ distance from the principal
point. Often however, also radial distortion is weak enough to be neglected
without causing any problems.

With adjustments for radial distortion, the pinhole camera model is
still accurate enough for most computer vision tasks. For the work in this
thesis it is enough to know that with known calibration matrix and known
radial distortion, we can transform the images to fit the calibrated camera
model (2.3) sufficiently well.

7



CHAPTER 2. BACKGROUND

2.3 Scene estimation from images

A classical problem in computer vision is the problem of estimating the
structure of a scene from a set of images. In this thesis, we consider the
scene structure to be a set of points with appearance and position in R3. It
may seem limiting compared to dense 3D models with textured surfaces,
but sparse models are important both in themselves and as a first step in
building dense models.

Typically, the sparse 3D points comes from feature detectors such as
SIFT, which is described shortly in Section 2.1. A central notion is that
of point correspondences; we say that image points in different images
correspond if they are projections of the same 3D point, and that an image
point corresponds to a 3D point if it is a projection of this point.

In the general case, no information is assumed about the cameras. We
assume that we have m · n feature points uij from n unknown cameras
Pi which are projections of m unknown scene points Uj . The so-called
structure-from-motion problem is to estimate the unknown cameras Pi
and scene points Uj , such that

λijuij = PiUj (2.8)

is satisfied for all i and j.
The most common way in which the structure-from-motion problem

has been solved is by solving a sequence of subproblems. A few of the
major subproblems are (see [44] for details)

• Given corresponding points in two images, estimate the relative mo-
tion of the cameras.

• Given that a point is seen in at least two known cameras, triangula-
tion is the process of estimating the 3D-coordinates for this point.

• If a camera sees several points with known 3D-coordinates, the
problem of estimating the camera’s position and orientation relative
to the points is known as the camera pose problem.

A common approach to SfM is the following strategy (with a much sim-
plified description). Start by estimating the relative motion between two
cameras, and triangulate all corresponding image points to get an initial
set of scene points. Now iterate the three following steps:

8



2.3. SCENE ESTIMATION FROM IMAGES

1. Find a new image with many correspondences to the estimated scene
points, and estimate the pose of this camera with respect to the
scene.

2. Triangulate more scene points made possible by the added camera.

3. Update the entire solution using local refinement. More on this
below.

This strategy is called sequential structure from motion. It has been used to
create impressive results. For example, the software BUNDLER [96] has
been used to create reconstructions in the order of 105 images.

There are also non-sequential approaches to structure from motion
[75, 114]. Typically these start by estimating the orientations of all cam-
eras. The remaining problem can be posed as a convex optimization prob-
lem [43, 51, 54].

2.3.1 Local refinement

For many geometric vision problems it is common to refine the solution
using local optimization methods. The rationale for this is that we are often
lacking tractable methods for finding the global optimum. Also, since we
already have a solution that hopefully is not too far away from the optimal
solution, local refinement methods might help us to find the solution, or
at least a better one than we already have.

For reasons that will be discussed later, it is widely accepted that it is
a good idea to try to find a solution that minimizes the sum of squared
reprojection errors, i.e., the difference between measured image points
and the reprojections of the corresponding 3D-points. Thus, the mini-
mization is performed using non-linear least-squares algorithms. In the
computer vision community, this is often called bundle adjustment, [109].
The most popular for geometric vision problems seems to be the Lev-
enberg–Marquardt algorithm, [74]. One reason for this is the damping
scheme used, resulting in an ability to quickly converge from a wide range
of initial guesses.

9



CHAPTER 2. BACKGROUND

2.4 Outliers and noise

In the last section we assumed that we were given image point correspon-
dences. In practice these correspondences comes from matched features
and many of them will be wrong, i.e., the corresponding points do not
represent the same physical point, or they do not fit the model that we are
using to explain the data. We call such correspondences outliers.

There is also more moderate noise that needs to be considered. Assume
that we have n data points, or measurements, xi. When fitting a model to
these points, each measurement will cause some error (that can be zero),
depending on how well the measurements fits the model. We let residual
functions ri(θ) : D → R+, describe how these fitting errors depend on
the model parameters θ ∈ D.

We wish to find model parameters that minimize some function of
these residuals. How we wish to weight the different residual errors de-
pends on the problem and on assumptions about the noise we have. We
call these weighting functions loss functions.

Problem 2.1. Given a set S of residual functions, and a loss function `, we
wish to find a model θ such that∑

ri∈S
`(ri(θ)) (2.9)

is minimized.

In terms of residual functions, we define outliers as

Definition 2.2. Given a model θ, and a threshold ε, we define a residual ri
to be an inlier if ri(θ) ≤ ε, and to be an outlier if ri(θ) > ε.

Remark 2.3 When we talk about outliers or inliers without specifying a
model θ, we implicitly value the measurements with regard to some opti-
mal model (which may be unknown to us).

The simplest example of a robust loss function is the one that count
the number of outliers, also called the zero-one loss function. It is defined
as

`(r) =

{
0 if r ≤ ε,
1 if r > ε.

10



2.4. OUTLIERS AND NOISE

If we have no outliers, and the measurement errors follow the same Gaus-
sian distribution, then the maximum likelihood solution is given by min-
imizing the L2-norm of the residual functions. That is, the loss function
we use in this case is the function `(r) = r2.

Let us look at an example from the previous section.

Example 2.4.1. Noise comes mainly from imperfect feature point measure-
ments, giving us a small error in the position of the image points. In the
presence of such measurement errors, we can no longer expect the reprojection
of a scene point Uj to align perfectly with its corresponding image point mea-
surement uij . Assuming a calibrated camera, we instead get a reprojection
error

rij =

∣∣∣∣∣
∣∣∣∣∣(R(1)

i (Uj − Ci), R(2)
i (Uj − Ci))

R
(3)
i (Uj − Ci)

− uij
∣∣∣∣∣
∣∣∣∣∣ , (2.10)

where Ci is the camera centre, and R(k)
i is the kth row of the camera rotation

matrix. If we collect all camera- and point-parameters in θ, the structure-
from-motion problem with L2-norm loss can be stated as

minimize
θ

∑
r2
ij(θ). (2.11)

By using the L2-norm loss function we are putting large emphasis on
points with large errors. This means that we are trying to find a solution
that prevents the error of these points from getting even larger, at the ex-
pense of all other points. The result is that we are very sensitive to outliers.

For many geometric-vision problems, it is a common and reasonable
assumption that there exist correct but noisy point correspondences as well
as complete mismatches or outliers [9]. The errors in the positioning
of correct correspondences follow approximately a normal distribution,
whereas the residuals of outliers are uniformly distributed. To find a max-
imum likelihood estimate given this distribution, a loss of the following
type

`(r) = − log
(
c1 + exp

(
−r2/c2

))
(2.12)

should be minimized, where r is the residual error for one correspondence
and the constants depend on the amount of inlier noise as well as on the
rate of outliers; see Fig. 2.2.

11
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0 10 20
0

Figure 2.2: The robust loss function (red) suggested in [9], the truncated
L2-error (green) and the truncated L1-error (blue).

An approximation which is commonly used is obtained by truncating
the squared error,

`(r) =

{
r2 if r ≤ ε,
ε2 otherwise.

However, the quality of this approximation depends on the rate of outliers
in data. At higher rates the loss function levels out much more slowly. In
this case a truncated L1-loss, given by

`(r) =

{
r if r ≤ ε,
ε otherwise,

can be a more appropriate choice, see Figure 2.2. Another advantage is
that the truncated L1 loss is not as sensitive to the choice of ε. The trun-
cated L1-norm does not produce maximum likelihood estimates for any
particular noise distribution. Rather than that, it is motivated by the fact
that it has been shown to work well over a wide range of distributions and
that it is robust to arbitrary changes in a large portion of the data. This is
exactly the meaning of the word robust in the field of robust statistics.

2.4.1 RANSAC

A popular, and often good enough, way of handling the presence of outliers
is a technique called Random Sample Consensus (RANSAC), [33].

The guiding idea is the following: If a model is estimated from mea-
surements where outliers are present, the result will almost certainly be
poor. Further, if we use only a small subset of the measurements, the risk

12



2.5. ROBUST MODEL ESTIMATION

of it containing an outlier, and thus getting a poor model, is reduced. The
outline of the algorithm is as follows:

1. Select at random a small subset of measurements and solve the prob-
lem using only these.

2. Count the number of measurements which are inliers with regard
to the model estimated in step 1. These form the so called consensus
set.

3. Iterate step 1 and 2 a number of times. Store the model giving the
largest consensus set.

Since using fewer measurements decreases the risk of selecting an outlier,
we want to use as few as possible in each iteration. From a combina-
torial viewpoint, it is advantageous to use so called minimal solvers, i.e.,
solvers that use the smallest possible number of measurements for model
estimation. For example, a minimal solver for calculating the relative pose
between two fully calibrated cameras requires five correspondences, [99].

Note that although we only talked about counting the number of
inliers above—corresponding to the zero-one loss—it is possible to use
RANSAC with an arbitrary loss functions. Instead of counting the inliers,
just calculate the loss for each hypothetical model, and save the one with
smallest loss.

Given an estimated rate of outliers, it is simple to calculate how many
iterations are required to find an outlier-free subset with some probability.
In practice however, because of noise, one is often required to find and test
several outlier-free subsets.

Numerous versions of the original RANSAC algorithm have been pub-
lished, with different advantages and weaknesses. See [103] for overview
and performance comparisons.

2.5 Robust model estimation

The RANSAC algorithm presented in the previous section normally pro-
duces high-quality solutions, but theoretically, there is no guarantee that it
will find the optimal solution to Problem 2.1 for any of the loss functions
that we have discussed. In recent years methods capable of doing this have

13



CHAPTER 2. BACKGROUND

been introduced, at least for the zero-one loss and the truncated L2 loss.
As these methods will be used in the thesis, this section goes through some
theory and algorithms. For details, and proofs of results presented here,
see [30].

The notation is the same as in the previous section. We want to esti-
mate model parameters θ living in some d-dimensional manifold D, min-
imizing ∑

ri∈S
`(ri(θ)), (2.13)

where ` is the truncated L2 loss. The following observation will be useful.
Let θ∗ be the optimal solution minimizing∑

ri∈S
min(ε2, r2

i (θ)), (2.14)

and let I∗ be the index set for all inlier residuals to this solution. Then θ∗

will also be the optimal solution to

minimize
θ

∑
i∈I∗

r2
i (θ). (2.15)

To see this, assume to the contrary that there exists a θ′ such that∑
ri∈I∗

r2
i (θ
∗) >

∑
ri∈I∗

r2
i (θ
′). (2.16)

Let O∗ denote the residuals not in I∗. If we add ε2|O∗| to (2.16), the
left-hand side becomes the total loss at θ∗,∑

ri∈S
min(ε2, r2

i (θ
∗)) >

∑
ri∈I∗

r2
i (θ
′) + ε2|O∗| (2.17)

≥
∑
ri∈S

min(ε2, r2
i (θ
′)), (2.18)

which is a contradiction. This is also true for the truncated L1 loss func-
tion.

This observation immediately suggests a strategy for finding the opti-
mal solution to (2.14), or the corresponding problem with truncated L1

loss, see Algorithm 1. If we can find a way of enumerating all inlier sets,
the strategy means that we can solve both problems using the truncated
norms, as well as minimizing the number of outliers.

14
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Algorithm 1 Strategy for minimizing truncated L2

For each possible set of inliers I ,
Solve θ∗ = argmin

θ

∑
i∈I r

2
i (θ)

Evaluate θ∗ on (2.14) and update the best model.

2.5.1 Enumerating all inlier sets

Algorithm 1 requires us to be able to enumerate all possible inlier sets. But
how do we find them? And how many are there? To investigate, we start
with the following observation.

By Definition 2.2, each parameter vector, θ, induces a partition of the
residuals, into inliers, I , and outliers, O. Conversely, we see that each
residual, ri(θ), partitions the parameter space into two sets; one set with
all θ such that ri(θ) is an inlier, and one set with those making it an outlier.
The following definition will be useful.

Definition 2.4. Given a partition of the set of residuals into the subsets I and
O, we let D(I,O) denote the set of parameter vectors θ ∈ D such that the
residuals in I are inliers and the residuals in O are outliers.

We will only be interested in feasible partitions. That is, partitions
where D(I,O) is non-empty. Henceforth we will always assume that the
partitions we work with, and search for, are feasible partitions.

An example of how one residual partitions the parameter space into
two such sets is shown in the left of Figure 2.3. To the right in the same
figure, an example is shown of how the complete set of residuals together
partition the parameter space into many regions. Since all parameter-values
θ in one such region induce the same inlier-outlier partition, it is sufficient
to find one parameter value representing this region.

Assume that we have a partition (I,O). To find one representative θ ∈
D(I,O), we formulate and solve a dummy problem, see Definition 2.5.
Both the constructed problem and its goal function, f , merely serves as an
analytical tool when deriving an algorithm.
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Figure 2.3: Left: Each residual divides the parameter space into two parts.
One consisting of all points θ that makes the residual an inlier, and the
complement making it an outlier. Right: All residuals together divides the
parameter space into a complex map. To be sure to find all feasible inlier-
outlier partitions, we want to find one θ for each of these areas.

Definition 2.5. Given a differentiable function, f , and a partition (I,O)
of the residuals in S, we define DUMMY(I,O) as the optimization problem:

minimize
θ

f(θ) s.t. θ ∈ D̄(I,O), (2.19)

where D̄(I,O) is the closure D(I,O).

The following technical condition will be useful.

Condition 2.5.1. (a) The domain D is a d-dimensional differentiable
manifold embedded in Rm, withm−d polynomial constraints, hj(θ) =
0.

(b) The residual constraints ri(θ) ≤ ε can be written as gi(θ) ≤ 0, where
gi are polynomials in Rm.

(c) The goal function, f , is a polynomial such that f → ∞ when |θ| →
∞.

Henceforth, we will work with the polynomials gi, instead of the resid-
uals ri. We do this since the residuals not necessarily needs to be polyno-
mials. To simplify notation we also introduce

si =

{
1 if i ∈ ind(I),
−1 otherwise,
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2.5. ROBUST MODEL ESTIMATION

where ind(I) is the index set for the set of residuals I . Now we can rewrite
DUMMY(I,O) as

minimize
θ

f(θ) s.t.

sigi(θ) ≤ 0 i = 1, . . . , n
hj(θ) = 0 j = 1, . . . ,m− d.

(2.20)

2.5.2 Critical points

As we will see, the points we are looking for in parameter space are exactly
those we call critical points.

Definition 2.6. A parameter vector θ ∈ D is critical to a set of residuals
B ⊂ S if

gi(θ) = 0 ∀gi ∈ B (2.21)

and

{∇gi(θ) : gi ∈ B} ∪ {∇f(θ),∇h1(θ), . . . } (2.22)

is linearly dependent and that there is no proper subset of B with this property.

Lemma 2.7. If θ ∈ D is critical to a set of residuals,B, then |B| ≤ d, where
d is the dimension of D.

We will also need so-called FJ-points. An FJ-point of an optimization
problem is a point satisfying the Fritz John conditions for local optimality.
For the optimization problem 2.20, a feasible point θ is an FJ-point if there
exists a non-trivial solution, µi ≥ 0 and µigi(θ) = 0 for all i, to

µ0∇f(θ) +
∑
i

µisi∇gi(θ) +
∑
j

λjhj(θ) = 0. (2.23)

Theorem 2.8. Let (I,O) be a feasible partition av the residuals, and assume
that Conditions 2.5.1 are satisfied. Then we have: (i) DUMMY(I,O) has at
least one FJ-point, and (ii) this point is critical to a set of residuals B of size
≤ d.

For a proof of this theorem, see [30].
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2.5.3 Finding the critical points

Theorem 2.8 gives us a link between possible partitions and critical points.
The strategy for finding all partitions will be to first find all critical points,
then for each of these points find the unique partition induced by the
point.

The theorem also gives us a way of finding all critical points. Since
each point in which we are interested is critical to a set of residuals, B,
where |B| ≤ d, we can simply go through all subsets of the residuals ≤ d.
The number of such subsets are

d∑
k=0

(
n

k

)
= O(nd), (2.24)

where d is the dimension of the parameter manifold.
If |B| = d, the critical points can be found by solving the following

system of polynomial equations

gi(θ) = 0 ∀gi ∈ B
hj(θ) = 0 j = 1, . . . ,m− d. (2.25)

From Bezout’s theorem we know that the number of solutions is either
infinite, or bounded by the product of the polynomials’ degrees [37]. In
our applications the measurements are typically affected by random, real-
valued noise making the probability of degeneracy practically negligible.

If |B| < d, we are still able to find the critical points by adding the
constraint that

{∇gi(θ) : gi ∈ B} ∪ {∇f(θ),∇h1(θ), . . . } (2.26)

is linearly dependent. These constraints can be stated using determinants,
resulting in polynomial equations. By using a suitable choice of goal func-
tion f , we will get a finite set of equations. We make this a condition.

Condition 2.5.2. For each subset ≤ d of residuals, the number of critical
points are finite.

2.5.4 Enumerating feasible partitions

Theorem 2.8 links feasible partitions of the residuals to critical points. We
have seen how we can find all critical points. Now we would like to use
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these points to find all feasible partitions. To be able to keep the exposition
simple, we will here ignore (rare) degenerate cases. These are also solvable,
but will not be covered here, see Appendix B in [30]. To make sure that
we have no degenerate cases we add the following conditions.

Condition 2.5.3. If θ is a critical point to the set of residuals, B: (a) then
there are no active residuals outside of B. (b) then the gradients to the active
constraint are linearly independent.

This condition is essentially used to ensure that constraints are in some
sense random, that we have no degeneracies.

Previously we have seen that for a partition (I,O), there exists an FJ-
point which is critical to a subset, B, of the residuals, where |B| ≤ d.
Now we wish to solve the following problem. Given a θ∗ critical to a set
B, find all partitions (I,O) such that θ∗ is an FJ-point to DUMMY(I,O).
As we will see, this will only by one unique partition if Condition 2.5.3 is
satisfied.

Step 1. For θ∗ to be an FJ-point, it must be feasible, that is θ∗ ∈
D̄(I,O). If Condition 2.5.3 is satisfied, we know that gi(θ∗) 6= 0 for
residuals which are not inB. This means that we can check if each residual
i not inB is an inlier or outlier by checking if gi(θ∗) < 0 or if gi(θ∗) > 0.

Step 2. Since θ∗ is critical, we know that

γ0∇f(θ∗) +
∑

i∈ind(B)

γi∇gi(θ∗) +

m−d∑
j

λj∇hj(θ∗) = 0, (2.27)

where both γi and λj may be negative. According to Condition 2.5.3(b),
the gradients are linearly independent. This means that γ0 cannot be zero.
After rescaling, we can write the equation as

∇f(θ∗) +
∑

i∈ind(B)

γi∇gi(θ∗) +
m−d∑
j

λj∇hj(θ∗) = 0. (2.28)

From Definition 2.6 we know that all but one the ∇gi’s create a linearly
independent set. This means that all γi’s are non-zero, and all coefficients
are uniquely determined. Thus, we can calculate all gradients and then
determine the unique solution for the γi’s and λi’s.
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Step 3. Equation (2.28) is very similar to the criteria for an FJ-point.
The sign of γi tells us if residual i is an inlier (γi is positive) or an outlier
(γi is negative). If we for γi < 0 let si = −1, and for γi > 0 let si = 1,
equation (2.28) can be written as

∇f(θ∗) +
∑

i∈ind(B)

|γi|si∇gi(θ∗) +

m−d∑
j

λj∇hj(θ∗) = 0. (2.29)

Comparing with the criteria for an FJ-point, (2.23), we see that θ∗ is an FJ-
point to DUMMY(I,O). Algorithm 2 describes how all feasible partitions
can be enumerated.

Algorithm 2 Enumerating all feasible partitions

For each subset B ⊂ S of residuals, with |B| ≤ d,
Compute all critical points to B.
For each critical point θ∗,

Set I = ∅.
For each gi /∈ B,

If gi(θ∗) < 0, add ri to I .
Compute the γi’s of (2.28).
For each gi ∈ B,

If γi > 0, add ri to I .
Set O = S \ I , and store partition (I,O).

Theorem 2.9. If Conditions 2.5.1-2.5.3 hold, Algorithm 2 finds all parti-
tions in O(nd+1)-time, where n is the number of measurements.

Proof. There are O(nd) subsets B ⊂ S, with |B| ≤ d. For a given
problem, the number of critical points to each B is independent on n,
thus they are O(1). For each critical point θ∗ we need to calculate gi(θ∗)
for i = 1, . . . , n. This results in a complexity O(nd+1).

2.5.5 Minimizing the number of outliers

Using Algorithm 2 for finding the number of partitions automatically al-
lows us to find the solutions which minimizes the number of outliers.
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However, if our goal is to minimize the number of outliers there is a sim-
pler strategy that we can use, see Algorithm 3.

Algorithm 3 Enumerating all feasible partitions

For each subset B ⊂ S of residuals, with |B| ≤ d,
Compute all critical points to B.
For each critical point θ∗,

Count the outliers gi(θ∗) > 0.
If this is the smallest number so far, store θ∗.

Theorem 2.10. If Conditions 2.5.1-2.5.3 are satisfied, Algorithm 3 finds the
solution θ∗, minimizing the number of outliers, in O(nd+1)-time.

2.5.6 Model estimation under truncated L1- and L2-norms

As we have seen earlier, both truncated L1 and truncated L2-norm can be
minimized if we have a way of finding all feasible partitions of the resid-
uals. Now we know how to accomplish this. As we also have seen, the
parameter vector θ∗ minimizing truncated L2-norm for the problem is the
same solution that minimizes ordinary L2-norm for the inlier-set to the
optimal solution. Thus, if we can minimize ordinary L2, or L1, we can
now solve their truncated counterpart using Algorithm 4.

Algorithm 4 Minimizing truncated-L2 (or L1)

Compute all possible inlier-outlier partitions, using Algorithm 2.
For each inlier set,

Compute the optimal L2-solution.
If this is the best solution so far, store it.

Remark. The method presented here is, of course, not suitable for all
kinds of problems. One requirement is that we are able to formulate prob-
lem and conditions as polynomials. Another one is that the method only
is practically useful for lower-dimensional problems (typically 2,3 and 4).
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2.6 Solving systems of polynomial equations

Often, it is possible to formulate minimal solvers as systems of polynomial
equations. In this section, we present a technique for solving such systems
using the so-called action matrix. The action matrix may be seen as a
multivariate extension of the companion matrix, which is used to find the
roots of univariate polynomials, see [23].

We begin by showing how the companion matrix allows us to use tools
from linear algebra and matrix theory to find the roots of polynomials of
one variable. Consider the polynomial of one variable

h(x) = xn + cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x+ c0, (2.30)

of degree n, with coefficients ci, i = 0 . . . n− 1. To find the roots, we use
the observation that

xxk−1 = xk, (2.31)

and that for h(x) = 0 we have that

xxn−1 = xn = −cn−1x
n−1 − cn−2x

n−2 − · · · − c1x− c0. (2.32)

Introducing the vector b = [xn−1xn−2 · · ·x1]T , we can write these rela-
tions in matrix form as
−cn−1 −cn−2 · · · −c1 −c0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
0 0 · · · 1 0


︸ ︷︷ ︸

c


xn−1

xn−2

...
x
1


︸ ︷︷ ︸

b

=


xn

xn−1

...
x2

x


︸ ︷︷ ︸

xb

. (2.33)

This equation is valid for all solutions to our original problem. Thus, for
such an x we have that xb = cb, i.e., x is an eigenvalue to c. The matrix
c is called the companion matrix. One way to find the roots of a uni-
variate polynomial is thus to calculate the eigenvalues of its corresponding
companion matrix.
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2.6.1 Generalization to system of multivariate polynomials

We will now show how the method can be generalized to systems of mul-
tivariate polynomials, which was first presented by Lazard in 1981 [63].
First, we need some definitions and results from algebraic geometry.

Definition 2.11. A monomial in x = (x1, x2, . . . , xn) is a product of the
form

xα1
1 xα2

2 . . . xαn
n , (2.34)

where αi are non-negative integers.

We will use the notation

xα = xα1
1 xα2

2 . . . xαn
n , (2.35)

with α = (α1, . . . , αn). The total degree of a monomial is the sum

|α| = α1 + α2 + · · ·+ αn. (2.36)

Definition 2.12. A polynomial f in x = (x1, x2, . . . , xn) is a finite sum
of the form

f(x) =
∑
α

cαx
α, cα ∈ C (2.37)

The set of all such polynomials is denoted by C(x). Solving a system of
multivariate polynomials can now be formulated as the problem of finding
the solution set to a set of polynomials fi(x) ∈ C(x), in the variables
x = (x1, x2, . . . , xn), such that

f1(x) = 0
...

fm(x) = 0. (2.38)

The zero set (solution set) of a system of multivariate polynomials de-
fines an affine variety V . We are only interested in problems with finite
(but positive) number of solutions, i.e., finite varieties. A system of poly-
nomial equations, as in (2.38), generates an ideal I , which is defined as
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Definition 2.13. The generated ideal I of a set of polynomials is the set

I =

{
m∑
i=1

hi(x)fi(x) : ∀h1, . . . , hm ∈ C(x)

}
. (2.39)

An ideal is radical if it is identical to the set of all polynomials vanishing
on V . Two polynomials f and g are said to be equivalent with respect to
I iff f − g ∈ I ; denoted as f ∼ g. Thus, equivalent polynomials have
identical values on the variety.

Example: Consider the system

x− y = 0
xy − 1 = 0.

(2.40)

Let I be the ideal generated by the equations above. It is trivial to see that
x ∼ y and that xy ∼ 1 with respect to I . If we write these equivalence
relations as (

0 1
1 0

)
︸ ︷︷ ︸

c

(
1
x

)
︸︷︷︸

b

=

(
y
yx

)
︸ ︷︷ ︸
yb

, (2.41)

we see that the system of polynomials, analogously to the use of the com-
panion matrix above, looks like an eigenvalue problem. In this case, the
relationship shows that values of the y-variable corresponding to solutions
of the original problem are eigenvalues of the matrix c, and that the basis
vector b evaluated at these solutions gives the corresponding eigenvectors.
Thus, we will be able to find the solutions to the original system among
the eigenvalues and eigenvectors of matrix c.

The basic idea of the method presented here, as in the example above,
is to write the system of equations as an eigenvalue problem. If we, by
working with polynomials equivalent to the polynomials of the original
problem, are able to rewrite the problem on the form

maB = a(x)B, (2.42)

where ma is a matrix of coefficients, B a basis vector with monomials and
a(x) a polynomial, then we have found such an eigenvalue problem. Here
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ma is the so called action matrix, describing the action of the polynomial
a(x) (called the action monomial) on the monomials in the basis vector B.

In the general case, it is not as easy as in the example above. Both the
action matrix and the basis vector need to be constructed in some way. One
approach is to use Buchberger’s algorithm [14] to compute a gröbner basis
for the ideal generated by the system of equations. The gröbner basis is
then used to construct the action matrix. However, apart from being very
slow, because of limitations in computers it often fails completely when
required to use floating point math.

In this thesis, we will use a method called single elimination with basis
selection [32, 16, 17]. The idea of this method is to increase the number of
equations of the original system of equations, and then reduce the system
with tools from linear algebra and matrix theory.

The first step is to expand the set of equations to the original prob-
lem. The equations that we add should evaluate to zero on the variety, so
that the solution set remains the same. In the end, we will be using meth-
ods from linear algebra for calculating the solutions, meaning that we are
only interested in linearly independent equations. It is possible to add any
equations as long as they evaluate to zero on the variety. A common ap-
proach, however, is to generate new equations by multiplying the original
ones by different monomials. The number of equations needed depends
on the problem at hand, and on the equations added. For practical rea-
sons, equations are normally added by multiplying with all monomials up
to a certain degree, then check if we have enough equations, and otherwise
continue by adding more. We write the expanded set of equations as

CX = 0, (2.43)

where C is a matrix of coefficients and X a vector collecting all the mono-
mials among these equations. Written on this form, we can use tools from
numerical linear algebra for eliminating terms and monomials.

2.6.2 Reduction and choice of basis

In [16] a method was introduced for choosing a suitable basis while per-
forming this elimination. Given an expanded system of equations, as in
(2.43), we start by searching for monomial, that might be suitable to have
in the basis. Finding an action matrix is the same as expressing a(x)xα
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as a linear combination of base vectors. We need to do this for all ele-
ments xα in the basis. Thus, a first condition is that a(x)xα is present
among the monomials in (2.43). Permissible monomials are monomials
with this property, whereas reducible monomials are monomials a(x)xα,
with xα permissible. By reducing these monomials we can acquire the ac-
tion matrix. The remaining set of monomials will not contribute with any
information and we try to get rid of them as soon as possible. In accor-
dance with [16], we call these excessive monomials. This means that we
have divided the monomials in X, into three subsets

M = E ∪ R ∪ P, (2.44)

where E ,R and P denote the excessive, reducible and permissible sets
respectively.

Now rewrite (2.43) as

[
CE CR CP

] XEXR
XP

 = 0. (2.45)

Our goal is to select the basis from the permissible set P , and by per-
forming elimination (reduction) on the reducible set R, end up with a
system describing the action of the action monomial on this basis. First,
we eliminate the excessive monomials E , by for example QR-factorization,
giving us the systemUE1 CR1 CP1

0 UR2 CP2

0 0 CP3

XEXR
XP

 = 0, (2.46)

where UE1 and UR2 are upper-triangular matrices. Since the set E is not
contributing any information, we can remove the top row so that we get[

UR2 CP2

0 CP3

] [
XR
XP

]
= 0. (2.47)

In the last step we also make sure that CP3 becomes upper-triangular
and select a basis fromP . We accomplish this by performing QR-decomposition
with column pivoting of the bottom row. This causes a reordering of the
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elements in XP . We select the |V | last elements in XP as our basis B.
After splitting XP into [XP ′XB] we get

[
UR2 CP ′ CB1

0 UP ′ CB2

]XRXP ′

XB

 = 0. (2.48)

If we rearrange the equations as[
XR
XP ′

]
= −

[
UR2 CP ′

0 UP ′

]−1 [
CB1

CB2

]
XB, (2.49)

we are able to see how Ta(x) acts on the basis. This gives us a way of
building the action matrix ma — for each monomial xα ∈ B we have
that either a(x)xα ∈ B, in which case the corresponding element in ma

can be seen trivially, or we have that a(x)xα ∈ R ∪ P ′ and it can be
retrieved from (2.49).

The method presented here is the column-pivoting method presented
in [17]. For a more detailed exposition we refer to that paper.

Will this method always work? The short answer is no. It may hap-
pen that it is impossible to perform one, or several, of the steps above.
The monomial basis we selected might be too small to express the reduced
polynomials. In that case we can try generating more equations and using
a larger basis. Unfortunately, at some point numerical problems, might
keep us from further increasing the size.

Another problem that might occur is eigenvalues with multiplicity. We
know that the basis vector exists evaluated among the eigenvectors. In the
case of distinct eigenvalues, everything is known up to unknown scaling.
When multiplicity increases above one, eigenspaces with higher dimension
than one might make it difficult to find the solution. Another thing one
might try is using a different action monomial to get another eigenvalue-
problem.

When we have found something that works for one problem instance,
we will not have to redo all the work again for the same problem. The
structure of the action matrix and the choice of basis only depends on the
structure of the polynomials, not on their coefficients. This also means that
for a specific problem, it is possible to create very fast solvers by hardcoding
the right operations in C code. This can even be automated [58].
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Example: Solving a system using the action-matrix method.
We will try to solve the system

x2 + 3x+ y + 1 = 0
x+ y + 9 = 0

. (2.50)

We generate one more equation by multiplying the lower equation with x,
giving us

x2 + xy + 9x = 0 . (2.51)

We now have the monomials x2, xy, x, y and 1. If we choose y as action
monomial, 1 and y become permissible, xy and y reducible and x2 excessive.
We sort the monomials as above and write the system on matrix form

1 0 1 3 1
0 0 1 1 9
1 1 0 9 0



x2

xy
y
x
1

 = 0. (2.52)

By using QR methods, we can eliminate the excessive monomials from the
other equations. We get

1 0 1 3 1
0 1 −1 6 −1
0 0 1 1 9



x2

xy
y
x
1

 = 0. (2.53)

Now discard the excessive monomials,

(
1 −1 6 −1
0 1 1 9

)
xy
y
x
1

 = 0, (2.54)

and let B = {x, 1}. This gives us(
1 −1
0 1

)(
xy
y

)
= −

(
6 −1
1 9

)(
x
1

)
. (2.55)
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Solving this system gives us(
xy
y

)
=

(
−7 −8
−1 −9

)(
x
1

)
. (2.56)

From this we can directly observe how the action monomial acts on the
basis, and thus the action matrix

yB = y

(
x
1

)
=

(
−7 −8
−1 −9

)
B = maB. (2.57)

Eigenvalues to this matrix are −5 and −11. The eigenvector correspond-
ing to −5 is (0.970,−0.243)T . As stated above, the eigenvectors give the
basis vector evaluated at a solution, but with an unknown scaling. Hence(

x
1

)
= λ

(
0.970
−0.243

)
=

(
−4
1

)
. (2.58)

The first solution is thus given by x = −1, y = −5. From the second
eigenvalue we get the solution x = 2, y = −11.

2.7 Convexity and L∞-optimization

In this section, some properties of convex sets and functions that will be
needed in the thesis are presented.

Definition 2.14. A set S in a real vector space is convex if for all x, y ∈ S

λx+ (1− λ)y ∈ S, for all λ ∈ [0, 1]. (2.59)

A point on the form

x =

n∑
i

λixi, (2.60)

where
∑n

i λi = 1 and λi ≥ 0 is called a convex combination of the points
x1, . . . , xn. A set is convex iff it contains each convex combination of its
points.

29



CHAPTER 2. BACKGROUND

A special set that we will work with is the second order cone. It is a set
in Rn+1 that we can write on the form

{(x, t) ∈ Rn+1 : ‖x‖2 ≤ t}. (2.61)

From properties of norms it follows that the second order cone is a convex
set in Rn+1. Convexity is preserved under affine mappings. When applied
to the second order cone, we get convex sets of the type

{z : ‖Az + b‖2 ≤ cT z + d}. (2.62)

Convexity is also preserved under intersection. Thus a set that is given by
several of the constraints above is also convex.

Definition 2.15. A function f : S 7→ R is convex if the epigraph of f ,

epif = {(x, y) : x ∈ S, y ≥ f(x)}, (2.63)

is a convex set.

A convex optimization problem is one where the objective is to mini-
mize a convex function on a convex set. Since the intersection of convex
sets is convex, convex optimization problems can be written as

minimize f(x) (2.64)

subject to fi(x) ≤ 0, i = 1, . . . ,m, (2.65)

aTi x = bi, i = 1, . . . , p, (2.66)

where x ∈ Rn and both f and fi are convex functions from Rn to R,
and the equality constraints are affine. These problems can be solved in
polynomial time by for example interior point methods, [10].

Definition 2.16. A function f with the property that its sublevel sets

{x ∈ domain(f) : f(x) ≤ α} (2.67)

are convex for all α ∈ R is called quasiconvex.

Convex functions are quasiconvex, but the opposite is not always true;
all quasiconvex functions are not convex. For a given threshold, α, the
problem of determining if there exists an x such that f(x) < α, is a convex
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Algorithm 5 Bisection to minimize quasiconvex functions

Let l and u be given bounds such that l < minx f(x) < u.
Iterate:

α = (l + u)/2.
If feasible solution x exists for f(x) ≤ α,

u = α.
Otherwise,

l = α.

feasibility problem. These can also be solved using interior point methods.
This means that quasiconvex functions can be minimized using bisection.
See Algorithm 5 which converges to the minimum for such functions.

For a particular class of convex optimization problems, the constraints
are second order cones, of the form (2.62). These problems are called
second order cone programs (SOCP). There are publicly available software
packages for solving a SOCP, e.g., SeDuMi [102].
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Localization





Chapter 3

3D reconstruction with
position measurements

This chapter presents a system for structure-from-motion estimation us-
ing additional positioning data, such as GPS measurements. The system
incorporates the additional data throughout the pipeline; in the outlier-
detection step, the initial reconstruction and the final bundle adjustment.
The initial reconstruction is based on a novel objective function which is
solved using convex optimization. This reconstruction is refined based on
a novel near L2 minimization of the reprojection error using convex opti-
mization methods. Results are presented on synthetic and real data, show-
ing improvements with respect to robustness, accuracy and speed. This
chapter is based on [105].

3.1 Introduction

Today cameras are ubiquitous and image data is readily available. In addi-
tion to pure image data there is, in many cases, more information available
such as GPS data, user geo-tagged images or depth information of the
scene. For instance many smartphones tag images with GPS-information.
The additional information is often complementary in nature to the pure
image information. It would be reasonable to use this information in con-
junction with the image data in order to simplify the estimation problem,
as well as making it more robust and faster. We will see in the experiments
that adding additional constraints on positions, improves convergence of
the interior point method used for solving the convex problems. A chal-
lenge in this context is to find a suitable objective function, that fuses
information from the different sensors while taking into account the kinds
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of noise that they are associated with. This is one concern of this chapter.

Much of the work that has been done incorporating both visual and
positional data are set in a real-time framework, in a SLAM setting see
e.g., [81]. Incorporating positional information in systems such as these is
usually done in the final bundle adjustment. A number of contributions
exist that incorporate, e.g., GPS information into the final optimization,
see e.g., [64, 87, 47, 100, 71] or odometric data [77, 57, 101]. If the ini-
tial estimates are not good enough this could lead to problems with local
minima, which we show in the experimental section. We have found that
incorporating additional known positional cues during the whole estima-
tion process can make a large difference on the final reconstruction.

In this chapter, we will focus on a batch setting, where we try to solve
the whole SfM problem with all the data available. We will show how
additional positional data can be incorporated in the complete structure
from motion estimation framework, and in this way both make the solu-
tions more robust and more accurate as well as in some cases even speed up
convergence. In order to do this we formulate a number of error measures
that incorporate both image and positional data. We show, using meth-
ods from convex optimization, how these minimization problems can be
solved in an efficient way. We have focused on estimating the translation of
the cameras and 3D points and assume that the orientation of the cameras
is known. There are a number of efficient methods for estimating consis-
tent rotations between cameras, see [38, 112, 75], and any of these can be
used in conjunction with our system.

The main contributions can be summarized as: i) a system for structure-
and-motion estimation based on image data and additional positional data.
The positional cues can be used in all steps of the estimation. ii) an approx-
imate L2-norm formulation of the reprojection error. The goal function
can be solved globally optimal using a novel method based on convex op-
timization.

The proposed methods rely heavily on previous work on using convex
optimization for structure from motion. Hence, we start by going through
the basics as introduced by [43, 51, 53]. Then, in sections 3.3-3.5, we
look at the proposed system for structure from motion. This is then tested
on both real and synthetic data in Section 3.6.
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3.2. CONVEX STRUCTURE FROM MOTION

3.2 Convex structure from motion

Given a set of image points, seen in a set of images, we would like to recover
the scene structure and the relative motion between the cameras. The
noise depends mainly on uncertainty in the detected image feature points.
Thus, it makes sense to try to minimize the deviation of the reprojected
3D points, from the measured image points. Let uij be image point ij,
Uj the corresponding estimated 3D point, and Ri and Ci orientation and
center of camera i, respectively. Then the reprojection error can be written
as

rij(θ) =

∥∥∥∥∥∥
(
R

(1)
i (Uj − Ci), R(2)

i (Uj − Ci)
)

R
(3)
i (Uj − Ci)

− uij

∥∥∥∥∥∥ , (3.1)

where R(1)
i denotes the 1st row of Ri and θ represents the collection of

parameters. As discussed in Section 2.4, if the measurement errors are
assumed to follow the normal distribution, the maximum likelihood solu-
tion is given by minimizing the L2-norm of the reprojection errors, given
by

minimize
θ

∑
i,j

r2
ij(θ). (3.2)

Unfortunately, this is in general a very difficult function to minimize. Only
local methods exist, which cannot guarantee that the solution is found.
One way of handling this is to instead minimize the L∞-norm of the
errors, see [43],

minimize
θ

max
i,j

rij(θ). (3.3)

Using the L∞-norm instead of the L2-norm, makes it possible to find the
global minimum. To see why, we start by rewriting the problem as

minimize
θ,ε

ε s.t. (3.4)

rij(θ) ≤ ε ∀ i, j. (3.5)

Here ε is minimized and since ε ≥ rij(θ) for all i and j, ε has to take
the same value as the largest residual maxi,j rij(θ). Therefore the two
formulations are equivalent.
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Now, consider again the reprojection error. To simplify notation, let θ
be a vector with all U and C and introduce a vector cij such that

cTijθ = R
(3)
i (Uj − Ci) (3.6)

i.e., the depth of point j relative to camera i. We can rewrite the reprojec-
tion error (3.1) as

rij(θ) =

∥∥∥(R(1)
i (Uj − Ci), R(2)

i (Uj − Ci)
)
− uijcTijθ

∥∥∥
cTijθ

. (3.7)

If we also introduce aij and bij such that

aTijθ = R
(1)
i (Uj − Ci)− u(1)

ij c
T
ijθ (3.8)

and

bTijθ = R
(2)
i (Uj − Ci)− u(2)

ij c
T
ijθ, (3.9)

we get a much simpler form

rij(θ) =

∥∥∥(aTijθ, bTijθ)∥∥∥
cTijθ

. (3.10)

Since the depth is positive, we can use (3.10) to rewrite the constraints in
problem (3.4), giving us

minimize
θ,ε

ε s.t.∥∥∥(aTijθ, bTijθ)∥∥∥ ≤ ε cTijθ ∀ i, j. (3.11)

When ε and all aij , bij and cij are known, we know from Section 2.7 that
these are second-order cones. Further, we know that the intersection of all
convex constraints is convex. Hence, this problem can be minimized using
the bisection method presented in Algorithm 5 in the same section.

From now on, we assume that the rotational part of each camera is
determined in advance, as is done in many recent approaches, e.g., [75,
114]. Methods for robust estimation of camera rotations are presented
in [38, 42, 112, 75].
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3.3 Robust initial reconstruction

As we saw in the previous section, the structure-and-motion problem can
be solved optimally in L∞-norm by solving a sequence of convex feasibil-
ity problems. However, this is under the assumption that we have correct
matchings between corresponding feature points in different images. This
is rarely the case in real world scenarios. Incorrect point matches, i.e., out-
liers in the data, will prevent us from minimizing ε enough to get good
reconstructions. We will here present a minimization scheme that can be
used to remove outliers in a way similar to [95]. We start by fixing ε, mak-
ing it a threshold for inliers. As suggested in [25], the cone constraints can
be made more flexible using auxiliary variables, sij . These allow the re-
projection errors to become larger than the prescribed threshold ε. A really
robust formulation is to minimize the number of non-zero sij , but this is
a very difficult problem, so following [25] we settle for the L1 relaxation
and minimize the sum of all sij under the constraint that all sij ≥ 0. The
optimization problem becomes

minimize
θ,sij

∑
i,j sij s.t.

sij ≥ 0∥∥∥(aTijθ, bTijθ)∥∥∥ ≤ ε cTijθ + sij ∀ i, j.
(3.12)

In general the global scale can never be recovered in structure from mo-
tion. A problem with this formulation is that is has a bias towards smaller
reconstructions (as this will make the sij smaller). In order to avoid the
trivial solution C = 0 and U = 0, for all cameras and points, we need to
regulate the scale. There are several ways of doing this, e.g., letC1 = 0 and
scale the translation vector of C2 to unit length, see [25, 94]. But this is
not suitable for our case since the slack variables make it possible to ignore
any equations including these cameras and place all other cameras at the
origin. Instead we fix the scale by enforcing all depths to be larger than, or
equal to, 1. This is more robust as it affects all cameras and points. Note
that as our formulation has a bias towards smaller reconstructions, there is
no risk that the scale will increase towards infinity.

Having solved (3.12), all outliers can be purged from our problem by
removing all image points uij for which sij > 0. Thus, solving one convex
optimization problem, we get a solution with maximum reprojection error
smaller than ε.

39



CHAPTER 3. 3D RECONSTRUCTION WITH POSITION. . .

3.3.1 Incorporating position measurements

Probably the most readily available measurements, besides the image itself,
is GPS-data. Thus we decided to use such information in our framework.
Again the scale ambiguity produces a small problem. One could use GPS
data to disambiguate the scale, but using a robust formulation this can be
risky. Depending on the amount of GPS data available, it might still be
beneficial to set all points and free cameras at the origin. To get a general
approach that works well with anything from a few GPS measurements to
full coverage, we stick to the scale defined by requiring all depths to be
larger than 1 and introduce an unknown scale factor on the GPS measure-
ments. With Ĉj denoting a position measurement for camera j, the GPS
error is ∥∥∥ςĈj − Cj∥∥∥

ς
, (3.13)

where ς is the unknown scaling factor.
By taking camera measurements into consideration in the initial outlier

removal step, the set of feasible solutions shrinks, hence, reducing the risk
that an outlier fits into the solution. Although GPS measurements can
be rather noisy it is uncommon with outlier measurements, so we can use
hard constraints on the form∥∥∥ςĈi − Ci∥∥∥ ≤ ςω, (3.14)

where ω is some predefined error threshold.

Structure position estimates

We will not go through the details here, but it is more or less straight-
forward to incorporate any additional positional cues on scene structure
points that are available. This could be beneficial in many settings. Such
data could, e.g., be depth measurements from time-of-flight cameras or
other types of depth sensors such as calibrated stereo-cameras.

3.4 Approximate least squares

As we have seen, using a bisection algorithm, we can find the optimal so-
lution to the L∞ problem. However, as discussed in Section 3.2, what we
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really want to minimize is more similar to the L2-norm of the reprojection
errors. Ideally we would like to formulate this as a convex optimization
problem. This is asking too much. However we can formulate an ap-
proximation to the L2-norm as a second-order cone program (SOCP). We
would like to solve

minimize
θ

∑
i,j

r2
ij(θ). (3.15)

We start by looking at the squared reprojection error for one point u (drop-
ping the indices to improve readability),

r2(θ) =

(
aT θ

)2
+
(
bT θ
)2

(cT θ)2 . (3.16)

This function is non-convex and hard to optimize. Hence, we replace
the denominator, with λ̂cT θ, where λ̂ is the approximative depth that we
obtained from the robust reconstruction scheme proposed in the previous
section. The resulting function,

r2(θ) =

(
aT θ

)2
+
(
bT θ
)2

λ̂ cT θ
, (3.17)

is convex, as proven by the following lemma.

Lemma 3.17. A set

{(x, t) :
(aTx)2 + (bTx)2

cTx
< t and cTx > 0} (3.18)

where a, b and c are constant vectors, is equal to the second order cone{
(x, t) : t+ cTx >

∥∥(2aTx, 2bTx, t− cTx)∥∥2

}
. (3.19)

Proof. We start from

t+ cTx >
∥∥(2aTx, 2bTx, t− cTx)∥∥ (3.20)

and show that it is equivalent to the inequalities defining the first set. First
note that

LHS = t+ cTx > RHS > t− cTx. (3.21)
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After reordering, we get cTx > 0. Now, if both sides of (3.20) are positive
we change nothing by taking squares. This yields

(t+ cTx)2 > 4(aTx)2 + 4(bTx)2 + (t− cTx)2, (3.22)

which is equivalent to

4tcTx > 4(aTx)2 + 4(bTx)2. (3.23)

As we know that cTx > 0 we can divide both sides,

t >
(aTx)2 + (bTx)2

cTx
. (3.24)

It remains to show that the assumption, t+ cTx > 0 that we made taking
squares is still satisfied. However, cTx > 0 and (3.24) implies t > 0, so
this is satisfied. Hence we have shown that the two sets are the same.

Now let us see how we can use this result. Using the approximate
squared residual, g(θ), we formulate the following approximate least squares
problem.

minimize
θ,tij

∑
i,j

tij (3.25)

subject to tij ≥ gij(θ). (3.26)

Using Lemma 3.17, we can rewrite a constraint g(θ) ≤ t as a second-order
cone constraint.1 This results in the second-order cone program,

minimize
θ,tij

∑
i,j

tij s.t. (3.27)∥∥∥(2aTijθ, 2b
T
ijθ, t− λ̂cTijθ

)∥∥∥ ≤ tij + λ̂cTijθ ∀ i, j. (3.28)

Just as for (3.12), we have bias towards small reconstructions. Here, it
is a result of using the depth approximations. Hence we use the same
constraints enforcing all depths to be larger than, or equal to, 1.

To conclude our work so far, we summarize the preceeding sections
in Algorithm 6 for computing structure and motion using an approximate
L2-norm.

1The constraints are not equivalent on the boundary, but this is of no practical impor-
tance.
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Algorithm 6 Approximate L2 SfM

1. Perform outlier removal as described in Section 3.3, by solving
(3.12).

2. Use the obtained depth estimates, λ̂ij , to set up (3.27). Solve.

3.4.1 Incorporating position measurements

Recall that Ĉj is the position measurement for camera j. If the measure-
ment error is assumed to follow a normal distribution, the maximum like-
lihood solution is to minimize the L2-norm of measurement errors. From
(3.13) we see that a squared GPS residual has the form∥∥∥ςĈj − Cj∥∥∥2

ς2 . (3.29)

Since this is the same form as the squared reprojection errors we can use the
same idea to get a convex formulation. First we replace the denominator
with ς̂ς , where ς̂ is the approximate scale factor obtained from the initial
robust reconstruction step. Then we use Lemma 3.17 and obtain

minimize
θ,qi,ς

∑
i

qi s.t. (3.30)∥∥∥∥( 2(ςĈi − Ci)
qi − ς̂ς

)∥∥∥∥ ≤ qi + ς̂ς. (3.31)

Note that without the depth-constraints presented earlier, this formulation
does not make sense since an optimal solution is to set all variables to zero.

Under the assumption that the different types of errors are indepen-
dent and Gaussian, the maximum likelihood estimate is given by scaling
the squared residuals by the inverse of their variance [2]. This will allow
larger residuals for uncertain sensors. The modified objective function for
the second optimization step becomes

minimize
θ,tij ,qi,ς

1
σ2
r

∑
i,j

tij +
1
σ2
pos

∑
i

qi, (3.32)

subject to the constraints in (3.27) and the constraint (3.31).
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3.5 The full framework

To sum up, the proposed reconstruction pipeline is outlined in Algo-
rithm 7.

Algorithm 7 SfM with Positional Cues

1. Outlier removal and depth estimation. Solve

minimize
θ,sij ,ς

∑
i,j

sij (3.33)

subject to the constraints in (3.12), (3.14), and λij ≥ 1 for all ij.

2. Use the solution obtained during step 1 to get depth estimates λ̂ij .
Solve (3.32) subject to the constraints in (3.27), the constraints
(3.31) and (3.14), and λij ≥ 1 for all i, j.

3. Refine solution using L2-norm bundle adjustment.

3.6 Experiments

In this section we test our system in a number of experiments using both
synthetic and real data. The software SeDuMi is used to solve all convex
problems.

3.6.1 Experiments on simulated data

In order to be able to compare with ground truth camera positions, we
have performed experiments on synthetic data.

Here we present two such scenarios. In the first one, an imaginary
street was placed along a circular arc. Along the sides of the street, 3D
points were put on facades. Equidistant cameras were placed along the
street, seeing some of the points. Each point was registered on the cam-
era’s image plane with Gaussian distributed error (standard deviation 0.04).
Further, each camera was annotated with position measurements, also with
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Figure 3.1: Comparison between SfM estimation for synthetic city streets.
Without using GPS cues (left circle and spiral) and using GPS cues (right
circle and spiral). Red dots are camera positions, blue dots are the esti-
mated structure.
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Circle Spiral

no gps gps no gps gps

RMS 6.06 2.35 4.33 1.54

σU 3.32 1.13 1.57 0.92

σC 5.78 1.01 34.6 0.71

Table 3.1: Results from the synthetic experiments. The standard deviation
of the errors in the estimated 3D points and camera positions are given by
σU and σC respectively. All measures are given in meters.

Gaussian errors to simulate GPS-data. In [64], the typical standard devia-
tion of a consumer GPS-device is given as 2.34 m. This is what we use in
our synthetic experiments. Finally, 10 percent of all point correspondences
between cameras were mismatched, to simulate gross outliers. The second
scenario was constructed in the same way, but with a different geometry
with uniformly distributed GPS error (0 to 4 m) with all cameras in a spiral
pattern.

For each scenario, results with and without GPS data can be seen in
Figure 3.1 and Table 3.1. Looking at the table, we see that using GPS
information, the standard deviation of the camera position error, i.e., dis-
tance between estimated camera position and ground truth, had a standard
deviation σC of merely 1.01 and 0.71 for the two scenarios. We also get
smaller errors in the estimated 3D points (standard deviation σU ). This
despite the simulated GPS-errors being much larger.

3.6.2 Experiments on real data

We have conducted experiments on a number of street-view images with
additional positional data available for each frame. These images are 360
degree panoramas that were rotationally registered in a common frame dur-
ing acquisition. This means that the orientations of all cameras are known.
We start by extracting SIFT keypoints and match these pairwise between
images using RANSAC. This is the data that is fed into our system. We
run the initial L∞ optimization to root out outliers in the data. We then
run our near L2 optimizer and lastly we do a final bundle adjustment. The
additional positional data is used throughout this process. In Figure 3.3,
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Figure 3.2: Here the L2 reprojection error is shown as a function of the
number of iterations. The top blue curve shows the convergence without
GPS information and the bottom green curve shows the convergence using
the GPS information.

two such reconstructions are shown. In these plots the corresponding re-
constructions when the positional cues are not used are also shown. As can
be readily seen there are a number of problems with the reconstructions
without the positional cues that are remedied using them. Run-times and
number of points and cameras for the two setups are shown in Table 3.2.

In Figure 3.2, the convergence of the optimization is compared with
and without using the positional cues. Here the top curve shows the be-
havior without the positional cues. As can be seen, the bottom green curve
converges both faster and to a lower minimum. This is rather surprising

Table 3.2: Runtimes (in seconds) and number of points and cameras for
the different experiments, and the different steps in Algorithm 7.

Nbr of Nbr of Step 1 Step 2 BA Step 1 Step 2 BA

cams points +GPS +GPS +GPS

Circle 146 1082 8.9 2.9 7.7 7.7 3.4 5.4

Spiral 405 3422 25 8.8 32 14 9.3 34

City 2 332 21422 678 393 601 647 374 513

City 1 1330 79496 250 163 238 250 131 270

47



CHAPTER 3. 3D RECONSTRUCTION WITH POSITION. . .

since it is the L2-norm of the reprojection errors that is shown. Incorporat-
ing the positional cues in the optimization will add terms to goal function.
That we still reach a lower minimum means that we have found a better
optimum and the blue curve has found a local optimum.

3.7 Concluding discussion

During the work with this system a few observations have been made.
i) This structure-from-motion system seems to work well for many

problems.
ii) Incorporating positional measurements does not only improve ro-

bustness, but it seems that it sometimes also improves convergence for the
final bundle-adjustment step — at least for moderately sized problems —
resulting in good total execution times. This is also true for the approxi-
mate L2 formulation, where the result sometimes is good enough to skip
bundle adjustment entirely.

iii) One drawback of the system is that it is unable to handle large
amounts of outliers. However, using the common steps for filtering out
poor feature matches and for creating point tracks, this will rarely cause any
problems. But there can be other situations where a need for robustness to
outliers is greater.

Because of poor scaling to very large structure-from-motion problems,
the next step would be to use this system in conjunction with some way
of merging reconstructions. This would enable solving very large-scale
problems. Being able to incorporate positional constraints on points and
cameras could be a big advantage in such a setting.
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Figure 3.3: Comparison between SfM estimations for a city section. With-
out using GPS cues (top left) and using GPS cues (top right). Both recon-
structions are registered to a GIS model of the city section. Without using
GPS information during step 1 and 2, the solution gets stuck in a local
minimum. The second city section without using GPS cues (bottom left)
and using GPS cues (bottom right). The solution without GPS looks de-
cent, but suffers from drift.
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Chapter 4

Localization with orientation
measurements

This chapter is concerned with the problem of localizing a novel image in
a large 3D model, given that the gravitational vector is known. In prin-
ciple, this is just an instance of camera pose estimation, but the scale of
the problem introduces some interesting challenges. Most importantly, it
makes the correspondence problem very difficult so there will often be a
significant number of outliers to handle.

To tackle this problem, we use recent theoretical as well as technical
advances. Many modern cameras and phones have gravitational sensors
that allow us to reduce the search space. Further, there are new techniques
to efficiently and reliably deal with extreme rates of outliers. We extend
these methods to camera pose estimation by using accurate approximations
and fast polynomial solvers. This chapter is based on [104].

4.1 Introduction

A classic problem in computer vision is estimating the orientation and
position of a camera, given positions of a number of points in 3D and their
projections in the camera image. The so-called pose estimation problem has
been solved in many contexts and for many camera models, see [40].

Another problem that has attracted increasing attention over the past
years is the localization problem, i.e., estimating the position (and some-
times the orientation) of a viewer or a camera given image data. A number
of approaches have been suggested for solving this problem. Many have
adopted an image retrieval approach, where a query image is matched to a
database of images using visual features. Sometimes this is combined with
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a geometric verification step, but in many cases the underlying geometry is
largely ignored, see [45, 93, 67, 48].

The approach that we pursue in this chapter is viewing the localization
problem as a pose estimation problem by matching an image to a large
3D model of the environment. In such an approach one crucial step is the
robust matching of image features to features in the 3D model. The ability
to handle massive amounts of outliers in the data is absolutely paramount.

For many practical applications, using e.g., vehicle-mounted cameras
or devices such as smart phones with accelerometers, we can assume that
the direction of the gravitational vector is known. This simplifies the prob-
lem by reducing the search space and we show that this enables tractable,
efficient, robust and accurate algorithms for localization. A key observa-
tion is that the problem can be recast as a particular type of registration
problem. We use this formulation and present a number of algorithms for
performing outlier removal and pose estimation in low-order polynomial
time.

We investigate two settings; When the height is restricted to some (not
necessarily small) interval and then in Chapter 5 when the height of the
camera relative some ground plane is known.

4.1.1 Related work

A number of solutions have been proposed for solving for the localization
problem as a camera pose problem via 2D-to-3D matching, see [68, 19,
69, 91, 92]. The main focus has been to develop sophisticated heuristics
for finding reliable matching schemes and avoiding the generation of false
correspondences. We take a radically different standpoint: We instead al-
low the matching scheme to generate a lot of correspondences – correct or
incorrect – in order to make sure that we do not miss any good correspon-
dences. The focus of our approach is on the ability to handle large amount
of outliers in a reliable and tractable manner.

Many approaches for robust estimation based on the RANSAC frame-
work have been proposed over the years; see e.g., [20]. Although this
works well in many cases, there are three main issues with these approaches
that have to be addressed. Firstly, there is no guarantee that they will ob-
tain a reasonable solution even if there exists one. Secondly it can be hard
to determine if there is no solution at all. And finally, the number of iter-
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ations required to find a solution with high probability tends to make the
approach impracticable for the rates of outliers that we consider.

Another approach for handling outliers in a robust way is the L∞-
framework, see [52, 54, 95] including recent extensions [83, 111]. Many
of these approaches work well for large scale problems, but break down
with large rates of outliers.

Solving computer vision problems using IMU or accelerometer data
in addition to visual data has been proposed in a number of previous pa-
pers. Some use it together with RANSAC, [36, 59], while others use it to
bootstrap the filtering process in SLAM type approaches, see [79, 84, 98].

The most similar works to ours include [13, 65, 66, 29, 30] where the
aim is to develop algorithms that provably optimizes a robust error norm.
In most cases this simply means minimizing the number of outliers but
some [4] also consider the truncated L2-norm. Several of these approaches
are based on branch-and-bound which has exponential-time complexity.
To our knowledge, none of the above approaches are able to solve the
pose problem with a provably optimal algorithm based on a robust error
criterion that runs in polynomial-time.

4.2 Problem formulation

Assume that we have a large 3D model of, e.g., a city, where the term 3D
model refers to a set of 3D points each equipped with a descriptor vector
describing its local appearance. Given a new image from the same scene,
the task at hand is to pinpoint the location and orientation that the camera
had when capturing this image. This is normally referred to as camera pose
estimation.

We assume that the camera calibration is known and that the camera
has known orientation with respect to the 3D model. A typical case when
this is true is when the camera is mounted on a vehicle or the camera is
in a smart phone with accelerometers that measure the gravitational vec-
tor when stationary. Naturally this second case also requires that the 3D
model was reconstructed using similar sensors, so the direction of gravity is
known in the 3D model. Finally, we assume that the ground plane has been
roughly located in the 3D model. One way to do this is by considering the
height of the cameras used in the reconstruction. This last assumption is
not required, but it will improve computation times significantly.
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Consider a coordinate system with the camera at the origin and the
z-axis points upwards. Let the 3-vector U denote a 3D-point and let u
be a hypothetical correspondence in the image. The relative orientation
between the camera and the point is known up to a rotation about the
z-axis. In the noise-free case each correspondence should satisfy,

λSu = U ′ = RU + t, (4.1)

with

R =

(
R̄ 0
0 1

)
, (4.2)

where S is a known 3 × 3 rotation matrix and R̄ is an unknown 2 × 2
rotation matrix.

Since finding accurate correspondences is difficult, we need to solve
this problem in a robust way. A common approach is to simply optimize
the number of consistent measurements, i.e., inliers. A consistent mea-
surement is one with a reprojection error below some threshold. Measur-
ing reprojection errors is normally the preferred choice, as this accurately
models the limited precision of feature detection techniques.

Although this formulation leads to a challenging optimization prob-
lem, using recent advances in robust estimation it is possible to solve it in
polynomial time with respect to the number of correspondences.

Let the 3D point be rotated and translated to the camera coordinate
system. It is well-known that set of points in R3 that yields a reprojection
error smaller than a threshold ε, forms a cone C in R3. A 3D point U is
an inlier if

U ′ = RU + t (4.3)

lies inside this cone C. Hence the camera pose problem can be viewed as a
registration problem, namely that of registering a number of 3D points Ui
to the corresponding cones Ci, see Figure 4.1.

4.3 Overview of the approach

In Section 2.5 it was shown how the number of outliers can be minimized
in polynomial time. In order to do this, we need to define a goal function
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R,t

Figure 4.1: The registration problem for points lying on cones: Find a 3D
translation and a planar rotation so that the 3D points lie on or within the
cones.

on the parameter space and then construct a set of solvers. The details of
how this is done is described in Section 4.5. The main theorem from [30]
shows that one of the solution points generated in this way will be optimal
with respect to the number of outliers. In this way we can minimize the
number of outliers inO(n4), orO(n5), time for the problems with known
and unknown height respectively.

Clearly, this approach is often far too slow to be practical. To over-
come this, [4] proposes a simple and fast outlier rejection method to be
used as a preprocessing step to the optimal estimation. The technique is
specialized to the problems of stitching and 2D-2D registration, but in the
next section we will see how to generalize it to our setting.

We propose the following localization pipeline. Start by matching fea-
tures points between the image and the model. Then run the outlier re-
jection schemes to quickly eliminate a large amount of wrong matches.
Finally use Algorithm 9 to find the best solution. In a number of exper-
iments we show that this approach works for both very large models and
for outlier rates up to more than 99%; see Section 4.6.

4.4 Fast outlier rejection

The purpose of this section is to present a fast method for rejecting outlier
correspondences, while being certain not to alter the optimal solution. Pre-
tend for a moment, that the height (z-coordinate) of the camera relative to
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the 3D model is known. The unknown rotation and translation between
camera and world coordinates is

R =

(
R̄ 0
0 1

)
, t =

 tx
ty
0

 , (4.4)

and as this transformation does not change the height of a given 3D point

U =

(
v
h

)
, (4.5)

it will always intersect the corresponding cone at z = h. Hence we can
restrict the cone constraint to this plane and rather than a cone we get
a conic section. This is normally, but not necessarily, an ellipse, see Fig-
ure 4.2. The correspondence is an inlier if

U ′ = RU + t (4.6)

lies inside this conic section. The third coordinate of the 3D point was only
interesting to determine the conic section. Having done that we can drop
the third coordinate and hence we have an instance of 2D-2D-registration
of points to conic sections. With this motivation, the next section is con-
cerned with fast outlier rejection for the case of 2D-2D registration, and
then, in Section 4.4.2, we will see how to use the same ideas for the case of
unknown height.

4.4.1 Basic algorithm for outlier rejection

The following problem will play an important role in our outlier rejection
scheme.

Problem 4.18. Given 2D-points vi and corresponding regions Ci ⊂ R2,
find a rotation R and translation t such that

Rvi + t ∈ Ci, (4.7)

for as many of the pairs (vi, Ci) as possible.
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Z

Z=h1

Z=h2

X

Y

Figure 4.2: The reprojection errors for two example points are propagated
as cones in 3D. The points in 3D are located at height h1 and h2 respec-
tively. The error cones intersected with planes parallel to z = 0 give rise to
error conics.

We call a point vi an outlier with respect to a transformation if it does
not place it inside region Ci.

The basis for our outlier rejection scheme is a bounding function of
the following kind: If correspondence i is an inlier, then there are no more
than Bi inliers. We will soon see how to achieve such a bound and also
how to produce a lower bound, L, on the number of inliers. If Bi < L
then correspondence i can be permanently removed from the problem.
First recall the definition of Minkowski addition from geometry, as stated
in Definition 1. The Minkowski difference is defined in an analogue way.
As an example, Figure 4.3 illustrates the Minkowski difference of an ellipse
and a parabola.

Definition 1. The Minkowski sum of two sets of position vectors A and B
is the set

{a+ b : a ∈ A, b ∈ B}. (4.8)

For technical reasons, we select a central point, ci, from each Ci. For
bounded Ci a natural choice is the centre of mass. Let C̄i = {x : x+ ci ∈
Ci}, i.e., the set Ci translated to the origin.
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Figure 4.3: Illustration of the Minkowski difference of an ellipse and a
parabola. The black outline shows the difference of the two regions.

Problem 4.19 (K). Find a rotation R, such that

R(vi − vK)− (ci − cK) ∈ (C̄i − C̄K) (4.9)

for as many of the points vi as possible.

Theorem 4.4.1 gives a useful connection between Problem 4.19 and
Problem 4.18.

Theorem 4.4.1 If vK is an inlier to Problem 4.18, then Problem 4.19
has at least as many inliers as Problem 4.18.

Proof. Let R, t be the solution to Problem 4.18. Then

Rvi + t ∈ Ci (4.10)

for i = 1, . . . , k. Using the same R in Problem 4.19, we get

R(vi − vK)− (ci − cK) = (Rvi + t− ci)− (RvK + t− cK).
(4.11)

Since (Rvi + t) ∈ Ci, by definition (Rvi + t − ci) ∈ C̄i. Similarly,
(RvK + t − cK) ∈ C̄K and hence the difference on the right hand side
in (4.11) lies in C̄i − C̄K .

This theorem means that we can use Problem 4.19 to get bounds on
the number of inliers to Problem 4.18. The advantage of this is that Prob-
lem 4.19 only has one unknown parameter and can be efficiently solved in
the following way.
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ci Lower bound
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Figure 4.4: Propagating the errors from point UK to Ui can be done using
the Minkowski sum of the error conics. The bounds on the rotation for
point Ui is also shown.

We seek a rotation angle that maximizes the number of points enclosed
in their corresponding sets. Each point-to-set correspondence will be con-
sistent with any θ in some set of intervals Ii. Naturally, the method for
computing these intervals depends on the nature of the sets C̄i − C̄K ,
but they are normally easy to compute. See Figure 4.4 for a depiction of
the bounds for one point Ui. By sorting all interval boundaries and going
through the sorted list, we can find an optimal choice of θ. The compu-
tational cost of this is O(n log n). See Algorithm 8. For the angle with
maximally many consistent points, we also reproject all points yielding a
lower bound L on the number of inliers. Assuming that we repeat it for
each correspondence we get a complexity of O(n2 log n).

4.4.2 Outlier rejection for localization

We return to the original problem where the camera height is not known
exactly. Let’s say that there is an uncertainty of ±∆. This means that the
relative height of a point is limited to an interval [h−∆, h+ ∆]. For this
3D point to be an inlier we need to register it to the cone cut off at these
two levels. As we are looking for lower bounds on the number of outliers
we are free to consider a relaxation that has at least as many inliers.
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Algorithm 8 Fast Outlier Rejection
Given a lower bound, L, on the number of inliers, compute an upper bound,
BK , assuming that correspondence K is an inlier. If BK < L, remove corre-
spondence K.

For each i 6= K
Compute Mi ⊃ Ci − CK .
Find the intervals of angles such that RUi + t− ci ∈Mi.

Sort the set of interval boundaries.
For each interval boundary θ(i)

Let b(i) be the number of intervals containing θ(i).
If max b(i) + 1 < L, then remove correspondence K.

Figure 4.5, shows the standard case. The conic sections at h ±∆ are
ellipses. For this point to be an inlier we want to register U to the cut-off
cone. A weaker constraint is that the projection of U in the ground plane
should be registered to the projection of the cut-off cone.

In the elliptical case, the projected shape is the convex hull of the conic
section at height h−∆ and the conic section at height h+ ∆. Note that
we could use these convex hulls in the outlier-rejection step since they are
made up of linear and quadratic curves, but to keep geometry simple we
instead use enclosing quadrilaterals; see Figure 4.5. Again this is possible
since we are looking for lower bounds on the number of outliers.

After projection, we have transfered the problem to a 2D registration
problem, so we can use the method from Section 4.4.1 to remove outliers.

Technical details. The uncertainty, ∆, in camera height is important.
Naturally a smaller uncertainty will allow us to remove more outliers.
Hence, if the actual uncertainty is large we construct k subintervals and
perform the outlier rejection step in each of them. Correspondences which
are rejected for all intervals can be permanently removed.

Since we will be able to remove more outliers if we have a higher lower
bound L on the number of inliers, we repeat stepping through all sub-
intervals twice; in the first iteration we hope to find a decent lower bound,
and in the second iteration we hope to prune more outliers. With k height
intervals we get a total complexity of O(kn2 log n).
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z=hu

z=h l

Figure 4.5: Cutting a cone with a number of planes between two heights
z = hl and z = hu and projecting them onto the ground plane results in
a shape (black) that can be approximated with a quadrilateral (blue).

4.5 Searching for critical points

As described in Section 4.3 we can find the optimal number of inliers by
extracting all the critical points to a constructed optimization problem.
First we decide on a goal function f on the parameter space. Normally a
linear goal function will yield the simplest equations. We need to solve the
following problems:

- Given four residuals compute all points satisfying ri = ε for i =
1, 2, 3, 4.

- Given three residuals, compute all points such that ri = ε, i =
1, 2, 3 and the set of gradients is linearly dependent.

- Given two residuals, compute all points such that ri = ε, i = 1, 2
and the set of gradients is linearly dependent.

- Given one residual, compute all points such that r1 = ε, and the set
of gradients is linearly dependent.
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We have developed specialized solvers for all the cases. One of the
solution points generated in this way will be optimal with respect to the
number of outliers.

The residual constraint for a point Ui can be formulated as

U ′i
T
CiU

′
i = 0, U ′i = RU + t. (4.12)

For our application, each of these problems can be formulated as the solu-
tion to a system of polynomial equations. We will briefly describe how we
construct the first two solvers.

4.5.1 The 4-Point Solver

The parameter space can be embedded in R5 by setting

t =

 tx
ty
tz

 (4.13)

and

R̄ =

(
cos θ − sin θ
sin θ cos θ

)
=

(
a −b
b a

)
(4.14)

and adding the embedding constraint a2 + b2 = 1. The first four equa-
tions from (4.12) are in general full second degree polynomials in the five
variables (a, b, tx, ty, tz). We can simplify this somewhat by fixating the
coordinate system so that the first point is at the origin. This leads to that
the first equation doesn’t involve the rotation parameters. Together with
the embedding constraint this yields a system of five quadratic equations.
In order to construct the action matrix for the system we multiply our five
equations with all monomials of up to total degree equal to three. This
gives a large system of equations, involving 280 polynomials of degree five.
We can write these as

A280×252b252×1 = 0, (4.15)

where A only contains entries based on measured image data, and b in-
volves the unknown monomials (which are of total degree up to five). We
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can construct the action matrix fromA using QR factorization and the so-
lution is then found from an Eigenvalue decomposition of the action ma-
trix. This typically yields 28 solutions, but rarely more than 8 real-valued
ones. We have implemented a solver where the most time consuming step
is doing the QR factorization of the 280 × 252 matrix A. On a desktop
computer the running time for this type of solver is in the order of a few
milliseconds.

4.5.2 The 3-point solver

Although the technique from [30] is based on introducing a dummy goal
function, this function is actually never used in the 4-solver. This is not
the case for the 3-solver. To get as simple equations as possible we use a
linear goal function, f = a, so that ∇f = [1 0 0 0 0]. This should be
linearly dependent with the gradients of the two registration constraints
(4.12), and the gradient of the embedding constraint. This constraint is
given by the determinant of the following matrix,

D′ =


1 0 0 0 0

2a 2b 0 0 0
d′31 d′32 d′33 d′34 d′35
d′41 d′42 d′43 d′44 d′45
d′51 d′52 d′53 d′54 d′55

 , (4.16)

where again d′31, . . . , d
′
55 are linear polynomials in the unknowns. The

determinant is equal to 2b·q where q is a third degree polynomial in the five
variables. Combining this equation with the three registration constraints
(4.12) and the embedding constraint we end up with a set of equations
that in general give 40 solutions. By multiplying this set of equation with
a number of monomials we can construct the action matrix. Again the
most time consuming step in the solver is doing a QR factorization, in this
case of a 1260× 1278 matrix.

4.5.3 Computational complexity

Algorithm 9 shows the steps of the outlier minimization algorithm. As the
number of sets of ≤ 4 residuals is O(n4) we can only do exhaustive sam-
pling of these sets for low number of correspondences. This might seem
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very restrictive, but first note that as the fast outlier rejection method nor-
mally removes all but a few of the outliers, it is the number of inliers that
will be relevant with respect to efficiency. Moreover, in cases with hundreds
of inliers, we will get a good pose estimation even without computing the
globally optimal one. If speed is prioritized over optimality, another choice
is to use ordinary minimal solvers after the rejection step.

For the experiments, we will sometimes exhaustively search all the sub-
sets and sometimes stop when we have detected a good solution (i.e., with
enough number of inliers) or reached a maximum number of iterations.

Algorithm 9 Outlier minimization
Given a set of image points ui and 3D points Ui estimate the pose that mini-
mizes the number of outliers.

Transform the problem to a point-to-cone registration.
For each subset of correspondences of size ≤ 4:

Use the relevant solver to estimate the critical points.
For each critical point (R, t):

Count the inliers and update the best solution.

4.6 Experiments

We have conducted a number of experiments, both on synthetic and real
data, to test robustness, speed and accuracy of the proposed methods.

4.6.1 City-Scale Localization

To evaluate the unknown-height method on challenging real-world data,
we have performed a localization experiment on the Dubrovnik dataset [68].
It consists of a 3D model with approximately 2 million points recon-
structed from 6000 images. Naturally, each point is also equipped with
SIFT descriptors. In addition to the 3D model, the dataset also provides
800 test images with computed estimates of camera positions and orienta-
tions. As these estimates are also based on vision algorithms, they are not
exactly ground-truth. In fact they are known to contain some outliers.
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When building such a 3D model it is possible to also get a rough
estimate of the ground plane and, based on the estimated matchings, get
an interval of possible heights for Algorithm 8. As the ground plane is
not available for the Dubrovnik dataset we synthesize this information by
picking a ±5 meters interval around the provided estimated height. Note
that the length of this interval will mainly affect the running time and not
the accuracy of the final result.

A similar problem is that the dataset contains no orientation measure-
ments. Again we synthesize this information using the provided estimated
camera orientations and adding a random rotation distributed uniformly
on [0, 1◦]; see Section 4.6.5 for a motivation.

For each image, correspondences to the 3D model were established
using standard SIFT matching (with matching ratio 0.9). Then the image
was localized by running Algorithm 8 followed by Algorithm 9 with a
maximum of 1000 iterations. As discussed in Section 4.5.3, we stop early
if a reasonable amount of inliers is found.

Table 4.1 shows a comparison to other methods. In accordance with [68],
an image is considered correctly localized if at least 12 correct inliers are
found. For the two images where this was not the case, we found 8 and 9
inliers respectively and the errors were small. So essentially these two cases
were not failures. Moreover, as our algorithm is optimal for a given bound
on the errors, in our case 6 pixels, we can say that for these two images
there does not exist a solution with 12 inliers. This is not a contradiction
to [69] as we have a more restricted camera model. Also, since there are no
correspondences provided in the dataset between the SIFT-points in the
query images and the model points, it is somewhat difficult to compare
performance between the different methods.

The median error of our method is significantly lower than for the
other methods. This shows the advantage of using measurements from an
orientation sensor – even if that sensor has an error of up to 1◦.

Using a single threaded C-implementation, the median running time
for Algorithm 8 was 5.06 seconds, containing 4766 point correspondences,
so most problems for this dataset are large. For a more reasonably sized
problem of 1000 correspondences, the running time was approximately
0.3 seconds. For the largest problem, with 17199 points, the execution
time was 55.4 seconds. For Algorithm 9, we only had a Matlab-implemen-
tation. With this implementation, each iteration takes approximately 0.3
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Method # reg. Median # error # error
images error (m) < 18.3 m > 400m

Our 798 0.56 771 3
[92] 795.5 1.4 704 9
[91] 783.9 1.4 685 16
[91] 782.0 1.3 675 13
[68] 753 9.3 655 -
[19] 789 - - -
[69] 800 - - -

Table 4.1: Results on the Dubrovnik dataset; see [92].

seconds. In almost all cases for this experiment, the first step finds more
than enough inliers for a very good solution, making it unnecessary to run
the second step.

4.6.2 Shopping street experiment

To test if the gravitational sensor of mobile devices is accurate enough to
use for localization, 101 query images were captured on a shopping street
using an iPhone 4. From another set of 412 images, covering the same
street, a 3D model was built using the method in [82]. The query images
were localized in the 3D model using Algorithm 8 and 9. The gravitational
vector was captured by the internal sensors in the phone.

The results are evaluated by counting the number of inliers, and by
visually verifying the inlier correspondences as well as the position on the
street. In all cases the computed camera pose was visually correct and in
100 of the images there were at least 12 inliers. In one case there were only
10 inliers but the pose was still correct.

The experiment also shows that very high rates of outliers can occur
in practice. Due to a significant difference in lighting conditions, the fea-
ture matching was unusually difficult; see Figure 4.6. To get any correct
matches the SIFT matching ratio was increased to 0.95. Naturally this
produced a lot of erroneous correspondences; see Figure 4.7.
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Figure 4.6: One of the SLR images used for building the model (left) and
one of the iPhone test images (right). Note the illumination difference.

0% 5% 10%

10

20

Rate of inliers

Figure 1: Histogram of inlier rates for the shopping street
experiment.
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Figure 2: Histogram of errors for the semi-synthetic shop-
ping street experiment.
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Figure 4.7: Rate of inliers for the 101 query images in the shopping street
experiment.
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4.6.3 Semi-synthetic experiment

Since we have no way of obtaining ground-truth positions for the shopping
street experiment, we also constructed a semi-synthetic setup. The same
3D model and correspondences as in the shopping street experiment were
used, but the image points were recomputed to have control over the noise.
For each image, a subset of 10 correct image points was selected. Gaussian
noise with standard deviation 0.005 was added to the calibrated points
and the gravitational vector was corrupted with a uniform noise angle on
[0, 1◦].

Both for 3-point RANSAC, 2-point (with known vertical direction
[59]) RANSAC and Algorithm 9, exhaustive sampling of all the mini-
mal subsets was performed. The localization errors in meters for the three
methods are compared in Figure 4.8. In most cases the methods work well,
but the RANSAC methods are more likely to produce large errors.
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Figure 1: Histogram of inlier rates for the shopping street
experiment.
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Figure 2: Histogram of errors for the semi-synthetic shop-
ping street experiment.

1

Figure 4.8: Histogram over the localization error of the proposed method
(green) compared to exhaustive 2-point and 3-point RANSAC (blue and
orange) for the semi-synthetic experiment.

4.6.4 Timing comparison

Another experiment was performed on a subset of the test images from the
Dubrovnik dataset. Taking a number of images, all but 10 inliers were re-
moved. Then Algorithm 8 was run with varying number of outliers. The
execution times as a function of the number of outliers can be seen in Fig-
ure 4.9. As a comparison, we have run a 3-point pose solver (implemented
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in C) and a 2-point (plus up-direction) pose solver (implemented in Mat-
lab), in RANSAC loops. The number of RANSAC iterations was chosen
such that the probability of getting at least one outlier-free minimal set was
0.99. Algorithm 8 is much faster than RANSAC for high rates of outliers.
This is expected as our outlier removal runs inO(n2 log n) compared to 3-
point RANSAC which increases asO(n4) for this experiment. Comparing
execution times to the 2-point RANSAC is unfair since the implementa-
tion used is very inefficient. Simulations of a C-implementation indicate
that the solver is approximately as fast as Algorithm 8; being faster for low
rates of outliers and slightly slower for higher rates. Naturally the polyno-
mial solvers of Section 4.5 will also require some time. But as the number
of inliers is small and all but a few outliers are removed by the rejection
step, this is very negligible in this case.
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Figure 4.9: Execution times for a 3-point RANSAC loop (orange dashed
line), a 2-point RANSAC loop (blue dotted line) and the proposed outlier
removal step (green line). The x-axis shows the number of outliers. The
number of inliers was fixed to 10.

4.6.5 A note on errors in orientation

Modern MEMS accelerometers are incorporated in many of today’s hand-
held devices such as mobile phones and tablet computers. These accelerom-
eters make it possible to measure the gravitational vector when the device
is stationary. The sensitivity of such measurements has increased over the
last years, and the typical accuracy is around 1mg which corresponds to an
error less than 0.1◦. However there is also a zero g level error offset which
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is typically about 1◦. This can in some cases be calibrated away, if the same
device is used. If there is a slight motion during the capture of the im-
age, the accelerometer will not correctly measure the gravitational vector,
but this can be compensated for, using the gyroscopes that are present in
most devices. These typical error values are from the ST Electronics sensor
LIS331DLH used by iPhone 4, see [1] for details.

In our setup these errors can easily be incorporated by increasing the
size of the error cones. If we decompose the errors in orientation, in tilt
and roll angles, errors in tilt will be most significant. For the roll angle the
impact of the error will increase for points farther from the centre of the
image.

4.7 Conclusions

We have in this chapter presented a pose estimation framework that can
handle large amount of outliers in the data. It assumes knowledge about
the orientation of the camera relative to the ground plane. This informa-
tion is readily available for many practical applications using e.g., cameras
mounted on vehicles or hand held devices such as smart phones with grav-
itational sensors. The experiments show that using this information we
improve both localization accuracy and robustness to outliers.
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Chapter 5

Extensions for the planar case

In applications such as city-scale localization it is not very likely that the
camera height is exactly known. There are, however, other applications
where this is the case, e.g., a vehicle moving in a building. In this chapter
we consider modifications to our localization approach to adapt it to this
setting.

Naturally, the outlier rejection scheme from Section 4.4 can be used
directly, although for the applications mentioned above it is less likely to
have huge rates of outliers. Just as with unknown height, we can minimize
the number of outliers by going through the set of certain critical points.
The next section discusses how to find these critical points in the planar
case. This chapter is based on [104].

5.1 Finding the critical points

First we decide on a goal function f on the parameter space. Normally a
linear goal function will yield the simplest equations. We need to solve the
following problems:

In the case when the height is known we need to register a number
of points to conic sections as described in Section 4.4. We have a planar
rotation and a 2D translation to estimate and hence we need three points.
The three equations are of the form

v′i
T
Civ
′
i = 0, v′i =

(
a −b
b a

)
vi +

(
tx
ty

)
. (5.1)

These are in general full second degree polynomials in the four variables
(a, b, tx, ty), i.e., we can write them as

C4×15X = 0, (5.2)
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with

XT = [a2 ab atx aty b2 btx bty t2x txty t2y a b tx ty 1]. (5.3)

Together with the embedding constraint a2 + b2 = 1, this yields a system
of four quadratic equations. By multiplying with monomials up to degree
three we get a new system of equations from which the action matrix can
be computed. This system then gives 16 solutions, but rarely more than
8 real-valued ones. We have implemented a fast solver where the most
time-consuming step is doing a QR factorization of a 110× 98 matrix.

For the two-point solver we again use a linear goal function, f = a,
to get as simple equations as possible. In addition to the the constraints
from the two points and the embedding constraint we get the final fourth
constraint from the determinant of

M =


1 0 0 0

2a 2b 0 0
m31 m32 m33 m34

m41 m42 m43 m44

 , (5.4)

where again m31, . . . ,m44 are linear polynomials in the four unknowns.
The determinant is equal to 2b·pwhere p is a full second degree polynomial
in the four variables. Combining this equation with the two registration
constraints (5.1) and the embedding constraint we end up with exactly the
same equation structure as for the 3-solver and hence the same solver can
be used

5.2 Truncated L2-norm

In [4], it is shown that robust estimation under truncated L2-norm can be
performed if we can produce the following requirements

- Solvers to compute all critical points.

- A solver for optimizing the ordinaryL2-norm for a given set of resid-
ual functions.

These ideas are applied to stitching and 2D-2D registration. We will show
how to address the camera pose problem in a similar fashion. We have al-
ready discussed how to deal with the first requirement and proceed directly
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Figure 5.1: Contour plot for the exact reprojection errors (red) and the
approximated version (black). The levels 1 pixel, 3 pixels and 5 pixels are
shown for a 3D point 15 meters away and at 1 meters height.

to the second. Again we use the reformulation as a 2D-2D registration
problem, but we now need to analyze this reformulation more closely.

Recall (4.1)

λu = S

(
U ′

h

)
=

(
RU + t
h

)
, (5.5)

As we know h and the camera orientation with respect to the plane
z = h, we can easily compute the unique point in this plane that would
yield zero reprojection error. Let c̄ denote this point. Ideally we would like
to map U exactly to c̄, which corresponds well to the registration problem.
However, as no exact mapping for all points exists, we want to compute
a solution that minimizes the L2-norm of the reprojection errors—and
this is more tricky. The mapping from the plane z = h to reprojection
errors is too complex to allow for a simple solution. But if we approximate
this mapping, e.g., using its Taylor expansion, we get a more tractable
problem. To clarify, consider an image point uk and a plane z = h. Let c̄
be the unique point in z = h that yields zero reprojection error. We form
a function ρ(x, y) such that ρ(U ′) is the reprojection error of a point(
U ′

h

)
. Then the second-order Taylor expansion of ρ at c̄ can be written

ρ(U ′) ≈
(
U ′ − c̄

)T
A
(
U ′ − c̄

)
. (5.6)

Figure 5.1 shows the accuracy of this approximation for a difficult case.

5.2.1 Approximate-L2 solver

The basis for being able to solve the truncated L2-norm optimization
above is a solver for standard L2. With the reformulation and Taylor ap-
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proximation above this problem can be viewed as minimizing

`(R, t) =
∑
i

(
U ′i − c̄i

)T
Ai
(
U ′i − c̄i

)
(5.7)

where Ai is a symmetric 2× 2-matrix and

U ′i = RUi + t. (5.8)

To eliminate t, look for stationary points

∇t` =
∑
i

Ai (RUi + t− c̄i) = 0. (5.9)

This yields t as a linear function of R. By reinserting this into (5.7), we
get the full loss as a quadratic function of cos θ and sin θ. Straightforward
analysis shows that the stationary points to this loss function can be found
by solving a degree-four equation, and the minimum can then easily be
found.

Algorithm 10 Truncated L2

Given a set of image points ui and 3D point Ui estimate a planar pose that
minimizes the approximate truncated L2-norm of the reprojection errors.

Transform the problem to a point-to-conic registration.
For each triplet of correspondences:

Use the 3-solver to estimate R and t.
Find the neighbouring inlier sets; see [4].
For each neighbouring inlier set:

Use the approximate L2-solver to estimate R and t.
Evaluate loss function and update the best solution.

For each pair of correspondences:
Use the 2-solver to estimate R and t.
Same steps as above.

5.3 Experiments

In order to test algorithm 10 we have conducted another synthetic experi-
ment. In this setup we chose to just compare the results from algorithm 9
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Figure 5.2: Histogram of the angular errors compared to ground truth.
Red dashed lines are without running algorithm 10 and the blue lines are
with.

(adapted for known height) with results from algorithm 10 without any
outliers in the test data. The results can be seen in figure 5.2 and figure 5.3
where respectively histograms of the angle and position errors are shown.
Red dashed lines are without running algorithm 10 and the blue lines are
with. One can clearly see that both the angular and positional errors
decrease significantly when using algorithm 10 .
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Figure 5.3: Histogram of the positional errors compared to ground truth.
Red dashed lines are without running algorithm 10 and the blue lines are
with.
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Chapter 6

The registration problem

6.1 Image registration

Image registration is a classical problem in computer vision and it appears
as a subroutine for many imaging tasks. For example, it is a prerequisite
for shape analysis and modeling [22] and for automated analysis of multi-
modal microscopy images [61]. It is also an important component in im-
age guided surgery where fiducial markers often are used for estimating the
transformation [35, 26].

Image registration is the problem of transforming different sets, or
types, of image data into a common coordinate system. The data can for
example be several photographs, data from different imaging devices, from
different viewpoints or of different objects. Registration is necessary in
order to compare or integrate the data obtained from these measurements.

It is common to pick one image as the reference, and then apply ge-
ometric transformations to the other images so that they align with the
reference. The transformation Tθ applied to a point x in the coordinate
system of one image, produces a transformed point x′,

x′ = Tθ(x), (6.1)

for the coordinate system of the reference image, where θ is the parameter
vector defining the transformation. If the point x corresponds to a point
y in the reference image, the registration error or residual is simply the
Euclidean distance

r(θ) = ||y − Tθ(x)||2. (6.2)

Image registration algorithms can be classified based on their transfor-
mation models. A broad category of transformation models are the rigid
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transformations; including rotation, scaling and translation. One often in-
cludes affine transforms that incorporate shear and directional scaling in
this group . Rigid transformations are global in nature, meaning that they
are not able to model local geometric differences between images. The
second category of transformations allow elastic, or nonrigid, transforma-
tions. These transformations are capable of locally warping the images for
finer alignment to the reference image.

Image registration algorithms can also be classified into intensity-based
and feature-based methods. Intensity-based methods compare intensity
patterns in images using different metrics. Feature-based methods find
correspondences between image features such as points or contours and
use these to estimate a transformation.

The following chapters introduce new methods for image registration.

• In Chapter 7, two new feature-based registration methods for rigid
transformations in the plane are presented, based on the L1-norm
and the truncated L1-norm. They exhibit worst-case complexity
O(n3) and O(n3 log(n)), respectively, where n is the number of
correspondences.

• In Chapter 8, we make a case for feature-based registration of 3D
medical images. Fast outlier rejection methods for rigid and affine
transformations are presented that, together with random sampling,
makes it possible to handle a large amount of outliers at reasonable
computational cost.

• In Chapter 9, a method for 2D nonrigid registration is presented.
The method is based on discrete multi-label optimization.

Naturally, the registration problem has been studied in depth. When
choosing the method of preference, one is often faced with the dilemma
of choosing between fidelity, robustness and efficiency. Using a simplified,
mathematical model of the problem enables efficient computations, but
sacrifices realism. While using a more realistic model incurs the computa-
tional cost of hard inference. As an example, consider the case of feature-
based registration under the assumption that the measurement noise in the
target image can be modeled by independently distributed Gaussian noise.
This is in fact the standard Procrustes problem which can be solved in
closed form. However, the model is not very realistic as there are typically
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erroneous measurements - outliers - among the feature correspondences.
This makes the registration estimates very unreliable. On the other hand,
modeling outliers leads to a much more complicated optimization prob-
lem and solving this problem exactly is sometimes dismissed as infeasible.
Heuristic methods based on random sampling and expectation maximiza-
tion dominate the field. We show that one can achieve a method which is
both efficient (in terms of speed) and reliable (with respect to outliers).

6.2 Related work

Closed form solutions to the standard Procrustes alignment problem have
been known for a long time [46] and used in various settings, for instance,
in surface alignment [8]. However, as the estimate is based on least-squares
(minimum ofL2-errors), outliers will have a large influence and that makes
the approach unreliable.

Much effort has been spent on finding good interest point descrip-
tors [41, 18], but it is still difficult to avoid incorrect correspondences.
Some approaches are conservative in the matching process and rely on get-
ting no false matches [39]. This may work well for particular applications,
but not in general. Robust estimators based on iterative methods have been
proposed, e.g., [62], but they are sensitive to initialization.

2D affine registration. Already in [85], it is emphasized that robustness
is a key issue and a multi-scale approach is proposed that integrates local
measures to obtain an estimate of a rigid transformation. The method is
applied to the problem of registering serial histological sections. In [78], a
probabilistic method is developed that explicitly models outliers and which
regards the registration problem as an inference problem. Inference is per-
formed via expectation-maximization. The method in [34] proposes to use
the Huber kernel as a residual function to make the registration less sensi-
tive to outliers. Levenberg-Marquardt iterations are performed in order to
minimize the loss function. In [88] deterministic annealing is proposed in
order to optimize a robust loss function for the registration of autoradio-
graph slices. Yet another example is [28], where meta-heuristics is applied
for the optimization step of the registration of angiograms. See also the
registration survey [6]. All of these local optimization techniques are de-
pendent on a good initial estimate and they are susceptible to local optima.
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Hence, they cannot guarantee the quality of their solutions.
Another popular approach for dealing with outliers is hypothesize-and-

test approaches based on RANSAC [33]. These methods are by nature
random (which can be remedied by exhaustively examining all possible
subsets). Still, the estimators have no guarantee of finding the optimal
solution which makes these methods unreliable. This will be empirically
demonstrated in our evaluation.

Several works have focused on optimal estimators based on branch-
and-bound. One of the first algorithms was developed in [13] and it finds
the rigid transformation that maximizes the number of inliers. In [31], a
robust estimator based on a vertex cover formulation is proposed and in
[66], a formulation based on integer programming is given. The methods
are independent of initialization and converge to a global optimum. How-
ever, as they are based on branch-and-bound, the computational complex-
ity of the algorithm is exponential. The most closely related work to the
methods presented in Chapter 7 is [4], where a truncated L2-norm al-
gorithm is derived with complexity O(n4). However, the runtime tends
to be prohibitive (see experimental Section 7.4), making it a less tractable
alternative.

3D affine registration. The most similar work to the methods presented
in Chapter 8 is the feature-based method in [107]. They model both
inliers and outliers in a statistical setting, and thereby can learn parameters.
A drawback is that candidate transformations are generated based on a
single correspondence which may severely limit the actual search space.
Robustness has also been addressed in intensity-based methods, e.g., in
[85], using the L1-norm and [89], where another robust loss function is
utilized. The downside is that the optimization relies on local refinement
which is sensitive to initialization.

Nonrigid registration. The field of nonrigid registration is vast. For a
review of nonrigid registration methods, see [24]. Another survey, focused
on nonrigid medical image registration, is given in [97].
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Chapter 7

Optimal 2D registration

This chapter introduces two new methods of registering 2D point sets over
rigid transformations when the registration error is based on a robust loss
function. In contrast to previous work, these methods are guaranteed to
compute the optimal transformation, and at the same time, the worst-case
running times are bounded by a low-degree polynomial in the number
of correspondences. In practical terms, this means that there is no need
to resort to ad-hoc procedures such as random sampling or local descent
methods that cannot guarantee the quality of their solutions.

The methods is tested in several different settings, in particular, a thor-
ough evaluation on two benchmarks of microscopic images used for his-
tologic analysis of prostate cancer has been performed. Compared to the
state-of-the-art, the results show that the methods are both tractable and
reliable despite the presence of a significant amount of outliers.

This chapter is based on [5].

7.1 Introduction

We seek to develop robust registration procedures for combining informa-
tion from different sources and modalities. The images may be degraded
and have limited/varying fields of view. We present experimental results
from two different applications.

In our first setting, we are dealing with images of the human brain
and the goal is to study the perfusion of blood flow through small vessels,
so-called capillaries in the white and gray matter regions of the brain. This
is important for patients with hydrocephalus who are treated by placing
a drainage tube (shunt) between the brain ventricles and the abdominal
cavity to eliminate the high intracranial pressure. To capture the anatomy
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Figure 7.1: Left: Example slice from the MR-Flair set and the corre-
sponding CT-slice. Note the big difference in appearance and noise level.
Right: The correct point correspondences detected by our truncated L1-
algorithm using a threshold of 8 pixels.

Figure 7.2: Examples from our two benchmarks with 10 manually
marked correspondences. Left: Prostate tissue stained with H&E and
p63/AMACR. Right: Prostate tissue stained H&E and TRF (fluorescent).
The goal is to find a rigid transformation that aligns the two images using
features from an automated method such as SIFT.

of the region of interest, MR-Flair images have been obtained. The perfu-
sion data is obtained via contrast-enhanced CT images taken at one second
apart during a two-minute session. To acquire good temporal resolution,
only a couple of slices can be captured at each time instant. The challenge
here is to register single slices from the CT image to the full 3D volume
of the MR image. As the head of the patient is in an upright position, the
mapping from one CT slice to the corresponding (but unknown) slice in
the MR-Flair volume is well described by a rigid 2D transformation after
having adjusted for known scale differences. See Fig. 7.1 for an example.

In our second setting, the objective is to perform histologic analysis of
biopsies. Prostate cancer is the second most common cancer in men world-
wide [49] and whose gold standard of diagnosis and prognosis is based
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on histologic assessment of tumours in images stained with Hematoxylin
and Eosin (H&E). Several automatic pattern recognition prototypes ex-
ist [80, 27]. In order to improve the accuracy in clinical practice, consid-
erable research efforts have been directed to complement the analysis with
additional types of stainings and imaging modalities [61]. One example is
given in the left of Fig. 7.2 where two adjacent tissue sections have been
stained with H&E and antibodies directed against p63/AMACR, respec-
tively. Another example is given in the right of Fig. 7.2 with one H&E
staining and one Time Resolved Fluorescence (TRF) image measuring the
Androgen Receptor (AR) obtained from the same section. This type of
images is quite challenging for any automated approach because reliable
feature correspondences are hard to obtain and there are image degrada-
tions due to imperfect acquisition.

We develop two new robust methods for feature-based image regis-
tration based on the L1-norm of the residual functions. As we saw in
Section 2.4, from a statistical point of view, this model is well-suited for
dealing with outliers. The methods are compared and extensively evaluated
on one a set of CT/MR-Flair data, as well as two different benchmarks in
prostate tissue samples. The focus of our evaluation is on two important
properties that a satisfactory solution should possess, namely tractability
and reliability. The first term refers to the computational complexity. We
investigate both the performance in practice and derive theoretical com-
plexity bounds as a function of the number of feature correspondences.
The second one concerns the reliability of the estimate. We are interested
in methods that produce provably optimal estimates under a robust loss
function. If the registration fails, then it can be either due to lack of good
correspondences or the algorithm’s inability to find a good solution. In our
approach, the latter source of error is removed from the process.

Two new registration methods are presented here, based on the L1-
norm and the truncated L1-norm with worst-case complexity O(n3) and
O(n3 log(n)), respectively, where n is the number of correspondences.
Note that the algorithms we propose is restricted to rigid point set regis-
tration in the plane, and other settings are not considered here.
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7.2 Fast optimization of the truncated L1-norm

Given corresponding point coordinates in two images, xi = (xi, yi)
T and

x′i = (x′i, y
′
i)
T , i = 1, . . . , n, consider the following problem

min
R,t

n∑
i=1

`(||Rxi + t− x′i||1) (7.1)

whereR is a 2×2 rotation matrix and t a translation vector, parameterized
as

R(α) =

[
cosα − sinα
sinα cosα

]
and t =

[
t1
t2

]
,

respectively and where ` is the loss function `(r) = min{r, ε} for some
given threshold ε, that is, the truncated L1-norm.

The following observation allows us to simplify the problem.

Lemma 7.20. For any fixed rotation R, consider the minimization of (7.1)
over t

min
t

n∑
i=1

l
(
|xi cosα− yi sinα+ t1 − x′i| + |xi sinα+ yi cosα+ t2 − y′i|

)
.

(7.2)

Then there exist indices j and k in {1, . . . , n} such that

t∗1 = x′j − xj cosα+ yj sinα and t∗2 = y′k − xk sinα− yk cosα

(7.3)

is an optimal choice of t.

In order to get a geometric intuition why the above lemma is true,
consider the graph of the loss function in (7.2). Note that it is piecewise
linear in t and a global minimum can be found by examining all break
points, that is, points which are non-differentiable in all directions. There
are two different causes for non-differentiability in our objective function.
One is due to truncation and one is due to taking absolute values. Our
proof shows that break points that are also local minima are given by (7.3).
This means that break points caused by truncation need not be examined
since all local minima are due to taking absolute values.
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Proof. The optimal t∗ to the truncated L1-loss, denoted L(t∗), is also
a global minimizer to the L1-loss on the set of optimal inlier correspon-
dences (those that have residuals less than ε). To see this, let Linliers(t∗)
be the optimal loss on the inliers and Loutliers(t∗) the loss on the outliers.
Assume that there exists a different solution t with

Linliers(t) < Linliers(t
∗). (7.4)

Clearly, Loutliers(t) ≤ Loutliers(t∗) as this is already maximal. Hence

L(t) = Linliers(t) + Loutliers(t) < Linliers(t
∗) + Loutliers(t

∗) = L(t∗)
(7.5)

which is a contradiction. This shows that an optimal t∗ is a local optimum
to the L1-loss on a subset of the residuals. The L1-loss is given by

n∑
i=1

|xi cosα− yi sinα+ t1 − x′i|+ |xi sinα+ yi cosα+ t2 − y′i|.

As no absolute value contains both t1 and t2 we can write this as a function
of t1 plus a function of t2 and the minimization with respect to t1 and t2
can be analyzed separately. Consider the t1-part. We have a piecewise
linear function that tends to infinity as |t1| tends to infinity and thus a
minimizer of this function is at a break point. The break points are due
to the absolute values - there is a break point whenever one of the absolute
values is exactly zero. Hence a minimizer exists for which at least one
absolute value is zero, so t∗1 = x′j − xj cosα + yj sinα for some j as
stated in the lemma. The same argument for t2 proves the lemma.

This lemma shows that if the two indices j and k are given (for exam-
ple, by exhaustively trying all possibilities), we can reduce the problem via
substitution of t∗ in (7.3) to a one-dimensional search over rotation angle
α,

min
α

n∑
i=1

`(|δxij cosα− δyij sinα− δx′ij |+

+|δxik sinα+ δyik cosα− δy′ik|),
(7.6)
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Figure 7.3: Sketch of the objective function in (7.6), denoted L(α), which
is piecewise smooth.

where δxij = xi − xj , δyij = yi − yj , etc. Let us denote the resulting,
piecewise smooth objective function in (7.6) by L(α), see Fig. 7.3 for an
illustration. It has optimum either at a break point or at a stationary point.
The break points are places where the derivative L′(α) is discontinuous
and occur when an absolute value is exactly zero or the number in an input
to ` is exactly ε. Hence the number of break points grows linearly with n.
Given the break points α1, α2, . . . , αM , consider an interval [αi, αi+1] of
L(α). It can be described by

L(α) = w1 cosα+ w2 sinα+ w3, (7.7)

for some constants w1, w2 and w3. By examining all intervals, we can
compute the optimal rotation angle α∗ using Algorithm 11.

7.2.1 Complexity

There are two important things to note here. First, that each time we
compute w1, w2 and w3 for [αi, αi+1] in (7.7), we can take advantage of
the constants from the previous interval [αi−1, αi]. Only the coordinates
xi and x′i that gave rise to αi are required for computing the update.
Second, that there is only one local minimum to

w1 cosα+ w2 sinα+ w3,

being

(cosα, sinα) = ±(w1, w2)/
√
w2

1 + w2
2, (7.8)
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Algorithm 11 Finding the rotation angle

Set L∗ :=∞.
Compute all break points of L(α) for α ∈ [0, 2π).
Sort the break points α1, α2, . . ., αM .
for i = 1, . . . ,M

Compute L(αi) and compare with L∗.
Compute w1, w2 and w3 of (7.7) for [αi, αi+1].
Compute local minimum αlocal of (7.7).
if αlocal ∈ [αi, αi+1],

compute L(αlocal)
compare with L∗.

given by the minus sign. Hence each step in the for-loop of Algorithm 11
is O(1) so the computationally heaviest step is the sorting. Given the
indices j and k, we can find an optimal α∗ in O(n log n). If we con-
sider all possible index pairs j and k exhaustively, the total complexity is
O(n3 log n). Note that the most complex arithmetic operations in the
algorithm consists of computing square roots.

7.2.2 Fast outlier rejection

To increase the speed even more we propose a fast outlier rejection step as
preprocessing, inspired by the work in [4]. For this we need a variant of
Algorithm 11 that works with the zero-one loss (denoted by L0), that is,
counting the number of outliers rather than truncated L1-norm. First note
that the zero-one loss has the same break points as truncated L1 and that
the loss function only changes values at these break points. There, it either
increases with one or decreases with one. Algorithm 12 lists the details.

We will use this algorithm together with the following observation.

Assume that for the optimal transformation (R∗, t∗), correspon-
dence k is an inlier and there are N outliers, i.e., residuals larger
than ε. If we change the translation to t so that rk(R∗, t) = 0,
then, since ||t− t∗|| ≤ ε, the error on inliers has increased with
at most ε so there are at most N residuals larger than 2ε.
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Algorithm 12 Upper bound on inliers

Initialize best loss, L∗0 =∞.
Compute all break points of L0(α) for α ∈ [0, 2π).
Sort the break points α1, α2, . . ., αM .
Compute L0(α1) and update L∗0.
for i = 2, . . . ,M

Depending on the type of αi
Set L(αi) = L(αi−1)± 1 and update L∗0.

This means that we can use Algorithm 12 with threshold 2ε to produce
a bound of the following kind: If correspondence k is an inlier, then there are
at least N outliers. This also yields a bound on the truncated L1 loss, as if
N residuals are > ε, then the truncated L1 loss is at least Nε. If this is a
higher loss than one we have already found, we can discard correspondence
k from further consideration.

Algorithm 13 Fast outlier rejection

Given an upper bound Lc on the optimal loss.
for i = 1, . . . , n

Set t = x′i − xi
Use Algorithm 12 with threshold 2ε to compute L∗0
(The output L∗0 is a bound on the number of outliers)
if L∗0ε > Lc ,

discard correspondence i

A value for Lc can be found by running Algorithm 13 using ε in place
of 2ε and simply storing the best loss function value rather than discarding
points. As the dominating cost inside the loop is the sorting in Algo-
rithm 12 running this scheme to remove outliers costs only O(n2 log n)
and can be used as a preprocessing step while keeping guaranteed optimal-
ity.

90



7.3. FAST OPTIMIZATION OF THE L1-NORM

7.3 Fast optimization of the L1-norm

Optimizing the L1-norm is a simpler problem compared to the truncated
case. In fact, one can set ε := ∞ and use the same algorithm, but we can
do better. Lemma 7.20 still applies, so we can eliminate the translation
and only consider the rotation problem, which simplifies to

min
α

n∑
i=1

|δxij cosα− δyij sinα− δx′ij |+

+ |δxik sinα+ δyik cosα− δy′ik|. (7.9)

An important difference here is that we can compute the break points
for the first term and the second term independently. This means that
we can precompute and sort all the break points for j, k = 1, . . . , n in
O(n2 log(n)) and then use the for-loop of Algorithm 11 to find the op-
timal α∗. Now, the heaviest part is no longer the sorting. The total time
complexity is O(n3) since the for-loop is O(n) and exhaustively trying all
combinations of j and k is O(n2).

7.4 Experiments

The proposed methods have been evaluated on two challenging registra-
tion tasks.

7.4.1 Registering CT to MR-Flair

Our first experiment is a demonstration of the applicability of the method.
For more quantitative results, see Sections 7.4.2 and 7.4.3. The dataset
consists of 44 image slices captured using the MR-Flair methodology and
4 image slices from a CT-scan of one single subject; see Figure 7.1. To
correlate the information provided by the different modalities, one would
like to register each of the CT slices to the MR-Flair volume. As the CT
slices are roughly aligned with the slices of the MR-Flair volume, we can
use standard 2D SIFT to obtain correspondences. To improve the match-
ing performance all descriptors were extracted at a fixed scale (12 pixels)
instead of using the estimated scale from the Difference-of-Gaussians de-
tector. The motivation is that in very noisy images the scale estimation
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tends to be uncertain. The calculated SIFT points were matched using
Lowe’s ratio criterion with a threshold at 0.8.

The proposed algorithms were compared to the algorithm for trun-
catedL2-norm from [4] as well as standardL2-minimization and RANSAC

followed by L2-minimization on the inlier set. Their performance was
evaluated using 10 manually selected correspondences by an expert. We
have defined a failure case as one with is an angular error larger than 7.5◦

or translation error larger than 20 pixels. Experimental results for different
outlier thresholds are given in Table 7.1. Due to the high noise level, good
ground truth is difficult to obtain even for an expert. One image in par-
ticular resulted in significantly larger differences between the hand selected
points and the computed solutions. In light of the consistent results from
all methods on this pair it is our belief that the hand marked correspon-
dences are inaccurate. A further indication is that the root mean squares
error is as high as 9 pixels on the ground truth set using an L2-optimal
solver. This one image is the only failure case for the truncated methods,
and it appears as a failure case for all the methods tested. The frequently
used intensity-based method called NIFTYREG [85] using mutual infor-
mation was also tested, but without any reasonable registration results at
all. Note that this method was developed to cope with outlier structures
by using robust estimation techniques.

RANSAC Truncated norms

ε 100 iter. 500 iter. 1000 iter. L1 L2

5 5.0◦ 41p 75% 6.5◦ 22p 50% 7.2◦ 21p 50% 5.6◦ 12p 25% 5.7◦ 12p 25%

8 6.6◦ 18p 50% 3.9◦ 21p 50% 6.7◦ 15p 50% 5.4◦ 11p 25% 5.9◦ 13p 25%

12 5.5◦ 13p 25% 6.8◦ 19p 50% 6.0◦ 19p 50% 5.9◦ 9.7p 25% 5.8◦ 15p 25%

∞ - - - 12◦ 54p 50% 22◦ 142p 100%

Table 7.1: The results for the brain-image experiments. A threshold level
of∞ means that no threshold is used. See Table 7.2 for explanation.

7.4.2 Registering histology sections

The second set of experiments is concerned with the registration of histol-
ogy sections of prostate tissue. We used one dataset with 88 image pairs of
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adjacent slides of prostate tissue, stained using H&E and p63/AMACR, re-
spectively. Another dataset consists of 103 images of H&E stained slides,
in which sub-parts are also analyzed with TRF. Examples can be seen in
Fig. 7.2. The size of the stained images are on the order of 1100x1100,
while the TRF images are 368x546.

As in the previous experiment we used SIFT features. Matching was
restricted to the same scale octave and we used Lowe’s ratio criterion with a
threshold at 0.9 to discard poor matches. This yielded 800-1500 matches
for the first dataset, and, due to TRF images being smaller, 40-500 matches
in the second dataset. The inlier rate varies from 1% to 40% with a 10%
average for the H&E-p63/AMACR set and from 4% to 54% for the H&E-
TRF set with a 28% average.

For each problem instance, 10 correspondences were manually picked
by an expert and used to compute an optimal transformation under theL2-
loss. Reported results are compared to the rotation and the translation of
this estimate, as in the brain experiments. We have also selected two failure
criteria based on these comparisons. The first being that the rotation error
is larger than 5◦, the second that the translation error is larger than 25
pixels. The percentage of results that fail according to these criteria are
presented.

RANSAC Truncated norms

ε 100 iter. 500 iter. 1000 iter. L1 L2

1p 11◦ 204p 48% 8.4◦ 221p 27% 8.1◦ 105p 28% 2.7◦ 61p 11% 2.5◦ 58p 8%

5p 14◦ 280p 42% 2.9◦ 53p 9% 1.9◦ 28p 5% 1.2◦ 7p 3% 0.43◦ 6.4p 2%

10p 7.8◦ 158p 28% 1.2◦ 42p 6% 2.2◦ 43p 6% 0.29◦ 4.8p 1% 0.28◦ 4.6p 1%

20p 4.0◦ 78p 18% 2.4◦ 34p 8% 0.9◦ 23p 3% 0.27◦ 4.0p 0% 0.26◦ 3.9p 0%

∞ - - - 2.4◦ 6.5p 5% 6.5◦ 94p 69%

Table 7.2: The results for the H&E - p63/AMACR benchmark. In the
left column, the inlier threshold ε is varied. Then, for each of the meth-
ods (RANSAC with varying number of iterations, and the truncated L1-
and L2-norms), three numbers are reported: average rotation error (de-
grees), average translation error (pixels) and failure rate. A failure case is
one with error in rotation larger than 5◦ or in translation larger than 25
pixels. When ε =∞, no truncation takes place.
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The experimental results on H&E-p63/AMACR are shown in Ta-
ble 7.2. The most accurate results are obtained by the truncated L2-
method. Truncated L1-norm performs poorly on the lowest threshold,
but at more reasonable levels for this task, performance is similar to the
truncated L2. None of the methods based on RANSAC succeeds on all
examples, although the accuracy is good at higher thresholds with 1000
iterations. We also note that regular L1-norm (marked∞) succeeds much
more frequently than L2-norm and with better accuracy than a majority
of the RANSAC variants—on a dataset with only 10% inliers on average.

RANSAC Truncated norms
ε 100 iter. 500 iter. 1000 iter. L1 L2

1p 2.5◦ 31p 6% 0.40◦ 6.2p 1% 0.31◦ 2.7p 0% 0.34◦ 2.9p 0% 0.31◦ 2.6p 0%

2p 2.3◦ 31p 5% 0.29◦ 2.6p 0% 0.27◦ 2.7p 1% 0.29◦ 2.6p 0% 0.28◦ 2.6p 0%

3p 1.8◦ 23p 4% 0.29◦ 2.7p 0% 0.29◦ 2.7p 0% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0%

4p 0.66◦ 8.5p 3% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0% 0.27◦ 2.6p 0%

5p 1.1◦ 7.4p 2% 0.26◦ 2.5p 0% 0.26◦ 2.5p 0% 0.27◦ 2.5p 0% 0.26◦ 2.6p 0%

10p 0.76◦ 7.8p 1% 0.27◦ 2.4p 0% 0.27◦ 2.4p 0% 0.26◦ 2.5p 0% 0.26◦ 2.4p 0%

∞ - - - 16◦ 173p 57% 34◦ 341p 100%

Table 7.3: The results for the H&E - TRF benchmark. See Table 7.2 for
explanation.

Results from the benchmark experiment on H&E-TRF registration are
shown in Table 7.3. This dataset has significantly fewer matches per image
pair and higher inlier ratios, making it more suitable for RANSAC. With
1000 iterations, RANSAC performs on par with truncated L1-norm and
truncated L2-norm, but with fewer iterations there are still some failures.
The poor results for regular L1-norm and L2-norm show that for this task,
aligning a sub-image to a larger image, using truncated norms is essential.

7.4.3 Speed

The theoretical worst time complexities are stated in Table 7.4. In prac-
tice RANSAC is not run exhaustively but with a fixed number of k it-
erations, giving a complexity of O(nk). For average-size problems (280
matches) and k = 1000, RANSAC required 73 ms. The fastest (but worst-
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Figure 7.4: Left: Runtime as a function of number of matches is graphed
for truncated L1-norm (green), truncated L2-norm (red) and regular L1-
norm. The L1-method follows closely a O(n3)-curve (blue). Right: Run-
time as a function of number of inlier matches is graphed. The truncated
methods are more correlated to the number of inliers, see theO(n4)-curve
(red) and the O(n3 log(n))-curve (green), respectively. (ε = 10 pixels.)

performing) method is the closed-form L2-method with a typical runtime
of 0.2 ms. For the remaining methods timing plots are shown in Fig. 7.4.
Because of the fast outlier rejection scheme discussed in Section 7.2.2, run-
times of truncated L1-norm and L2-norm depend mainly on the size of
the inlier sets. The full L1-method has no such advantage. These num-
bers clearly show the advantage in runtime for the truncated L1-method
over both the regular L1-norm and the truncated L2-norm. However, on
datasets consisting of a majority of inliers, the lower complexity of the
L1-norm would give faster runtimes as all operations are identical apart
from the sorting strategies. The timing statistics is from experiments on
H&E-TRF, though the same analysis holds for H&E-p63/AMACR.

7.5 Discussion

So what is the right way to attack feature-based image registration in pres-
ence of outliers? The literature provides us with a vast amount of choices,
but many of these are based on local optimization and require a reasonable
starting solution, which means that the outlier problem is already more-
or-less solved. To handle really difficult outlier problems, RANSAC-type
algorithms are the standard against which others are measured. However,
as our experiments show, they are sub optimal both in terms of accuracy
and with respect to the risk of failure. Some of the failures could be avoided
by increasing the number of iterations - even up to exhaustively searching
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Algorithm complexity tractability reliability reference

RANSAC O(n3) high medium [33]
Truncated L1-norm O(n3 log(n)) high high this paper

L1-norm O(n3) high medium this paper
Truncated L2-norm O(n4) medium high [4]

L2-norm O(n) high low [46]

Table 7.4: Characteristics of the algorithms presented or discussed in the
paper. Note that the stated complexity for RANSAC is for exhaustive se-
lection of all minimal subsets which can be thought of as a worst time
complexity bound.

all the minimal subsets. But, that will increase the complexity to O(n3),
being practically the same as the algorithms proposed here (Table 7.4).
More importantly, even then there is no guarantee as to the solution quality
(Fig. 7.5). Hence, we would only recommend RANSAC when the amount
of outliers is known to be low and the available runtime is very limited.

This contrasts sharply to the typical setting for medical image registra-
tion where the process is performed offline. With different image modal-
ities, the rates of outliers are usually high. In these cases the increased
reliability of optimizing a truncated norm is valuable and the L1-based
methods, although slower than RANSAC, should be efficient enough for
most applications. Our experiments indicate only a small gain in accuracy

Figure 7.5: Left: 13 inliers among 1179 hypothetical SIFT matches of
the truncated L1-method (success). Right: 8 inliers of RANSAC with 1000
iterations (failure). This was the hardest case to register among all pairs.
(ε = 20 pixels.)
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for the truncated L2-norm, so using the truncated L1-norm would be the
general recommendation.

In many applications, the actual improvement in terms of accuracy
and failure rates of these methods might not be huge. This is compensated
by the value of removing a possible error source and not having to tune
the parameters of the algorithm. We believe that the choice between a
tractable, reliable algorithm with guaranteed high-quality solutions and a
fast algorithm with no guarantees whatsoever should be an easy one.
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Chapter 8

Reliable 3D registration

In this chapter, new feature-based methods for rigid and affine image reg-
istration are presented. These are compared to state-of-the-art intensity-
based techniques as well as existing feature-based methods. On challenging
datasets of brain MR and whole-body CT images, improvements in terms
of speed, robustness to outlier structures and dependence on initialization
is shown.

8.1 Introduction

Image registration is at the core of many applications in medical imaging.
It serves as a tool for performing motion correction, detecting anatomi-
cal changes and for fusing information from different modalities. It has
also become an important component in atlas-based segmentation meth-
ods, whose success in, e.g., neuroimaging is largely due to the ability to
accurately register brain MRI:s. However, a number of issues need to be
addressed in order to improve the applicability in other domains where
the biological inter-variation is more significant. Specifically, the following
challenges are address here: (i) Efficiency. In atlas-based segmentation, one
needs to register each atlas image to the target and hence, the approach
risks being time-consuming, or alternatively, one is forced to reduce the
size of the atlas. (ii) Robustness to outlier structures. In many scenarios,
one would like the registration method to ignore certain regions as they
are not present in both images, for example, due to lesions, movements or
varying field of view. (iii) Reliability. Many registration methods are de-
pendent on a good initialization, that is, they are dependent on a close-by
starting point in order to converge to a good solution, otherwise they risk
getting trapped in a poor, locally optimal registration.

Unlike many popular registration methods which are intensity-based,
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we will follow a feature-based approach. The main contributions is to show
that we can improve state-of-the-art in terms of the above-mentioned chal-
lenges via a feature-based approach. In terms of methodology, we present
new techniques for fast outlier rejection, which in combination with ran-
dom sampling, strategies such as RANSAC [33], makes it possible to han-
dle a huge amount of outliers at a reasonable computational cost. We
handle the problem of inter-subject variability, but do not consider reg-
istration across different modalities. We are also restricting our efforts to
low-dimensional transformations (rigid and affine) and we do not focus
on sub-pixel accuracy. If this is required, one can refine our solution using
standard nonrigid registration methods. We have tested our method on
several 3D datasets.

In computer vision, random sampling techniques, e.g., RANSAC is
often used for robust estimation of low-dimensional models. We will im-
prove on this technique and adapt it to registration by incorporating an
outlier rejection scheme, which is guaranteed not to remove any potential
inliers, and at the same time, being computationally very efficient. This
makes our approach very robust to high rates of outliers. This means that
we can optimize our interest point detector so that it finds as many cor-
rect correspondences as possible, and not as in standard methodology like
SIFT, where the ratio of inliers and outliers is considered.

There are several standard registration toolkits publicly available and
we will compare our approach to several of them, including IRTK [90],
NIFTYREG [85] and the feature-based method in [107]. We also include
the robust approach in [89], which has proved more robust than the regis-
tration methods FLIRT [50] and SPM [21].

8.2 Features and matching

This section describes the pipeline we use for feature extraction and match-
ing.

In 2D image analysis, rotation-invariant feature descriptors like SIFT [73]
and SURF [7] are standard 2D tools, both of which have been adapted to
3D [3, 39]. The path we choose for 3D features is similar, though not
identical to either of SIFT and SURF. Revisit Section 2.1 for a description
of feature detectors and descriptors. The features we use work as follows.

(i) Interest point detection. Like SIFT we obtain interest points from
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scale-space extrema of a difference-of-Gaussians operator. This produces
a set of interest points in scale space. The detected scale will be used to
achieve scale invariance in feature matching. The Gaussian scale pyramid
used to compute difference-of-Gaussians is stored and reused in the de-
scriptor computation.

(ii) Orientation assignment. We achieve rotational invariance by as-
signing a dominant orientation to each interest point which is common
practice and this is standard procedure in feature-based techniques. In
2D, it is sufficient to find the dominant direction and align the feature
histograms accordingly. In 3D, however, we need to assign a full 3D ori-
entation to each interest point. To do so, we follow [3] and first find
a dominant direction by considering gradients around the feature point.
Then, all gradients are projected on a plane orthogonal to the dominant
direction to define a second orthogonal direction. In cases with known
(or negligible) orientation differences between source and target, one can
assign the canonical orientation to all interest points. This improves the
discriminative power of the descriptor and allows for more efficient com-
putations.

(iii) Descriptor computation. A patch is defined around the interest
point concerned. The patch is aligned to the orientation assignment and
its size is proportional to the interest point scale. The patch is divided
into 4× 4× 4 regions and in each region, gradients are computed. These
are used to compute the SURF descriptor being a list of 6 values for each
region. These 64× 6 = 384 values form the descriptor vector that can be
used to recognize similar interest points.

(iv) Feature matching. There will always be outliers among the matches.
In computer vision, random sampling techniques, e.g., RANSAC is often
used for robust estimation of low-dimensional models. We will improve
on this technique and adapt it to registration by incorporating an outlier
rejection scheme, which is guaranteed not to remove any potential inliers,
and at the same time, being computationally very efficient. This makes our
approach very robust to outliers - we can handle extreme rates of outliers.

8.3 Transformation estimation

Our main contribution is a technique to deal with large rates of incorrect
matches—outliers. Given n feature points xj ∈ R3 in the source image
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and corresponding yj ∈ R3 in the target image, we seek a transformation
T that minimizes the truncated L2 loss of the residuals

`(T ) =
n∑
j=1

min(r2
j (T ), ε2), (8.1)

where rj(T ) = |T (xj) − yj | is the Euclidean error in the target image.
The function in (8.1) assigns a quadratic loss to inlier correspondences
with a residual lower than ε (which should relate to the noise level) and a
constant loss to outlier correspondences with a residual higher than ε. We
will consider transformations on the form T (x) = Mx + t. If M is a
rotation matrix, we get a rigid transformation and if it is a positive definite
matrix, we have a general affine transformation.

Our approach is a generalization of [4] which was developed for multi-
view geometry. The first step is an outlier rejection algorithm with run-
ning time that is independent of the rate of outliers. In practice, it will
remove most of the outliers while guaranteed not to remove any inlier cor-
respondences. In the second step, we use RANSAC [33] to get rid of a few
remaining outliers and estimate an accurate transformation.

8.3.1 Outlier rejection

We propose two outlier rejection schemes for different settings. Our start-
ing point is Problem 8.21.

First, we will consider maximizing the number of inliers, and then
adapt it to the truncated L2 loss in (8.1).

Problem 8.21. Find a transformation given by (M, t) such that |Mxj +
t− yj | ≤ ε, for as many j as possible.

The algorithm loops through all n correspondences and performs an
outlier test for each correspondence. If the test is positive, then the cor-
respondence can be removed permanently since it is guaranteed not to
be part of the optimal solution. Let L be the number of inliers of the
best solution found so far. We compute a bound of the following type. If
correspondenceK, (xK , yK), is an inlier to the (unknown) optimal trans-
formation, then there are no more than UK inliers. Hence, if UK < L we
get a contradiction and correspondence K must be an outlier. Essential is
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of course to be able to quickly compute the upper bound UK under the
assumption that correspondence K is an inlier. This issue will be the focus
for the remainder of this section.

The first step is reducing the original problem to a simpler one by
eliminating the translation t.

Problem 8.22. Given K, let x̃j = xj − xK , ỹj = yj − yK and find M ,
such that |Mx̃j − ỹj | ≤ 2ε for as many j as possible.

Proposition 8.3.1 If correspondence K is an inlier to Problem 8.21,
then Problem 8.22 has at least as many inliers as Problem 8.21.

Proof. Let (M, t) be the solution to Problem 8.21. For any inlier j, we
have |Mxj + t− yj | ≤ ε, and using the same M in Problem 8.22, we get

|Mx̃j − ỹj | = |M(xj − xK)− (yj − yK)|
≤ |Mxj + t− yj |+ |MxK + t− yK | ≤ 2ε.

Hence, solving Problem 8.22 produces an upper bound UK . As a
by-product, we get candidate solutions that we can use to continuously
improve the best solution found so far, which will make the outlier test
more efficient as the L increases.

8.3.2 Outlier rejection for rigid registration

For rigid transformations (M = R), we also make use of the dominant
directions assigned to each feature point by the descriptor. Let uj be the
dominant direction of point j in the source image and vj the correspond-
ing direction in the target. As these are used to align the descriptors it
is unlikely for a correct match not to satisfy the following angular error
bound

ρj(R) = ∠(Ruj , vj) ≤ τ, (8.2)

for a moderate threshold τ . We will further simplify our problem to a
1D-rotation problem (rotation around one axis).
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Problem 8.23. Find a rotation R with RuK = vK such that the following
constraints are satisfied for as many j as possible.

||x̃j | − |ỹj || ≤ 2ε, (8.3)

∠(Ruj , vj) ≤ 2τ, (8.4)

∠(Rx̃j , ỹj) ≤ τ + α, (8.5)

where α is obtained from |x̃j |2 + |ỹj |2 − 2|x̃j ||ỹj | cosα = 4ε2.

Proposition 8.3.2 If correspondenceK is an inlier to the optimal trans-
formation of Problem 8.21 that also satisfies (8.2), then Problem 8.23 has
at least as many inliers as Problem 8.21.

Proof. Let R0 be the optimal rotation to Problem 8.22 and consider the
triangle with sides A = R0x̃j , B = ỹj and C = A−B. Then,

|C| = |R0x̃j − ỹj | ≤ 2ε, (8.6)

and with the triangle inequality on ABC, we get (8.3). Using the rule of
cosines on the same triangle we get ∠(R0x̃j , ỹj) ≤ α with α as above. To
find a suitable R, we use the fact that

∠(RuK , vK) = ρK(R, t) ≤ τ. (8.7)

Let R∆ be a rotation with rotation angle τ mapping R0uK to vK and set
R = R∆R0. Then ∠(Rx̃j , ỹj) ≤ |R∆| + ∠(R0x̃j , ỹj) ≤ τ + α and
using the triangular inequality for rotations

∠(Ruj , vj) ≤ |R∆|+ ∠(R0uj , vj) ≤ 2τ,

This shows that R is a solution to Problem 8.23 with at least as many
inliers as the optimal solution to Problem 8.22. Applying Proposition 8.3.1
completes the proof.

Algorithm 14 shows how this result can be used to reject outliers. After
the change of coordinates in Step 1, any rotation satisfying RuK = vK
will be a rotation about the first coordinate axis. Hence the subsequent
task is to find a rotation angle, φ.

Computationally, the most expensive part is Step 4 which includes
sorting. Hence the complexity of Algorithm 14 isO(n log n). If we repeat
this for every K we get a total cost ofO(n2 log n) for our outlier rejection
scheme.
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Algorithm 14 Upper bound UK for correspondence (xK , yK)

1. Change coordinates s.t. ũK = ṽK = (1, 0, 0)T

2. Remove any correspondence that violates (8.3).
3. For each remaining correspondence (x̃j , ỹj):

3a. Compute interval Ia of rotation angles satisfying (8.4).
3b. Compute interval Ie of rotation angles satisfying (8.5).
3c. Intersect Ia with Ie. Store the resulting 0-2 intervals.

4. Compute an angle φ inside as many intervals as possible.
Output the maximum number of intersecting intervals, UK .

8.3.3 Outlier rejection for affine registration

The method from the previous section can be used to perform outlier re-
jection whenever the deformation is known to be small, but some impor-
tant applications require a more significant scaling to register the images,
for example, registering a whole-body scan of a tall person to one of a
short person. To handle such cases efficiently, we propose an outlier rejec-
tion scheme based on the assumption that the rotation between images is
small. This is true for most medical 3D images, such as CT, MR or PET.
The class of transformations that we will use in this case is

T (x) = sx+ t, (8.8)

where s is a positive scale factor. Now consider Problem 8.22 for this
transformation and some index K. For each j we can compute an interval
constraint on s for correspondence j to be an inlier. We find the interval
by the following geometric reasoning. As s varies, the point sx̃j moves
along a line segment starting at the origin. We are interested in points
such that |sx̃j − ỹj | ≤ 2ε. It is easy to see that this is true for an interval
of s and we can find the interval boundaries by using simple linear algebra

4ε2 = |sx̃j − ỹj |2 = s2|x̃j |2 + |ỹj |2 − 2s x̃τj ỹj , (8.9)

and solving the obtained quadratic equation. As in rigid registration, we
seek an s∗ that intersects as many of these intervals as possible. This can be
found by sorting all the interval boundaries and going through the sorted
list once. The number of intervals intersecting at s∗, UK is an upper
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bound on the form: If correspondence K is an inlier, then there are no more
than UK inliers. The complexity of running this scheme for all of the n
correspondences is again O(n2 log n).

8.3.4 Outlier rejection for truncated least squares

For the truncated L2 loss in (8.1), we can use these methods in the fol-
lowing way: Assume that correspondence K is an inlier and compute a
bound, UK , on the number of inliers. The truncated L2 loss cannot be
smaller than (n−UK)ε2. If the best solution found so far has a lower loss,
then we get a contradiction and correspondence K can be rejected.

8.4 Experimental results

This section presents experimental results for three different set-ups. The
performance is compared to five other methods, namely IRTK, NIFTYREG,
Feature-Based Alignment (FBA) from [107] (not applicable for affine reg-
istration) and the robust method in [89], hereafter called ROBUST. These
methods were used with default settings including multi-resolution initial-
izations, except ROBUST for which the outlier sensitivity was decreased
for better results. Note that in [89], ROBUST was shown to perform better
than FLIRT [50] and SPM [21]. Thus, these have been omitted from our
experimental evaluations.

8.4.1 Rigid registration of brain MR images

In the first experiment, we quantify the robustness to outlier structures in
the images using 30 T1-weighted brain MR scans from brain-development.org

with resolution of 1803. We use the same setup as in [89] for testing ro-
bustness. For each image, a random rigid transformation is applied to
reflect possible head movements in a scanner: a random 50 voxel transla-
tion and a rotation about a random axis. We add Gaussian noise (σ = 10)
and create outlier boxes of size 203 by copying a box from another image,
see left of Fig. 8.1. We evaluate the dependence on rotation angle with 40
outlier boxes in each image and then the sensitivity to varying the number
of outlier boxes with a fixed amount of rotation (30 degrees). Our frame-
work for rigid registration was used with an outlier threshold ε = 5 voxels
for the Euclidean error and τ = π/5 for the angular error.

106



8.4. EXPERIMENTAL RESULTS

Figure 8.1: (Left) Test image from the Brain MR dataset. (Middle) Close-
up of a whole-body CT image with a few of the detected feature points.
(Right) Corresponding feature points automatically matched in a CT scan
of another subject.
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Figure 8.2: Number of successful registrations (out of 30) as a function of,
(left) varying amount of rotation and 40 outlier boxes and (right) varying
number of outlier boxes and 30 degrees rotation. See text for details.

Results are shown in Fig. 8.2. We plot the number of successful regis-
trations for each method, i.e., registrations with a rotation error less than
1 degree and a translational error less than 1 voxel. In both settings, our
method significantly outperforms the competitors. IRTK, which is not
designed to deal with outlier patches, failed consistently and we chose to
leave it out of the comparison.

8.4.2 Affine registration of organ CT images

In this experiment we used 10 whole-body CT images (resolution 512 ×
512×800) of different subjects to evaluate the robustness to initialization.
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There are 15 organs, e.g., kidneys, spleen, liver, that have been manually
delineated. We used cropped organ images from one subject in order to
register them to the whole-body CT of a different subject using IRTK,
ROBUST, NIFTYREG and our method with the outlier threshold ε at 30
voxels. The performance is measured by the distance in voxels between
organ centres in the target and warped source images.

Table 8.1 reports the proportion of successfully registered organs. IRTK

did not perform well with cropped images (as expected since it is depen-
dent on a reasonable initialization), so we left it out of the comparison.
Note that we are primarily interested in robustness (and not accuracy) and
therefore we concentrate on rates of successful registrations. It is evident
that ROBUST is dependent on a good initialization while NIFTYREG and
our method are less so.

Proposed ROBUST NIFTYREG

≤ 20 voxels 71% 0% 25%
≤ 50 voxels 97% 0% 90%
≤ 100 voxels 100% 11% 100%

Table 8.1: Results for the multi-organ registration dataset. Reported resid-
uals are between organ mass centres computed from manual segmenta-
tions.

8.4.3 Affine registration of whole-body CT

In this experiment we test the performance of pairwise registering whole-
body CT images using the same data, settings and algorithms as in the
previous experiment. We ran a number of inter-subject registrations and
measured how many of the organs that were successfully registered as de-
fined in the previous experiment. The results are given in Table 8.2. Even
though the CT scans are roughly aligned from the beginning, the compet-
ing methods are less successful than ours.

8.4.4 Execution times

Average execution times for the different methods and experiments are
given in Table 8.3. Even for registering a single image pair, our approach is
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Proposed ROBUST NIFTYREG IRTK

≤ 20 voxels 46% 18% 12% 16%
≤ 50 voxels 92% 59% 69% 51%
≤ 100 voxels 100% 95% 96% 72%

Table 8.2: Results for pairwise, whole-body registration. The percentage
of successfully registered organs (at different thresholds) is given. In total,
there are 15 segmented organs.

more efficient, but the real advantage appears in a multi-atlas setting. The
most expensive step in our algorithm (and similarly for FBA) is computing
features for the two images. In an atlas setting, the features can be precom-
puted for the atlas. As an example, the time to register one whole-body CT
image to a multi-atlas of size N is 20 + 1.4N seconds. With N = 50, our
method would take 1.5 minutes, IRTK over an hour, NIFTYREG about 7
hours and ROBUST 22 hours on the same computer.

Proposed ROBUST NIFTYREG IRTK FBA

Brain 4 s 214 s 26 s - 10 s
Organ 21 s 1614 s 527 s - -
Whole-body 39 s 5356 s 1448 s 222 s -

Table 8.3: Mean execution times for one registration.

8.5 Concluding discussion

Intensity-based methods seem to be very popular for doing image registra-
tion, especially for medical applications. I believe that one contribution
here is to show the advantages of feature-based image registration.

When running experiments, we struggled a lot with parameter selec-
tion for the different software toolkits, trying to make them produce good
results. By comparison, the proposed methods are very easy to setup and
run because they avoid a lot of parameters. Having spent much time trying
to figure out the best settings for the toolkits, it is clear to me that this is
an important factor. Especially if the methods are run automatically, or by
people not super-interested in image analysis, like for instance radiologists.
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Because of its robust properties, the method will in many cases serve
well for computing initial solutions, that other methods then could refine.

One line of interesting future work could be to extend these methods
for doing feature-based nonrigid registration.
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Chapter 9

Shift-map-based nonrigid
registration

This chapter concerns itself with the problem of nonrigid dense registra-
tion of 2D images. The problem of estimating a deformation field is for-
mulated as a multi-label discrete optimization problem, using the Shift-
map framework. Shift-map image processing was introduced by Pritch et
al. [86], who applied their framework to image inpainting, content-aware
resizing, texture synthesis and image rearrangement. The work presented
in this chapter extends the shift-map framework to image registration. The
results obtained with shift-map registration seem promising.

This chapter is based on [106].

9.1 Problem formulation

We have a base image B(i, j) and an input image I(i, j). These two
images need not have the same size. The goal is to register the pixels of the
input image onto the base image using a shift-map

T(i, j) =
(
ti(i, j) , tj(i, j)

)
. (9.1)

The pixel I(i, j) is registered onto

B
(
i+ ti(i, j) , j + tj(i, j)

)
. (9.2)

Figure 9.1 shows the input and base images and the resulting image ob-
tained by moving all pixels in the input image as specified by the computed
shift-map.
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Each possible shift-map is assigned an energy, based on a priori as-
sumptions on what a good shift-map typically looks like and how well the
two images match each other. The goal is then to find the optimal shift-
map, that is, the shift-map with the lowest energy:

E(T) =
∑
(i,j)

αEijd (T(i, j)) +
∑

(i′,j′)∈N (i,j)

Eijs (T(i, j),T(i′, j′))

 , (9.3)

where outer sum is over all pixels in the image and the inner sum over all
(i′, j′) in a neighborhood N (i, j) of (i, j). Figure 9.2 shows one such
neighbor. We will use 4-connectivity of adjacent pixels exclusively. Eijd
and Eijs are the data terms and smoothness terms, respectively. They will
be described in separate sections below.

9.2 Registration energy terms

The methods in [86] deal with constructing a new image from an old one
and the registration problem is about finding a map between two existing
images. Hence the energy previously used for finding shift-maps is not
suitable for registration and new energy terms must be constructed.

Comparing pixels. A related problem to image registration is dense depth
estimation from two images of the same object with known camera posi-
tions. This problem has been studied extensively, see for example [56].
Recently a new descriptor, DAISY, was proposed by Tola et al. [108], tai-
lored to dense stereo estimation where the position of the two cameras
differ by a large amount. This descriptor is shown to outperform other ap-
proaches (e.g. SIFT, SURF and pixel differences) in extensive experiments.
Therefore, it seems relevant to try and apply this descriptor to the related
problem of estimating a dense image registration.

Not unlike SIFT [72], a DAISY descriptor constructs a histogram of
the image gradient orientations. Eight different orientations at three dif-
ferent scales are used. By sampling these fields at different points around
the feature location, a descriptor of dimensionality 200 is obtained. Since
the same fields are used for all image locations, a dense field of descriptors
can be computed in a couple of seconds. The main goal of the DAISY
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(a) input image I (b) base image B

(c) shift-map (d) final location of pixels

(e) SIFT Flow result [70] (f ) SIFT Flow final locations

Figure 9.1: Registration of two images using a shift-map. Each pixel in the
input image is placed on the base image as described by the shift-map. For
illustration purposes, the vector-valued shift-map (image c) is visualized
using colors, where different directions are coded as the border of image
(c).
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Figure 9.2: Shift-map between two images

descriptor was efficient dense computation. In order to choose relevant
parameters, the work by Winder et al., [110], is helpful.

Data terms. The data terms Eijd were previously used in [86] to enforce
hard constraints on the shift-map. When inpainting an image, the data
term makes sure no pixels in the “hole” are used in the output image by
assigning such shifts a cost of∞.

In this paper, where image registration is considered, we need to de-
velop more complex data terms to incorporate the fact that we want to
find a mapping between two images such that similar pixels are mapped
to similar pixels The data terms dictates that similar parts of the images
should end up on top of each other. To measure similarity, dense DAISY is
used.

It might only be possible to register parts of the input image, so shifting
pixels outside the base image is permitted, at a constant cost P per pixel.
The data terms are then given by

Eijd (T) =

{∣∣∣∣∣∣Î(i, j)− B̂
(

(i, j) + T(i, j)
)∣∣∣∣∣∣

P when (i, j) + T(i, j) is outside B,
(9.4)

where Î(i, j) is the DAISY descriptor describing the image I at pixel lo-
cation (i, j). If the shift takes pixel (i, j) outside the bounds of the base
image, a constant cost is issued. Otherwise, dissimilarity of the pixels de-
termines the cost of the assignment. Figure 9.6f shows a heat map of the
distance from the circled feature in the first row to all locations in the image
in row 2.
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Smoothness terms. The smoothness terms are used to enforce global
consistency to the shift-map, while allowing discontinuities at a limited
number of places. In [86], the smoothness terms compared the color and
gradient pixel-wise. Where a discontinuity in the shift-map occurs, the
penalty is computed as the difference in color and gradients.

The smoothness function takes the form of the Euclidean distance be-
tween the endpoints of the two shifts:

Eijs (T(i, j),T(i′, j′)) =

||(i′, j′) + T(i′, j′)− (i, j)−T(i, j)||. (9.5)

Here, (i, j) and (i′, j′) are neighboring pixels, see (9.3). We also tried
using the shift difference,

Eijs (T(i, j),T(i′, j′)) = ||T(i′, j′)−T(i, j)||, (9.6)

but this turned out to penalize smoothly varying shift-maps too much,
as well as penalizing rotations. The proposed smoothness term in (9.5)
obviously has a bias towards a contracting one image, but for reasonable
smoothness weights, we never noticed this effect in practice.

Color information. The DAISY descriptor does not use color informa-
tion, yet intuitively it makes little sense to match pixels of very different
colors. Because of this, we have also made experiments where the color
information of the images is incorporated in the above data terms. The
color model used assigned a cost of P to pixels with large difference in
hue, given that the intensity and saturation allowed a reliable value of the
hue. This model improved the result of the registration in Fig. 9.6. We
did not use color information in the experiment shown in Fig. 9.1.

9.3 Energy minimization

To minimize the energy in (9.3), α-expansions as described by Boykov and
Veksler [12] was used, with the graph algorithms described in [11, 55].

Each possible shift value T(i, j) ∈ {−m. . .m} × {−n . . . n} is
mapped to a 1D label space. Naturally, this makes the number of labels,
even for very moderately sized images, very large. To make the problem
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tractable, the image is down-sampled in a Gaussian pyramid. This allows
for a dramatic decrease in the number of labels needed for most cases.

For the images in Fig. 9.6, an initial image size of 128× 23 was used.
The size was doubled 3 times until the final resolution of 1024× 179 was
reached. Each doubling of the image size is followed by a linear interpola-
tion of the shift-map. This shift-map was used as a starting guess for the
optimization at the larger level. At each level after the first, only 9 possible
shifts then need to be considered: {−1, 0, 1} in each direction.

9.4 Experiments

9.4.1 Inpainting with DAISY

To verify our implementation, we inpainted an example image used in
[86], see Fig. 9.5. We tried to follow their implementation as closely as
possible. The result was different, but qualitatively similar. We did not
allow the pixels outside the area to be removed to move at all, which is
in contrast to [86], where all pixels except the border of the image were
allowed to be shifted.

9.4.2 Registration

Figures 9.1 and 9.3 show shift-map registration results. The bear image
in Fig. 9.1 shows the same object from two different views and is from
[60]. The building images in 9.3 register correctly, except for the light
pole, which is very thin and does not have a large enough data term.

We have also conducted an experiment where we used shift-maps to
recover a known image deformation. The results are displayed in Fig. 9.4.

During large-scale reconstruction of a city using images taken with a
cylindrical camera, we have encountered many difficult image pairs where
SIFT is unable to provide useful correspondences. The top two rows in
Fig. 9.6 show one of the hardest. Computed SIFT features for the two
images (794 and 1019 feature points, respectively) only yielded 3 correct
matches. The main reason for this was the image geometry and large,
repetitive patterns. Using shift-map we obtained a dense, mostly correct
map between the images. This was then used as an aid to compute SIFT

correspondences. We then obtained 28 matches, of which 12 were correct.
The runtime for this image was about 2 minutes.
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The method has also been compared to the recent SIFT flow algorithm
[70]. Both algorithms worked well for simple distortions of small magni-
tudes, which can be seen in Figure 9.4. However, for the other, more
challenging experiments, we were not able to get any satisfactory results
using SIFT flow. An example is shown in Figure 9.1.

The shift-map registration method was also compared to the optical
flow algorithm described in [113]. This algorithm did not produce use-
ful results for the street images, see bottom of Figure 9.6. Optical flow
techniques are arguably not suitable for this kind of registration tasks.

9.5 Conclusion and further work

Computing the smoothness term with color and gradient differences as in
[86] did not give satisfactory results when extended to image registration,
but we found a great improvement with the dense DAISY descriptor. For
relatively easy cases (Figs. 9.1 and 9.3), we obtained very good results. For
very hard cases (Fig. 9.6) we obtained results which proved very useful for
obtaining correspondences between the images. We compared shift-map
registration to the optical flow algorithm described in [113] (Fig. 9.6e),
which was significantly less accurate. One interesting future line of work
would be to investigate whether shift-map inpainting can be improved by
the DAISY descriptor as well. We have also not investigated large rotations
in this paper, which would require additional considerations. One draw-
back of the shift-map technique is that it handles large rotations poorly.
However, in many applications, i.e., registering CT- and MRI-images, ro-
tations are small. Thus, another interesting direction would be to extend
the method to registration of 3D medical images.
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(a) input image I

(b) base image B

(c) final location of pixels

Figure 9.3: Registration of two images of a building.
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(a) base image (b) input image (c) error

(d) Shift-map result (e) SIFT Flow result (f ) Ground truth

Figure 9.4: Recovering a known image distortion. The maximum and
mean error was 7.3 and 0.7 pixels, respectively. As can be seen in the
images, the largest errors are in an area without texture, which is to be
expected. SIFT Flow performs well in this case. Photo by Tristan Savatier
obtained through Flickr.

Figure 9.5: Our reimplementation of the algorithm in [86]. The complete
running time for this example was 3.1415 seconds.
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(a) input image I

(b) base image B

(c) final locations of the pixels in I

(d) resulting shift-map

(e) result using the method in [113]

(f ) DAISY distance between the circled feature in I to all pixel locations in B

Figure 9.6: Registration of 1024×179 Hitta images. We note that we
achieved a dense, highly nonlinear registration. This shift-map allowed us
to obtain useful point-correspondences between the images, which was not
possible using SIFT alone.
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