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Popular Summary

A review of elementary accelerator physics is given, including both the commonly
taught linear formalism and the more complicated nonlinear methods. With
this basis, a theoretical groundwork is developed for simulating the dynamics of
accelerated particles with fewest possible approximations. This entails incorpo-
rating a relativistic extension of the static Coulomb potential into an algorithm
which must remain accurate for extended periods (as in a storage ring) or under
extreme conditions (to better understand beam losses). Applications of such an
approach are addressed in the final chapters: with particular attention given
to types electromagnets consisting of more than four poles, and the steering of
neutrons by their magnetic dipole moment; both of which are well-suited to such
a nonlinear framework.
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Populärvetenskaplig sammanfattning

Detta arbete börjar med en översikt över grundläggande acceleratorfysik, vilket
inkluderar b̊ade den sedvanliga linjära formalismen och mer avancerade icke-
linjära metoder. Med dessa som grund utvecklas ett teoretiskt ramverk för att
simulera dynamiken hos accelererade partiklar med s̊a f̊a approximationer som
möjligt. Detta inkluderar en relativistisk utvidgning av den statiska Coulombpo-
tentialen till en algoritm som förblir noggrann för l̊anga tidsintervall (som i en
lagringsring) eller under extrema förh̊allanden (för att bättre först̊a str̊alförluster).
I de avslutande kaptitlen anges tillämpningar av denna metod. Speciellt betraktas
fallen med magnetfält som har mer än fyra poler och avlänkning av neutrala
partiklar genom växelverkan med deras dipolmoment, vilka b̊ada lämpar sig väl
för beskrivning inom detta ramverk.

iv



Preface

This thesis is primarily concerned with the improvement of particle accelerators,
with simulation as the de facto proving ground for new technologies. It will forgo
a thorough theoretical introduction, instead proceeding from electrodynamics
first principles where possible, and referring to conventional accelerator physics
theory as succinctly as possible. The intent of this approach is accessibility
and reproducibility for the non-specialist, with the target audience being any
physicist or physics student who has taken graduate-level electrodynamics course-
work.† That said, the foundational Courant–Snyder1 (optical) formalism and the
complementary Lie-operator formalism (Heisenberg-picture or Dyson-series-like)2

will be used for benchmarking throughout. While many texts are available on
the former, the latter theory primarily stems from the works of Dragt–Finn,3

and Forest.4 Wolski’s book5 is also an excellent reference which unifies these
subjects. The brief introductory chapter covers these concepts for non-expert
readers.‡

This is followed by a short chapter which introduces first-principles simulation of
charged-particles using a Lorentz-covariant integrator. We do so as an attempt
at best-possible accuracy, with covariant Hamiltonian dynamics as a basis.6

†In this same spirit, running condensed citations are provided as footnotes, with an
alphabetized bibliography at the end of each chapter. Consecutive citations of a single source
will omit its title, while retaining page numbers where applicable.

1Courant, Livingston, and Snyder, “The strong-focusing synchroton—A new high energy
accelerator”.

2Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics,
p929.

3Dragt and Finn, “Lie series and invariant functions for analytic symplectic maps”.
4Forest and Ruth, “Fourth-order symplectic integration”; Forest, Beam dynamics: A New

Attitude and Framework .
5Wolski, Beam dynamics: In High Energy Particle Accelerators.
‡The remaining chapters are original work from the author.
6Wang, Liu, and Qin, “Lorentz covariant canonical symplectic algorithms for dynamics of

charged particles”.
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Specifically, a derivation is shown for an explicit integrator (which requires no
stepwise numerical solver) that is symplectic (having long-term stability) and
covariant (frame-independent, energy conserving). This will constitute the core
tracking algorithm to be implemented throughout the remainder of the text.

The next chapter addresses inter-particle interaction (space charge) and ve-
locity/acceleration dependent emission using the Liénard–Wiechert potentials.
Since such effects are inherently nonlinear and require pairwise summing of all
constituents, they are extremely demanding in terms of calculation time, and
generally simulated with coarse approximations. In light of this, the chapter
concludes with a proposed technique for compromising accuracy with scalable
precision. This involves adaptating the conventional particle-in-cell (PIC) method
from the usual rectilinear mesh to a coordinate system based on a 3D-projected
Archimedian spiral.

The following chapter deals with beam dynamics through multipole magnets as
a primary test case (particle bunches passing through external potentials with
no explicit time-dependence). While the intent throughout is a first-principles
approach, performance considerations are taken into account. With, for example,
the explicit integrator offering significant performance gains over the conventional
nonlinear (Lie) method.

The brief final chapter then discusses neutral-particle dynamics, particularly in
terms of beam focusing and steering via magnetic dipole moment.7

A selection of detailed derivations and discussions of more tangential topics are
then given as a set of appendices.

7McChesney, “Neutron accelerator physics”.
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Chapter 1

Conventional Beam Physics

A brief, informal glossary of essential terms may be helpful for the non-specialist:

“Beam” is conventionally used for either a sequence of charged particles that are
divided into discrete “bunches” longitudinally (along the direction of propagation)
with a length comparable to their mean transverse spread; or it can refer to an
unbunched stream of particles in what are referred to as continuous-wave or DC
accelerators, where the latter has no RF modulation. This work is exclusively
concerned with bunched beams. (Continuous beams can, in fact, be treated with
relatively simplistic longitudinal dynamics thanks to the longitudinal symmetry
of an infinitely long beam.)1

“Phase space” refers to the position and momentum components of a particle
or several particles’ trajectories treated as interdependent quantities. These
are often plotted for a single spatial direction of motion with momentum as
the vertical and position as the horizontal axis; which amounts to 2D phase
space. Care must be taken to distinguish whether a single particle’s phase-space
evolution is being plotted over several cycles through a periodic structure (as in
a storage ring), or whether a multiparticle distribution is being plotted (i.e. a
bunch or a cross-section of its components).

“Emittance” (ε) is an inherently conserved quantity of any Hamiltonian system,
which consequently defines its area in phase space (A = πε). A single particle in
a periodic beam line (i.e. a circular accelerator) traces a path along an ellipse
in phase space encompassing this area. From the resulting ellipse equation,
one can derive the “Twiss” or “Courant–Snyder” parameters, which are often

1Wolski, Beam dynamics: In High Energy Particle Accelerators, p403 ff.
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convenient for characterizing a beam throughout an accelerator, and can be
tracked independently of phase-space coordinates. The most prominent of these
parameters is the “beta function” (βt), which describes the amplitude of a
particle’s oscillation around the central (longitudinal) axis of the accelerator.

The derivation of ε and the Twiss parameters in terms of single-particle dynamics
is fairly involved and will be presented later in this chapter. For a simple
qualitative picture, a distribution’s emittance can be defined as the root-mean-
square (rms) deviation of position–momentum coupling:2

εRMS =
√
〈(xpx)2〉 − 〈xpx〉2. (1.1)

In terms of distributions, the Twiss parameters allow for beam tracking solely by
their root-mean-squared (rms) deviation values (σ’s), provided all forces acting
on (and within) the beam are treated as linear.

“Space charge” refers to the inter-particle charge-dependent forces (which are
derived from a relativistic extension of the Coulomb potential). This topic will
be addressed extensively in Chapter 3.

In terms of hardware, “beam line” or “lattice” refers to the longitudinal sequence
of “machine elements” and “beam instrumentation” used for, respectively, ma-
nipulating and monitoring the beam. Vacuum piping connects machine elements
and instrumentation which are not flanged directly. When discussing machines
in their entirety, the two main categories are linear accelerators (“linacs”) in
which bunches pass each machine element only once; and circular accelerators
(”rings”), where bunches can be accelerated though several million periods before
reaching nominal energy. These can be interdependent: circular accelerators
use relatively small “injector” linacs, while the proposed International Linear
Collider integrates “damping” rings.

“Dipole” typically refers to a fixture of two electromagnets with opposing poles
aligned transversely to the beamline, which has the effect of displacing any
charged particle along a chosen transverse axis. A short series of dipole magnets
specifically designed for extracting particles from one beamline to another (i.e.
from a linear proton accelerator to a storage ring) is referred to as a “kicker”.
Dipoles typically consist of iron yokes wound with normal-conducting or super-
conducting wire (although single-element magnets which have dipole-equivalent
fields are a topic of active research).3 Dipoles are most commonly used to bend

2Wolski, p151.
3Caspi et al., “Design, Fabrication, and Test of a Superconducting Dipole Magnet Based

on Tilted Solenoids”; Caspi et al., “Canted cosine theta magnet CCT);A concept for high
field accelerator magnets”; Godeke et al., “Bi-2212 Canted-Cosine-Theta Coils for High-Field

5



beams in circular accelerators. A “steerer” refers to a short dipole to correct a
beam’s trajectory.

“Quadrupole” refers to a similar type of magnet, but with four evenly spaced poles
alternating N–S. These are used primarily to squeeze or “focus” the beam along
a single transverse axis. By nature of the field distribution, this simultaneously
stretches or “defocuses” the beam along the other transverse axis. However,
pairs of quadrupoles with opposite alignments can be shown, using elementary
optics, to have an overall focusing effect. This is the acting principle for a
technique referred to “strong focusing”; which has been leveraged heavily for
several decades for the confinement of highly energetic beams. (Its predecessor,
“weak focusing” is an effect related to the curved trajectory of charged particles
through a uniform dipole field.)4 Such a sequence along the beamline of focusing–
vacuum–defocusing–vacuum is known as a “FODO” cell, with vacuum sections
often referred to as “drifts”.

This family of electromagnets can be referred to as “multipoles”. The next
two higher-order multipole magnets, “sextupoles” and “octupoles”, are similar
in design to lower-order multipoles; these typically have more specialized uses,
but their characteristic nonlinear behavior will be studied in depth in the later
chapters of this work. In general, dynamics in transverse regime falls under
the heading “confinement” (with longitudinal dynamics as the “acceleration”
regime).

Figure 1.1 is a schematic of the relevant fields and displacement effects of
quadrupole magnets, along with dipoles and sextupoles. Note how a “normal”
quadrupole alignment acts along the defined transverse axes, while a “skew”
alignment acts along the diagonals.

For all types of multipoles, the sign and amplitude of the “field gradient” is
determined by the current, number of coils, and distance between pole-tips.
There is no standard for field-gradient definitions, as they require rescaling unless
using a covariant Hamiltonian formalism. Thus, care is needed when defining
field gradients, as tracking codes and textbooks often use incompatible rescaling
factors.

The most fundamental longitudinal technology are “cavities”; these are hollow
metallic structures which, in the typical case, have a dumbbell-like appearance

Accelerator Magnets”; Wan et al., “Alternating-Gradient Canted Cosine Theta Superconducting
Magnets for Future Compact Proton Gantries”.

4Veksler, “A new method of relativistic particle acceleration”; Sokolov and Ternov, “Syn-
chrotron radiation”; Burshtein et al., “Application of the principle of automatic correction of
the magnetic field in cyclic superhigh-energy accelerators”.

6



Figure 1.1: Fields of a dipole (top), quadrupole (middle), and sextupole magnet (bottom) with normal and skew orientations
shown in the left and right columns, respectively. The dotted lines represent the current distribution near the
origin; for a beam traveling out of the page (−z), this is synonymous with the observed deflection/focusing
of a uniform bunch. Image reprinted with publisher permission: Beam Dynamics in High Energy Particle
Accelerators, Andrzej Wolski, c©2014 Imperial College Press

and have electromagnetic radiofrequency (RF) waves input via waveguides.
When synchronized for acceleration, an incoming bunch witnesses an attractive
potential which peaks at the center of each cavity.

A notable device which has become a mainstay for low-energy injection into
RF-cavity based linacs is the radiofrequency quadrupole (“RFQ”); which provides
focusing, acceleration, and bunching to a DC beam within a single four-vaned
cavity.5 In modern accelerators, ultrarelativistic energies are achieved using
superconducting cavities and magnets which are housed in “cryomodules” that
manage supercooled helium throughput. Although this thesis will not focus

5Wangler, RF Linear Accelerators, p9.
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directly on cavities or other longitudinal devices and their underlying physics,
the simulation techniques presented in later chapters are intended to be fully
compatible with them.

1.1 Focusing Primer

This short section gives an example of transverse dynamics in terms familiar
from elementary optics. The forthcoming sections will derive in detail the
approximations used. For now, the intent is to justify the use of strong focusing
while establishing a sense of scale for the required field strengths.

Although weak focusing by dipole magnets is the actual historical antecedent
to strong focusing with quadrupoles, a solenoid oriented axially along the beam
line can in principle be used for focusing, with the focal length approximation6

1

f
≈ π

16

q2

m

`

2

B2
0

E0
(1.2)

where ` is solenoid length; B0 is the maximum magnetic field strength; and E0 is
a test particle’s kinetic energy, with q and m as its respective charge and mass.

This thin-lens approximation is nonrelativistic, geometrically simplistic, and only
accurate to within ∼10%. What is interesting here is that such a device only
works for focusing (there is no diverging/defocusing lens equivalent) and is less
effective for high-energy or high-mass particles.

The quadrupole magnet improves upon this, with

1

f
≈ ±κ` (1.3)

for respective electric and magnetic field gradients

κE ≈
qE0

γmr0(βc)2
; κM ≈

qB0

γmr0βc
(1.4)

where r0 is aperture radius (formed between the tips of facing poles), γ is the
relativistic Lorentz factor for a reference particle, E0 is electric field strength, and
v is particle velocity.7 The inverse v2 dependence for electric quadrupoles implies

6Egerton, Physical Principles of Electron Microscopy , p39.
7Reiser, Theory and Design of Charged Particle Beams, p 88–101.
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that magnetic quadrupoles are more appropriate for high-energy applications.†

Here, the Lorentz force F = q
(
~E + ~v × ~B

)
is inherent.

As mentioned earlier, the caveat with quadrupole magnets is that focusing
along one transverse axis causes defocusing along the other. However, pairs
of quadrupoles with opposite-sign gradients can be combined for a net strong
focusing in both directions, which is evident in the elementary-optics expression
for a thin-lens doublet:8

1

F
=

1

f1
+

1

f2
− s

f1f2
(1.5)

where s is the distance between magnets. Then, if f1 = −f2

F =
f2

1

s
. (1.6)

Reiser notes that for ` ≈ 10 r0 such a quadrupole doublet is 50 times stronger
than a solenoid of equivalent pole-tip strength B0.9 This makes it no surprise
that FODO cells are the mainstay for transverse focusing of beams in high-
energy machines. Considering longitudinal dynamics, an earlier discovery of G.
Ising’s was of equal weight: RF modulated electromagnetic fields are crucial for
accelerating into the MeV scale; this is known as resonant acceleration.10,11 The
physics in this case has no simple optical analog.

As we begin to discuss single and multiparticle dynamics in the next few sections,
we will prioritize such transverse dynamics (which are more straightforward than,
and can serve as a basis for, longitudinal dynamics).

1.2 Liouville’s Theorem, Symplecticity, and Linear
Transforms

The historical approach to simulating beam dynamics through an accelerator
approximates the forces acting on the beam as linear, meaning that the potentials
within the governing Hamiltonian are dependent on position and momentum
terms of no greater than quadratic-order. The next few sections will demonstrate
how, given linear forces acting on a beam, the matrix computation of its transverse

†However, electric quadrupoles can be made mass-independent, and are thus commonly
used for controlling slow radioactive ions.

8Hecht, Optics, p246.
9Reiser, p103.

10Bryant, “A brief history and review of accelerators”.
11Wolski, p44.
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single-particle dynamics can be extrapolated to determining its deviation (σ)
values per timestep. Afterwards, the formalism introduced in this section will be
extended to Hamiltonians which produce nonlinear forces.

We begin with Liouville’s theorem, which states that†,12 for some region in phase-
space D wherein a function obeying Hamilton’s equations M(t, ~s) transforms
a particle at ~s0 = (~x0, ~p0) to ~st = (~xt, ~pt), the volume of D is conserved.13

Abbreviating M(t, ~s) as M , we have

M = ~s+ f(~s)t+O(t2)

~st = M ~s0 (1.7)

where
~f = ~̇s (1.8)

and, by the change of variable method

V0 =

∫
D0

d~s

Vt =

∫
D0

det
∂M

∂~s
d~s (1.9)

where det∂M∂~s is also known the determinant of the Jacobian matrix, which we
abbreviate as |J |. We can then take the series

|J | = 1 + t · tr∂
~f

∂~s
+O(t2) (1.10)

where the trace reduces as

tr
∂ ~f

∂~s
=

n∑
i=1

∂fi
∂si

= ∇ · ~f (1.11)

then, for the Hamiltonian case

∇ · ~f =
∂

∂~p

(
−∂H
∂~x

)
+

∂

∂~x

(
∂H

∂~p

)
= 0 (1.12)

thus, to first order, |J | = 1 and Vt = V0. Note that by introducing approximations
in t we have linearized M and |J |, but only in the temporal domain (i.e. for

†In fact, the working version of Liouville’s theorem in terms of Hamiltonian dynamics is
also attributable to Jacobi, Boltzmann, and Gibbs.

12Nolte, “The tangled tale of phase space”.
13Arnol’d, Kozlov, and Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics.

Dynamical systems III; 3rd rev. pp68-70.
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infinitesimal changes).14 So, for t → 0, Eq. (1.12) will still hold for nonlinear
Hamiltonians with ~x and ~p dependent terms of cubic or higher order.

Qualitatively, Liouville’s theorem implies that focusing a bunch to a very narrow
spot size inherently increases its momentum density, such that it will more rapidly
diverge (and vice-versa).15 In terms of 2D phase-space, this trait is equivalent to
conservation of rms emittance (which, recall, is defined as ε = A/π, where A is
phase-space area).

This conservation proves useful in both linear and nonlinear tracking; to examine
it further, we first need to define a more general property of Hamiltonian systems
known as symplecticity.

First, recall the familiar Hamiltonian equations of motion

ẋi =
∂H

∂pi
; ṗi = −∂H

∂xi
(1.13)

These can be, in a sense, detected in any system with the following conditions: if
we concatenate xi and pi as before

~s = (x1, x2, . . . , xn; p1, p2, . . . , pn)T

~∂ =

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
,
∂

∂p1
,
∂

∂p2
, . . . ,

∂

∂pn

)T
(1.14)

then we have the compact form16

~̇s = S · ~∂H = S ·W~s ; S =

(
0 I
−I 0

)
(1.15)

where S is an example of a symplectic matrix. The symplectic property then
states that if M is a solution to Hamilton’s equations, then

JTSJ = S (1.16)

This is an alternative means for demonstrating |J | = 1, and will also be helpful in
deriving the Twiss parameters and predicting error in nonlinear cases. Its proof
is lengthy and can be found in Appendix A. Note that any matrix S satisfying
Eq. (1.16) fits the definition of a symplectic matrix, although the one shown here
is the most common choice.

14Wolski, p77–78.
15Ibid., p80.
16Laface, Four Lectures in Particle Dynamics.
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What we are still lacking is a method for finding M . The simplest approach comes
from examining Eq. (1.15), where we can predict that for quadratic Hamiltonians
(which yield linear forces). To satisfy ~̇s = S ·W~s, where W is a matrix, we can
choose the solution

M = etS·W

~s(t) = M~s0 (1.17)

We can then refer to M as a transfer matrix,17 and we now have an operational
example of linear dynamics. It also will be shown in the next chapter that

MTSM = S (1.18)

Thus, explicitly calculating ~̇s is not necessary to ensure symplecticity—so long
as Eq. (1.18) is satisfied.

We now have a means of predicting a particle’s motion through phase space based
solely on the Hamiltonian. This should be stressed, since Liouville’s theorem is
often introduced in terms of phase-space density18,19

dρ

dt
=
∂ρ

∂t
+

n∑
i=1

(
∂ρ

∂xi
ẋi +

∂ρ

∂pi
ṗi

)
= 0 (1.19)

Here it follows that ρ is constant over any phase-space trajectory.

This form grounds the concept of phase-space volume in tangible terms, and we
will return to it later when discussing covariant-Hamiltonian tracking). However,
it is the underlying principle of symplecticity that enables tracking via Eqs. (1.17)
without any defined density.

Nevertheless, for distributions, symplecticity also implies that any system with
n degrees of freedom has n conserved quantities; these are the rms emittances
in each spatial direction as mentioned earlier. Single-particle emittance is also
an invariant quantity that can be tracked linearly at any point in a periodic
beamline using the Twiss parameters, which will be introduced shortly. However,
for non-periodic cases, its designation becomes arbitrary, and a defining it in
terms of a distribution’s σx and σp becomes a necessity.20

Equation 1.19 can also be stated in terms of the Poisson bracket and Hamiltonian

∂ρ

∂t
= −{ρ,H} (1.20)

17Rosenzweig, Fundamentals of Beam Physics, p56.
18Tolman, The Principles of Statistical Mechanics, p48 ff.
19Gibbs, Elementary Principles in Statistical Mechanics, p5 ff.
20Wolski, p80,150.
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where ρ is phase-space density. This relation proves true for any analytical
function f(~s) and applies for both linear and nonlinear cases

∂f

∂t
= −{f,H} (1.21)

which implies that any such f (any function of both ~x and ~p obeying Hamilton’s
equations) is a phase-space density or a contour of a phase-space density.

The notion of symplecticity is particularly important for long-term tracking, as
with storage rings or circular colliders. For such cases, non-symplectic beam
tracking codes can become grossly inaccurate over millions of revolutions.21

In the past few decades, the use of symplectic integrators is now common for
physics simulation in many disciplines,22 with the seminal work attributable to
Yoshida.23

1.3 The Thin-Lens and Paraxial Approximations

We have shown that a transfer matrix M can represent any linear element such
as a solenoid, dipole, or quadrupole magnet. To find an explicit expression for M
we can scale B0 from Eq. (1.4) as q

p0
where p0 is a reference particle momentum.

This also entails a rescaling of px and py:

px =
γmẋ+ qAx

p0

py =
γmẏ + qAy

p0
(1.22)

where Ax = Ay = 0 for transversely acting machine elements (i.e. Az is the only
nonzero potential component for multipoles and solenoids).

Taking a quadrupole as an example, a simple Hamiltonian can then be derived
using the paraxial (small-angle) approximation—that is, expanding about px =

21Kleiss et al., “On the Feasibility of Tracking with Differential Algebra Maps in Long Term
Stability Studies for Large Hadron Colliders”.

22Phillips et al., “Scalable molecular dynamics with NAMD”; Chambers, “A hybrid sym-
plectic integrator that permits close encounters between massive bodies”.

23Yoshida, “Construction of Higher Order Symplectic Integrators”.
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py = 0 to second order:24

H =
p2
x

2
+
p2
y

2
+

δ2

2β2γ2
+
Azq

p0

=
p2
x

2
+
p2
y

2
+

δ2

2β2γ2
+
κ

2
(x2 − y2) (1.23)

where β and γ are the reference-particle Lorentz factors, and δ is the conventional
longitudinal momentum value, defined as energy deviation and treated in this
context as a constant. (The expansion here is about δ = 0.) Because of this
rescaling, the field gradient κ is not equivalent to that shown in Eq. (1.4)—more
thorough definitions for Az and κ will follow in Chapter 3.†

From here we adopt the more conventional formalism for the paraxial approxi-
mation. That is

x′ =
∂x(`)

∂x(0)
≈ px

y′ =
∂y(`)

∂y(0)
≈ py (1.24)

is the change in trajectory angle, which can be seen as a secondary rescaling
of the momentum parameters into radians. This is only valid in the paraxial
approximation: trajectories with minor deviations from that of a reference
particle’s, which follows the ideal beam-line axis.

By first solving Eq. (1.23) for its equations of motion, Eqs. (1.17) becomes(
x`
x′`

)
=

(
cos(
√
κ`) sin(

√
κ`)√
κ

−
√
κ sin(

√
κ`) cos(

√
κ`)

)(
x0

x′0

)
(
y`
y′`

)
=

(
cosh(

√
κ`) sinh(

√
κ`)√

κ√
κ sinh(

√
κ`) cosh(

√
κ`)

)(
y0

y′0

)
(
z`
δ`

)
=

(
1 `

β2γ2

0 1

)(
z0

δ0

)
(1.25)

where the transfer matrix M has been written out explicitly for each spatial
axis. What we now have is a basis for 6D linear tracking through the length of a
quadrupole for low pi and xi values. Given that most accelerators are designed
to minimize transverse momentum, the paraxial approximation is useful in many
cases, at least as a starting point for coarse-tuning of machine parameters.

24Wolski, pp75,82,102.
†Where we will show that a fully covariant Hamiltonian has terms dependent on ~A2.
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We can then apply the thin-lens approximation (i.e. letting `→ 0 but keeping√
κ` finite). This brings us back to the optical analogy from Section 1.1, where

we now have the matrix equivalent of Eq. (1.3):(
x`
x′`

)
=

(
1 0
− 1
f 1

)(
x0

x′0

)
(
y`
y′`

)
=

(
1 0
1
f 1

)(
y0

y′0

)
(
z`
δ`

)
=

(
1 0
0 1

)(
z0

δ0

)
(1.26)

Linear transfer maps such as these can be devised for most common accelera-
tor elements, (see Wolski, Chapter 3).25 The thin-lens approximation greatly
simplifies analysis and makes for extremely fast simulations. With the help of
the Twiss parameters to be introduced shortly, such simplified forms can be
used to characterize and monitor beam lines (especially periodic ones) without
any specific knowledge of a bunch’s coordinates (aside from its proximity to the
beam axis).

Similar methods for longitudinal tracking can be also be devised by treating an
accelerating RF structure as a series of drift spaces (vacuum with a null external
potential) with thin separating gaps wherein forces are applied.26 However, this
involves careful rescaling at each timestep, as the Hamiltonian is no longer
constant.

To clarify this point: it is apparent that Eq. (1.26) does not permit longitudinal
tracking. This means that simulations involving thin longitudinal kicks, such
as accelerating RF cavities, entail carefully resetting δ to zero at each timestep
by increasing the reference momentum. Such ad hoc momentum shifting means
that a bunch’s phase-space area is no longer conserved (Liouville’s theorem
no longer applies). This can be taken as evidence that phase space shrinks
adiabatically throughout acceleration.27 However, the Lovertz-covariant tracking
method developed over the next two chapters challenges this assertion28 (or rather,
it inherently tracks βγε, known as normalized emittance, which is conserved
throughout acceleration). Generalized linear methods for longitudinal–transverse-
coupled dynamics are also well-developed.29

25Ibid., p83 ff.
26Wangler, p177.
27Wolski, p154.
28Wang, Liu, and Qin, “Lorentz covariant canonical symplectic algorithms for dynamics of

charged particles”; Folsom and Laface, “Beam dynamics with covariant hamiltonians”.
29Edwards and Teng, “Parametrization of Linear Coupled Motion in Periodic Systems”;
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In most practical cases, particles are not relativistic in both the bunch frame and
the lab frame, allowing longitudinal and transverse dynamics to be decoupled,
which makes for simplified tracking codes.† However, any effect involving a
bunch losing its uniform phase-space density is nonlinear (e.g. emittance growth,
halo formation, and particle loss);30 and longitudinal dynamics remain clumsy
for linear tracking in general. Thus, the use of longitudinal elements is a strong
motivation for improving nonlinear tracking. This is especially true for elements
which manipulate the longitudinal phase space of the beam, such as bunch
compressors.31

We will defer further discussion of nonlinear dynamics and longitudinal effects
until after the next section, in which the remaining fundamentals of linear
dynamics are presented.

1.4 Twiss Parameters and Multiparticle Tracking

The tendency of a single particle to trace an elliptical phase-space envelope is
illustrated in Fig. 1.2. For an arbitrary beam line of several identical FODO
cells, its constituent particles will trace differently shaped elliptical envelopes
depending on their starting trajectories,32 while for a ring, all particles will
eventually populate an envelope defined by εrms. For a single particle, it is
important to note that it will only paint such a phase-space ellipse for periodic
lattices (e.g. repeated FODO cells or rings).

The single-particle and multiparticle formalism can often be complementary. For
example, bunches that are Gaussian, uniform, or having ellipsoidal symmetry
are often used in simulation or desired in practice. In such cases, if the rms
emittance is known and if space charge is treated as linear, the bunch’s trajectory
through a drift space can be shown to be solely dependent on its σ values33 (in
other words, bunches with such symmetry have linear dynamics that are not
dependent on its shape function—only its deviations). In fact, irregularly shaped

Sagan and Rubin, “Linear Analysis of Coupled Lattices”; Wolski, “Alternative Approach to
General Coupled Linear Optics”.

†In fact, space charge introduces a coupling in all spatial dimensions, even at low β, and
its effect and is typically calculated separately and interpolated into the external-force based
dynamics; it can, however be treated with a series expansion for small distances from the ideal
design path (i.e. akin to the paraxial approximation, but in 3D.)

30Reiser, p273, 334, 522.
31Wolski, p265.
32Ibid., p132.
33Sacherer, “RMS Envelope Equations with Space Charge”.
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Figure 1.2: (a) “Envelope” representation of a single particle passing through several FODO cells, with each new point
taken after passing through an integer number of cells. Image reprinted with publisher permission: Beam
Dynamics in High Energy Particle Accelerators, Andrzej Wolski, c©2014 Imperial College Press

distributions can also be tracked by their σ values, with the caveat that their
shapes will only be modified in linear terms (e.g. rotations and resizing).

To see how this is accomplished, the Twiss parameters are needed (also frequently
called the Courant–Snyder parameters). While the derivations to follow will
stem from multiparticle transport, we will also expand this to a working example
for the single-particle case.

First, we define the covariance matrix.

Σx =
1

N

N∑
i

[(
(xi − ~x)2 (xi − ~x)(x′i − ~x′)

(xi − ~x)(x′i − ~x′) (x′i − ~x′)2

)]

=

(
σ2
x σxσx′

σxσx′ σ2
x′

)
(1.27)

Where the off-diagonal terms are a measure of the coupling between momentum
and position along one spatial axis.

Any series of single-element transfer matrices can be concatenated into a single
matrix, which makes linear simulation of complicated accelerators with thousands
of elements relatively simple to simulate, even for the tens of millions of turns
required in operation. This can be represented symbolically as

~sfinal = M · ~s0 = M4M3M2M1 · ~s0 (1.28)
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One can then suppose solutions exist for σ2
x

σxσx′

σ2
x′


after

= T

 σ2
x

σxσx′

σ2
x′


before

(1.29)

where the linear symplectic transport matrix M can be represented as

M =

(
M11 M12

M21 M22

)
(1.30)

It can be shown with straightforward computation that†

T =

 M2
11 −2M11M12 M2

12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M12M22 M2

22

 (1.31)

This matrix reappears in a more general case, which first requires the general
expression for an ellipse centered about an origin34

ε =
(
x , x′

)(γt αt
αt βt

)(
x
x′

)
(1.32)

This can be assigned a determinant of 1 without losing generality, which then
yields

ε = γtx
2 + 2αtxx

′ + βtx
′2 (1.33)

where our emittance ε now has a geometric definition in terms of what are known
as the Twiss parameters αt, γt, and βt (where the subscript t is used to avoid
confusion with the relativistic Lorentz parameters). In physical terms, βt is
known as the beta function or betatron function. For a stable beam, it describes
the amplitude of a particle’s transverse oscillations (the condition of stability
has a rule-of-thumb that |TrM| < 2, but Berz’ text has a much more thorough
analysis on the subject35). The beta function and emittance are particularly

†There is an underlying assumption here in how M is allowed to combine with the sums
defining the covariance matrix, in other words, its terms may be taken inside the sums and this
is only valid in the linear case. An alternative, but perhaps more illuminating computation
transports sigmas as

Σxafter = MΣxM
T = M

1

N

N∑
i

[
~xi −

1

N

N∑
i

~xi

][
~xTi −

1

N

N∑
i

~xTi

]
MT

=
1

N

N∑
i

[
M~xi −

1

N

N∑
i

M~xi

][
~xTi M

T − 1

N

N∑
i

~xTi M
T

]
where ~xi = (xx′)T . This can be seen as the so-called envelope extension of Eq. (1.17), noting ~x
and ~xT terms transform to M~x and ~xTMT respectively.

34Berz, Modern Map Methods in Particle Beam Physics, p262.
35Berz, p250, §7.1.1.
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useful in accelerator design and beam monitoring.

It can now be shown with straightforward analysis that36,37β′tα′t
γ
′
t

 = T

βtαt
γt

 (1.34)

Where we have a geometric (envelope) method for tracking along with the
multiparticle method. The two concepts can be unified by defining an rms
emittance:

ε =
√
〈x2〉〈x′2〉 − 〈xx′〉2 (1.35)

where angle brackets denote mean values. The derivation of this expression is
fairly involved38 and will not be shown in detail. It is worth noting, though, that
this form (mean of squares minus squared mean) is equivalent to the elementary
definition of rms deviation for the quantity xx′. Thus, in concrete terms, rms
emittance is the rms covariance of position and momentum.†

With this definition, some elementary linear algebra leads to the relation(〈
x2
〉
〈xx′〉

〈xx′〉
〈
x′2
〉) =

(
βt −αt
−αt γt

)
ε (1.36)

Then, for a periodic lattice, if the geometric definition of emittance Eq. (1.33)
(based on machine parameters) agrees with the beam-based rms definition of
emittance Eq. (1.36) (based on beam properties) the beam is said to be matched.
In this case, after a single period (β

′
t, α

′
t, γ

′
t) = (βt, αt, γt). Or, as Wolski puts it

in terms of βt:

...since the beta function will be the same for all particles, the size of
the beam will vary along the beam line with the same periodicity as
the beam line itself.39

36Lee, Accelerator Physics, p51.
37Berz, p264.
38Wolski, p151-53.
†To the reader unfamiliar with advanced geometry or relativistic dynamics: the term covari-

ance is also used extensively in upcoming chapters, but refers to an entirely different concept
pertaining to the differential behavior of vectors and, in the case of Lorentz transformations,
their reference-frame invariance.

39Ibid., p138.
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For a cumulative example, we introduce one remaining concept that is essential
in beam physics. This is known as the phase advance, φ, and defined as

cos(φ) =
x√
εβt

sin(φ) = − 1√
ε

(
x′
√
β +

αx√
β

)
(1.37)

Where we have again skirted a formal derivation and given a simplistic definition
(this time deferring to Wille’s proof).40 Phase advance is, simply put, a point on
the phase-space ellipse (for a single particle in a periodic lattice) which matches
the current position along the beam line, and which will repeat after one lattice
period.† From here, we can develop another form for M , which is compatible
with Eq. (1.30) and its ancillary identities:

M =


√

β
′
t
βt

(cosφ+ αt sinφ)
√
β
′
tβt sinφ

− 1√
β
′
tβt

[
(αt − α

′
t) + (1 + αtα

′
t) sinφ

] √
βt
β
′
t

(cosφ− αt sinφ)

 (1.38)

where the machine-based M elements, such as those from Eqs. (1.25) or (1.26),
which are inherently independent of x and x′, can be used to solve for φ. For
example, with a simple, thin-lens FODO cell (a focusing doublet with drift spaces
between quadrupoles)41

cosφt = 1− `2

2f2
(1.39)

which lets us solve for the Twiss parameters at the cell entrance

αt sinφt = − `
f

(
1 +

`

2f

)
βt sinφt =

`

f
(2f + `)

γt sinφt =
`

f2
(1.40)

where Eq. (1.34) becomes fully solvable for the Twiss parameters at any point in
the cell. In this case we have the means for characterizing a machine element
without any explicit knowledge of the beam distribution.

40Wille, “The Physics of Particle Accelerators: An Introduction”, p88.
†A related concept is the betatron tune: ν = φ

2π
. For circular accelerators, monitoring the

tune is essential for beam stability: minor steering or focusing errors can resonate strongly if
the tune for a single lattice period is an integer value. This is attenuated for half-integer values,
and can become negligible for other fractional tunes. Because of this, potential tunes for a
machine are typically mapped so an ideal one can be chosen.

41Wolski, p144.
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As a final remark, we can now clarify the previous mention of reference-momentum
shifts. That is, for cases such as an accelerating cavity where energy deviation
δ is large, the shifted momentum “breaks” Liouville’s theorem and new Twiss
parameters are needed:

(
β
′
t −α′t
−α′t γ

′
t

)
ε′t =

(
1 0
0 p0

p1

)(
βt −αt
−αt γt

)(
1 0
0 p0

p1

)
εt (1.41)

where p0 and p1 are the original and updated reference momenta, respectively.
In Chapter 2 we will address whether or not this violation of symplecticity is an
unavoidable consequence (with the only candidate for avoiding this issue being a
Lorentz-covariant integrator).

We have at this point gathered enough of the essentials of linear tracking to
begin discussing its limitations. This optics-like treatment is elegant and was
foundational in modern accelerator development, but the reliance on small-angle
approximation both along the beam line (thin lens) and perpendicular to it
(paraxial) may prove inadequate for improving beam dynamics theory, and, in
turn, designing more powerful and precise accelerators. Form here, we will only
return to thin-lens linear methods as a reference, first introducing conventional
nonlinear tracking (which typically retains the paraxial approximation). Then
we turn to the prospect of fully nonlinear, non-approximant Hamiltonians, and
the accompanying covariant equations of motion and tracking algorithms.

1.5 Conventional Nonlinear Tracking

The term nonlinear usually calls to mind chaotic or unbounded systems; but
we should not overlook the notion that nonlinear algebra may be useful in
constructing simpler or more accurate physical models. To first quote Dolotin
and Morozov42 to dispel any ambiguity:

Linear algebra is the theory of matrices (tensors of rank 2), non-linear
algebra is the theory of generic tensors.

There is a widespread feeling that the non-linear world is very
different, and it is usually studied as a sophisticated phenomenon
of interpolation between different approximately-linear regimes. [...]

42Dolotin and Morozov, Introduction to Non-Linear Algebra.
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this feeling can be wrong: non-linear world, with all its seeming
complexity including “chaotic structures” [...] allows clear and
accurate description in terms of ordinary algebraic geometry.

In practical terms, we can test for linearity by checking that the following
equation holds:

f(α~u+ ~v) = αf(~u) + f(~v) (1.42)

where both additivity f(~v + ~u) = f(~v) + f(~u) and homogeneity f(α~v) = αf(~v)
are necessary conditions.43 For example, in

f(xi) =


x1x2

x2
1

x3 + 1
x4

 (1.43)

only the last row is a linear operation (i.e. any additive constants, squared
or higher-order polynomial terms, or multiplication of variables means non-
linearity). From this perspective, the idea of linear physics may seem somewhat
absurd to the novice, but breaking down or approximating complex systems into
linear constituents (often by first-order series expansion) can shed light onto new
physics, particularly in the case of quantum mechanics. Consequently, it has
become a common conceit among physicists to routinely add layers of first-order
approximations to a system without considering their consequences.

We will do our best to avoid this attitude here and throughout the remainder
of the text, proceeding on the assumption that nonlinear terms including basic
polynomials, coupled position–momentum, or transverse–longitudinal variables
are of equal weight to a system’s dynamics as any linear terms.

It is evident from the previous section, Eq. (1.23), that Hamiltonians which are
quadratic in ~p and ~x will have transfer matrices which are inherently linear.†

Explicitly, if an external force on a particle is linear (Fi = κxi), then

H(~v = [xi, pi]) = f(x2
i |xipi, p2

i )

∂H = D · ~v ;
d

dt
~v = S ·D · ~v (1.44)

43Edwards, Linear Algebra, p78.
†Also keep in mind: potentials or equations of motion involving position and momentum

cofactors (i.e. ẋ1 = x21p1) are generally nonlinear, but if a potential has a dependence on, e.g.,
x1p1, the dynamics (based on its derivatives) are linear.
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where

D = DT ; ~v(t) = M(t) · ~v(0) =M(~v0, t) ; M(t) = etSD (1.45)

and M(~v0, t) is again our transfer matrix.44,45 To prove46

S · etS·D = etS·D · S
=⇒ M(t)TSM(t) = S (1.46)

we manipulate the left-hand side by first Taylor-expanding etS·J on the left-hand
side of the top line, then using S2 = −I:

S · etS·D = −S
(

1 + SDt+
1

2
t2S ·D · S ·D . . .

)
S2

= −S2

(
1 + SDt+

1

2
t2D · S ·D · S . . .

)
· S

= etD·S · S (1.47)

Thus

M(t)T · S ·M(t) = e−tD·S · S · etS·D

= e−tD·S · etD·S · S
= S (1.48)

where we used the identity ST = −S. Here, the concepts of transfer maps
and linear forces relating to quadratic Hamiltonians are commonly applied in
accelerators, particularly since quadrupole magnets meet this qualification.

Although Eq. (1.48) cannot be assumed to hold for nonlinear transfer matrices,
the nonlinear Lie-operator method presented next reduces to this form when
Eq. (1.44) is true.

Restricting our notation to Hamiltonians in Euclidian space, we now define the
Lie Operator to derive the “miracle” of nonlinear tracking47

:H:g =

n∑
i=1

(
∂H

∂xi

∂g

∂pi
− ∂H

∂pi

∂g

∂xi

)
(1.49)

44Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics,
p8,592.

45Wolski, p76.
46Laface, Accelerator Recipes.
47Forest, Beam dynamics: A New Attitude and Framework , p98.
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where g = xi and g = pi produce the usual Hamiltonian equations of motion48

ẋi = :H:xi =
∂H

∂pi

ṗi = :H:pi = −∂H
∂xi

(1.50)

which generalizes to

d

dt
f(xi, pi) =

∂f

∂xi
ẋi +

∂f

∂pi
ṗi = −:H:f(xi, pi) (1.51)

This is the generalized form of Gibbs’ extension to Liouville’s theorem—see
Eqs. (1.20) and (1.21). Then, with the definition

( : H : )2g =: H : (:H:g) (1.52)

we have

ẍi =
d

dt
ẋi = − : H : (−:H:xi) (1.53)

So for a Taylor expansion of a small timestep, the “miracle” tracking algorithm
emerges:

xi(t) =

[
xi +

dxi
dt

+
t2

2

d2xi
dt2

+ · · ·
]
t=0

=

[
xi − t : H : +

t2

2
: H : ( : H : xi) + · · ·

]
t=0

≈ e−t : H : xi(0) (1.54)

which holds analogously for pi, such that, in compact form, Eq. (1.14) becomes

~v(t) = e−t:H:~v(0) (1.55)

These properties amount to an extended algebra for the Poisson bracket, where
the abstraction of the Lie operator into the exponential form proves useful. For
the case of a quadrupole (equivalently, a generic quadratic potential), Eq. (1.55)
reduces to Eq. (1.25).

Recalling the symplectic condition, the accuracy of the approximation in
Eq. (1.54) can be monitored. For example, in a sextupole magnet:49

MTSM = S +O
(
κm`m+1x2m−1

i

)
(1.56)

48Laface, Four Lectures in Particle Dynamics.
49Wolski, p299.
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where m is the order of series expansion in the exponential. The order can then
be truncated to the condition

κm`m+1x2m−1
i � 1 (1.57)

For long-term simulations, such errors must be truncated carefully (to machine
precision if possible) to avoid cumulative error effects.

1.6 Symplectic Integrators

In practice, it is often preferable to use exactly symplectic solutions instead of
relying on polynomial truncation. Conventionally, these require Hamiltonians
separable in terms of position and momentum

H = f(~p) + g(~x) (1.58)

The basic form for such an integrator begins with the map

~v1(~x1, ~p1) =

{
k∏
i=1

exp(ciτ : f [p] :) exp(diτ : g[x] :)

}
~v0(~x0, ~p0) (1.59)

where, the simplest (first-order) solution k = 1 is c1 = 1 and d1 = 1; for k = 2,
one can use c1 = c2 = 1/2, d1 = 1, and d2 = 0. Fourth-order solutions are also
straightforward;50 higher-order ones can be calculated with the Baker-Campbell–
Hausdorff formula.51 Once discretized to be iterated over a chosen timestep,
such solutions belong to the family of numerical simulation techniques known as
integrators.

These integrators are typically classified by how values are inherited through the
passage of a timestep τ when a system’s equations of motion, as in Eq. (1.13),
are discretized. For example:

~v1 = ~v0 + τf(~v0) (1.60)

is solely dependent on previously solved values, and is referred to as an explicit
Euler method. Implicit solvers, though, have a counter-intuitive self-dependence:

~v1 = ~v0 + τf(~v1) (1.61)

50Forest and Ruth, “Fourth-order symplectic integration”.
51Yoshida, “Construction of Higher Order Symplectic Integrators”.
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In this form, a Newton search is needed for machine-precision convergence.52

However, Yoshida demonstrated that, for seperable Hamiltonians, as in Eq. (1.58),
symplectic Taylor-series mappings are time-reversible, making the Poincaré
approach viable:

~x1 = ~x0 + τ

(
∂H

∂~p

)[
~x0 + ~x1

2
,
~p0 + ~p1

2
, t0 +

τ

2

]
~p1 = ~p0 − τ

(
∂H

∂~x

)[
~x0 + ~x1

2
,
~p0 + ~p1

2
, t0 +

τ

2

]
(1.62)

which is known as an implicit midpoint technique, and is considered symmetric
(i.e. the formula is unchanged for vn+1 ⇐⇒ vn and n ⇐⇒ −n).

More recent work revived deVogelaere’s method,53 and is known as the symplectic
Euler integrator. This requires known equations of motion from a Hamiltonian:

~̇p = −∂H
∂~x

(~p, ~x) ; ~̇x =
∂H

∂~p
(~p, ~x) (1.63)

and takes the form

~pn+1 = ~pn − τ
∂H

∂~x
(~pn+1, ~xn) ~pn+1 = ~pn − τ

∂H

∂~x
(~pn, ~xn+1)

or

~xn+1 = ~xn + τ
∂H

∂~p
(~pn+1, ~xn) ~xn+1 = ~xn + τ

∂H

∂~p
(~pn, ~xn+1) (1.64)

This method is explicit for Hamiltonians with separable position and momentum
terms, but implicit in the general Euclidean case. However, it is worth mentioning
that in scenarios where54

∂H

∂xi
(~p, ~q) is independent of pj for j ≥ i (1.65)

the vanishing momentum dependence leads to an explicit method, which is true
as well for

∂H

∂pi
(~p, ~q) is independent of xj for j ≥ i (1.66)

In the next chapter, we demonstrate a alternative method for making Eqs. (1.64)
fully explicit in terms of Lorentz-covariant potentials.

52Forest, p334.
53Hairer, Lubich, and Wanner, Geometric Numerical Integration: Structure-Preserving

Algorithms for Ordinary Differential Equations; 2nd ed. p3.
54Hairer, Lubich, and Wanner, p189.
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1.7 Classifying Simulation Methods

At this point, the non-expert reader should be familiar enough with the funda-
mentals of beam physics to follow the upcoming chapters without trouble. To
conclude this introductory chapter, we break from technical considerations to
take an overview of when linear, nonlinear, and symplectic methods are needed
in practice. Forest’s ring dynamics dogma serves as a good basis here—it is
essentially a hierarchy of simulation methods:55

1. Fast, with purely linear transforms

• Depends on “controlled” limits, (i.e. defined by more accurate bench-
marking simulations)

• Uses small-angle approximations “linear quads and linear bends”

• Excludes fringe fields

• Also uses small-angle approximation for misalignments

2. Fairly fast, with explicit symplectic integrators

• “Laminates” thin-lens slices (i.e. small timesteps) together to actual
thicknesses of machine elements

• Small nonsymplectic effects (e.g. radiation) included

3. Slow, high-order integrators as close as possible to machine precision (for
failsafe/reference measurements)

The following chapters may then be seen as an effort to speed up methods from
category 3, or to limit the dependence on 3 by bringing the accuracy of explicit
symplectic integrators closer to machine precision.

As mentioned earlier, a more general notion to keep in mind when building a
simulation is which approximations are used: in the linear case, the paraxial
approximation is necessary and the thin-lens approximation is a mainstay; in
the non-linear case, the paraxial approximation is still necessary to decouple
position and momentum terms in the Hamiltonian (otherwise they will always
reside within a square root).

55Forest, Beam dynamics: A New Attitude and Framework , p330.
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Chapter 2

An Explicit, Lorentz-Invariant
Symplectic Integrator

Appeals to Forest’s dogma will be made throughout the remaining text, with the
central tenet that simulations are only as good as their foundation upon best-
accuracy integrators. To this we add the claim that accuracy and reproducibility
improve when minimizing approximations (especially in addressing coupled
transverse–longitudinal dynamics). This should ideally be done without sacrific-
ing symplecticity (for long-term stability) and implementing Lorentz covariance
(for reproducibility and energy/momentum conservation) where possible.

In fact, Wang’s group recently developed a Lorentz-covariant symplectic integra-
tor, which is stable (in terms of energy conservation), comparatively fast (fewer
timesteps required versus a Runge–Kutta integrator to simulate an electron ac-
celeration process), and reduces error to machine precision (in a plasma physics
context).1

This approach amounts to constructing a Hamiltonian from a relativistic La-
grangian, and tracking a particle’s proper time ∆τ = ∆t

γ in terms of its canon-

ically conjugate four-momentum Pα = mV α + q
cA

α where q is charge, V α is
four-velocity, and Aα is the electromagnetic four-potential.

These findings were corroborated in the context of proton tracking through
sextupole and octupole magnets by our group at ESS.2 Here, we also found

1Wang, Liu, and Qin, “Lorentz covariant canonical symplectic algorithms for dynamics of
charged particles”.

2Folsom and Laface, “Beam dynamics with covariant hamiltonians”.
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a significant performance increase versus a nonlinear algorithm based on Lie-
operators in truncated series. This benefit is attributable to the covariant
algorithm having a fully evaluable solution for any multipole, whereas any
Lie-operator result relies on at least a third-order series solution for rivaling
accuracy.

Our recommendation for frugal use of approximations is also applicable here,
albeit in a subtle way: a time-series approximation was inherent in our definition
of symplecticity—as per Eq. (1.12). However, it can be shown that det |J | = 1
exactly by straightforward linear algebra3 (see also Appendix A.) The Lie-
operator method, though, introduces an unavoidable time-series expansion, as in
Eq. (1.54).

A veteran computational physicist may yet be dubious at these claims, namely
that performance and accuracy gains could go hand-in-hand. To clarify: Wang’s
method brings performance gains because the timestep is rescaled automatically
with changes in γ. Such an integrator still has the weakness of remaining
fundamentally semi-implicit (the Pα+1 is dependent on itself, thus requiring a
costly Newtonian solver at each timestep).

As a counterpoint, Zhang’s group has demonstrated a Hamiltonian-splitting
scheme which overcomes this issue to produce a fully explicit symplectic integrator,
but it is derived at the expense of sacrificing of Lorentz covariance.4, †

In the next section, we rectify this, attempting to produce a fully explicit and
Lorentz covariant symplectic integrator.

This integrator will be used throughout the remaining chapters. In addition
to seeking a robust nonlinear benchmark (within realistic computational lim-
its), we introduce it at this point as a prerequisite to addressing issues such
as whether space-charge calculation can be done symplectically or whether
Liouville’s theorem can be applied for envelope (density-based) tracking.

3Laface, Four Lectures in Particle Dynamics; Rim, “An elementary proof that symplectic
matrices have determinant one”.

4Zhang et al., “Explicit Symplectic Algorithms Based on Generating Functions for Rela-
tivistic Charged Particle Dynamics in Time-Dependent Electromagnetic Field”.

†Their work also demonstrates that implicit and explicit symplectic integrators for charged
particles have comparable error (both are greatly improved versus a 6th-order Runge–Kutta
method) while showing that an explicit integrator has a approximately 50% reduction in CPU
overhead.
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2.1 Lorentz Invariant Hamiltonian

We can begin with Jackson’s covariant Hamiltonian for a charged particle in an
external field5,6

H =
1

m

(
Pα −

q

c
Aα

)(
Pα − q

c
Aα
)
− c
√(
Pα −

q

c
Aα

)(
Pα − q

c
Aα
)

(2.1)

where the conjugate momentum is

Pα = mV α +
q

c
Aα (2.2)

and where Aα is a function of the four-position rα = (t,−x,−y,−z), Pα =
(γ + Φ,−~P), Aα = (Φ,− ~A),† and V α is constrained by the light-cone condition:

VαV
α = c2 (2.3)

This yields the following equations of motion in terms of proper time (dτ = dt
γ )

drα

dτ
=

∂H

∂Pα
=

1

m

(
Pα − q

c
Aα
)

dPα

dτ
= −∂H

∂rα
=

q

mc

(
Pβ −

q

c
Aβ

)
∂αAβ (2.4)

where m is particle mass, and the ordering of indices α and β merits careful
consideration. It may also be helpful to note that the alternative mass-shell
Hamiltonian (in natural units)

H =
1

2m
(Pα − qAα)(Pα − qAα) (2.5)

yields the same equations of motion.7

2.2 Discretizing and Explicitness

We can immediately test how these equations of motion will discretize, thanks to
Heirer’s “symplectic Euler” algorithm from Eq. (1.63). Here we use a condensed
notation

Pk+1,α := P
+1

α ; Pk,α := Pα (2.6)

5Jackson, Classical Electrodynamics, p585.
6Barut, Electrodynamics and Classical Theory of Fields & Particles, p68 ff.
†These are the covariant forms, distinguished by the subscripted summation index. The

superscripted contravariant forms have no relative negative signs. A brief review of the related
four-vector algebra identities will be provided shortly.

7Goldstein et al., “Classical Mechanics”, p352.
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and likewise for rk+1,α and rk. That is,

P
+1

α = Pα −∆τ
∂H

∂r

(
P
+1

α, rα
)

= Pα +
∆τq

mc

(
Pβ
+1

− q

c
Aβ

)
∂αAβ (2.7)

and for position:

r
+1

α = rα + ∆τ
∂H

∂r

(
P
+1

α, rα
)

= rα +
∆τ

m

(
P
+1

α − q

c
Aα
)

(2.8)

We will soon derive a method for decoupling Pβ from the right-hand side terms to
make Eq. (2.7) explicit, but we should provide a more thorough comparison with
the other related works beforehand. For now, simply note that our momentum
expression is implicit while our position expression is explicit.

Equations (2.7) and (2.8) are the basis for the algorithms used by Wang’s, Zhang’s,
and Zhou’s groups.8 Their works demonstrate—in the context of plasma physics—
that symplecticity and Lorentz covariance ensure, respectively, long-term energy
stability and frame-invariant tracking; explicitness meanwhile improves perfor-
mance by avoiding the use of a numerical solver at each timestep.

Such integrators allow for the simulation of, for example, an accelerating electron
with a convergent number of timesteps; whereas an implicit, noncovariant scheme
needs a monotonically increasing timestep size and can also suffer numerical
instabilities for sharp drops in γ.† Specifically, covariant tracking inherently
includes the zero component of conjugate momentum:

∆t = t
+1
− t = ∆τ

(
P0
+1
− Φ

)
= ∆τ

(
γ
+1

+ Φ
+1
− Φ

)
(2.10)

where Φ
+1
−Φ is typically negligible, so the timestep ∆t can be smoothly updated

as a function of γ and a constant proper-timestep ∆τ .

Only Zhou’s group reports on a method which fulfills all our criteria (Wang’s is
symplectic and covariant, but not explicit; Zhang’s is symplectic and explicit,

8Wang, Liu, and Qin, “Lorentz covariant canonical symplectic algorithms for dynamics
of charged particles”; Zhang et al., “Explicit Symplectic Algorithms Based on Generating
Functions for Relativistic Charged Particle Dynamics in Time-Dependent Electromagnetic
Field”; Zhou et al., “Explicit symplectic methods for solving charged particle trajectories”.

†This discrepancy related to sharp drops in γ arises since the smallest-scale dynamics is
governed (in the plasma-dynamics case) by the electron’s gyro-period:

T =
2πγm

q| ~B|
(2.9)

which can suddenly drop to less than the timestep ∆t.
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but not covariant). This method requires splitting the Hamiltonian into its
components, solving for velocities separately, and mapping them together.9 We
may consider this the ideal method for charged-particle integrators. Its only
theoretical weakness is common to such splitting techniques: when calculating
the change in velocity of an i-th component, the velocity of the other j spatial
components must be treated as constant.†

Nevertheless, the resulting error from this approximation can be compensated
by taking high-order symplectic mappings, with second-order mappings reaching
machine-level precision for sufficiently small timesteps. The performance draw-
back here is that one must first solve for velocity then find the updated momenta
in terms of velocity, then convert the solutions back into position–momentum
space.

We can thus attempt to improve on this method by directly solving P
+1

without

relying on intermediate solutions for velocity (thus roughly halving the number
of calculations needed per timestep).

Throughout this section we will also occasionally check against purely longitudinal
potentials, which have the form Aα = Az(x, y) for multipole magnets. This will
also allow us to check against our recent work,10 where an ideal a magnetic
multipole’s four-momentum tracks as

P
+1

z = Pz

P
+1

x = Px +
∆τq

mc

(
P
+1

z − q

c
Az
)
∂Az

∂x
(2.11)

and likewise for Py+1. This is effectively explicit because Pz+1 = Pz. However,
anticipating that space-charge will introduce more complicated potentials,‡ we
will now derive a general solution.

9McLachlan and Quispel, “Splitting methods”.
†The formalism underlying such mappings is straightforward, but lengthy. The reader is

strongly encouraged to consult Zhang’s work for a concise treatment.
10Folsom and Laface, “Beam dynamics with covariant hamiltonians”.
‡Our more ambitious goal is a fast, symplectic treatment of space charge, which has

potentials which are fully dense in terms of ∂αA
β .
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Here and moving forward we follow Jackson’s notation11

∂α ≡ ∂

∂xα
=

(
∂

∂x0
,−~∇

)
∂α ≡

∂

∂xα
=

(
∂

∂x0
, ~∇
)

Aα = (A0, ~A) ; Aα = (A0,− ~A)

∂αAα = ∂αA
α =

∂A0

∂x0
+ ~∇ · ~A = 0 (in the Lorenz gauge)

∂αAα = ∂αAα =
∂A0

∂x0
− ~∇ · ~A (2.12)

along with the Minkowski metric:

g00 = 1 ; g11 = g22 = g33 = −1

gαβ = gαβ = gβα ; gαγg
γβ = δβα ; δβαδ

α
β = δαα = 4

xα = gαβx
β

; xα = gαβxβ ; xα = xβδαβ (2.13)

Since the rα+1 expression is explicit as-is, we can focus solely on the momentum,
first rearranging the terms in Eq. (2.7) and extracting gαβ ’s so that all P terms
are covariant:

P
+1

α −
(

∆τq

mc

)
Pβ
+1

∂αAβ = Pα −
(

∆τq2

mc2

)
Aβ ∂

αAβ

gβαPβ
+1

−
(

∆τq

mc

)
Pβ
+1

∂αAβ = gβαPβ −
(

∆τq2

mc2

)
Aβ ∂

αAβ (2.14)

we then introduce a dummy index λ and left-hand multiply both sides by gλα/gλα,
which are identical and which can commute past β-only factors. This yields

δβλPβ
+1

−
(

∆τq

mc

)
Pβ
+1

∂λA
β = δβλPβ −

(
∆τq2

mc2

)
Aβ ∂λA

β (2.15)

where δβλ is analogous to the identity matrix here, and thus δβλPβ = Pβδβλ . We
now have

Pβ
+1

(
δβλ −

∆τq

mc
∂λA

β

)
= Pβδβλ −

(
∆τq2

mc2

)
Aβ ∂λA

β (2.16)

which, for λ = x and Aβ = Az(x, y) still reduces to Eqn. 2.11. We can then
right-hand multiply both sides by (δλβ + ∆τq

mc ∂λA
β), leaving

Pβ
+1

(
4− ∆τ2q2

m2c2
(∂β ·Aβ)2

)
=

(
Pβδβλ −

∆τq2

mc2
Aβ ∂λA

β

)(
δλβ +

∆τq

mc
∂λA

β

)
(2.17)

11Jackson, p539 ff.
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where we note that (∂β ·Aβ)2 is a scalar.†

It is tempting to check for other solutions here, noting that any cross-terms on
the left hand side will contract to the form ∂λA

λ = ∂λAλ = 0. However, the
solution shown cancels component-wise and is thus the strongest choice unless
solving for total momentum.

At this point, we can isolate Pβ
+1

by division, and expand the right-hand side

terms:

Pβ
+1

=
4Pβ + ∆τq

mc Pβδ
β
λ∂λA

β − ∆τq2

mc2
Aβ ∂λA

βδλβ −
∆τ2q3

m2c3
Aβ (∂β ·Aβ)2

4− ∆τ2q2

m2c2
(∂β ·Aβ)2

(2.18)

We can assert here that (Aβ∂λA
β)δλβ = δλβx(∂λA

βAβ), which can be verified by

resolving the Kronecker deltas as δλβ = gλαgαβ . Then we right-hand multiply by

δλβg
αβ = gλαgαβg

αβ to return P
+1

to contraviant form

Pα
+1

=
Pα + ∆τq

mc

(
Pβ − q

cAβ
)
∂αAβ − ∆τ2q3

4m2c3
Aα (∂β ·Aβ)2

1− ∆τ2q2

4m2c2
(∂β ·Aβ)2

(2.19)

This is the promised algorithm for Lorentz-covariant, symplectic, and explicit
tracking.

In the context of idealized multipole magnets, where Aα = Az(x, y) and thus
∂zAz = 0 this solution is identical to Eq. (2.7). Specifically, the x- and
z-components of a particle in such a multipole momentum transform as in
Eq. (2.11):

P
+1

x = Px +
∆τq

mc

(
Pz − q

c
Az
) ∂Az
∂x

; P
+1

z = Pz (2.20)

As a side note: the choice of contracting the Kronecker delta in the term
∆τq
mc Pβδ

β
λ∂λA

β from Eq. (2.18) is not arbitrary; had we applied it to the four-
gradient instead of the momentum, Eq. (2.20) would become trivial: P x

+1
=

P x;P z
+1

= P z. This exposes the limitation of the using an idealized (i.e. planar)

†Explicitly:

∂λA
β ∂λA

β = gβλ∂
βAβgβλ∂

βAβ

= (∂β ·Aβ)2 6= 0
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multipole potential–and further justifies avoiding ∂αA
α terms. In fact, Eq. (2.4)

can be reformulated using Eqs. (2.2) and (2.3) to form the identity

4V βV α

c2
∂βA

β = 0 = ∂αAβ (2.21)

which is not true for the most commonly used multipole magnet potentials.†

This indicates that any potential Aα = Az(τ, x, y, z). That is, any transverse-
dependent Az must either have all its components sum to zero or have a nonzero
z and τ dependence). We can take this as an incentive for deriving a 3D
multipole magnet potential from the typical idealized one (see Appendix C).
Fortunately, it can be shown that for accelerator elements, ∂zA

z is typically
negligible with respect to its transverse derivatives. In general, it should be
observed that Eq. (2.19) is not unique; the essential process is separating the
updated momentum term from the prior-step terms.

2.3 Global Error

Equation (2.19) and the already explicit rα+1 four-position from Eq. (2.7) now
fulfill the ideal criteria: long-term stability (symplecticity), frame independence
(Lorentz invariance), and efficiency/precision (explicitness). These expressions
thus constitute the core algorithm to be examined through the remainder of this
work. Figure 2.1 compares the global error G in position

G = r
n

x−
[
rx + ∆τ f

(
rx, P

+1

x

)
+ ∆τ f

(
r

+1

x, P
+2

x

)
. . .∆τ f

(
r
n

x, P
n+1

x

)]
(2.23)

with Px+1 coming from Eq. (2.20) and from Eq. (1.55) for the explicit and Lie-
series cases, respectively. The Lie-series has a tendency to diverge unless choosing
impractically small timesteps. This may be due to the fact that it is inherently
transverse-only (it requires a Hamiltonian which is scaled to pz and must be
periodically updated; whereas the covariant integrator is dependent on pz).

†These will be discussed at length in Chapter 4. In cylindrical coordinates, the basic form is

Az = −NIr
neinθ

crn0
(2.22)

where N and I are number of coils and their current, respectively; r0 is the pole-tip aperture
radius; and r and θ are radial and azimuthal coordinates. For now, note simply that ∂rAz +
∂θAz 6= 0.
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Figure 2.1: Comparison of global error for covariant–explicit and third-order Lie-series integrators. To reach error-precision
limits, 1000-proton Gaussian distributions are used with minimal transverse and longitudinal momentum of
0.3keV / c, step size ∆τ = 0.1 fs, and average transverse beam size σx = σy = 0.001 mm passing through
an octupole magnet of exaggerated field-on-pole strength |β0| = 25 T and pole-tip aperture of 10 mm.

Equation (2.20) can be represented in array form as

P
+1

x

P
+1

y

P
+1

z

r
+1

x

r
+1

y

r
+1

z


= diag



(
1− ∆τq

mc (Pz − q
cA

z)∂A
z

∂x

)(
1− ∆τq

mc (Pz − q
cA

z)∂A
z

∂y

)
1

1 + ∆τ
m P+1

x

1 + ∆τ
m P+1

y

1 + ∆τ
m (P

+1

z − q
cA

z)





Px
Py
Pz
rx

ry

rz

 (2.24)

which implies a compatibility with tracking via concatenated transfer matrices
using truncated power-series algebra (TPSA).12 In the general case of Eq. (2.19),
where Aα has a t or z dependence, the transfer matrix takes a 4 × 4 shape,
with numerator and denominator terms that must be truncated independently.
It should also be noted that truncation is not necessary: so long as Aα has
differentiable components, this array represents an exact analytical solution.

12Berz, “The Method of Power Series Tracking for the Mathematical Description of Beam
Dynamics”.
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2.4 Envelope Solution

For a fastest-possible envelop method, which transports a bunch in terms of its
phase-space density instead of individual particle trajectories, Eq. (2.4) can be
applied to the Liouville equation:

dρ

dt
=
∂ρ

∂t
+

n∑
i=1

(
∂ρ

∂ri
ṙi +

∂ρ

∂Pi
Ṗi
)

= 0 (2.25)

For example, if we use a time-independent bi-Gaussian

ρ(rα,Pα) = e−(rα)2−(Pα)2 (2.26)

then we have
rαṙα = PαṖα (2.27)

where the ρ factors have canceled. Thus, by Eqs. (2.4)

rα = Pα q

m2c3

(
Pβ −

q

c
Aβ

)
∂αAβ

(
Pα − q

c
Aα
)

= Pα q
c3
VβV

α∂αAβ = Pα 4q

c
∂αAβ (2.28)

where to arrive at the first line we have used the constraint(
Pα
+1
− q

c
Aα
)(
Pα
+1
− q

c
Aα

)
= m2c2 (2.29)

and for the second line, we have allowed V α to commute, then used an alternative
form of Eq. (2.21).

This value for rα can be transcribed as rβ then substituted in to Eq. (2.19), to
yield

P
+1

α =
Pα + ∆τ

4mrβ −
∆τq2

mc2
Aβ∂

αAβ − ∆τ2q3

4m2c2
Aα (∂α ·Aα)2

1− ∆τ2q2

4m2c2
(∂α ·Aα)2

(2.30)

which may not seem like a drastic simplification. However, in eliminating
Pα qc∂

αAβ, there are no longer any vector products to be calculated at each
step—recalling that (∂α ·Aα)2 is a scalar while Aβ∂

αAβ does not typically need
to be updated stepwise.†

†Meanwhile, the form for rα+1 is unchanged from Eq. (2.8):

r
+1

α = rα +
∆τ

m

(
P
+1

α − q

c
Aα
)

(2.31)
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For cases of non-Gaussian distributions, the unaltered form of Eq. (2.19) suffices.
The explicit canonical momenta Pα+1 can be obtained either way, and the updated
expressions can be inserted into the distribution. That is

ρ(rα,Pα)
∆τ−→ ρ

(
r

+1

α, P
+1

α

)
(2.32)

where a new phase-space density can either be taken from the deviation values
(Gaussian); or the exponential in ρ can be populated with nonlinear (polynomial)
terms and thus requires TPSA (non-Gaussian).

For distributions with a non-exponential shape on any axis, ∂ρ
∂ri

and ∂ρ
∂Pi are no

longer of the form f(ri)ρi and f(Pi)ρi, and finding explicit solutions becomes
case-dependent.

Such density-based solutions are included here mainly as a pedagogical companion
to those commonly used in linear tracking—their practical value beyond Eq. (2.30)
or similar simplifications is likely to be limited. For example, in terms of analysis,
any component of ρ will typically be dependent on several other components.
That is, in general

rx
+1

= rx + f(r0, rx, ry, rz, P0, Px, Py, Pz) (2.33)

which makes ρ quantities more difficult to visualize than explicit plots of indi-
vidual trajectory values. In other words, the notion of 2D phase-space density
becomes ambiguous since any coordinate has an intrinsic 8D dependency.

Fortunately, when using a covariant integrator there is less demand to begin
with for envelope tracking. That is, since the degree and number of polynomials
for any rα+1 or Pα+1 do not change at each timestep (because the old value is
additive with the new expression), only the coefficients are updated. This is a
strong contrast to the case of TPSA Lie-series tracking, where every timestep
yields a lengthier polynomial expression than the previous one (because the old
value is used as an input in a recursive Poisson-bracket expression), requiring
truncation and an occasional “reset” of global error by numerical evaluation.

Thus, in the covariant case, a concatenation of several thin-film element slices
for a single machine element is mapped by an updating set of coefficients (which
will become more a more lengthy polynomial for changing potentials, but not
stepwise). Since this can be considered a fully analytical solution, it precludes the
more performance-driven need for envelope tracking. In other words, covariant
envelope tracking is only likely to be beneficial for simplifications such as Eq. (2.30)
on the grounds of computational performance.
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Chapter 3

Space Charge and Radiation

Space charge refers to the collective interparticle effects in a distribution of
charged particles. The discussion of space charge has been deliberately avoided
up to this point because of its incongruence with conventional beam dynamics
theory (i.e. it is inherently non-linear and seemingly non-symplectic). Its
calculation also requires a pairwise summation of distances from all particles in
a distributions—a prohibitively costly operation in essentially all practical cases.

In contrast with plasma physics, where space charge can be difficult to predict
and requires nuanced modeling, accelerator physics is primarily concerned with
individual species of charged particles,†,1 allowing for a variety of approximation
methods.

For example, one can overlay space-charge calculations onto the more straight-
forward (and much less costly) calculations from external forces. This approach,
in the context of storage rings, is well-summarized by Wolski:2

Without including radiation effects in our analysis, we cannot com-
pletely determine the equilibrium distribution; however, we can
calculate the shape of an invariant distribution, that is, a distribution
of particles in phase space that remains unchanged as the particles
move around the storage ring. The equilibrium distribution will be
an invariant distribution covering a certain area of phase space. We

†At least until the point of collision, or in exotic cases such as electron lensing.
1Burov et al., “Landau damping by electron lenses”; Mirarchi et al., “Hollow electron-lens

assisted collimation and plans for the LHC”; Stancari et al., “Collimation with Hollow Electron
Beams”.

2Wolski, Beam dynamics: In High Energy Particle Accelerators, p431.

43



can estimate the area from considering synchrotron radiation effects
separately. In other words, we determine the shape of the equilibrium
distribution from space-charge effects, and the size of the distribution
from synchrotron radiation effects. Taking this approach avoids the
need to solve equations that include simultaneously space-charge and
synchrotron radiation effects[...]

In simplest terms, space charge is a fundamental limit in the confinement regime
of beam physics: the notion of tightly focusing and steering bunches might
immediately call to mind to a novice that the repulsive Coulomb force must
at some point be indomitable by even the strongest available superconducting
magnets. While this is essentially true, space-charge effects are often negligible
for high-energy accelerators except in the injection stage, especially for smaller
βt amplitudes.3, †

Nevertheless, to study higher-brightness beams and higher-precision machines,
a more fundamental picture of space charge is necessary. Although the theory
on space-charge-limited beams is robust,4 especially for injectors, its effects are
often seen as puzzling or fundamentally chaotic. The most precise space-charge
simulations—which are particularly important in the the nascent discipline of
plasma-wakefield acceleration—generally use Poisson solvers (requiring bound-
ary conditions and numerical approximations of fields). These typically use a
particle-in-cell (PIC) method to interpolate field values at rectilinear meshpoints
onto particle trajectories; and often exploit symmetric beam distributions (i.e.
Gaussian) to simplify calculation.5

3Wolski, p416.
†Tune-shift is a one of the most pervasive side-effects of space charge. This is linearly

proportional to the perveance K = 2Ir/(β
3
t γ

3r) where r is the beam radius and Ir is the ratio
of total current to a characteristic maximal current. For electrons, this characteristic current
is the Alfvén current of ∼15.045 kA. It is clear that this dependence on K is minimized for
increasing β and γ in a high-energy beam. It should also be stressed that this estimation
technique requires small space-charge forces, treats βt as a constant, and assumes a continuous
(not bunched) beam.

4Tiefenback and Keefe, “Measurements of Stability Limits for a Space-Charge-Dominated
Ion Beam in a Long A. G. Transport Channel”; Bazarov, Dunham, and Sinclair, “Maximum
Achievable Beam Brightness from Photoinjectors”; Sigmond, “Simple Approximate Treatment of
Unipolar Space-charge-dominated Coronas”; Lagniel, “Chaotic Behaviour and Halo Formation
from 2D Space-Charge Dominated Beams”; Gadjev et al., “High-gain FEL in the space-charge
dominated Raman limit”.

5Keinigs and Jones, “Two-dimensional Dynamics of the Plasma Wakefield Accelerator”;
Tarkeshian et al., “Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense
Electron-Beam Characterization”; Lu et al., “Nonlinear Theory for Relativistic Plasma Wake-
fields in the Blowout Regime”; Blue et al., “Plasma-Wakefield Acceleration of an Intense
Positron Beam”; Pukhov and Farmer, “Stable Particle Acceleration in Co-Axial Plasma Chan-
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3.1 The Liénard–Wiechert Potentials and Two-Particle
Systems

In terms of ab initio methods, recent simulations using Lorentz-boosted frames
have also been shown to reduce numerical instability and provide 4–6 order of
magnitude speedups,6 along with high parellelizability.7 Similar techniques have
also shown promise with accelerator elements such as undulators8 or electron
guns9 when using the Liénard–Weichert (LW) potentials.10

These can be seen as the Lorentz-covariant extension of the Coulomb potentials
(they actually comprise a single electromagnetic four-potential). They are, in
effect, the best-known method for simulating charged-particle interactions; and
are essentially just a retarded-time extension of the Coulomb potential. An
LW-based integrator is thus an ideal candidate for fulfilling Forest’s dogma of
having a failsafe or baseline simulation to compare against linear or other heavily
approximate methods.

The LW potentials are, in Gaussian units†,11

Φ =

 q(
1− ~βs(t) · n̂

)
R


t=tr

; ~A =

 q ~βs(t)(
1− ~βs(t) · n̂

)
R


t=tr

(3.1)

where it is necessary to define position four-vectors sα and rα for the source and
test particles, respectively, and where the light-cone constraint implies

R ≡ |~r − ~s(tr)| = r0 − s0(tr) = c(t− tr) (3.2)

nels”; Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with
neutral atoms, PIC-MCC”; Malka et al., “Principles and Applications of Compact Laser–plasma
Accelerators”.

6Vay et al., “Numerical methods for instability mitigation in the modeling of laser wakefield
accelerators in a Lorentz-boosted frame”.

7Debus et al., “Simulating radiation from laser-wakefield accelerators”.
8Ryne, “Finding Matched Rms Envelopes in Rf Linacs”.
9Salah, “Analysis of Space Charge Fields Using the Lienard-Wiechert Potential and the

Method of Images During the Photoemission of the Electron Beam from the Cathode”.
10Kosyakov, “Classical Yang-Mills Field Generated by Two Colored Point Charges”; Feyn-

man, Leighton, and Sands, The Feynman Lectures on Physics, Vol. 2: Mainly Electromagnetism
and Matter ; Jackson, Classical Electrodynamics.

†The reader is encouraged to familiarize themselves with these units: it is easier to do
unit checks throughout upcoming calculations (especially so terms in a Hamiltonian remain
energy-like). We use these units as a default throughout, with exceptions primarily for reporting
SI values for magnet field strength and standard constants such as dipole moments.

11Talman, M.K.S / Gaussian Unit Conversion; Napolitano, SI and CGS Units in Electro-
magnetism; Littlejohn, Gaussian, SI and Other Systems of Units in Electromagnetic Theory .
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Here, tr the retarded time, is always in reference to the trajectory of the source
particle, and n̂ is the unit vector separating the particles pointing from the source
to the test point :

n̂ =
~r − ~s
|R|

(3.3)

Figure 3.1 sketches an elementary case of space-charge: repulsion between two
like-charged particles (protons in this case) with one at rest. Note that the
incoming proton’s scalar magnitude is roughly double that of the rest proton
(here the incoming β is 0.5). As long as the two particles are assumed to comprise
a completely isolated system, the distance scale here is essentially arbitrary in
the upper limit; however, it is crucial to note that here and going forward we do
not consider any effects on the femtometer scale unless explicitly noted.

A subtle, but non-trivial effect to note in terms of velocity dependence is that the
test particle does not witness any potential from the source—as in Fig. 3.1(d)—
until the source particle has already begun to deflect from its original trajectory.
Such effects are worth considering when implementing the LW potentials in
simulation, where a cache of several timesteps is necessary for the pairwise
calculations.

The interaction between vector-potential components is more complicated: if we
were to shift to the center-of-mass frame for the two protons, all longitudinal
vector components cancel, leaving two perfectly collimated repulsive potential-
fronts, see Fig.3.2(a–c). If we were switch one particle to an electron, then all
transverse components cancel, as in Fig.3.2(d–f), leaving two perfectly collimated
attractive fronts.

Before proceeding, we offer a disclaimer: although pursuing a first-principles
electrodynamics formalism, we will ignore self-fields and will not presume to
broach quantum spin or any other quantum effects unless explicitly stated.
Instead, we will only operate under the assumption that, on a pico- or nanometer
scale, charged relativistic point particles may freely rotate and propagate in
accordance with their field interactions. Still, there are a number of cases where
the LW potentials are relevant to quantum phenomenon, which will be cited
where appropriate.

For now, we stress that the LW potentials are the basis for classical soft
bremsstrahlung theory,12 whereas the quantum-field theory picture has an en-

12Itzykson and Zuber, Quantum Field Theory , p36–39.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: A sketch of velocity-dependent vector potentials emitted from two charged particles approaching head-on
along the horizontal axis, as per the Liénard–Wiechert potentials, with timesteps proceeding left to right. The
respective particle velocities are relativistic, but appreciably less than the speed of light, such that the potentials
interact well in advance of collision. (a–c) Shows a like-charge interaction where all horizontal components
cancel. In the opposite-charge interaction (d–f) all vertical components cancel (the tail-first arrows in the latter
case indicate negative charge). Scalar potentials are not shown.

tirely analogous formulation.13 Thus, one can view the LW potentials as a
relativistic precursor to quantum radiative interactions, operating in the regime
where the two interacting particles’ trajectories remain distinguishable.

Continuing in classical terms, for a high enough deflection angle between two
protons, a photon is emitted. In general (not only with like-sign particles), this
constitutes classical radiation.15

Figure 3.3 then illustrates (externally stimulated) electron–proton interactions
in the rest frame of the proton, with Fig. 3.3a demonstrating a deflection in
which bremsstrahlung radiation is emitted. In Fig. 3.3b, the deflection is strong
enough that the electron cannot escape the proton’s orbit, and the emitted light
is termed “recombination radiation”.16

13Peskin and Schroeder, An Introduction to Quantum Field Theory , p179–83.
15James et al., “General Description of Electromagnetic Radiation Processes Based on

Instantaneous Charge Acceleration in ‘endpoints’”.
16Yousif et al., “Experimental Observation of Laser-Stimulated Radiative Recombination”;

Schramm et al., “Observation of Laser-Induced Recombination in Merged Electron and Proton
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(a)

(b)

Figure 3.3: Electron–proton interactions as modeled by the Liénard–Wiechert potentials, seen from the proton’s rest frame.
As in the previous figure, dashed wedges indicate scalar potentials and solid curves and arrows indicate velocity-
dependent ones. The electron’s negatively charged potentials have convex wedges and inverse arrow tips.
(a) An electron passes near enough to a proton to change direction significantly and emit bremsstrahlung
radiation.14 (b) An electron falls into a stable orbit and emits recombination radiation.

Although such effects are not typically relevant in beam physics simulation, we
will examine the proton–electron system a bit further. We do this on the grounds

Beams”; Lang, NASA’s Cosmos.

49



that a first-principles framework for space charge is fundamentally incomplete
if only considering the predominantly repulsive potentials between like-charged
species. Such analysis may also have bearing on plasma-wakefield accelerator
simulations17 and loss phenomenon such as interparticle stripping of H− ions.18

For example, in some cases we cannot neglect the emitted retarded potentials
dependent on magnetic dipole moments.† These are:19

~A =
~µ× n̂

(1− ~βs · n̂)R2
+
d

dt

(
~µ× n̂

(1− ~βs · n̂)Rc

)
(3.4)

where ~µ is the source particle’s magnetic dipole moment, and all terms are
evaluated at the retarded time.

We then note that any ~µ tends to align with a dominant external magnetic field,
and that the kinetic potential resulting from such an interaction is U = ~µ · ~Bext
(keep in mind this is not an emitted potential). Then, under the assumption
that the dominant fields are varying smoothly, we can treat ~µ× n̂ as constant.‡

Thus, for a constant source velocity ~βs, we find

~A =
~µ× n̂

(1− ~βs · n̂)R2
− (~µ× n̂)(~βs · n̂)

(1− ~βs · n̂)R2

=
~µ× n̂
R2

(3.5)

where d
dt(Rc)

−1 yields a ~β component solely in the source–objective direction.

The full retarded-potential expressions for a electron with a constant ~β falling into
orbit a proton are thus fairly straightforward. Both dipole moments will align
with the dominant field contribution ∇× ~A ∝ βoẑ, , where ẑ is perpendicular
to both the separation n̂ and the orbital ô directions (since only ∂/∂r yields
nonzero terms). For simplicity, we can also assume βo � βz (while also noting
that µe is intrinsically negative). Considering a reference frame where the proton

17McGuffey et al., “Ionization Induced Trapping in a Laser Wakefield Accelerator”; Clayton
et al., “Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced
Injection”.

18Shishlo et al., “First observation of intrabeam stripping of negative hydrogen in a super-
conducting linear accelerator”.

†We neglect the electric dipole moment, since these are a matter of hypothesis for the
species under consideration, and certainly negligible in this context.

19Monaghan, “The Heaviside-Feynman expression for the fields of an accelerated dipole”.
‡This trait and several other characteristics of beam physics in terms of magnetic dipoles

will be addressed in detail in Chapter 5.
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and electron “share” an equal orbital βo, but only the electron taking on a βn,
this yields:

Aαp =
q

R
, −

(
qβo
R

+
|µp|ô
R2

)
ô

Aαe = − q

R(1− βn)
,

1

(1− βn)

(
qβo
R
− |µe|
R2

)
ô− qβnn̂

(1− βn)R
(3.6)

where µp and µe are the respective proton and electron magnetic dipole moments.

We can now examine a stable electron–proton orbit wherein the dipole-based
potentials and the velocity-dependent LW terms cancel attractive scalar potential.

To start, this allows us to solve for R in terms of ~β. For example, for the
case where ~β · n̂ = 0 (or equivalently, the total source velocity ~β = βo in the
tangential, orbital direction), we can take the total LW-based Lorentz force and
dipole-based forces where they reach an equilibrium in the n̂ direction.† That is,
for a stationary proton and neglecting the proton dipole moment in favor of the
electron’s stronger one:

0 = ~Fen̂+ ~Fpn̂ = − 2q2

γ2R2
+
βo|q||µe|
R3

(3.8)

which yields

R =
|µe|γ2βo

2|q|
(3.9)

where µe is the electron magnetic dipole moment. Thus, for an electron passing
tangentially to a proton with γ ≈ 100, the attractive electrostatic force cancels
at a separation distance of 1 nm. This relation is attenuated by a nonzero ~β · n̂,
namely

R =
γ2|µeβo|(1− ~β · n̂)

2|q|
(3.10)

When accounting for the forces in all directions, along with the time-dependent
radiative effects arising from the rightmost term of Eq. (3.4) and the LW po-
tentials, we can assert that some periodic motion about such a stable radius is
likely to occur. What is important to recognize is that only the magnetic dipole

†Using the ~B form of Eq. (3.4) is helpful here (ignoring the radiative terms)

~B =
3(~µ · n̂)n̂− ~µ

R3
(3.7)

where it is important to carefully track the source factors here distinctly from the self factors q
and ~v appearing in the Lorentz force equation. The ~E and ~B field forms of the electric LW
potentials are also useful here. These are given in Eq. (3.17).
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moments and a sufficient tangential velocity can provide a countervailing force
to the electrostatic attraction in the n̂ direction.

For this scenario, we can balance the particles’ potentials at a midpoint while
assigning the orbital velocity to the proton so that the electron’s velocity com-
ponents are all due to gyration. (We will use classical orbital velocity here
βo = αEM ≈ 1

137). Taking the square of the potentials allows us to account
for potential contributions from components of the gyration perpendicular to n̂.
This squaring reduces the magnitude of the dipole-component terms to ~µ2/R4,
so that they can be neglected (while keeping in mind that we have treated them
as the driving factor in establishing the gyration). This leaves the condition

(Φp)
2 − (αEM )2 = (Φe)

2 −
(
~Ae

)2

1− α2
EM =

(
1

1− ~βs · n̂

)2

−

(
~βs

1− ~βs · n̂

)2

≡ Φ∗e − ~A∗e (3.11)

where n̂ is constant and we define the stripped potentials for convenience further
on. We are now able to solve for average gyration velocity |βs| by taking potential
values along discrete points of the electron’s spin-radius and breaking ~A∗e into its
components’ unit vectors: ô, n̂, and ẑ, which lie in the orbital, source–particle,
and z directions respectively.

Specifically, we can examine the emission from i→ m points along the gyration

(~βs →
m∑
i=1

~βi/m). Although these emitted potentials cannot interfere, as they

propagate at c from the electron along its gyration trajectory. However, we
can take the approximation that the proton witnesses several gyrations from
an approximately stationary point in the orbital path (assuming |βs| � αEM );
which allows us to balance the proton’s potential with an summed potential over
a single gyration for the electron. This scenario can be modeled as

1−α2
EM =

(
1

m

m∑
i=1

Φ∗e

)2

−

(
m∑
i=1

A∗i−ô

)2

−

(
m∑
i=1

A∗i−n̂

)2

−

(
m∑
i=1

A∗i−ẑ

)2

(3.12)

where only the scalar components are weighted by m.†

There is a subtlety here: we assume that the emitted potentials from the m
segments of ~A∗e will interfere coherently, and thus these are added before squaring.

†This is due to scalar potentials diverging for increasing m; whereas the vector-potential
components will converge as further subdivisions in the gyration orbit are taken with increasing
m because of opposite-phase segments canceling.

As an alternative, one might consider a model where the scalar components are summed
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For example, with a simple (non-oblique) gyration about the orbital axis and
only sampling the minimum, maximum, and transverse points (m = 4) with
respect to ~βs · n̂ ≡ βn, we have

~A∗e =
βn

1− βn
− βn

1 + βn

= 2γ2β2
n (3.14)

This method produces the spin contours shown in Fig. 3.4 for m = 4 sample
points in the gyration. Here, θ0 and αs are the respective starting gyration

angles projected to n̂ and ẑ in the orbital plane. (Explicitly: cos−1
(
βz
|~βs|

)
≡ αs

and likewise for θ0.)

0.60

0.65

0.70

0.75

(a)

Figure 3.4: Electron gyration angular velocity as a function of starting angle θ0 relative to n̂ in the orbital plane about a
proton. Orbital velocity βo = αEM . All curves shown are for a moderate off-orbital-plane translational motion,
approximated by ∆βz∼ 3

10βz . The angle αs indicates the initial angle of gyration electron perpendicular to
the orbital plane.

after squaring and the vector potentials are averaged

1− α2
EM =

m∑
i=1

(
1

m
Φ∗e

)2

−

(
1

m

m∑
i=1

A∗i−ô

)2

−

(
1

m

m∑
i=1

A∗i−n̂

)2

−

(
1

m

m∑
i=1

A∗i−ẑ

)2

(3.13)

This effectively treats all components coming from as m distinct electrons, and is better suited
for modeling high βo cases.
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Here we have high-~βs solutions for a periodic βz, where |βs| approaches a maxi-
mum for αs → ±π

6 . Moreover, off-plane translational motion is approximated by
assuming an offset in βz for opposite points in the spin orbit ∆βz ≈ |βm1

z |−|βm3
z |.

This gives rise to potentials with a moderate ∆βz ≥ βz
10 having intersecting

contours in |~βs|. The |βs| then attenuates toward a unity as ∆βz → 0 and
αs → ±π

2 (i.e. high obliquity). Electrons with incoming βs of approximately
αEM , on the other hand, tend to remain in low-energy wells or inaccessible bands
(not shown).

Figure 3.5 then sketches the case of a high-~βs electron effecting a slight velocity
shift to the proton (βe→p), which is reflected back to the electron at a later

time (βp→e). For a low-energy electron (~βs ≈ αEM ), this generates an echoed
potential with an offset βp→e · n̂2 = |βp→e| cos(π − 2αEM ).

The effect here is that the segment of the electron’s gyration path pointed most
directly at the proton (which grows exponentially in magnitude proportionally
with |βn̂1 |) contributes significantly to the outgoing potential. The reflected
potential is approximately planar when returning to the electron, but oriented
in the original n̂1 direction. To check the magnitude of this effect, one can use
Jackson’s conjugate-momentum formalism introduced in the last chapter20 and
assuming the proton’s initial velocity to be zero (and, again, ignoring its dipole
moment). This gives a velocity kick of the form

βn̂1−pc = − qp
mpc

Ae→p = − qp
mpc

(
qeβn̂1−e

|R|(1− |βn̂1−e|)

)
=

q2
pβn̂1−e

mpc|R|(1− |βn̂1−e|)
(3.15)

where Gaussian units are used. Then, as βn̂1−e → 0.9999 (γ > 70), the velocity
shift of the proton becomes substantial. Equation 3.15 can be used again for the
echoed potential’s resulting velocity shift, which has an upper limit of roughly
one part in 106; it is nevertheless a possible source for perturbations preventing
a perfectly planar orbit (with both static and vector components). For high-
velocity orbits, as the angle between n̂1 and n̂2 approaches the upper limit of two
radians, the reflected potential is nearly perpendicular to the orbital trajectory.

To summarize, we have outlined a pseudoclassical means for predicting that
a pointlike electron will not follow a planar orbit as it falls in toward the
proton. Instead, for low incoming ~β, any initial non-negligible tangential velocity
components relative to the proton will lead to its inscribing an irregular spherical
path.

20Jackson, Classical Electrodynamics, p579 ff.
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Figure 3.5: Indirect self-interaction of the orbiting electron given a fast, oblique gyration (γs & 75, αs = π/2), which
kicks the proton slightly. This, in turn, generates a velocity-dependent potential emitted from the proton which
is parallel to the original separation vector n̂1 but oblique to the new one n̂2. (As before, red-orange-yellow-
green coloring indicates timesteps from present to past.)

For a more practical example, Figure 3.6 sketches how the LW potentials for
magnetic dipole moments can be expected to affect electron and proton interac-
tions. It is worth noting how bunches with polarization schemes like those here
may be of use in multi-beam acceleration or in certain wakefield acceleration
applications.

Dipole-moment polarization may also merit further study in terms of colliding
particles — although the ~µ× n̂ dependence of the emitted potentials inherently
has no effect along the separation vector, it may be exploited to affect the
collision dynamics (e.g. colliding protons with both dipole moments aligned
along their separation vector will be more likely to interact).†

A more thorough study would incorporate the electron and proton magnetic

†We should note that the displacement of the electron is governed by

1

me

(
Pα +

qe
c
Aα
)

(3.16)

which is more volatile than the proton’s dynamics, owing to its low mass. One should also
keep in mind that the electron’s dipole moment is considerably greater in magnitude than the
proton’s.
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Figure 3.6: Lorentz-force interactions of protons (convex dashes) and electrons (concave) in the n̂ direction due to emitted
magnetic-dipole-moment fields as per the LW potentials. Bracketed lines indicate the effective force imparted
on the opposite particle. The interactions are at a point of nearest approach, with velocities antiparallel: the
left-hand particles travel out of the page and the right-hand ones go into the page.

moments into the equations of motion, as per Anandan.21 We will address this
topic in terms of neutron beam dynamics in Chapter 5.

One can also extend the Liénard–Wiechert potentials to study quantum effects.
For example, they were shown to be compatible with quantum radiation theory by
Childers,22 where Grassman variables are necessary to quantize to the relativistic
Dirac particle23 (a similar form of Jackson’s conjugate-momentum formalism

21Anandan, “Classical and Quantum Interaction of the Dipole”.
22Childers, “Long-distance Lienard-Wiechert potentials and qq¯ spin dependence”.
23Gromes, “Relativistic corrections to the long-range quark antiquark potential electric flux
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is used as in covariant symplectic tracking). Radiation increase proportional
to spin is derived explicitly by Arakelyan and Grigoryan,24 where a relativistic
point-particle LW treatment coincides with classical radiation theory and QED.

Although such a fine-scale application of the LW potentials may seem unnecessary
for beam dynamics, they have been included here in the spirit of Forest’s failsafe
dogma. Still, predicting an electron’s orbital dynamics in this pseudoclassical
regime overlooks critical effects such as Thomas precession.

However, such a framework could prove useful in predicting recombination
radiation energies associated with electron cloud interactions or other beam-
loss mechanisms. Other applications on few-particle systems could include
simulating spontaneous fermion spin flipping;25 or any scenario where mixed
particle species are known to interact. It should also not be overlooked that with
such an approach the formation of radiative photons is modeled inherently: as a
particle changes trajectory, any residual coherent radiated fields can be tracked
independently.

3.2 Collision Considerations

While the precision of an LW-based space charge code should provide more
accuracy than solely Coulomb-based codes, LW calculations carry a greater
risk of having numerical blow-ups; this is especially true for particles with
predominant head-on trajectories, due to the ([1− ~β · n̂]|R|)−1 dependence.

A simple method for avoiding such blow-ups could involve adding random per-
turbations or oscillations to a particle’s trajectory (transverse to n̂) proportional
to its de Broglie wavelength whenever a highly aligned collision is imminent.
Imposing a such shifts on a particle’s previously smooth trajectory would elimi-
nate the probability of a perfect head-on collision; the longitudinal velocity fields
would inevitably lose a large fraction of their momentum transversely if |R| is
proportional to the imposed de Broglie oscillation.

tubes, and area law”.
24Arakelyan, Grigoryan, and Grigoryan, “Lienard-Wiechert Potential and Synchrotron

Radiation of a Relativistic Spinning Particle in the Pseudoclassical Theory”; Grigoryan and
Grigoryan, “Synchrotron Radiation from a Longitudinally Polarized Relativistic Spinning
Particle in Pseudoclassical Theory”.

25Jackson, “On understanding spin-flip synchrotron radiation and the transverse polarization
of electrons in storage rings”.
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3.3 Lorentz Force and Multiparticle Effects

When passing through any machine element, the local transverse dynamics of a
bunch may be chaotic, with outlying space-charge dependent velocity shifts (both
longitudinal and transverse) greatly exceeding the average transverse velocity.
Although space charge simulation is a facet of beam dynamics software,26 it is
typically simplified to a static Coulomb potential q

|R| , which is the nonrelativistic
limit for the LW potentials.

To examine the Coulomb and LW-dependent forms of space charge, we can
re-express the LW potentials in terms of their fields:

~E = q

[
n̂− ~β

γ2(1− ~β · n̂)3R2

]
t=tr

+
q

c

 n̂×
{

(n̂− ~β)× ~̇β
}

(1− ~β · n̂)3R


t=tr

~B = [n̂× ~E] (3.17)

where the 1
R2 terms are “velocity fields”. These are often ignored; the ~̇β terms

are what drives radiation and typically of greater interest.

Specifically, the total radiated power of a particle is a often critical quantity (e.g.
in electron synchotron storage rings). In its nonrelativstic limit, Eq. (3.17) can
be reduced to the familiar Larmor equation

P =
2

3

q2
e

c2
|~̇v|2 (3.18)

by using ~ELW = −∂αAα from Eq. (3.1) and retaining only the ~̇β dependent
terms by assuming a ~β � 1 reference frame.

However, if all terms in Eqs.(3.17) are accounted for, the corrected form of
Larmor’s equation is27

P =
2

3

q2
e

c
γ6
[
~̇β2 − (~β × ~̇β)2

]
(3.19)

which for the case of β× ~̇β transverse and parallel to an observation point reduces

26Uriot and Pichoff, TraceWin; Zhukov, “Open XAL status report 2017”; Qiang et al., “High
resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers”.

27Jackson, Classical Electrodynamics, p666.
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to

P‖ =
2

3

q2
e

c
γ6 ~̇β2

P⊥ =
2

3

q2
e

c
γ4 ~̇β2 (3.20)

A toy example is worth considering here: two bunches are being transversely
focused in high-frequency pulses to a practical density limit, rapidly compressing

and decompressing such that
∑
β̇‖

2
is non-negligible but β‖ ≈ 0, relative to test

point in the center of either bunch. One bunch, prior to focusing, has acquired a
spin in the transverse plane28 such that |β⊥| >> 0 and thus γ >> 1.

In this case, the radiation power witnessed at the test point is proportional to
γ4 for the spinning bunch and 1 for the other bunch. For a test point outside
the spinning bunch in the transverse plane, the observed radiated power is
then proportional to γ4/2 + γ6/2. The potential for such power to be radiated
toward the center of the spinning bunch leads to the conjecture that high-
energy interactions may be expected to occur therein. A similar phenomenon of
transverse–longitudinal recirculation will be discussed in the next chapter.

Although radiation fields from Eqs. (3.17) are often of greater interest, it is
worthwhile to consider the velocity fields as they diverge from the Coulomb-like
form in the nonrelativistic limit.

For example, if we examine the Lorentz force attributable to the velocity fields,
we find the n̂ components to be†

F ~B =
−q2β2(1− β2)(1− cos2(θ))

(1− βcos(θ))3R
n̂

F ~E =
q2(1− β2)

(1− βcos(θ))2R
n̂ (3.21)

which are mapped in Fig. 3.7 for a relativistic charged particle overtaking a
like-signed particle at |βz| (i.e. in the lab frame, the “self” particle travels at βz
and the “source” particle passes with 2βz).

Here, the attractive dip in the force map for off-center trajectories is due to F ~B
while the considerable repulsive peak is due to F ~E . Such forces may be worth

28Zioutas, “Particle acceleration by resonant absorption of radiation”; Chabert, Luong, and
Promé, “Beam Dynamics in Separate Sector Cyclotrons”.

†Here we have used n̂× (n̂−βz) =���n̂× n̂− n̂×βz along with the identity βz × (−n̂×βz) =
−[(βz · βz)n̂− (βz · n̂)βz]
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(a)

(b)

Figure 3.7: Ratio of Lorentz-force contributions from the summed Liénard–Weichert ~E and ~B velocity fields to the Coulomb
force of two like-sign particles, a “self” particle, traveling at a speed βz and a “source” particle overtaking it
at βz where ẑ is the direction of propagation. The angle θ is the projection of the self–source separation n̂

and their colinear velocity direction ẑ. Positive values represent repulsive forces. In (a), the ~E contribution
falls to 1 for low βz and has a substantial peak for the ultrarelativstic case. The detail in (b) highlights the

attractive contribution at high β due to ~B.

considering when simulating, e.g., inter-beam scattering, or highly compressed
bunch centers as discussed above. In terms of bunch crossings, this attractive dip
may be a worthwhile phenomenon for stabilizing bunches without large spatial
deflections (assuming a particulary narrow transverse σ).

For the case where two like-charge particles are approaching one another (anti-
parallel βz) the Lorentz forces remain repulsive, but do drop sharply toward zero
for velocities exceeding |βz| ≈ 0.9 and |θ| & 0.5 rad, thus negating the Coulomb
force.

Figure 3.8 sketches how the space charge behavior can be expected to differ for
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Figure 3.8: Accelerations (arrows) and corresponding emitted potentials (curves) for an electron bunch entering (a) dipole
and (b) quadrupole magnets centered on the horizontal axis. Concave and convex potentials are negative and
positively charged, respectively.

a bunch entering a bending (dipole) and focusing (quadrupole) magnet. For the
dipole, the resulting radiation (not shown) is emitted in the forward longitudinal
direction, resulting in the familiar synchotron radiation. For the quadrupole,
a strong braking occurs near the middle of the bunch, dampening the emitted
potentials. However, the accompanying sharp deflections for low |R| values
within the bunch may lead to substantial (n̂ − ~β)/|R|2 terms. This indicates
that velocity fields may dominate the focusing limits for a bunch.

The distribution of particles within a bunch is also critical in calculating radia-
tive effects and space charge. While the scalar potentials outside equivalently
populated but differently shaped bunches are roughly identical, the ~A terms are
distinct, as illustrated in Fig. 3.9.

The dependence here on
~β

1− ~β · n̂
(3.22)

cannot be overstated: ~A falls to an attractive limit of −1/2 of the Coulomb
potential for β → −1, while for β → 1 the for repulsive potentials appears
divergent.†

Thus, while static potentials may be expected to dominate low-to-medium β
transverse beam dynamics, the δ-like ~A potential for the hollowed distribution
in Fig 3.9 indicates that it is a lowest-energy state. A comparable result was
reported by Wangler,29 with high-intensity beams evolving to have a central core
and a small halo. A similar result was also reported recently with respect to

†Note, however, that in terms of forces Fig. 3.7 indicates a limit of a roughly 200-to-1 ratio
versus the Coulomb potential.

29Wangler et al., “Relation Between Field Energy and Rms Emittance in Intense Particle
Beams”.
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Figure 3.9: Sketch of net space-charge contributions following Eq. (3.1) for test particles on the edges (points marked in
red) of isotropic distributions: Gaussian (left), uniform with exponential fall-off (center), and hollowed (right).

All three assume a 〈~β〉 biased center–outward. The arrows’ horizontal components cancel when summing bins,
leaving the rightmost distribution as the most δ-like distribution.

longitudinal hollowing,30 and may be particularly relevant for ongoing studies of
hollow-beam collimation,31 plasma lensing32 and halo asymmetry.33

3.4 Improved Particle-in-Cell Tracking

Equipped now with a means for robust charged-particle tracking, the major
obstacle in space-charge dynamics remains to be addressed: pairwise distance
calculation. That is, in Eq. (3.1), the variables |R| and n̂ are unique for each
particle pair, and the full LW potential acting on a particle within a bunch must
be summed over all its neighbors. This leads to a computationally prohibitive
O(N2) dependence for bunches (which typically contain upwards of N = 1010

particles).

The most obvious improvement here is avoiding redundant calculations (i.e. only
calculating |R|ij = |R|ji once); this is routinely done to reduce calculation time
by a factor of two. However, further optimization typically requires introducing a
number of mesh points M , interpolating a source density at each mesh point, then
using a Poisson solver to find potentials for particle positions. Such a scheme has
O(N +M logM) performance and is known as particle-in-cell (PIC) tracking.34

Directly computing short-range interactions can then improve accuracy, while

30Oeftiger et al., “Flat Bunches with a Hollow Distribution for Space Charge Mitigation”.
31Stancari et al., “Collimation with Hollow Electron Beams”.
32Neuner et al., “Shaping of Intense Ion Beams into Hollow Cylindrical Form”.
33Franchetti et al., “Space Charge Effects on the Third Order Coupled Resonance”.
34Greengard and Rokhlin, “A Fast Algorithm for Particle Simulations”.
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gridless calculation (relegating all long-range interactions to a center-of-mass
approximation) has an estimated performance of O(N logN).35

In practice, mesh algorithms are often needed, wherein each particle N is treated
as a macroparticle, which represents enough particles to eliminate the need for
O(1010) calculations. Then, within each macroparticle, forces are either averaged
or neglected.36 As mentioned earlier, interactions between macroparticles are
typically treated as Coulombic (no velocity fields or radiation). The expected
spatial expansion of (and particle flow between) the macroparticles themselves is
typically ignored, treating them instead as immutable in shape and population.

The LW-based method outlined in the previous section may offer insight into
intra-bunch phenomena, but this bears an obvious cost of significantly increased
computational complexity (i.e. evaluating ∼1010 Coulomb-potential pairs versus
as many iterations of Eq.[2.20]).

To counter this, we propose an optimized method for pairwise distance calcula-
tions. Any improvement seems impossible at first, as the 3D Euclidean distance
formula appears to be essentially irreducible:

d =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (3.23)

However, by abandoning the rectilinear mesh, an alternative can be found
that—using lookup tables—presents a significant speedup.

To do so, we begin with spherical coordinates

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ) (3.24)

where r is radius, θ is inclination, and φ is azimuth. At this point, the distance
formula is no simpler:

d =
√
r2

1 + r2
0 − 2r1r0 [sin(θ1) sin(θ0) cos(φ1 − φ0) + cos(θ1) cos(θ0)] (3.25)

The angle-dependent terms are entirely periodic, however; so while r, θ, and φmay
continue to infinity, the bracketed trigonometric expression falls to predictable
values for procedurally generated θ’s and φ’s. To further simplify matters, one
can extrude an Archimedean spiral

r = ±bθ
1
n (3.26)

35Appel, “An Efficient Program for Many-Body Simulation”.
36Machida, “Space-Charge Effects in Low-Energy Proton Synchrotrons”; Lapostolle et al., A

Modified Space Charge Routine for High Intensity Bunched Beams.
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Figure 3.10: (a) A normal Archimedean spiral (r = ±θ) where each successive revolution has a uniformly spaced distance
from the origin. (b) Scatter plots of a normal Archimedean spiral extruded into 3D for −4π ≤ θ ≤ 4π and
(c) for −400π ≤ θ ≤ 400π.

into 3D space,37 such that, for n = 1 and b = 1:

x = θ sin(θ) cos(φ)

y = θ sin(θ) sin(φ)

z = θ cos(θ) (3.27)

By then defining φ = θε, where ε is irrational, one can populate 3D space
pseudorandomnly, with a single parameter θ (see Fig. 3.10).

The generation of θ-dependent gridpoint values in this case should be anti–center-
weighted to create a uniform distribution since, as can be seen in Fig. 3.10(c),
low x and y values are overpopulated. (For a Fermat spiral, with n = 2, z values
do become uniform.) The single-variable 3D distance formula for n = 1 is then

d =
√
θ2

1 + θ2
0 − 2θ1θ0 [sin(θ1) sin(θ0) cos(ε{θ1 − θ0}) + cos(θ1) cos(θ0)] (3.28)

Here, one can also see the bracketed term as a result of the cosine law d2 =

37Parker, “Dynamics of the interplanetary gas and magnetic fields.”
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r2
1 + r2

2 − 2r2r1 cos(γ), with

cos(γ) =
~v1(x1, y1, z1) · ~v2(x0, y0, z0)

|v1||v2|
(3.29)

where the ~v vectors are taken from Eq. (3.27). Then, presuming the bracketed
term can be implemented via a lookup table (denoted LUT), wherein θ → θ%2π,
we can use the shorthand

d =
√
θ2

1 + θ2
2 − θ1θ2 [2 cos(γ)LUT ] (3.30)

Then we have a distance formula requiring 8 operations, considering that the
factor of 2 can be absorbed into the lookup-table operation. This seems a modest
gain against the Euclidean formula, which required 9 operations.†

However, if we consider parallelization, there is an advantage to the spiral
coordinates. That is, if we track operations by interdependency, we have for the
Euclidean case:√

(x1 − x0)︸ ︷︷ ︸
=A

2 + (y1 − y0)︸ ︷︷ ︸
=B

2 + (z1 − z0)︸ ︷︷ ︸
=C

2 3 parallel subtractions

√
A2

=D
+B2

=E
+ C2

=F
3 parallel powerings

√
D + E︸ ︷︷ ︸

=G

+F 1 serial addition

√
G+ F︸ ︷︷ ︸

=H

1 serial addition

√
H 1 square root (3.31)

†Though, for the ideal case of calculating space-charge for a full, realistic bunch, this does
still translate to ∼1010 fewer calculations per timestep.
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Whereas for the spiral case we have√
θ2

1
=A

+ θ2
0

=B

− θ1θ0︸︷︷︸
=C

[2cos(γ)]︸ ︷︷ ︸
=D

4 parallel (2 powering, 1 mult., 1 lookup)

√
A+B︸ ︷︷ ︸

=E

−C ·D︸ ︷︷ ︸
=F

2 parallel (1 addition, 1 mult.)

√
E − F︸ ︷︷ ︸

=G

1 serial addition

√
G 1 square root (3.32)

This also provides ample intermediate steps for the lookup table value of an
upcoming distance pair to be pre-calculated. Meanwhile, the Euclidean case
is unavoidably bottlenecked by the three consecutive serial operations; and
the performance advantage of indexing over a 1D list (vs. a 3×1 array of 3D
Cartesian points) may also prove substantial. As a preliminary result, Fig. 3.11
reports a substantial speedup (roughly a factor of 1.6) for the spiral case using
the Distances.jl and BenchmarkTools.jl in the Julia language.38

With spiral coordinates, the macroparticle formalism remains viable, with the
advantage that there are no intersecting gridpoints and that the number of
macroparticles along θ is not the only throttle for spatial resolution, since b in
Eq. (3.26) can be adjusted to an ideal spacing between revolutions.

Also, with the covariant LW potentials at our disposal, the cycle of discrete
calculations (densities and fields fields)⇐⇒ mesh-free calculations (forces and
trajectories)39 becomes superfluous, since we calculate trajectories directly from
potentials.

However, the use of densities need not be dismissed entirely. For example, consider
a speed-priority code in which gridpoints represent a density of macroparticles
which are allowed to migrate as per Eq. (2.25). In this case (and ignoring β
dependence in potentials for the moment), an expansion tendency would occur:
highly populated position and momentum bins will migrate outward isotropically

38Carlsson and Lin, “A Julia package for evaluating distances(metrics) between vectors.:
JuliaStats/Distances.jl”; Revels, BenchmarkToools.jl: A benchmarking framework for the Julia
language.

39Westermann, “Numerical Modelling of the Stationary Maxwell–Lorentz System in Technical
Devices”.
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Figure 3.11: Log plot benchmarking identical test-point distributions evaluated with pairwise 3D Cartesian and spiral
distance formulas. Error bars are standard deviations for 30 trials.

due to space charge. If we then account for velocity fields, the bins can still
be expected to flatten smoothly, but not isotropically. Such a scheme could
then incorporate external potentials via Eq. (2.31) which would stand as a
fastest-possible first-principles simulation method for Gaussian distributions of
charged particles.

One further speedup technique bears mentioning. This involves a cross-
dependence of particle positions on θ1 and θ0:

r1 =
√
θ1 + θ0 r0 =

√
θ0 + θ1

x1 = r1 sin(θ1) cos(θ0) x0 = r0 sin(θ0) cos(θ1)

y1 = r1 sin(θ1) sin(θ0) y0 = r0 sin(θ0) sin(θ1)

z1 = r1 cos(θ1) z0 = r0 cos(θ0) (3.33)

which imposes the constraints r1 = r0, x1 = x0
tan(θ1)
tan(θ0) , and y1 = y0. This is likely

only useful for cherry-picking qualifying values as a preconditioning step. The
quantity of such values are doubled for evenly spaced θ1 and θ0 which proceed
from the origin with opposite signs (versus both θ’s proceeding with the same
sign). This type of spiral system has a dramatically simplified distance equation:

d =

√
(θ1 + θ0)

[
(cos(θ1)− cos(θ0))2 + sin2(θ1 − θ0)

]
(3.34)

where the bracketed term is again viable as a lookup-table operation, for a total
of 4 operations (addition and lookup in parallel→multiplication→square-root).
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Figure 3.12: A sketch of recursive spiral systems, where selected macroparticles are embedded with subsystems of individual
particles or smaller macroparticles. For clarity, only a starting portion (θ∼π/4) is shown.

Despite its simplistic distance formula, this method should be treated carefully,
as θ loses its intuitive physical interpretation.

For a slower, but more robust method, we can consider recursive spiral coordinate
systems, such that an individual macroparticle (e.g. in an especially high-velocity
or high-density region) is treated as a subsystem, as illustrated in Fig. 3.12. This
is an approach commonly used in astrophysics and computational physics to
reach O(NlogN) performance,40 and even pushing toward O(N) performance
when combined with the fast-multipole method.41

In this case, the embedded coordinate system need not be rotated, so long as the
spacing parameter b� b′ and the origin is shifted appropriately. This allows for
recycling of lookup tables and simplifies the appending of primed coordinates to

40Barnes and Hut, “A hierarchical O(N log N) force-calculation algorithm”.
41Roberts, “Hierarchical N -body calculations”.
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the base coordinates. It is also illustrated here that, as with the rectilinear case,
macroparticles and actual particles need not fall precisely along the r = θ line,
but can simply take LW potential values at the nearest gridpoint (or, for greater
accuracy, averaging nearest-neighbor gridpoints from an inner and outer r value
to ensure that potentials are acting on both hemispheres of the macroparticle
are accounted for).

For completeness, a reminder is in order that n̂ in Eq. (3.1) is dependent on the
direction between particles and not solely distance. This entails an additional
calculation for each pair which is quite costly compared to the Coulomb potential
(in which βs · n̂ is treated as zero).

Fortunately, the calculation of n̂ involves a repeated subtraction in spiral coordi-
nates:

n̂ =
1

d

[
(θ1 − θ0)θ̂ + ε(θ1 − θ0)φ̂+ (θ1 − θ0)r̂

]
(3.35)

which is also a drastic improvement over its Euclidean counterpart.

This spiral-coordinates approach and LW methods can be used independently;
they are presented here as complementary, with the former allowing scalable
precision, and the latter offering first-principles accuracy. Neither method is
strictly suited to beam dynamics, so we conclude this chapter with an informal
note on their broader applicability.

3.5 Applications

Spiral coordinates may prove viable in any simulation of interacting particles
with a large enough population to push computational limits. Other groups
have tested similar systems in terms of astrophysics, magnetohydrodynam-
ics, signal processing, and computational physics,42 with one group reporting
order-of-magnitude speedup improvements.43 In general, defining a grid with no
intersecting points may help alleviate smoothing and noise concerns known to
arise in typical rectilinear-grid methods.44

Liénard–Wiechert potentials have already been applied to nuclear and heavy-ion

42Wiengarten et al., “MHD simulation of the inner-heliospheric magnetic field”; Rabiner,
Schafer, and Rader, “The chirp z-transform algorithm”.

43Lee and Greengard, “The type 3 nonuniform FFT and its applications”.
44Birdsall, “Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with

neutral atoms, PIC-MCC”.

69



physics simulations.45 They have also been used as a flat-spacetime complement to
gravitational dynamics studies,46 which is discussed in Appendix B. In general,
these potentials are an uncontested baseline for charged-particle interaction
and radiation, but the full expressions for the potentials are not typical used
directly for dynamics calculation. This is understandable, especially historically
in terms of computing capability; but to probe intensity limits and pico–nano
scale wakefield dynamics, it is unlikely that it will suffice to continue treating
even low transverse 〈β〉 bunches classically.
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Chapter 4

Multipole Magnets

Here and in the final chapter, we present technical cases well-suited to the
nonlinear tracking. Space charge will no longer be discussed in depth, although
we will continue to draw upon the LW potentials and the covariant formalism
used thus far. In this chapter, we consider magnets with more than two sets
of dipoles (i.e. higher order than quadrupoles), which we informally refer to as
multipoles.

4.1 Field Gradients and Potentials

For symplectic, covariant tracking of bunches passing through bending (dipole),
focusing (quadrupole) and higher-order magnets, any relevant external potentials
must be derived, then trajectories can be calculated with a Hamiltonian. This
is in contrast with the Poisson-solver approach, where external fields can be
approximated numerically, and the dynamics are then determined by the resulting
Lorentz forces (although the covariant Hamiltionian Eq. [2.1] is also derived from
the Lorentz force equation).

The potentials for these magnets fortunately only have a longitudinal component
in their idealized form (Aα = Az). This form ignores alignment fringe effects,
but is well-suited for introducing the subject.

Equation (2.20) shows such a potential, but still lacks a clear definition for
Az itself. To remedy this, Wolski and Wille’s contour integral approach is
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particularly cogent.12

Here, the B field for a single pole of a multipole magnet is treated as only having
nonzero components in the radial direction and having a solenoid-like strength:

Br = Cnr
n−1∫ z

−z

∫ r0

0
Brdrdz =

NI

c
(4.1)

where the integral can be solved to find Cn. Here n denotes number of dipoles,
such that n = 2 is a quadrupole, n = 3 is a sextupole, and so on. Evaluating
over all poles (i.e. introducing a dependence on θ, which spans the transverse
plane) and converting to the customary Cartesian system yields

Bθ + iBr =
4πNInrn−1einθeiφ

crn0
(4.2)

By + iBx =
4πNInrn−1ei(n−1)θeiφ

crn0

=
4πNIn(x+ iy)n−1eiφ

crn0
(4.3)

where N is number of turns per magnet coil, r0 is the pole-tip aperture radius,
and φ is alignment of the Gaussian cylinder used to define Br such that φ = 0
and φ = π produce “normal” multipoles and φ = ±π/2 produces “skew” ones
(see Fig. 1.1). This leads directly (via Maxwell’s Equations) to

Az = −4πNIrneiφ

crn0

= −4πNI(x+ iy)neiφ

crn0
(4.4)

where the non-canceling units are current per c, which is consistent with energy
in Gaussian units.‡

1Wolski, Beam dynamics: In High Energy Particle Accelerators, pp20, 25–26.
2Wille, “The Physics of Particle Accelerators: An Introduction”, p57.
‡If a reference strength is needed, the quantity B0 = µ0NIn/r0, with I in amps and r0

in meters gives the field strength at the magnetic pole tip in Teslas. We also note that units
of amu·mm·ns are particularly useful in a beam physics context: despite the inconvenience
of making the initial conversions, the proton mass is approximately one, the proton charge
is roughly 10−5, and c is approximately 299.8; keeping these essential constants near unity is
more readable and helps avoid computational overflows when testing high energies.
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Figure 4.1: Comparison between Tracwin and a covariant integrator (see Eqs. [2.20] and [4.4]) for a 1 TeV bunch through
a 1100 mm sextupole (n=3), I = 20 A, r0 = 1 mm, B0 = 8 T. Undersized pole-tip aperture and exagerrated
field strength are used to emphasize transverse-space reshaping.

Figure 4.1 shows a benchmark comparison using this potential versus the com-
mercial software package TraceWin3 for a bunch passing through a sextupole
magnet (n = 3). A highly relativistic bunch along with unrealistically high field
strength and narrow aperture are used here to emphasize transverse shaping.
Good matching is also observed for nonrelativistic bunches and more realistic
machine parameters.

A noteworthy phenomenon arises for such z-only potentials: cursory examination
of Eq. (2.1)† shows that a covariant Hamiltonian has terms proportional to A2

z.
Recalling the definition

Pα = pα +
qAα

c
(4.6)

with an additional identity from Jackson:4

3Uriot and Pichoff, TraceWin.
†Reprinted here for convenience:

H =
1

m

(
Pα −

q

c
Aα
)(
Pα − q

c
Aα
)
− c
√(
Pα −

q

c
Aα
)(
Pα − q

c
Aα
)

(4.5)

4Jackson, Classical Electrodynamics, p585.
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c

√(
Pα −

q

c
Aα

)(
Pα − q

c
Aα
)

= mc2 (4.7)

we can then test the condition

Az = D
qpz

c
(4.8)

where D is an arbitrary scalar value, and we define a simple, non-rotating Pα as

Pα = (P0,Pr,Pz) = (p0, pr, pz +
qAz
c

)

= (γmc, γmβrc, γmβzc+
qAz
c

) (4.9)

where r is a the radially transverse axis, and z is longitudinal. Then, for example,
with D = 1/2 we have

P z = −q
c
Az (4.10)

this results in an (Az)2 dependent Hamiltonian, which can be converted to show
explicit velocity dependence as follows:

H =
1

m

(
P2

0 − ~P2 +
2qAz ~P
c

− q2A2
z

c2

)
−mc2

= mc2(γ − 1)− p2
r

m
− 4q2

mc2
A2
z

= mc2γ2

(
1− 1

γ2
− β2

r − β2
z

)
(4.11)

One can also note that, in general, the A2
z term is always attractive toward the

origin for ultra-cold bunches (i.e. where βr → 0).

The case for D = 1/20 is illustrated in Fig. 4.2 for realistic beam conditions
(βz � βr), where high βz and βr values lead to negative H values.

The more substantial consequence of this condition, in terms of multipole magnets,
is illustrated by setting Eqs. (4.8) and (4.4) equal, which yeilds:

r =

(
βzγmc

2n

DqIN

) 1
n

r0 (4.12)

which is illustrated in Fig. 4.3 for D = 1/20. For higher-order multipoles, this
critical radius value approaches r0 at lower βz. However, the opposite is true for
D > 1.
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In practical terms, as magnet current or number of coils is increased or as βz
is decreased, the critical radius is reduced. For cases where the critical radius
becomes less than the physical magnet radius r0, this may present an effectively
passive method for beam confinement.

On a related note: a peculiar trait arises for multipole magnets in cases where pz
is distributed about zero, as with two bunches upon collision or within a bunch’s
reference frame. In these cases, the transverse beam shaping behaves as with an
equivalent 2n magnet—that is, passing through a quadrupole potential in this
low pz frame will shape a bunch as if it is passing through an octupole.

More generally, Jackson’s covariant Hamiltonian is strikingly both nonlinear
and deterministic. We have seen here how its nonlinear dependence is non-
negligible on practical scales. The notion of nonlinearity as a fundamental
trait of electrodynamics contrasts with its typical role as an element of chaos,
randomness, or pseudorandomness; especially since we have operated under
the Lorenz gauge, the Minkowski metric, and Maxwell’s equations without
any modification. In particular, the manifestation of universally attractive or
respulsive (Aα)2 terms may be of interest beyond the realm of accelerator physics.

However, Jackson considers this Hamiltonian to be problematic for being a
Lorentz scalar that is not energylike and identically equal to zero, thanks to
Eqs. (4.6) and (4.7) and the identity pαp

α = mc2. To complicate the matter,

Goldstein’s similar Hamiltonian5 reduces to H = mc2

2 while Barut demonstrates
that the two definitions are identical in terms of dynamics.6 With Jackson’s
criticisms in mind, such covariant Hamiltonians should not be implemented
without careful benchmarking.

4.2 Octupoles and 4N Symmetry

For charged-particle or ion bunches, an octupole displaces the outermost particles,
reshaping a Gaussian transverse profile to a flattened or concave one.7 Inherent
to this flattening property is a four-fold rotational symmetry octupoles impart on
transverse beam distributions (specifically, symmetry along each x–y diagonal).

Because of this, it is standard practice to introduce octupoles in pairs with

5Goldstein et al., “Classical Mechanics”, p352.
6Barut, Electrodynamics and Classical Theory of Fields & Particles, p72.
7Tsoupas et al., “Uniform Particle Beam Distributions Produced by Octupole Focusing”;

Yuri, “Beam uniformization system using multipole magnets at the JAEA AVF Cyclotron”;
Folsom and Laface, “Beam dynamics with covariant hamiltonians”.
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respective quadrupoles so that their effects are only appreciable along one axis.
This counteracts the defocusing of off-center particles near the diagonals. Such
an approach is desirable when correcting high-order errors in beam-focusing or
beam-steering optics.8

With this single-axis flattening, however, a number of transverse and longitudinal
shaping phenomena are disregarded. This section reports on simulations of
such effects. We show in the following sections that x–y decoupled, alternating-
gradient, and dual-pulse multipoles can act on transversely symmetric 2D bunches
to induce a variety of shaping effects such as low-loss flattening, isotropic focusing,
transverse trapping, and longitudinal momentum biasing.

For a normal octupole, the potential term is

K4R(x+ iy)4 = K4(x4 − 6x2y2 + y4) (4.13)

What is noteworthy here is that the leading-order terms are both positive,
resulting in the observed four-fold rotational symmetry. This carries for higher-
order 4n-pole magnets (since i4n = 1), where the sign parity of like-order terms
ensures identical distributions along the x and y axes. For example, the potential
term for the hexadecapole is

K8(x8 − 28x6y2 + 70x4y4 − 28x2y6 + y8) (4.14)

To generalize, any 4n pole magnet could be considered “octupole like”, with all
other 2n pole magnets as “quadrupole like”. In the latter case, x and y profiles
may have symmetry about their own axes, but their profile shapes are always
dissimilar. For both types, as the number of poles is increased, the shaping effect
converges toward a circular 2D profile, with particles along the circumference
driven between narrowing cusps.

Before moving on to other effects, one general trait is worth considering: due to
the (r/r0)n dependence, magnets with increasing n require much higher currents
to achieve strengths comparable to dipoles or quadrupoles (except near the poles).
Conversely, this ratio dictates that the field-strength curve becomes sharper for
high-n magnets (Fig. 4.4). Because of this, higher-order 4n magnets can be
expected to have a virtual aperture effect, potentially acting as non-mechanical
beam scrapers.

8Meigo et al., “Beam flattening system based on non-linear optics for high power spallation
neutron target at J-PARC”; Ho et al., Octupole Correction of Geometric Aberrations for
High-Current Heavy-Ion Beams; Brinkmann and Raimondi, “Halo reduction by means of non
linear optical elements in the NLC final focus system”.
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N = 300.

4.3 Horizontal–Vertical Decoupling

Recent works have demonstrated how octupoles can be virtually decoupled in
a periodic lattice by using quadrupole and dipole inserts on either side of an
octupole.9 That is,

H4 ∝ K4(x4 −�
��

6x2y2 + y4) (4.15)

Figure 4.5 illustrates how a magnet with this idealized potential would improve
beam flattening. Since decoupled multipoles are not implemented into standard
beam-tracking software, these simulations were carried out solely with an in-
house Lie-algebra code, using rudimentary space-charge kicks on either side of
the magnet:

p = p0 +
C

2
erf

(
x

σx

)
(4.16)

with

C =
Iτ

6π
(4.17)

where I is beam current, τ is timestep, and the factor of 1/2 in Eq. (4.16)
reflects a halving of the magnet length and “erf” is the error function (this is

9Antipov, Nagaitsev, and Valishev, “Single Particle Dynamics in a Quasi-Integrable Non-
linear Accelerator Lattice”; Nagaitsev, Valishev, and Danilov, “Nonlinear optics as a path to
high-intensity circular machines”.
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an approximation which assumes a linear space-charge force with a sigmoidal
shape). This equation was verified to match Tracewin for Gaussian distributions
in drift spaces with wide enough apertures to avoid image effects.

A key trait of the decoupled octupole is its virtually lossless flattening: a coupled
magnet of the same field strength can only produce a similarly flattened profile
by ejecting a significant percentage of its outermost particles. For example, the
coupled octupole in Fig. 4.5a loses 1% of its particles to beyond 6σx, whereas
the decoupled octupole’s losses are .0.1%.

(a) (b)

Figure 4.5: Surface plot of Gaussian distributions (100k protons) passing through (a) coupled and (b) uncoupled oc-
tupoles, normalized to maximum bin occupancy. Beam and magnet parameters are otherwise identical:
a0 = 25 [mm], ε⊥ = 0.5 [π ·mm ·mrad], β⊥ = 1 [mm/(π ·mrad)], B0 = 3 T, KE = 4 MeV, I =
30 mA, and magnet length L = 500 mm.

As field strength is increased, focusing can also be observed in decoupled magnets
with a reduced loss rate (i.e. a reduction of σx by 50% with ∼7% ejecta for
decoupled magnets and &30% ejecta for coupled magnets).

However, the use of Eq. (4.15) in obtaining these results must be considered
an idealization, since in practice, the inserts required for virtual decoupling are
calibrated via the thin-lens approximation.

4.4 Alternating-gradient Octupole Arrays

While we have established that better flattening can be achieved with decoupled
octupoles than with unmodified ones such as in Fig. 4.5a; in either case, doing
so typically requires a significant dilation of the transverse dimensions.
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This can be improved if we consider a hypothetical multipole magnet lattice with
successive kicks of −9,−6,−3, 0, 3, 6, 9 T as one half-period (with a symmetrically
descending second half). It is important here to make the distinction that this is
an effective RF multipole, in that the bunch witnesses a vitually oscillating field;
but it is not an actual RF system, as the fields remain fixed in the lab frame to
avoid induced electric fields.

The results to follow consider such stepped-gradient 4n pole lattices with effec-
tive periods between 1 MHz and 1 THz, and with simulations carried out in
TraceWin.†

For lower magnet strengths (or stronger emittances), this effectively creates a
virtual aperture: Initially, a shell of the outermost particles is lost in the first
few cycles (which can be kept negligible by gradually ramping to the maximum
amplitude over, say, a dozen cycles). After a few hundred cycles (∼100 mm), the
beam distribution tends toward a conical shape and the loss rate drops effectively
to zero. This phenomenon holds for Gaussian distributions, but is more easily
observed with waterbag or KV distributions.

When accounting for space charge, the shaping effects are similar, with losses
occurring at a constant rate that increases with beam current. At higher field
strengths, losses can be eliminated altogether—transverse positions are effectively
frozen after an initial dilation. Tests performed for high beam currents (exceeding
1 A) show a similar, stable transverse fixation effect.

Figure 4.6 shows the longitudinal effects of trapping a 50 MeV electron beam.
With an initial σz′ of 0.002 mrad, the longitudinal momentum quickly dilates
symmetrically, as in Fig. 4.6a. Particles with high transverse momenta then
begin to recirculate with a bias in the positive z′ direction—Fig. 4.6b. A RF-
dependent rotation of the momentum distribution about the z′-axis also occurs.
Such recirculation and rotation effects may have a considerable bearing on the
velocity-depending LW potentials (both Coulombic and magnetic-dipole-moment
based).

Here, an extremely small pole-tip aperture is used to exaggerate the effect —
with more realistic parameters, an increase in momentum of a factor of 10 can
be observed, with a similar forward-weighting of the electron population toward
positive z′.

†Although constructing such a lattice at lower frequencies may be feasible, 1 THz effective
frequency upper limit is not a realistic parameter, but we consider it on the premise that such
high-frequency multipole magnets may be of interest in micro-scale acceleration studies. The
10 T magnet strength limit is also exaggerated to make the shaping effects more apparent.
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The cost effecting this z′ bias comes as emittance gains (proportional to beam
current). Here, the longitudinal emittance increases steadily, but transverse
emittance levels off quickly as the particles become trapped. We note that these
simulations were carried out solely in TraceWin; thus covariant space-charge
effects developed in the prior chapters are not accounted for.

At higher frequencies, hollowing can be observed, with the bunch collapsing
centrally as the magnet length is increased (see Fig. 4.7). Similar effects were
reported by Neuner, Stancari and Blaugrund.10 In this case, hollowing can be
seen as an extension of beam flattening—a beam becomes approximately flat
before it begins to populate the halo. Moreover, at comparable frequencies but
increased field strengths, focusing can be achieved with zero ejecta (which forgoes
hollowing and rapidly condenses the central region).

4.5 Double-Pulse Shaping

The aforementioned traits of alternating-gradient multipoles may be worth
investigating further, but the fabrication of such devices is likely to require
prohibitive stress tolerances or materials costs (though possibly realizable with
emerging technologies such as superconducting canted cosine-theta magnets).11

For a simpler design, an initial octupole can provide a brief high-strength pulse so
that a passing bunch arrives at the second octupole with a compacted momentum
distribution but before its position distribution has been significantly altered.
The second magnet then gives a longer, weaker pulse which effectively traps the
perturbed central trajectories. This results in a sharper beam flattening than
can be achieved with individual magnets, with an improvement comparable to
that shown in Fig. 4.5. In preliminary tests, this scheme induces negligible losses
when shaping to a bunch perimeter of ∼3σx. By increasing the initial pulse
strength, a width reduction to ∼2σx can be achieved with ∼1% losses.

10Neuner et al., “Shaping of Intense Ion Beams into Hollow Cylindrical Form”; Stancari
et al., “Collimation with hollow electron beams”; Blaugrund and Cooperstein, “Intense focusing
of relativistic electrons by collapsing hollow beams”.

11Wan et al., “Alternating-gradient canted cosine theta superconducting magnets for future
compact proton gantries”; Fajardo et al., “Designs and prospects of Bi-2212 canted-cosine-theta
magnets to increase the magnetic field of accelerator dipoles beyond 15 T”.

86



(a
)

(b
)

F
ig
u
re

4
.6
:

T
ra

n
sv

er
se

–
L

o
n

g
it

u
d

in
a

l
m

o
m

en
tu

m
-d

en
si

ty
m

a
p

p
in

g
fo

r
5

0
0

k
el

ec
tr

o
n

s
in

a
3

0
G

H
z

R
F

o
ct

u
p

o
le

a
t

(a
)

4
0

m
m

a
n

d
(b

)
4

0
0

m
m

;
a
0

=
1

[m
m

],
ε ⊥

=
0
.2

5
[π
·m

m
·

m
ra

d
],
ε ‖

=
0
.3

5
[π
·m

m
·m

ra
d
],
β
⊥

=
4

[m
m
/
(π
·m

ra
d
)]
,
β
‖

=
5

[m
m
/
(π
·m

ra
d
)]
,
B

0
=

1
0

T
,
K
E

=
2
5

M
e
V
,
I

=
5
0

m
A

.
T

h
e

ye
ll
ow

-r
ed

b
a

n
d

s
d

iv
er

g
e

in
th

e
ti

m
es

te
p

s
b

et
w

ee
n

(a
)

a
n

d
(b

)
in

to
a

re
ci

rc
u

la
ti

o
n

p
a

th
w

ay
w

ih
a

fr
o

n
t-

h
ea

vy
ch

ir
p

si
g

n
a

tu
re

.
C

a
lc

u
la

te
d

a
n

d
p

lo
tt

ed
w

it
h

T
ra

ce
W

in
.a

a
U

ri
o
t

a
n
d

P
ic

h
o
ff

,
T

ra
ce

W
in

.

87



(a
)

(b
)

F
ig
u
re

4
.7
:

B
ea

m
h

o
llow

in
g

a
n

d
su

b
seq

u
en

t
co

lla
p

se
o

f
electro

n
s

(1
0

0
k

,
G

a
u

ssia
n

)
in

a
1

T
H

z,
B
m
a
x

=
9

T
,

R
F

o
ctu

p
o

le.
P

o
le-tip

ra
d

iu
s
r
0

=
2
0

[m
m

],
ε⊥

=
0
.2

5
[π
·

m
m
·
m

ra
d
],
β
⊥

=
4

[m
m
/
(π
·
m

ra
d
)],
K
E

=
0
.7

5
M

e
V
,
I

=
6
2

m
A

.
M

a
g

n
ets

len
g

th
s

are
0
.3

7
5

a
n

d
0
.7

7
8

m
a

n
d

m
o

m
en

ta
are

sca
led

to
m

a
xim

a
o

f
2
0
.9

a
n

d
2
4
.5

m
ra

d
for

(a
)

a
n

d
(b

)
resp

ectively.
C

a
lcu

la
ted

w
ith

T
ra

ceW
in

. a

aU
rio

t
a
n
d

P
ich

o
ff

,
T

ra
ceW

in
.

88



4.6 Remarks

We have only taken a preliminary look into the beam-shaping capabilities of
high-order magnets. A more complete effort would simulate such devices in
realistic lattices using an LW-based space-charge code and a covariant integrator.
We have simply intended to highlight traits of multipoles which may merit
further inquiry (and which require a sound nonlinear framework for accurate
characterization).

An additional technique for fast simulation of multipoles by decoupling position
and momentum terms is provided in Appendix D.
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Chapter 5

Neutron Steering by Magnetic
Moment

5.1 Introduction

Neutrons, while uncharged, are susceptible to external magnetic fields thanks to
their magnetic dipole moment. In this case, the dominant potential is

U = −~µn · ~B (5.1)

where ~µn is the neutron dipole moment (−6.02 × 10−8 eV/T = −6.02 ×
10−12 eV/G) and ~B is an external magnetic field.† This is analogous to the term
~v · ~A arising in the relativistic Lagrangian for charged particles in external EM
fields. In practice, the dipole moment aligns either parallel or antiparallel to the
external field unless ~B is very small or rapidly changing.1 This is often referred
to as the adiabatic condition, which simplifies Eq. (5.1) to

U = ∓µn| ~B| (5.2)

The adiabatic condition here can be stated in terms of the Larmour frequency
ωL as

ωL = −2µn ~B

}
� |

~̇B|
~B

= ωB (5.3)

†This applies to any neutral particle/antiparticle, atom, or molecule.
1Vladimirskii, “Magnetc mirrors, channels and bottles for cold neutrons”; Kügler et al.,

“Nestor — A magnetic storage ring for slow neutrons”; Opat, Wark, and Cimmino, “Electric
and magnetic mirrors and gratings for slowly moving neutral atoms and molecules”.
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where it should be noted that ωB is the change in ~B witnessed by the neutron.
This may be defined alternatively as

∇| ~B| · ~v
| ~B|2

� γn (5.4)

where ~v is the neutron’s velocity and γn = 1.83×108 s−1T−1 = 1.83×104 s−1G−1

is known as its gyromagnetic ratio.2

When adiabicity is not ensured, spontaneous spin-flipping can occur. A simple
means of avoiding this is to construct a beamline with no drift spaces (e.g. a
dipole field running longitudinally throughout).

In fact, storage rings have been constructed using this approach to measure
the neutron lifetime.3 These largely rely on sextupoles whose coils are aligned
coaxially with the beam pipe, and their fields become circular near the transverse-
plane origin.† The need for this realignment can be understood in terms of our
covariant formalism by noting that the dipole-based potential is dependent on ~B
instead of ~B = ∇× ~A.

Thus, for neutrons, this translates to dipole-like bunch shaping from a coaxial
quadrupole, sextupole-like shaping from a coaxial octupole, and so on. For
covariant tracking, we then have

Pz
+1

= Pz

Py
+1

= Py +
τµn
mc

(
Pz −

µn
c
|Bz|

) ∂|Bz|
∂ry

Px
+1

= Px +
τµn
mc

(
Pz −

µn
c
|Bz|

) ∂|Bz|
∂rx

rx
+1

= ∇x

ry
+1

= ∇y

rz
+1

= ∇z +
τ

m

(
Pz −

µn
c
|Bz|

)
(5.5)

2Lee, Final report - accelerator physics research at Indiana University in 2012–2016 .
3Kügler, Paul, and Trinks, “A magnetic storage ring for neutrons”; Kügler et al., “Nestor —

A magnetic storage ring for slow neutrons”; Paul et al., “Measurement of the neutron lifetime
in a magnetic storage ring”.

†Such magnets are often referred to as “linear” which we will not use here to avoid with
the definition of multipole magnets themselves as nonlinear. For clarity, we could suggest
referring to conventional multipole magnets as radially coiled/aligned and these lengthwise ones
as longitudinally coiled/aligned. For now, we will use the terms coaxial and radial for brevity.

92



Where we have (seemingly haphazardly) substituted µn|Bz| for qAz. However,
these quantities do have equivalent units; and the elemental definition here is
the conjugate momentum:

Pα = pα +
µn
c
| ~B| (5.6)

where, barring magnetic monopoles, a scalar B0 is undefined.†

5.2 Confinement Considerations

Many notable traits of neutron storage rings relying on such coaxial-multipole
steering were derived by McChesney.4 We highlight a few of them here:

• For a normal-conducting ring (E ≈ 1 µeV), the required radius of curvature
is only ρ ≈ 1 m

• Intra-beam effects can be ignored (to an extremely high-density limit)

• Gravitational effects are minor, but non-negligible (needing a correcting
magnetic gradient of ≈ 1.7 T / m, which is about a tenth that needed
for the normal-conducting ring parameters listed above). Appropriate
compensation to the vertical-axis dipoles must be made.

• So long as a scalar B0 is applied, a time-dependent Bz(t) can theoretically
be used to accelerate or decelerate neutrons (that is, by alternating the
current in the coaxial magnets except for a “base” dipole). This makes
a standing-wave effect; similar systems emulating traveling-wave type
acceleration as with RF cavities may also allow for sophisticated phase-
space manipulation.5

†Alternatively, we can recast ~µ · ~B using the Liebniz Integral Rule (also known as Feynman’s
Technique), where

~µ · ~B = ~µ · (∇× ~A)

= ∇( ~A× ~µ) + ~A · (���∇× µ) (5.7)

which we can thus implement into a covariant integrator without defining ~B. For example, if
Aα = Az and ~µ = µx in a Cartesian system, we have

∇ · (Az × µx) = − ∂

∂y
Azµx (5.8)

4McChesney, “Neutron accelerator physics”.
5Summhammer, Niel, and Rauch, “Focusing of pulsed neutrons by traveling magnetic

potentials”.
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We will assume that most neutron storage applications would avoiding spin-flips.
However, it should be mentioned that the energy shifts involved in spin-flipping
can be leveraged for focusing of ultracold neutrons.6 They can also be used for
acceleration and flattening,7 where “nonabiatic” spin-flip devices in multiple
stages can ensure that the dipole moment remains aligned with the external field
and the resulting energy shift at each stage is “comparable to to the relative
energy change of charged particles within a single accelerator cavity”.8

An alternative means for focusing ultracold neutrons presents itself when test-
ing Eqs. (5.5). Although the coaxial multipole-shaping effects are otherwise
equivalent to those of n+ 1 radial multipoles, for magnet apertures approaching
the limit of the bunch’s transverse diameter, a superimposition appears of the
expected profile and its skew counterpart (Fig. 5.1). This effect is due to the
dependence on the absolute value of ~B. The preferential populating of the
overlapping areas then creates the focusing effect. Although the fabrication of
such strong narrow-aperture magnets is prohibitive, the required field strengths
do become more practicable for slower neutrons.

Once such a distribution is formed, a continued narrowing of the multipole aper-
ture can focus the beam further with negligible losses. Higher order multipoles
can also be used with a tradeoff of reduced losses for a less dramatic focusing
effect.

For such focusing, the average transverse velocity can be seen to increase,
especially in outlying particles. However, if the bunch was passed preemptively
through a weak radial multipole magnet, the dipole moments of the neutrons
furthest from the origin could be intentionally misaligned with the longitudinal
axis. This would have the effect of skewing all the neutrons’ dipole moments
toward or away from the beam axis. In this way, particles furthest from the
beam axis would receive weaker kicks from the subsequent coaxial magnets than
those nearest the center, allowing for a smoother focusing. The downside here is
that dealing with non-aligned dipole moments means sacrificing the simplicity of
U = ∓µn| ~B| and reverting to U = ~µn · ~B.

A basic application of such concepts could be the use of neutron storage rings
as a backup supply in spallation sources to improve reliability. In the case of
accelerator-driven nuclear transmutation or energy production9 no matter how

6Arimoto et al., “Demonstration of focusing by a neutron accelerator”.
7Alefeld, Badurek, and Rauch, “Observation of the neutron magnetic resonance energy

shift”.
8Weinfurter et al., “Inelastic action of a gradient radio-frequency neutron spin flipper”.
9Bowman et al., “Nuclear energy generation and waste transmutation using an accelerator-

driven intense thermal neutron source”.
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Figure 5.1: Transverse spatial profile for focusing of a neutron bunch through a narrow-aperture coaxial decapole. Pole-tip
aperture: r0 = 0.3 [mm]; decapole field strength Bd = 0.83 [T]; base dipole field strength B0 = 2.7 [T]
velocity 1 [mm/s]; longitudinal energy spread ∼5%; transverse momentum pr ≈ 2.5% · pz ; magnet length
L = 45 [mm]. Initial distribution is Gaussian in all phase-space dimensions.

well-condensed such reserve bunches were, they could only reinject a fraction
of the original spallation target’s isotropic neutron cascade (though possibly
enough to forestall a costly shutdown). Such a storage system would also be
limited by the neutron lifetime (about 13.5 minutes). Skirting this limit by
storing high-gamma neutrons would be ideal (possibly achievable by high-energy
deuteron stripping;10 though this would constitute an independent source).

In terms of collision experiments, probing the focusing limits of such high-energy
neutrons may be also be fruitful in terms of luminosity enhancement. Further
study of neutral-species beam physics may also shed light on the beam/bottle
discrepancy in neutron lifetime measurements.11 For example, it may be the
case that extremely low transverse velocities or minimized spin-flip probabilities
prolong the neutron lifetime.

10Serber, “The production of high energy neutrons by stripping”; Grand and Goland, “An
intense neutron source based upon the deuteron-stripping reaction”; White, “Forward physics
in PHENIX and ATLAS”.

11Wietfeldt and Greene, “Colloquium: The neutron lifetime”.
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5.3 Emitted Fields

In general, applying beam-physics principles to neutral species seems to rest on
the assumption their dynamics fall in a space-charge free domain. However, the
basic retarded vector potential of a neutral particle should not be neglected:12

~A =
1

R3

[
~µn(t−Rc )

· ~r
]

+
1

cR2

[
∂

∂t
~µn(t−Rc )

· ~r
]

=
µn[~n~r]

R3
+
µn2π[~n′~r]

λR2

=
µn[~n~r]

R3
+
µn|γn ~B|[~n′~r]

cR2
(5.9)

where R and ~r denote the source–objective separation vectors as with the Liénard–
Wiechert potentials, and λ = 2πc/ω depends on the dipole’s angular velocity
ω. This we relate to the neutron’s gyromagnetic ratio via |γn| = ω/| ~B|. The
co-rotating unit vectors ~n and ~n′ can then be defined in Cartesian terms as

~n = {cos [ω (t− r/c)] x̂ , sin [ω (t− r/c)] ŷ , ẑ}
~n′ = {− sin [ω (t− r/c)] x̂ , cos [ω (t− r/c)] ŷ , ẑ} (5.10)

A check of where the | ~B| term becomes dominant requires values in the range of
| ~B| = 10 T and r = 150 mm. For an average interparticle spacing of 1 nm and
| ~B| = 10 T, the magnitude for the | ~B| dependent term is thus several orders of
magnitude smaller.†

This discrepancy may leave one inclined to neglect the second term altogether.
However, in a densely populated bunch a each particle will also emit a potential
which augments the total magnetic field with an interaction term proportional to
particle count N . Moreover, this potential neglects ω2-dependent effects, which
prove to be non-trivial.

12Sarychev, “Electromagnetic field of a rotating magnetic dipole and electric-charge motion
in this field”; Tamm, Fundamentals of the Theory of Electricity .

†To briefly mention radiation: it is only dependent on the neutron’s rotation orthogonal to
direction of the magnetic moment. In other words, if the magnetic dipole axis is not orthogonal
to the axis of rotation, then we can restate Eq. (5.9) as

~A = µn cosα
~nz~r

r3
+ sinα

(
µn
~n⊥~r

r3
+ µn

ω

cr2
~n′⊥~r

)
(5.11)

where only the second term contributes to radiation. Thus, for a high-strength external field,
dipole moments may be considered fully aligned according to the adiabatic approximation, and
only the first term here is relevant. However, in a nonuniform field, the radiative effects should
not be overlooked.
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We will illustrate these effects shortly, but should first point out a distinguishing
trait for neutrons: µn and γn both carry negative signs. This gives the two terms
on the last line of Eq. (5.9) opposite signs, yeilding repulsive and attractive
potentials for the left and right terms, respectively.† Thus, in general, a neutral
particle with a positive magnetic dipole moment will behave quite differently
from that of one with a negative moment if acting on a charged object. However,
the forces between neutral particles are ultimately dependent on µ2, and thus
sign-agnostic.

For a more accurate approach, the Liénard–Wiechert-based pairwise fields can
be used:13,14

~Bij =
| ~Bextγn|2

4πc2R(1− ~β · n̂)
[~µn − (~µn · n̂)n̂] +

1

R3
[3(~µn · n̂)n̂− ~µn] (5.12)

where n̂ is the unit vector ~r/R as usual, and we have re-introduced the requisite
~β dependence.‡,15

Here we must consequently assume that a particle witnesses a total field ~Btot =∑ ~Bij + ~Bext (and that | ~Bext| must remain greater than |
∑ ~Bij | for dipole

moments to remain polarized along the beam axis).

This gives rise to a clear space-charge-like focusing limit. For example, if | ~B| is
not explicitly dependent on r (as in the case of a coaxial dipole field) we can find
a simple expression the force between two particles separated on the transverse
axis with ~β also in the n̂ direction

~Fij = ~∇(~µn · ~Bij)

= − µ2
n|γn ~Bext|2

R24πc2(1− βn)
r̂ + 3

µ2
n

R4
r̂ (5.13)

†Electrons share this trait, whereas these potentials are like-signed for protons. Of course,
these potentials are negligible compared to space charge.

13Griffiths, “Dipoles at rest”.
14Jackson, p413.
‡This expression can be derived from Jackson or Mognahan’s works, not Tamm’s, as was

used above. We risk confusing the two on the grounds that for Tamm’s is likely the more
practical, but the others’ are more robust.

Specifically, the Eq. (5.12) is the real part of an approximation about eiωr/c, where we have
assumed that this exponential term is approximately one. For greater distances and high
magnet strengths (e.g. > 10 T and > 10 mm) this is not valid and the full expression should be
used. Additionally, Heras and Mognahan’s works (listed below) provide the most generalized
models available.

15Heras, “Radiation fields of a dipole in arbitrary motion”; Monaghan, “The Heaviside-
Feynman expression for the fields of an accelerated dipole”.
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where ~µn · n̂ = 0. We can now complement our previous estimate for the potential
shown above: for an external field strength of approximately 10 T these terms are
balanced at a separation distance of 1.75 pm with each contributing a magnitude
of roughly 10 pN, where the field-dependent term dominates at greater distances
and we have ignored βn. If, on the other hand, βn were non-negligible in the n̂
direction the force becomes asymptotically large (while attenuating to a factor
of 1/2 if in the −n̂ direction).

The second term in Eq. (5.13) thus gives us a fair estimate for a theoretical
focusing limit for neutrons. What is perhaps more interesting is the resulting
self-correcting nature of the first term: any outlier particle witnesses a bunch’s
total field | ~Btot| ∝ N

∑ ~Fij where the attractive term can expected to have a
substantial effect at average separation distances much greater than the repulsive
term. Note that this is not the case for particles separated along the longitudinal
axis (e.g. ~µn · n̂ = 1): here there is a sole dependence on the repulsive term. This
means the overall effect of a strong coaxial dipole ~Bextẑ for ultra-focused neutrons
should be disk-like with sharp protuberances in the longitudinal directions.†

5.4 Remarks

While the theory and engineering for charged-particle acceleration is mature and
well-suited for high-energy applications, neutral particles may provide a means
for probing picoscale physics. Moreover, the acceleration of neutral particles,
though not discussed here at length, is also feasible.16 Although the accelerating
gradients involved are several orders of magnitude weaker than those required
for charged particles, the intra-bunch effects (analogous to space charge) are
not only much weaker, but appear to be inherently self-stabilizing. Thus, for
non-decaying neutral species (such as the hydrogen atom), experiments may be
feasible on a timescale of days or weeks instead of hours.

Considering practical applications: given the renewed interest in spallation-driven
reactors, a more robust theoretical framework for the spatial confinement and
precision acceleration/deceleration of neutrons is wanting. A first-principles
beam tracking approach is ideal, relying on the adiabatic approximation where
necessary and using Liénard–Wiechert-based potentials for interparticle effects as
in earlier chapters. Constructing a symplectic covariant integrator for the neutron

†Of course, this is a very simplified picture. For a neutron near the center of a densely
populated bunch, it may be that | ~Bij | � | ~Bext|, in which case both spin-flipping and gradual
changes to the direction of ~µn must be accounted for.

16McChesney, “Neutron accelerator physics”.
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is non-trivial, however, especially considering that terms arising proportional to
the change in dipole direction (∂~µn/∂τ) may not have an obvious solution and
may become compounded with spin-flipping effects.
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Appendix A: Proof for the
Symplectic Condition

While the proof in the text for Liouville’s theorem suffices to demonstrate that
the determinant of the Jacobian matrix |J | = 1 for a Hamiltonian system, the
more useful relation is the symplectic condition:

JTSJ = S (A.1)

We first note that this leads immediately to |J | = ±1. The Pfaffian can then be
used to explicitly rule out the −1 case

Pf(JTSJ) = det(J)Pf(S) (A.2)

det(J) = 1 (A.3)

To prove A.1 for any Hamiltonian system, we write J as

J = M~∇ (A.4)

Its time derivatives are then

J̇ =
dM

dt
~∇. (A.5)

The time derivative of the n-th component of M is

d

dt
M =

∂M

∂q1

dq1

dt
+ · · ·+ ∂M

∂pn

dpn
dt

(A.6)

then we can write
Ṁ = J~̇s (A.7)

and using ~̇s = S · ~∂H from Eqn. (1.15)

J̇ = J~̇s~∇ = JS~∇TH~∇ (A.8)
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Then we can calculate

d

dt

(
JSJT

)
= J̇SJT + JSJ̇T

= JS~∇TH~∇SJT + JS
(
JS~∇TH~∇

)T
= JS~∇TH~∇SJT + JS~∇T ~∇HSTJT

= 0 (A.9)

where we used ST = −S and ~∇T ~∇H = ~∇TH~∇. Thus JSJT is a constant, and
its value at time t = 0 must correspond to a matrix map M = I and in turn by
Eq. (A.4) we have J = I. Then

JSJT = S. (A.10)

This is not quite the desired result, but the additional steps are fairly straight-
forward:

JSJT = S

SJT = J−1S

JT = S−1J−1S

JTS = S−1J−1SS

JTSJ = S−1J−1SSJ

JTSJ = S (A.11)

where we have used S−1 = −S and S2 = −I. This demonstrates that any
solution of Hamilton’s equations fulfills the symplectic condition.
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Appendix B:
Liénard–Wiechert Potentials
and Gravity

Having cited Hilborn’s work17 earlier in the text, the formalism developed
throughout this thesis lends itself to generalizing his approach. In our notation
(and ensuring all potentials remain energy-like in Gaussian units) qG =

√
Gm,

with G being the gravitational constant, and assuming all Aα terms to be
attractive. That is, for the static case A0(qEM ) = A0(−qG). Then, using

∂rA0 = − ∂
∂rA

0 and Pα = P0 = m1c+ qA0

c and Jackson’s covariant equations of
motion as throughout the main text, we have:

∂Pα

∂τ
=

q1

moc
pi(−

∂A0

∂r
) =

qoqs
r2

r̂ = −GMsmo

r2
r̂ (B.1)

where the subscripts o and s denote objective and source particles, respectively.†

Then, for the dynamic case Aα =
(
A0(−qG), ~A(−qG)

)
with n̂ · βr = ±βr and

βφ = βθ = 0 (i.e. perfectly linearly colliding/repelling masses with no spins) and
reverting Eq. (2.4) to its simplified form via

Pα = pα +
q

c
Aα = mV α +

q

c
Aα (B.2)

17Hilborn, “Gravitational waves from orbiting binaries without general relativity”.
†In practice it can be helpful to remember that the momentum-dependent γ is affiliated

with the objective while LW-dependent β belongs to the source. Then, in this formalism, the
source “charge” is always negative, but the metric tensor and other dynamics are unaffected.
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where V α = (γc, γ~v), then one has

∂Pα

∂τ
=

q1

moc
(moVβ)∂αAβ

=
q1q2γ

r2(1− βr)
(1− β2

r )r̂ =
q1q2

r2γ(1− βr)
r̂

=
−GMsmo

r2γ(1− βr)
r̂ (B.3)

which implies an asymptotically increasing potential for relativistically colliding
masses, and where r̂ = n̂ (pointing from source to objective) is imposed by the
Minkowski metric (r̂ = −n̂ manifests a Euclidean metric).†,18

An interesting case arises for Pα ≈ qAα/c (i.e. pα=0), since, by Eqs. (2.4) and
(2.2)

∂Pα

∂τ
→ q2

1

moc2
Aβ∂

αAβ (B.4)

This corresponds to—for the electromagnetic case—the potential witnessed by
one bunch of 1011 protons at rest as another bunch approaches at 7 TeV to a
distance of ∼20 cm. In the gravitational case, this corresponds to a potential
witnessed by an equally populated 7 TeV proton bunch as it approaches a neutron
star of 1 solar mass at a distance of 20,000 km (taken in the rest frame of the
bunch, so that the neutron star appears to be the relativistically moving source
term). Here, the surviving expressions are instead

∂Pα

∂τ
≈ q2

1q
2
2

r3mc2(1− βr)2
(1− β2

r )r̂

=
G2M2

smo

c2r3(1− βr)2
(1− β2

r )r̂ (B.5)

where in the latter case, an (instantaneous) repulsive gravitational potential
occurs; this can be interpreted as a perturbative repulsive bump about pα = 0
in the bottom of the attractive gravitational potential well.

†Although the use of a Euclidean metric, and consequently Minkowski’s original formulation
xi = ict is typically treated as obsolete, here it has some pedagogical value, since for EM fields
~Exi=ct → ~iExi=ict, but ~Bxi=ct → ~Bxi=ict. Then, instead of an assumed minus sign associated
with Aα, we can use qG =

√
Gim. In this case, the gravitational fields are real in ~E and

imaginary in ~B, while the electromagnetic fields are the opposite. Such a metric may prove
more convincing to the student by highlighting a fundamental disparity in the field-tensor
definitions.

In any case, the potential-driven dynamics, are agnostic to these field definitions.
18Hehl, “Maxwell’s equations in Minkowski’s world: their premetric generalization and the

electromagnetic energy-momentum tensor”.
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This zero-pα condition is actually a limit, where βo → −1 (using an o subscript
here for the object-mass velocity) while βr is source velocity in the n̂ direction.

We can also expect a singularity for ∂Pα
∂τ at Pα = pα + qAα

c = 0. Here we can
solve for r in the rest frame of an objective low-mass particle approaching a
source mass (pα = moc, A

α = A0 + Aθ). The spin-velocity βθ · n̂ = 0 and the
incoming particle then acquires a tangential velocity which approaches c but is
attenuated by the spin of the source mass, such that βθ → βo − βs. This yields

r = −q1q2 (1 + βo − βs)
mc2

=
GMs (1 + βo − βs)

c2
(B.6)

where βs = 0 yields the Schwarzschild radius and βs → 1 yeilds the event-horizon
radius for a rotating black hole. The classical proton/electron radius can then
be found by the same method using the EM expressions for oppositely charged
particles q1 = −q2, and where the source mass is not relevant.

The use of the LW potentials in this context should be limited to cases where the
distance from the source is great enough to ensure negligible spacetime curvature
(non-GR regime), but they may prove tractable in terms of predicting near- and
far-field interactions for gravitational waves, particularly for many-body systems.

In the context of accelerator physics, it has been predicted that detection of
gravitational waves may be possible at the 100 TeV scale.19 However, in the
case demonstrated in Fig. 3.7 and Eq. (3.21), charged particles traveling at
near-parallel angles with 0.95 ≤ βz ≤ 0.99 do have a regime in which the electric
and magnetic-dependent Lorentz forces stemming from the Liénard–Weichert
potentials can be made to cancel (and thus electromagnetic space-charge effects
are nullified). Under such conditions, the detection of gravitational velocity
fields, whose total energy scales with γ6, may be more feasible.

Moreoever, a noteworthy phenomenon occurs for the case of P0 = −p0/γo.

Recalling that p0 = γomc = P0 − q0A0

c , and using the above definitions for qG
this results in the condition

r =
GMs

c2(γ2
o − γo)(1− βs)

(B.7)

19Palazzi and Fargion, “On gravitational radiation emitted by circulating particles in high
energy accelerators”.
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Figure B.1: Comparison of R = |r| and H amplitudes via Eq. (B.9). Here the objective is a proton and the source is
approximately one solar mass. Colinear velocity is taken in the proton’s rest frame as βz = 0.99999956,
corresponding to an energy of 1 TeV.

Building a Hamiltonian for this case is then straightforward:†

H =
1

m

(
(P0)2 − (~P)2 − 2

q

c
(P0A0 − ~P ~A) +

q2

c2

(
(A0)2 − (An)2

))
−mc2

=
1

mo

(
(p0)2 − (~p)2 + 2

q

c
p0A0 +

q2

c2
(A0)2

)
−moc

2

= −γ2
oβ

2
omoc

2 + 2
q

γ0moc
p0A0 +

q2

moc2
(A0)2

= −γ2
oβ

2
om0c

2 +
qoqs

R(1− βs · n̂)
+

q2
oq

2
s

c2R2(1− βs · n̂)2

= −γ2
oβ

2
omoc

2 − GmoMs

R(1− βs · n̂)
+

G2moM
2
s

c2R2(1− βs · n̂)2

= moc
2
(
γ4
o − 2γ3

o − β2
oγ

2
o + γo

)
(B.9)

where we have used Eq. (B.7) with R = |r| on the last line, and the objective-mass
Lorentz factor βo is relative to ~p, not p0.

†Here we re-use an approach similar to Eq. (4.11), building an LW-based Hamiltonian from
Jackson’s covariant Hamiltonian, as introduced in Eq. (2.1):

H =
1

m

(
Pα −

q

c
Aα
)(
Pα − q

c
Aα
)
− c
√(
Pα −

q

c
Aα
)(
Pα − q

c
Aα
)

(B.8)

where the second term reduces to −mc2.
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Figure B.2: R = |r| scaling contours for Eq. (B.9) for high source and low objective (i.e. conlinear and non-colinear)
velocites.

A zero-|H| point can then be seen to occur at

r =
GMs

(√
β2
oγ

2
o − 1

)
β2
oc

2γ2
o(βs − 1)

(B.10)

The utility of these Hamiltonians is demonstrated in Figs. B.1 and B.2, where a
proton with a kinetic energy of 1 TeV approaches a solar mass with only orbital
and colinear velocities, such that βs = βz. We calculate in the rest frame of the
proton, and find that a repulsive region occurs for high transverse velocity βo. In
general, a zero-point magnitude H requires a fictitiously small r for any stellar
objects (excluding extremely dense objects, such as neutron stars). However, as
the proton’s colinear kinetic energy exceeds 1 TeV, the threshold for H shifting
from attractive to repulsive falls at r values exceeding the solar radius.
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Appendix C: Covariant 3D
Multipole Magnetic Potentials

We provide here a derivation for 3D magnetic multipole potentials based on
Wolski’s 2D potential,20 starting from the cylindrical-coordinate version of
Eq. (4.4):

Az = −NIr
neiθn

ncrn0
(C.1)

where I and N are the respective coil current and number of turns, r0 is pole-tip
to center radius, r and θ are the respective radial and azimuthal position in the
transverse plane, and we have set the alignment parameter φn to “normal” mode
(0 or π) for simplicity. (Note that rneiθn reduces to (x+ iy)n.)

In Chapter 2, we posited Eq. (2.21) from Jackson’s covariant vector-potential
formalism.21 We derive it in full here:

∂Pα

∂τ
=

q

mc

(
Pβ −

q

c
Aβ

)
∂αAβ =

q

c
Vβ∂

αAβ

=
q

c
V αgαβg

βα∂βA
β =

q

c
V αδαα∂βA

β

= 4
q

c
V α∂βA

β

∴

∂βA
β =

VαVβ
4c2

∂αAβ (C.2)

where we have used the identities Pα = mV α + q
cA

α, V βVβ = c2, Vα = γ(c− ~v)

20Wolski, Beam dynamics: In High Energy Particle Accelerators, p16.
21Jackson, Classical Electrodynamics, p583.
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and δαα = 4. For the case of a z-only potential (i.e. Aα = Az), this becomes

∂Az
∂z

= −βzγ
4

(
∂Az
∂r

βr +
1

r

∂Az
∂θ

βθ + βz
∂Az
∂z

)
= − βzγ

β2γ + 4

(
∂Az
∂r

βr +
1

r

∂Az
∂θ

βθ

)
(C.3)

where we assume no time dependence, and in cylindrical coordinates ∂αAz =
−
(
∂Az
∂r + 1

r
∂Az
∂θ + ∂Az

∂z

)
. We can then guess that a z-dependent extension of

Eq. (C.1) will have the form

Az = −NIr
neiθn

ncrn0
exp

[zn
r

(βr + iβθ)
]

(C.4)

Thus, explicitly

∂Az
∂z

= nr−1(βr + iβθ)Az

1

r

∂Az
∂θ

= inr−1Az

∂Az
∂r

= nr−1Az −
z

r

∂Az
∂r

(C.5)

which can be reinserted into Eq. (C.3) to yield

r =
βrβzγz

β2
zγ + βzγ + 4

(C.6)

which, can then be inserted into Eq. (C.4) for equivalent r and z-dependent
solutions

Az(r, θ) = −NIr
neiθn

ncrn0
exp

[
n (βr + iβθ)

(
β2
zγ + βzγ + 4

)
βrβzγ

]
(C.7)

Az(z, θ) = −NIe
iθn

ncrn0

(
βrβzγz

β2
zγ + βzγ + 4

)n
exp

[
n (βr + iβθ)

(
β2
zγ + βzγ + 4

)
βrβzγ

]
(C.8)

where the predominant
(
βr
βz
z
)n

dependence in the latter equation indicates a

negligible z dependent contribution for βz � βr. The r dependent potential here
remains the simpler option for building a covariant integrator; either choice frees
us from violating the identity (in Gaussian units)

∂αA
α =

1

c

∂Φ

∂τ
+
∂Az
∂z

= 0 (C.9)
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when solving for r
+1

0 and P
+1

0 (as was done for brevity in the body text).

For completeness, we can take a new ∂Az
∂z from Eq. (C.8) and equate it to its

mate in Eq. (C.5) yields the alternative expression

r = −z(βr + iβθ) (C.10)

which can be used to simplify Az(z, θ) to

Az(z, θ) = −NIr
neiθn

ncrn0
(−z (βr + iβθ))

n exp

[
−
n (βr + iβθ)

(
β2
zγ + βzγ + 4

)
4βrβzγ

]
(C.11)

We also now have definitions of all three β components which can be used with
the original form of Eq. (C.4) to find

1

c

∂Φ

∂τ
= −∂Az

∂z
=

�
���

��
−∂Az
∂βz

∂βz
∂z
− ∂Az
∂βr

∂βr
∂z
− ∂Az
∂βθ

∂βθ
∂z
− ∂Az

∂r

∂r

∂z

= − 4βrβzγn

r (β2
zγ + βzγ + 4)

Az (C.12)

which can be combined with the ∂Az
∂z expression from Eqs. (C.5) to solve for a γ

solely dependent on β components. This leads to the solution

1

c

∂Φ

∂τ
= −NIr

neiθ(n−1)

zcrn0
(C.13)

or

Φ = −τNIr
neiθ(n−1)

zrn0
(C.14)

which is consistent with Gaussian units for electromagnetic potential. We now
have a complete solution for Aα with a linearly time-dependent Φ component.

This solution has a practical weakness: Eq. (C.4) does not fall off with large z
values, and assumes an unmoderated exponential growth/falloff in z. So without
an additional scaling factor such as e−z0 , it is primarily of use in calculating a
particle or bunch as it approaches or exits from the aperture a multipole magnet.
With a suitable scaling factor, one can also take z → |z| with the center of the
magnet as a maximum.

Alternatively, to calculate the potential falloff near the center of a multipole
magnet, we can change signs in the z dependent exponential term in our potiential:

Az = −NIr
neiθn

ncrn0
exp

[
−zn
r

(βr + iβθ)
]

(C.15)
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which has less forgiving intermediate solutions, but ultimately yeilds

Φ = −cτ
(
n

z
− 2nr

βr

)
Az (C.16)

In either case, a longitudinal scaling factor should also be introduced through
the middle of the magnet.
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Appendix D:
Position–Momentum
Decoupling Approximation

This appendix summarizes a non-covariant speedup approach presented in an
earlier works.22, † It is similar to the covariant method stemming from Eq. (2.28);
the results shown rely on a paraxial Hamiltonian and Lie-operator tracking, but
compatibility with covariant integrators is also discussed.

The starting point for this method involves taking particle count N as an invariant
as the position and momentum envelopes ρx and ρp evolve:∫

ρLxdxL =

∫
ρixdxi =

∫
ρLp dpL =

∫
ρipdpi = N (D.1)

where ρLx and ρix are the respective final and initial position densities, and likewise
for the momentum densities.

To exploit this identity, ρLx must be independent of pi. This can be accomplished
using the approximation23

pi ≈ −
α

β
xi (D.2)

where α and β are the well-known Twiss parameters. Unfortunately, this
approximation is only valid if the previous history of the beam is linear (thus

22Folsom and Laface, “Fast tracking of nonlinear dynamics in the ESS linac simulator
via particle-count invariance”; Folsom and Laface, “Approximating nonlinear forces with
phase-space decoupling”.

†The usage of “decoupling” here is not to be confused with that in Section 4.3, and the sources
cited therein, where it refers to eliminating terms with horizontal–vertical interdependence.

23Yuri et al., “Uniformization of the transverse beam profile by means of nonlinear focusing
method”; Meot and Aniel, “Principles of the non-linear tuning of beam expanders”.
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maintaining elliptical phase-space densities). Since we want an algorithm that
remains accurate for iterated nonlinear kicks (which develop irregular density
profiles), a new approximation is needed.

Proceeding under the constraint that the initial distribution is Gaussian in both
x and p, we can solve Eq. (D.1) for xi and pi.∫

ρ0
xdxi =

∫
ρipdpi (D.3)

1

2
erf

(√
2xi

2σxi

)
=

1

2
erf

(√
2pi

2σpi

)

which yields

pi =
√

2σpi erfinv

(
erf

(√
2xi

2σxi

))
= xi

σpi
σxi

(D.4)

This solution does produce a bigaussian phase-space ellipse, so is still unsuitable
for approximating pi with distributions of an irregular shape. We retain it as a
“naive” approximation for further comparison.

We continue by guessing that a solution exists for pi = f(xi) for irregularly
shaped distributions. Denoting these solutions as p∗ and ρ∗p for momentum and
momentum density, respectively, we have∫

ρ∗p(pi) dp
∗(xi) =

∫
ρipdpi (D.5)

where it is critical to note that p∗ is solely dependent on xi, while ρ∗p remains a
function of pi (and likewise for x∗ and ρ∗x). With the left-hand-side integrand
and integration variables decoupled, it follows (for both x∗ and p∗):

N = x∗ρ∗x =

∫
ρixdxi (D.6)

= p∗ρ∗p =

∫
ρipdpi

Exploiting particle-count invariance again, and squaring N , we can assert that

N2 = C = ρ∗xρ
∗
px
∗p∗ (D.7)

and thus
d

dxi
C +

d

dpi
C = 0 (D.8)
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We can then simplify, momentarily neglecting the d
dpi

terms as f(pi):

0 =
d

dxi
C +

d

dpi
C (D.9)

=
∂ρ∗x
∂xi

(
ρ∗px
∗p∗
)

+
∂p∗

∂xi

(
ρ∗xρ
∗
px
∗)+ f(pi)

=
∂ρ∗x
∂xi

(∫
ρipdpi x

∗
)

+
∂p∗

∂xi

(∫
ρixdxi

∫
ρipdpi

p∗

)
+ f(pi)

Then, dividing by
∫
ρipdpi, the f(pi) terms become zero† and we have:

0 =
∂ρ∗

∂xi
x∗ +

∂p∗

∂xi

1

p∗

∫
ρixdxi (D.11)

=
ρ∗x
∂xi

x∗ +
∂p∗

∂xi

1

p∗
x∗ρ∗x

=

(
∂ρ∗x
∂xi

+
∂p∗

∂xi

1

p∗
ρ∗x

)

By reusing Eq. (D.6), all pi dependence can be eliminated, leaving

∂p∗

∂xi
= −p∗ ρix∫

ρixdxi
= −p

∗ρix
Υx

,−2p∗ρix
Υx

(D.12)

where the second solution can be obtained integrating by parts, and, in the case
of a Gaussian initial distribution, the placeholder in the denominator is defined
as

Υx ≡
1

2
erf

(√
2xi

2σx

)
(D.13)

†This is done by selecting

∂x∗

∂pi
=

∂

∂pi

(∫
ρixdxi

ρ∗x

)
= 0

∂p∗

∂pi
=

∂

∂pi

(∫
ρipdpi

ρ∗p

)
=

∂

∂pi

(∫
ρixdxi

ρ∗p

)
= 0 (D.10)
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Thus, in contrast with Eq. (D.4), we have an expression where ∂p
∂x is no longer

constant.

We now check the following approximation:

p∗ ≈ −2 sinh

(
ρix
Υx

xi

)
D (D.14)

Where we normalize D using Eq. (D.4); setting to p∗ ≈ −pi near |xi| = 0 ,
leaving

p∗ ≈ 2 sinh

(
ρix
Υx

xi

)
xi
σp
σx

(D.15)

which can be shown numerically to agree with Eq. (D.12) for |xi| . 6σx.

At this point, the updated particle postition xL can be calculated using our
covariant approach, such that

Pα = γmc+ p∗ +
q

c
Aα (D.16)

which, being independent of pi, will be explicit for any potential when used in a
symplectic integrator.

For brevity, the following results use the noncovariant exponential Lie-operator
tracking (see Eq. (1.55):24

xL(xi, p
∗) = {exp [ −t : H (xi, pi) : ]xi}|pi→p∗ (D.17)

where t is elapsed time in the lab frame and the paraxial Hamiltonian for a
normal multipole magnet in the transverse plane is

H =
e

p

k ·Re(xi + iyi)
n

rn−1
0 n!

+
(pi)

2

2m
(D.18)

Here, e, p, m, and r0 are the fundamental charge, reference longitudinal mo-
mentum, particle mass, and magnet-pole radius, respectively; n = 3, 4, 5... for
sextupoles, octupoles, decapoles, etc; and k (in SI units) is in Teslas.†

In the following analysis, longitudinal momentum is normalized to 1 GeV/c and
r0 is set to 20 mm unless otherwise noted.

24Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics.
†We use Wolski’s scaling convention here, where momentum pi is also scaled by a cofactor

of q
p
, such that the Hamiltonian in Eq. (D.18) is unitless.
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In implementing Eq. (D.17), H must be calculated symbolically first for each
element. Then, p∗(xi) and xi are substituted in at each step, reducing the
bivariate xL(xi, pi) to a monovariate xL(xi, σx, σp), where σx and σp remain
constant for a given timestep.

Although an analogous x∗(pi) can be derived, it is not useful in practice.
Specifically, in calculating Eq. (D.18) in 2D for position and momentum –
xL(xi, yi, p

∗
x, p
∗
y) and pxL(x∗, y∗, px0, py0) – the resulting xL expression is de-

pendent on σx and σpx, while pL is dependent on σx, σy, σpx, and σpy, rendering
it computationally inefficient. Other schema involving alternate forms such as
pL(xi, p

∗) have been checked, but the following is found to be most stable, with
notable performance gains:

x1, y1, px1, py1 → xL(xi, yi, p
∗
x, p
∗
y), yL(xi, yi, p

∗
x, p
∗
y)

pxL(xi, yi, pxi, pxi), pyL(xi, yi, pxi, pyi)

↓
x2, y2, px2, py2 → xD(x1, y1, px1, py1), yD(x1, y1, px1, py1)

pxD(x1, y1, px1, py1), pyD(x1, y1, px1, py1)

(D.19)

where the D subscript denotes a drift space of at least five times the kick
length. This effectively limits the technique to a thin-lens approximation. Such
drift spaces can be reserved for incorporating space-charge effects, leading to
a comparable number of calculation steps using Eq. (D.19) versus a standard
nonlinear beam-physics code.

Figure D.1 compares the accuracy of multiparticle transformations following
Eq. (D.19) with and without using p∗. Also shown are a baseline with p∗ = 0
and a “naive” approximation, where p∗ ≈ pi from Eq. (D.4) is used in the low
|xi| limit of Eq. (D.15):

p∗ ≈ −xi
σp
σx

(D.20)

To emphasize visible discrepancies, the results shown have their σ values updated
after each timestep by taking a new standard deviation. However, if mean
absolute deviations are taken instead, an improved matching with the baseline
can be observed.

Both the naive and null-momentum approximations fail at σp & σx . Figure D.2
illustrates such a case for 2D Gaussian proton distributions with a kinetic energy
of 8 GeV passing through an octupole magnet. For this case, beam parameters
were derived relativistically from Twiss parameters and B0 by normalizing the
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(a) Error-function Approximation
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(c) Null-momentum Approximation

Figure D.1: Iterated use of Eq. (D.15) versus standard Lie transport results in 1D phase-space for 100,000 protons with
initial Gaussian distributions of σx = 10 mm, σp = 0.01 rad (a). Also shown are two alternate p∗

approximations: p∗ = xi
σp
σx

in (b) and p∗ = 0 in (c). The transport map consists of 200 octupole–drift

sections: B0 = 10 [T] (As earlier, this strength is exaggerated to visualize the tails of the distribution),
Loct = 0.1 [mm], Ldrift = 1.0 [mm]. Lie transforms are truncated to fifth order.

kinetic term in Eq. (D.18) to the beam’s average kinetic energy then verified
against Tracewin.
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Figure D.2: Iterated octupole transforms for 2D Gaussian bunches of 100,000 protons at 8 GeV: r0 = 15 [mm], ε⊥ =
0.25 [π · mm · mrad], β⊥ = 1 [mm/(π · mrad)]. The map consists of 400 kick–drift sections:
B0 = 12 T, Loct = 0.2 [mm],Ldrift = 2 [mm], for an integrated field strength of 0.211 [T/m2].
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Figure D.3: Raw memory-allocation cost for multiparticle simulations with k and L parameters matching those of Fig. D.1.
Number of particles: 10,000. Number of simulated segments: 5.

For the non-null p∗ approximations, performance improves with increasing parti-
cle count, with increasing magnetic pole count, and particularly with increased
order of Lie-transform series truncation (Fig. D.3). Since trajectory variations
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are negligible beyond a 6th-order truncation in most cases, the average reduction
in CPU overhead using Eq. (D.15) is roughly 15%.

Similar results were obtained for sextupoles, decapoles, and high-order magnets,
as well as with waterbag distributions, despite the assumption of a Gaussian
shape in deriving Eq. (D.15). At low energies (or specifically, any low

σp
σx

ratio), all
three approximations tested have essentially identical results, with performance
improving in ascending order for p∗ = (f [erf]); p∗ = −xi ·σp/σx; and p∗ = 0.

For all the approximations tested, trajectories only became unstable in cases
where the momentum values exceeded ∼100σp. This leaves only the necessarily
large drift–kick ratio requirement as the major limitation of this method.
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