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1.1 Selected symbols and abbreviations 

ap Depth of cut  mm 

AD True chip area  mm2 

Ae Theoretical chip area mm2 

be Theoretical chip width mm 

CT Constant in Taylor’s tool life equation - 

f Feed mm/rev.

H Colding constant -

he Equivalent chip thickness mm 

hm Chip thickness mm

K Colding constant -

kA Cost of tool  € 

kB Cost of material € 

kCP Machine cost (running) €/h

kCS Machine cost (idling) €/h

kD Salary cost for operators €/h 

L Colding constant -

lSaD Active cutting length 

M Colding constant -

m Exponent in Taylor’s tool life equation - 

MRR Metal removal rate cm3/min 

N0 Batch size units

N0 Colding constant -

nop Number of operators units 

p Exponent in Taylor’s tool life equation - 

q Exponent in Taylor’s tool life equation - 

qQ Rate of quality losses - 

qS Rate of time losses -
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qrem Rate of remaining time - 

qtct Rate of tool changes - 

rε Nose radius mm

T Tool life min

t0 Cycle time min/part

te Tool engagement time min/part 

tpb Production time per part min/part 

trem Remaining time incl. workpiece change  

and tool transportation min/part 

TLact Tool life in Coromant turning version 1  

tool life model  min 

TLnom Nominal tool life in Coromant turning 

version 1 tool life model min 

Tsu Set-up time per batch min 

Ttct Tool change time min 

ttct Tool change time per part min 

URP Production Capacity Utilization - 

V Volume of work material to remove cm3 

vc Cutting speed m/min

vca Coromant turning version 1 tool life  

model constant - 

vcb Coromant turning version 1 tool life  

model constant - 

vcc Coromant turning version 1 tool life  

model constant - 

z Number of cutting edges per insert units εerr Model error %κ Major cutting angle degrees 
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1.3 Abstract 

One of the most important production processes in industry is metal cutting. If a 
product is not a machined metal part, it is likely that the mould, die and tools used to 
produce the product or parts of the product are machined. The tools, machines and 
time spent add to the cost of the finished product and both industry and academia 
spend considerable effort in increasing efficacy and minimizing the environmental 
impact of these processes. 

Models are often referred to both by scientists and industry. These models can help 
understanding and also predict the outcome of a process and the outcome of intended 
improvement measures. Models can also be used to minimize empirical testing and 
“rule of thumb,” thus allowing for shorter lead times and a more reliable production 
system. 

One area of modelling in metal cutting is tool life and wear modelling. Today, tool 
providers support customers with digital software, suggesting tools for a given 
operation, process data and expected tool life. To facilitate this support tool life models 
are used, mainly those based on the Taylor equation and the Colding equation. 

This research aims to investigate how one should model tool life for varying cutting 
data. Empirical data and modern computational power have been used to validate and 
optimize the process of modelling tool life. Commonly used tool life models have been 
investigated and the Colding model is suggested for tool life modelling. The process of 
collecting empirical input data to minimize the time and material consumed have also 
been investigated. 

The author also presents a methodology based on a combination of tool life models 
and cost modelling as decision support for the selection of tools, workpiece material 
and process parameters. This approach can be used to minimize tool consumption, 
time consumption and reduce production costs. 

 

Keywords: 

Metal cutting, tool life, tool wear, cutting data, process cost, part cost, Colding model. 
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1.4 Populärvetenskaplig sammanfattning 

Svensk industri står för 20 procent av Sveriges BNP, vilket skapar mer än 17 % av 
sysselsättningen i landet. Utöver detta bidrar industrin med skatteintäkter motsvarande 
185 000 arbetstillfällen inom offentlig förvaltning. Tillsammans med de drygt 830 000 
personer som har arbete knutet till svensk industri så skapas sammantaget mer än en 
miljon arbetstillfällen i Sverige (SCB, Teknikföretagen 2019) genom dess verksamhet. 

En av de viktigaste produktionsmetoderna inom industrin är skärande bearbetning av 
metalliska material. Förmågan att framgångsrikt bearbeta dessa material till 
komponenter som exempelvis kugghjul, ventiler, verktyg och turbinblad är en 
övergripande förutsättning för vår utveckling och vårt välstånd. Dessa komponenter 
ingår också i annan tillverkningsutrustning för bl.a. livsmedel, läkemedel, trävaror etc. 
Skärande bearbetning av metalliska material är en relativt dyr tillverkningsprocess och 
kostnaden för bl.a. verktyg, arbetstid och maskiner måste till slut slås ut på varje enskild 
tillverkad detalj. Både akademi och industri arbetar aktivt med forskning och utveckling 
för att höja produktiviteten och minska resursanvändningen för att möta en alltjämt 
ökande global konkurrens.   

Olika typer av teoretiska modeller används inom skärande bearbetning för att dels öka 
förståelsen för själva processen och dels för att förutsäga vad som händer i processen 
under olika förutsättningar. I dag erbjuder flera verktygstillverkare digitala hjälpmedel 
som kan rekommendera ingenjörer och tekniker val av verktyg och processparametrar 
för olika applikationer. För att digitala hjälpmedel skall kunna användas på ett 
värdeskapande sätt inom området krävs bl.a. modeller som kan beskriva verktygets 
livslängd under olika förutsättningar och vid olika val av processparametrar.  

Redovisade resultat i denna avhandling presenterar flera olika modeller för att beskriva 
verktygens livslängd. Ett resultat från arbetet är att författaren rekommenderar 
användning av en modell framtagen av Bertil Colding för att uppnå bästa tillförlitlighet. 

Avslutningsvis presenteras en metodik där Coldings modell kombineras med en 
kostnadsmodell som tar hänsyn till kostnads- och prestandardparametrar för analys av 
utfall för olika val av verktyg och material samt olika val av processdata. Metoden kan 
ligga till grund för strategiska och hållbara beslut för flera aktiviteter under realisering 
av en produkt från konstruktionsstadiet fram till reguljär tillverkning. 
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2 Introduction 

The industrial revolution is considered the most important event in the history of 
humanity since the domestication of animals and plants [1]. Our way of life is defined 
by developments in recent centuries in transportation, agriculture, information 
technology, medicine etc. resting on the shoulders of industrial production. As the 
industrial revolution progressed, the development of the mass production of steel 
followed, and  the ability to form steel using machine tools [2]. The global production 
value of machine tools was estimated to US$81B during 2017 [3] and it has been 
estimated that over 80 % of all manufactured products have been machined at some 
point before they are completed [4]. Furthermore, it has been estimated that machining 
expenditure contributes to approximately 5 % of the GDP in developed countries, 
while in the EU alone (calculated for 2016 GDP data) it translates to approximately 
US$1010B per year and in Sweden US$24B [5, 6]. Models to describe, understand, 
predict and improve metal machining have been used and developed for over a century, 
and this area of research is still more relevant than ever [7]. As industry is constantly 
looking to improve its production processes, reduce costs and add value, data is 
collected at all stages and often analysed using models. 

The focus of the work presented in this thesis is the modelling of tool life in metal 
machining and the use of these models to improve production processes. Mainly, it is 
the Colding model [8] that has been investigated but other models are also presented. 

2.1 Background and objective 

When a tool is used to remove unwanted material to produce a desired geometry of a 
product the tool becomes worn. At some stage the tool is considered worn out and it 
has to be exchanged [9] and the manufactured part has to carry part of the cost of the 
worn out tool. If removing material with a higher degree of material removal per time 
unit, the tool will most often wear faster, and if the material removal rate is decreased 
the tool will most often last longer [9]. On the other hand, it is not only the cost of 
tooling that adds to the total cost of the produced part but also to be considered is the 
cost of machine operator(s), machine time, time lost when changing tools etc. as 
visualized in figure 2.1. Theoretically, there is an optimal way of producing a specific 
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machined part with regard to the cost of removing unwanted material. Micro-economic 
models have been developed that can be used in metal cutting to describe the 
relationship between cutting data, tool life, and processing costs [10]. To use this type 
of economic model a robust tool life model is needed to feed in information on selected 
process parameters and their effect on tool life. 

The main objective of this work is to investigate different tool life models by using 
empirical data and modern computational power and software to further improve 
testing, modelling and the publishing of cutting data. The main aim is to reduce 
monetary losses due to poor cutting data and tool selection in production and to reduce 
unnecessary environmental loads, by improving the models being used. 

 

Fig. 2.1: Some factors influencing part cost in machining as a function of material removal rate. 

2.2 Hypotheses 

The following hypotheses were established for this study: 

1. It is possible to investigate the validity and further improve existing models for 
cutting data recommendation and optimisation using empirical data and 
today’s computational power. 

2. Experimental testing and thus consumption of resources can be reduced 
without loss of accuracy when creating a robust tool life model. 

3. Tool life models combined with cost models can be used as cost decision 
support for selecting tools and optimal cutting data. 
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2.3 Research questions 

Based on the hypotheses presented the following research questions can be formulated: 

RQ1. Is it possible to investigate the validity and further improve existing 
models for cutting data recommendation and optimisation using 
empirical data and today’s computational power for multiple 
commonly used work materials? 

RQ2. How should experimental testing be conducted to ensure an accurate 
tool life model while limiting the resources required to conduct these 
tests? 

RQ3. How can tool life models be used to assess selection of cutting tools and 
their performance based on part cost? 

2.4 Scope and limitations 

The author’s ambition is to present theories for tool life modelling in metal cutting for 
the entire working range of a tool. The theories should also apply to multiple 
commonly used workpiece materials. Since a considerable number of different 
combinations of tool material, tool geometry, workpiece material, cutting method etc. 
exist, it is impossible to validate the theories presented in this thesis, for all 
combinations. Thus, only selected machining tests and models are discussed and 
validated. The following delimitations were employed in this research: 

o All empirical data used and discussed is based on turning with round or 
pointed inserts. 

o Tool wear is briefly discussed but not studied in this work. Whenever tool life 
is referred to, the author assumes the existence of a pre-defined wear criteria. 

o Work material is also only briefly discussed in this work and empirical data is 
limited to machining in steel, stainless steel and cast iron. Tool deterioration 
and the interaction between tool material and workpiece material is not studied 
in depth. 

o Machine limitations such as torque, power and rotational speed constraints are 
not included in the models presented, nor are vibration, chip formation, shear 
plane deformation or process dynamics discussed. 

o Cost modelling is limited to only one cutting operation. Several cutting 
operations or machining centres, with the possibility of existing bottle necks 
or limited machine utilization, are not included in the model presented. 
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2.5 Outline of the thesis 

The outline of the appended publications is presented in figure 2.2. The outline is not 
in chronological order but rather in a logical order. Some of the work has been done in 
parallel, and some work published later during the PhD work, should we now know 
with more acquired knowledge, have been performed at an earlier stage. The author’s 
aim is that chapter three and four should stand by themselves, not only as a report of 
previous work in the area and work conducted by the author, but more importantly 
should be seen and serve as a guide to tool life modelling. 

 

Fig. 2.2: Outline and contibution of the appended publications. 
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3 Modelling tool life 

Two basic aims of modelling machining processes can be distinguished: 

o Modelling as an engineering necessity. 

o Modelling as a scientific challenge. 

Still, the primary aim of any modelling in machining operations is to develop a 
predictive capability for machining performance, in order to facilitate the effective 
planning of machining operations to achieve optimum productivity, quality and cost 
[11]. 

The earliest known work is that of Taylor, in which Taylor and his colleagues studied 
machining in a workshop environment to gain a greater understanding of the 
machining process. This pioneering work set the stage for research in machining 
processes up to today. Taylor noted that sub-optimization and “rule of thumb” 
hindered development in machine shops and published guidelines for use in 
workshops, based on systematic experiments. Some of these guidelines could be 
presented in mathematical expressions such as the Taylor equation. This equation 
relates cutting speed and tool life in machining carbon steel with high speed steel tools 
[9]. 

Five different types of models are used in the modelling of metal cutting: analytical, 
numerical, empirical, soft computing and hybrid models, see figure 3.1 [7]. Each type 
of model has its advantages and disadvantages when used to represent and, more 
importantly in industrial applications, optimize cutting processes. As new types of 
models have been developed, previous models are most often not obsolete. Today all 
types of models can be found in use in academia and industry and new models are 
constantly being added to the available tool box. 
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Fig 3.1: Models used in wear and tool life modeling of metal cutting [9, 12-15]. 

3.1 Metal cutting 

The cutting process according to Ståhl [16] may be defined as: 

“Cutting processes are characterized by use of a cutting edge that creates deformations 
leading to parts that are removed from the workpiece being severe from it in the form of 
chips.” 

Metal cutting, as we recognise it today, started around 1900 with machine tools with 
their own individual electrical power source and the development of High-Speed Steel 
(HSS) and later Hard Metal (WC-Co) and tool coatings. Along with the development 
of more efficient cutting tools, the machines have evolved with more advanced 
computer-controlled control systems and later integration of the product development 
and design phase into the production process, through the introduction of Computer 
Aided Manufacturing (CAM). Today, industry is moving towards a higher degree of 
digitalization of interconnecting machines, warehouse management, logistics, sales etc. 
with the aim being to further optimize production [17]. 

Machining processes can mainly be divided into several methods such as turning, 
milling, drilling, boring, shaping, broaching and reaming. Depending on the method, 
one or several cutting edges are engaged to work on the workpiece material, 
continuously or intermittently. Nevertheless, from the perspective of the cutting edge 
all cutting methods are equivalent with varying geometries and loads. The work 
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presented in this thesis focuses on longitudinal turning due to its relatively simple 
geometries, while avoiding the challenges of measuring when using rotating tools. The 
results and discussions presented here can, with a decent amount of care, be 
extrapolated to other machining methods. 

Machining processes are based on individual cutting edge(s) locally shearing the 
workpiece in such a way as to remove chips. For turning, figure 3.2, the main factors 
governing Metal Removal Rate (MRR) are the cutting speed vc, feed f and depth of cut 
ap, Eq. 3.1. Cutting speed vc, feed f and depth of cut ap are generally referred to as 
cutting data. When machining a part, a pre-defined amount of material should be 
removed producing a part within given tolerances and quality demands. The cutting 
data, giving the MRR, will thereby govern the time needed to complete each machining 
operation(s), known as cycle time t0. 𝑎௣ ∙ 𝑓 ∙ 𝑣௖ = 𝑀𝑅𝑅 3.1 

 

Figure 3.2: Left side of the figure presents a typical setup in a lathe and the right side of the figure 
presents the parameters vc, ap, and f. 

In addition to cutting data, figure 3.3 presents several different distances and angles 
needed to fully define any turning operation. 
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Figure 3.3: Commonly used dimensions and angles for describing the tool geometry in relation to the 
workpiece during conventional turning operations, adapted from Vieregge [18] as later published by Ståhl 
[16]. 

3.2 Machinability 

For those working with metal cutting, machinability is a commonly used and 
understood concept. Still, it is rather hard to define in quantitative terms. Ståhl [16] 
defines machinability as: 

“The behaviour of the workpiece material during the cutting process and the effect this 
has on the process results obtained.” 

Ståhl’s definition can be considered as a holistic view of machinability, whereas Shaw 
and Cookson [19] lists three main aspects of machinability related to the behaviour of 
the tool and the workpiece interaction; tool life, surface finish and power to cut. A 
fourth and fifth parameter, chip control and environmental factors could also be added 
and aspects of machinability is presented by Ståhl [16] as: 

o Tool deterioration. 

o Surface quality and surface integrity. 

o Energy consumption and cutting forces. 

o Chip form and chip behaviour. 

o Environmental factors. 

It can be seen that it is not only the workpiece material that is in focus with regard to 
machinability, but also the tool material, tool geometry, cutting data, machine setup 
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etc. and how these factors cooperate, which define good or poor machinability. 
Furthermore, machinability must be considered in relative terms, good or poor as 
compared to a different existing or future process. Nevertheless, the link between tool 
life and machinability is, and has, eluded researchers in metal cutting for decades [20-
26].  

3.3 Tool deterioration 

Tool deterioration is caused by the loads acting on the tool and influencing the tool 
properties, hence the tool’s ability to withstand the acting loads. A tool can either 
deteriorate in an unpredictable manner leading to a catastrophic failure [27] or in a 
controlled predictable manner. Unpredictable tool deterioration should, if possible, 
always be avoided and the work presented in this thesis focuses on predictable wear. 
Figure 3.4a shows predictable wear with flank wear, notch wear, crater wear and figure 
3.4b shows an unpredictable tool failure wherein parts of the tool are lost.  

 

Figure 3.4: Worn Cubic Boron Nitride (pcBN) tool after machining stainless steel 316L taken using 
Alicona Infinite Focus 3D microscopy. a) Predictable wear b) unpredictable tool failure. 

Tool deterioration is a complex process, wherein several different wear phenomena or 
mechanisms occur simultaneously. As wear progresses, the loads acting on the tool also 
change and it is not uncommon that the loads on the tool decrease as a Built Up Layer 
(BUL) forms on the tool edge, changing the geometry for some part of the tool life. It 
has also been reported that for some cases a Tool Protective Layer (TPL) can form, thus 
prolonging the tool life [28]. As wear progresses, loads acting on the tool increase and 
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the tool wear rate increases. According to Ståhl [29] tool deterioration is the sum of 
mechanical loads, thermal loads, tribological loads, and chemical loads, figure 3.5.  

 

Figure 3.5: Cutting tool deterioration adopted after Ståhl [29]. 

Several different types of wear have been reported in literature and have been 
compacted into figure 3.6 adopted after Schultheiss [30]. 
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Figure 3.6: Different types of tool deterioration adopted after Shultheiss [30]. 

3.4 Machining economy 

The manufacturing cost of machined parts is determined by several different aspects, 
such as the material removal rate, tool costs, tool life, machine costs, set-up time and 
tool changing time, equipment handling time, personnel costs, facility costs, 
downtimes, quality rejections, wastes, and speed losses [10]. There are different 
approaches to calculating the manufacturing costs of machined parts, dependent on the 
level of detail and area of use. In Shaw and Cookson [19], Gilbert´s model from 1952 
is presented, providing a method for economic estimations of machining based on 
direct labour and machine costs, tool changing costs, and tool costs per part. A broader 
perspective of the manufacturing costs, also involving system costs and performance 
related cost, is presented in Colding [31]. The estimation approach was later developed 
to include more detailed information with regard to the machining process and is 
presented in [10]. 

Modelling costs can be used as decision support for machining strategies. And 
comparative studies to evaluate cutting tools and selected cutting data are extensive and, 
include among others [9, 31-33]. Windmark et al. [34] present a principle on a general 
Cost Performance Ratio (CPR) assessment, incorporating an extensive cost model 
including several performance parameters for the evaluation of equipment investments. 
This model served as the foundation for the development of the Tool Cost Performance 
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Ratio model presented in this thesis. Equation 3.2 presents the cost performance ratio 
related to direct part cost and equation 3.3 presents the cost performance of the factor 
group investigated (e.g. machining centre, operator cost or tool cost) [34]. Where CPRk 
is the direct quote between the reference part cost kRef and the new part cost ksys:X with 
the new conditions (new technologies).  The cost performance ratio CPRFG is the quote 
between the cost for a specific Factor Group (workpiece material, tooling, machine tool 
etc.) for new condition kFG:X and the cost for the existing reference Factor Group kFG:Ref 

for a cost neutral situation when both have the same cost (kRef = ksys:X).    

 CPR௞ = 𝑘ோ௘௙𝑘௦௬௦:௑          𝑤ℎ𝑒𝑟𝑒 𝑘௦௬௦:௑ = 𝑘௞௡௢௪௡ 3.2 

 CPRிீ = 𝑘ிீ:௑𝑘ிீ:ோ௘௙       𝑤ℎ𝑒𝑟𝑒 𝑘ிீ:ோ௘௙ = 𝑘௦௬௦:௑ 3.3 

3.5 Why model tool life? 

Cutting data and tool life can be optimized with two specific aims: to maximize MRR 
or minimize part cost. Therefore, when optimising cutting data one should always ask 
in what respect it should be optimized. Figure 3.7 illustrates how tool life modelling 
can be used from design to production and its value helping with decision making. 

 

Figure 3.7: Different areas from design to production where tool life modelling can be used as decision 
support. 
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Modelling cutting data and tool life to maximize MRR has been discussed by Taylor 
[9] and later by Colding [8], who also included feed and depth of cut as parameters. 
The method is based on balancing MRR, tool wear and the time it takes to exchange 
the worn-out tool using empirical based models. 

Modelling cutting data and tool life for minimizing cost is far more complex. A large 
number of factors has to be taken into consideration and a control volume has to be 
clearly defined. Hägglund [32] has presented extensive work in this area presenting a 
cost graph for minimizing costs including fixed and variable costs from the cutting 
process, directly during cutting and indirectly when the tool needs replacement. Factors 
such as costs based on hourly rate, tool and tool replacement costs, energy costs, 
machine tool maintenance costs, machine tool depreciation, operator and supervisor 
salaries, coolant media costs etc. are all affected by the cutting data selected. The 
methods and models presented by Hägglund also deal with constraints such as RPM, 
surface finish, torque and power constraints. Ståhl et al. [10, 35] has presented a model 
for optimizing cutting data with regards to costs, also taking into account losses such 
as rejections, downtimes and production rate. 

When modelling tool life and cutting data one should always consider the main aim of 
the modelling when selecting a modelling approach. Some typical examples are: 

o Presenting cutting data of a portfolio of tools in catalogues or digital software. 

o Optimising cutting data. 

o Understanding the influence of different workpiece material selection. 

o Comparing different tools with regard to cost and performance. 

o Balancing tool changes. 

o Analysing data from previous production to predict future outcome. 

o Academic interest in a deeper understanding of the cutting process. 

3.6 Physics-based models 

The physics-based analytical methods and models developed provide a strong 
foundation for quantitative modelling of machining processes. Typical use is in 
predicting cutting forces, chip geometry, tool-chip contact length, average stresses, 
strains, strain-rates and temperature modelling. One disadvantage of the analytical 
models is that they are often limited to 2-D analysis although some 3-D models exist 
[7]. 
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Wear has been described by the Archard wear equation, and is based on sliding wear 
based on the theory of asperity contact [12]. A more complex model has been developed 
by Usui and Shirakashi [13] which also takes into account chip formation and cutting 
forces. Although these models are based on actual physical parameters, experimental 
data is needed and so the models can be considered hybrid models based on one or 
more experimental constants. Figure 3.8 presents Usui and Shirakashi’s prediction 
system for crater and flank wear. 

 

Figure 3.8: Prediction system of crater and flank wear in Usui and Shirakashi’s study [13]. 

Huang et al. [36, 37] published a methodology to analytically model flank wear and 
crater wear rate, as a function of tool/workpiece material for finishing hard turning 
using Cubic Boron Nitride (pcBN) inserts. The models proposed are based on the sum 
of the contribution from abrasive, adhesive and diffusion wear, although five calibration 
constants are needed and derived from empirical tests of the varying cutting conditions. 
The benefit of the analytical models is that they connect to physical tool degradation 
phenomena but this also serves as a disadvantage as wear degradation is a complex 
phenomenon and each model becomes limited to a specific machining case. 
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3.7 FEM 

Since the introduction of the Finite Element Method (FEM) in the 1970s, many 
attempts have been made to model the metal cutting process. The largest beneficial 
factor of the method is that it is non-destructive and theoretically no experimental 
testing is needed. Still, as of today, experimental testing plays an important role in FEM 
when verifying models and modelling results [38]. 

Some pioneering work of FEM simulations of metal cutting was performed by Usui 
and Shirakashi [39, 40] and Klamecki [41]. Typical areas of FEM modelling are: 
predicting forces, chip geometry, stresses, strain, strain-rates and temperatures [7]. 
Some work has been done with regard to tool wear [15, 42, 43]. The singular largest 
limiting factor reported in such work is the computational power and time required to 
perform these analyses. Laakso et al. [44] successfully investigated the tool edge 
deformation mechanisms in the initial stage of cutting. The study was limited to a 
fraction of a second of the initial cutting, showing the limitations for modelling longer 
cutting processes of several minutes or more. Still, FEM will likely be a powerful future 
tool in tool life modelling as more research is done and computational power increases. 
Klocke et al. [45] suggest that due to the very long simulation time, tool wear modelling 
using FEM may not be appropriate but that analytical or hybrid solutions might be 
sought. 

3.8 Empirical models 

Empirical tool life models have been used extensively to model tool life and cutting 
data due to the complexity of the cutting process. The advantage with these models is 
that no physical understanding of the wear mechanisms is needed. The models are 
based on cutting data and tool life and their relation to a set of constants, figure 3.9. 
This allows for fast computing compared to FEM and soft computing models. This 
advantage can be used in software published by tool manufacturers, in which the end 
user can select a work material and a cutting method and the software will rank all 
available tool selections and recommended cutting data with regard to MRR or 
production costs [32]. The greatest disadvantage with these models is the cost of 
experimental testing. For each tool and workpiece material combination, several tool 
life tests have to be performed. A wear criterion has to be selected, such as flank wear 
VB = 0.3 mm and the tool is then tested with fixed cutting data parameters until the 
wear criterion is reached and the tool life is recorded. As the complexity of the models 
is increased, and the number of model constants are increased, more testing with a 
larger sets of test points is required. The minimum number of tests needed is equal to 
the number of model constants included in the tool life model. 
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Figure 3.9: Schematic view of a tool life modell and how it connects cutting data and tool life. 

As the selected wear criterion is fixed, the model output will only state the engagement 
time when the tool is expected to have reached the selected wear criterion but the model 
will not give any indication about how the wear developed over the course of its use, as 
compared to a tool wear model, figure 3.10. It has also been reported that it is difficult 
to use empirical models when two or more types of wear are present in one test series, 
depending on the cutting data selected. Persson et al. [46] machined a nickel-based 
superalloy using pcBN tools and reported several wear phenomena such as flank wear, 
crater wear, notch wear, chipping and fracture. When modelling using the Colding 
model a large model error of 17 % was reported when all empirical tool performance 
test points were included in the model. 
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Figure 3.10: The output of a tool life model will only state the engagement time when the tool is expected 
to have reached the selected wear criterion but the model will not give any indication about how the tool’s 
wear developed over the course of its use. 

Taylor's Equation for Tool Life Expectancy, formulated by F. W. Taylor 1906 [9], 
provides a good approximation of tool life T for varying cutting speed vc. The Taylor 
equation is presented in equation 3.4 where vc is the cutting speed, T is the expected 
tool life and m and CT are constants derived from empirical testing.     vୡ ∙  T୫ = C୘ 3.4 

When examining tool wear for a specific metal cutting process, cutting speed vc will be 
the most influential factor while the applied feed f will be of less importance to the tool 
life. The depth of cut ap will only play a minor role in the tool wear, as the load is 
distributed over a larger part of the tool but load per unit length will be approximately 
the same [32]. One issue with the simplified Taylor equation is that when f and ap are 
changed the Taylor curves start shifting clockwise or counter- clockwise according to 
figure 3.11.  
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Figure 3.11: The influence of decreasing feed on the Taylor curves with a fixed depth of cut. 

To allow for a better tool life estimation, a number of suggested extensions to the Taylor 
equation have been published [47-49]. Two of the extended Taylor models used, take 
into account the varying equivalent chip thickness he or feed f and depth of cut ap by 
adding two more constants, p and q, are presented in equation 3.5 and 3.6.     vୡ ∙ f ୮ ∙ a୮୯ ∙  T୫ = C୘ 3.5 

      vୡ ∙ hୣ୮ ∙  T୫ = C୘ 3.6 

where equivalent chip thicknesses he as defined by R. Woxén [50], is a function of feed 
f, depth of cut ap, major cutting angle κ and the nose radius of the tool rε, equation 3.7. 
The definition of equivalent chip thickness he is further discussed and more accurately 
defined in section 4.3. 

   hୣ ≈ a୮ ∙ fa୮ − r(1 − cosκ)sin κ + κ ∙ rக + f2 3.7 

Another possible tool life equation, not commonly used in academia but still used in 
industry, is the Coromant turning model version 1, equation 3.8. 

   vୡ = 10୴ୡୟ∗୤మା୴ୡୠ∙୤ା୴ୡୡ( ୘୐౗ౙ౪୘୐౤౥ౣ)ౣ
 3.8 
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Where vca, vcb, vcc, and m are constants and TLact is the given tool life for a predefined 
wear criterion. TLnom is the nominal tool life predefined by the user. The feed f can be 
replaced with the mean chip thickness hm, equation 3.9, to account for varying major 
cutting angle κ or equivalent chip thickness he, equation 3.10, as defined by Woxén. 

   vୡ = 10୴ୡୟ∙୦ౣమା୴ୡୠ∙୦ౣା୴ୡୡ( ୘୐౗ౙ౪୘୐౤౥ౣ)ౣ
 3.9 

   vୡ = 10୴ୡୟ∙୦౛మା୴ୡୠ∙୦౛ା୴ୡୡ( ୘୐౗ౙ౪୘୐౤౥ౣ)ౣ
 3.10 

where the chip thickness hm is defined as a function of the feed f and the major cutting 
angle κ, equation 3.11. 

    h୫ = f ∙ sin (κ) 3.11 

The Colding equation, published by Colding [51], is like the pioneering work by 
Taylor [9], essentially based on empirical curve adjustments made between tool life and 
cutting data, equation 3.12. Colding [52] published an earlier version of this model 
based on 9 constants but concluded that the amount of experimental work for this 
model was too high in comparison to the advantages of a more complex model. The 
Colding equation based on five constants can be regarded as an extension of the Taylor 
equation which can be clearly observed in studies of Lindström's reformulation of the 
Colding equation [53]. 

   vୡ(T, ℎ௘) = e[୏ି(୪୬(୦౛)ିୌ)మସ∙୑ ି(୒଴ି୐∙୪୬(୦౛))∙୪୬(୘)] 3.12 

The Colding equation is based on five constants K, H, M, N0, and L where cutting 
speed vc is a function of tool life T and equivalent chip thickness he. The Colding 
equation can be rewritten as a function of tool life T, according to equation 3.13 

 

𝑇(𝑣௖, ℎ௘) = 𝑒൦௄ି୪୬(௩೎)ି(୪୬(௛೐)ିு)మସ∙ெே଴ି௅∙୪୬ (௛೐) ൪
 

3.13 
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3.9 Soft computing models 

Soft computing shares a common benefit with empirical modes, in that limited physical 
understanding of the wear processes is need. But soft computing differs from 
conventional models in that it is tolerant of imprecision, uncertainty, partial truth and 
approximation [54], making them appropriate for solving highly nonlinear 
multidimensional engineering problems. Major soft computing techniques applied in 
metal cutting are neural networks, fuzzy sets, genetic algorithms, simulated annealing, 
ant colony optimisation and particle swarm optimisation [55]. 

Several authors, among others [56-60], have used soft computing to estimate tool life 
and/or tool wear in turning. Ezugwu et al. [57] managed to predict tool life in turning 
grey cast iron within an error of 20 % only using 25 tool performance data points. 
Several works, among others [61-63], are based on online monitoring using sensor 
measuring vibrations, sound, torque, power. These types of models can be of help in 
monitoring an existing production system but are of no use in recommending cutting 
data during design and production planning. 

Process optimisation, which is closely linked to tool life, has been investigated by several 
authors [64-67]. One issue with these models is that they require large sets of data, 
which comes at a great cost if no prior production exists. If an existing production is in 
place, an issue is the risk and costs involved with collecting data for varying cutting 
conditions in an existing production. 

3.10  Conclusion on existing tool life models 

As is evident in the previous introduction of analytical, numerical, empirical and soft 
computing tool wear and tool life models, empirical models are very much the work 
horse of tool life modelling. When trying to answer RQ2 and RQ3 it is evident, 
according to table 3.1, that empirical models have some major advantages. 
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Table 3.1: A conclusive table of capabilities, limitations, advantages and disadvantages for different 
approaches to modelling tool life. 

 Analytical Numerical Empirical Soft computing 
Capabilities Wear modelling [7, 

68]. 
Visualising and 
creating deeper 
understanding of the 
wear process [7, 38]. 

Recommending 
cutting data and tool 
selections. 
Optimizing cutting 
data and tool life [9, 
52, 69]. 

Analysing existing 
process data and 
optimizing existing 
production [7, 55]. 

Limitations Mostly limited to 
wear progression 
in specific case-
studies [7]. 

Material model, 
friction models, 
chemical diffusional 
interaction models, 
temperature models 
[7, 38]. 

Valid only for the 
experimentation work 
included. No 
possibility to vary tool 
wear criterion [70]. 

Give no physical 
understanding of the 
processes. Valid 
only for the 
experimental data 
included in the 
model [7, 55]. 

Advantages Selecting varying 
wear criteria and 
connects with 
physical properties 
[7, 71, 72]. 

None or limited 
experimental work 
needed [7]. 

Practical, fast and 
direct estimations. 
Industry-relevant. 
Can be used without 
full understanding of 
the tool deterioration 
phenomena [32]. 

The possibility to 
process large data 
sets drawing 
conclusions from 
existing data [7, 55]. 

Drawbacks Lack of basic 
understanding of 
tool deterioration 
and the tool/work 
material 
interaction [7]. 

Long computation 
time, lack of basic 
under-standing of 
tool deterioration 
and the tool-work 
material interaction 
[7, 38, 44]. 

Extensive 
experimentation, time 
consuming and costly 
[7, 73]. 

Need for extensive 
empirical data [7, 
55, 74]. 

 

If one aims to create a database with tool life models to predict tool life, recommend 
cutting data and predict part cost for several different tools and work material 
combinations, while these models should work as decision support in design, 
production planning, production ramp up and production (according to figure 3.7), 
some crucial factors need to be taken into account: 

o The amount of experimental testing should be as minimal as possible to reduce 
costs and resources. 

o A low calculation time is required to quickly facilitate an end user with output 
data. 

o The model must handle all possible combinations of cutting data within its 
working range. 

o The model should not require a full evaluation of all wear degradation 
mechanisms acting on each tool material and workpiece combination as this is 
still not fully scientifically understood. 
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o The type of model used should be valid for a dominant part of existing cutting 
operations and workpiece materials. 

Based on the literature reviewed table 3.2 can be used to select the type of models to 
investigate when aiming to answer RQ1, RQ2 and RQ3. 

Table 3.2: A table to support the decision on type of model to use when answering RQ1, RQ2 and 
RQ3. 

 Analytical Numerical Empirical Soft 
computing 

Number of tool life tests Low Low Medium High 
Low calculation time Yes High Yes Yes 
Large range of cutting data Theoreticly 

yes 
Yes Yes Yes 

Requires no evaluation of 
wear degradation 
mechanisms  

No No Yes Yes 

One model fits all No No Yes Yes 
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4 The Colding model 

In the thesis presented, the main work focuses on the Colding tool life model which is 
motivated in paper I and section 4.2.4. For further discussions, an introduction to the 
model, experimental work and modelling associated to the model is needed. Figure 4.1, 
based on figure 3.9 in section 3.8, presents a schematic view of the Colding model. 

 

Figure 4.1: Schematic view of the Colding model and how it connects cutting data and tool life. 

For any given tool life the suggested cutting data can be calculated or vice versa using 
the model with its five model constants derived from experimental testing. 
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4.1 Experimental work 

The planning and execution of the experimental work is crucial to create an accurate 
Colding model. Today’s solvers based on the least squared method [75, 76] are very 
effective and will most often give “a” result but not necessarily a “good” result when 
curve fitting. The author cannot stress enough the importance of well conducted 
experimental work and planning in tool life modelling, as well as careful thought when 
analysing results. It might also be tempting to extrapolate results but this should be 
done with great care, or preferably, not at all. 

One should note that both the Colding model and the Taylor models are only valid in 
the part of the cutting regime where the relation of log(T)-log(vc) is linear (free-cutting), 
figure 4.2. This is also the regime where the tool is being used in an industrial manner. 
If speed or feed are low the main wear pattern will be linked to the appearance of built 
up edges BUE. If the selected cutting data is high, temperature will be higher than the 
tool can withstand and the tool will plastically deform. Further discussions on planning 
experimental work and selecting test points are discussed in paper VII and section 
4.6.2. 

 

 

Figure 4.2: A schematic T-vc diagram shown for cemented carbide and for high speed steel HSS tools, 
respectively, where a straight line in a double-logarithmic plot is displayed [16]. 
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4.2 Modelling 

Solving the constants for the Colding model can be done analytically for 5 test points 
with specific interrelations, selected in two he pairs and one central point as suggested 
by Colding [77]. By using “what-if-analyses tools” as suggested by Hägglund [78] the 
selection of test point can be chosen more freely and the number of included 
experimental tests can be increased. The author has investigated the solvers in 
Microsoft® Excel®, PTC® Mathcad® and MATLAB® by MathWorks® using experimental 
data concluding that all programs provide equivalent results and model errors. 

Example of data input based on 5 tests for determining the Colding constants using 
Mathcad® is presented in figure 4.3. 

 

Figure 4.3: Example of data input based on 5 test machining AISI 4340 for determining the Colding 
constants, he (Colum A) is the equivelent chip thickness given in mm, vc (Colum B) is the cutting speed 
given in m/min, T30 (column C) is the time given in min machined when reaching the level of tool wear 
VB = 0.30 mm. 

The evaluation of the model and the validity of the calculated constants K, H, M, N0, 
and L is based on the mean linear error εerr in %, according to equation 4.1, between 
experimentally attained vc,exp and modelled cutting speed vc,mod for each test. It is 
important to note that errors and deviations from the empirical testing and 
measurements will also affect the model error. 


=

=

−
⋅=

nj

j c

cc
err

j

jj

v
vv

n 1 exp,

mod,exp,100ε  4.1 

 

  



44 

4.2.1 Presentation of the model 

When presenting the result of a Colding model this is most commonly done in a 
Colding diagram, cutting speed vc as a function of equivalent chip thickness he, or a 
Taylor diagram, tool life T as a function of cutting speed vc. These plots are presented 
in figure 4.4 based on the data presented in figure 4.3. 

 

Figure 4.4: a) The Colding graph based on 5 test machining AISI 4340, b) the corresponding Taylor 
graph. 
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4.2.2 Colding H-line 

The Colding H-line connects the top point of all tool life curves as shown in figure 
4.4a. On the left side of the H-line (marked with shaded red) the model will give a 
lower vc for a decreased he. This can be troublesome and therefore it is not uncommon 
to extrapolate data as straight lines from the given highest cutting speed, as suggested 
by Hägglund [32], shown with dotted lines (- - -) in figure 4.4a, in this work defined 
as Colding levelled. Paper I further discusses the accuracy of levelling the Colding 
model. The H-line is mathematically defined as equation 4.2: 

ln(ℎ௘ு) = 𝐻 + 2𝑀 ∙ 𝐿 ∙ ln (𝑇) 4.2 

4.2.3 The singularity 

The Colding equation contains a singularity, shown in figure 4.4a ( ●  ). In the 
singularity the tool life is undefined for the given he and left of the singularity the curves 
are reversed. This implication can be solved by either putting constraints on the 
constants or by using a levelled Colding, introduced in the previous section. Most often 
the singularity is outside of the cutting regime where the tool is used and therefore does 
not affect the end user. However, if there are physical phenomena that can be connected 
to the singularity, it is not fully understood. One physical explanation of the relevance 
of the singularity could be the presence of a Tool Protective Layer (TPL) [28, 79]. The 
workpiece material reacts with the environment to form a protective layer in the cutting 
zone protecting the cutting edge, hence relative high tool life can be found. Hägglund 
[32] mentions that in occasional conversations with Colding, Colding stated that he 
believed the singularity to exist but never showed any data to support the claim. It is 
the author’s belief that the singularity can be connected to TPL but further 
investigations are needed. Figure 4.5 is an example of relative long tool life measured 
when machining AISI 4340, suggesting the presence of a TPL. 
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Figure 4.5: The wear of a cemented carbide insert when turning AISI 4340, vc = 100 m/min, f = 0.45 
mm/rev and ap = 2.5 mm. Possible presence of a TPL protecting the tool. 

4.2.4 Taylor vs. Colding 

In order to investigate the accuracy of previously introduced tool life models section 
3.8, listed in table 4.1, experiments were performed, paper I. 

Table 4.1: Tool life models investigated. 

Model Eq. no. Base Number of constants 
Taylor 3.4 - 2 
Extended Taylor 3.5 f, ap 4 
Extended Taylor 3.6 he 3 
Coromant turning ver. 1 3.8 f 4 
Coromant turning ver. 1 3.9 hm 4 
Coromant turning ver. 1 3.10 he 4 
Colding 3.12 he 5 

 

A total of seven different workpiece materials and three different tool grades were 
evaluated when turning using industry standard coated cemented carbide inserts. Tool 
grade A being of a wear-resistant grade, tool grade B a medium grade and tool grade C 
being a tougher grade. C 45E and 42 CrMo4 were tested with all three tool grades A, 
B and C and the other materials were tested with tool grade A, resulting in eleven 
different tool-work material combinations. Workpiece material in machining is divided 
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into six different groups according to ISO 513:2004 [80], P (steel), M (stainless steel), 
K (cast iron), N (non-ferrous), S (heat resistant alloys) and H (hardened steel). Three 
groups were evaluated: P, M and K. The workpiece materials used are presented in table 
4.2. 

Table 4.2: Workpiece material evaluated. 

Workpiece Material group 

235JRG2 
16 MnCr 5 
C 45E 
42 CrMo 4 
100 Cr 6 
X5 CrNi 18 9 

P 
P 
P 
P 
P 
M 

EN-GJS-500-7 K 

 

Five or more tests were performed for each workpiece and tool material combination 
by varying cutting data, covering a range of cutting data suitable for the tool geometry 
and chip breaker. The ratio between the tool nose radius rε and depth of cut ap was held 
constant in this series of testing. A wear criterion was chosen, such as maximum flank 
wear VBmax = 0.3 mm. The cutting data as well as the time the tool was engaged with 
the workpiece until reaching the wear criterion were recorded. The tool was removed 
from the tool holder and the attained wear was measured using an optical microscope.  

Figure 4.6 presents the model error in a box plot using different commonly used tool 
life models for the 11 sets of workpiece and tool material combinations. The best 
performing model in this investigation with the lowest mean error as well as lowest 
dispersion is the Colding model with no limitations. These results suggest not only that 
the Colding model is a well-suited tool life model but also that the Woxén equivalent 
chip thickness he is a valid model describing the theoretical chip geometry for tool life 
modelling. This is further proven by analysing the resulting model errors of the 
extended Taylor models, whereby the extended Taylor based on he has lower model 
errors compared to the extended Taylor based on ap and f even though the latter 
introduces one additional model constant.  
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Figure 4.6: Tool performance data from 11 sets of workpiece and tool material combinations modelled 
using different tool life models A-H with the average model error presented on the Y-axis. The tool life 
models plotted are A) Colding B) Colding levelled, C) Coromant Turning version 1 with f as base, D) 
Coromant Turning version 1 with he as base, E) Coromant Turning version 1 with hm as base, F) Taylor, 
G) Extended Taylor based on ap and f, H) Extended Taylor based on he. The box plot shows the mean 
value (□), median (−), first and third quartile as well as the lower and upper adjacent value (┴,┬). 
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4.3 Equivalent chip thickness 

One analytical based model that is referred to several times in this work is the equivalent 
chip thickness heW defined by Woxén [50], a simplification of the true equivalent chip 
thickness heT between the area of the uncut chip AD and the cutting edge length lSaD of 
the tool engage with the workpiece, figure 4.7 [32], equation 4.3. 

ℎ௘் = 𝐴஽𝑙ௌ௔஽ ≈ 𝐴௘𝑏௘  4.3 

For the cutting chip area AD, Woxén suggested the simplification in equation 4.4 for 
the active cutting edge be equation 4.5, giving the equivalent chip thickness according 
to Woxén in equation 4.6. The cutting edge length components lSaD1 and lSaD2 are 
defined in figure 4.7. 

𝐴௘ = 𝑎௣ ∙ 𝑓 4.4 

𝑏௘ = 𝑙ௌ௔஽ଵ + 𝑙ௌ௔஽ଶ + 𝑓2 = 𝑎௣ − 𝑟(1 − 𝑐𝑜𝑠𝜅)𝑠𝑖𝑛𝜅 + 𝜅 ∙ 𝑟ఌ + 𝑓2 4.5 

   ℎ௘ௐ = 𝑎௣ ∙ 𝑓𝑎௣ − 𝑟(1 − 𝑐𝑜𝑠𝜅)𝑠𝑖𝑛𝜅 + 𝜅 ∙ 𝑟ఌ + 𝑓2 4.6 
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Figure 4.7: Equivalent chip thickness as defined by Woxén, adopted by Hägglund [32]. 

With regard to tool life, this model has worked well in balancing the loads acting on 
the tool when machining [51, 81]. Hägglund [32] noted two areas for improving the 
Woxén model: 

1. Woxén’s model is not defined for round inserts and therefore also not for 
relatively small ap using a pointed insert when only the nose of the pointed 
insert is engaged. 

2. Woxén’s model is based on a simplification around the nose of the tool, the 
error by these simplifications is quite limited when f < rε/2 and ap > 2.5⋅ rε.  

Hägglund has presented more accurate he models solving these issues and has also 
introduced he models dealing with milling. Hägglund’s extended simplified versions, 
used in this thesis, for pointed and round inserts are presented in table 4.3, equations 
4.7-4.9, visualized in figure 4.8. Hägglund noted in his work that mathematically 
correct versions of he can be derived but are in practise irrelevant for small feeds f relative 
to the nose radius rε for pointed inserts (or insert diameter d for round inserts) [32]. 
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Figure 4.8: a) Pointed insert case 2 with Woxén’s simplification using f/2 for the minor cutting edge, b) 
round insert with Woxén’s simplification using f/2 for the minor cutting edge [32]. 

Table 4.3: Applicable he equations for round and pointed inserts according to Hägglund [32]. 

Case ℎ௘ = 𝐴஽𝑙ௌ௔஽ ≈ 𝐴௘𝑏௘                                Eq. number 

Round insert 

 

 

4.7 

Pointed insert, case 2 

 

 

4.8 

Pointed insert, case 1 

 

 

4.9 

 

Bushlya et al. [82] has published a he model for round inserts where it takes into account 
that the length of the active cutting edge lSaD should be calculated in three dimensions 
and not on its projection on the reference plane. The common theme of these models 
is that they are more or less accurate representations of equation 4.3 and equation 4.7-
4.9 have mainly been used in this work. 

Bus et al. [81] found a linear relationship of cutting forces and equivalent chip thickness 
when machining C45N with varying feeds at 180 m/min. The authors concluded that 
equivalent chip thickness must not be considered to be of purely academic value but 
rather a basic technological quantity governing the metal cutting process.  

It should be noted that by the very definition of equivalent chip thickness a variety of 
chip geometries will render the same he values, figure 4.9. According to the definition 
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of the Colding equation for modelling tool life and using equivalent chip thickness a 
variety of f and ap keeping he constant should give constant tool life T. 

 

Figure 4.9: Equivelent chip thickness he for varying combinations of f and ap for a round tool insert with 
a diameter d of 12.7 mm. 

In paper II testing was done by longitudinal turning using coated CNMG120408 
inserts, with rε = 0.8 mm machining AISI 4340. Tool holder DGLN3232P12-M with 
50 mm tool overhang, and κ = 95° was used. The machining was done in dry 
conditions. The machine, used for the data collection, was an SMT SAJO 500 
Swedturn, NC-turning machine [83]. 

Tool wear was measured with an Olympus SZX7 stereo microscope. The tool life 
criterion was selected to flank wear VBmax = 0.3 mm. The tested cases are for he = 0.12 
mm (case 1) a medium fine chip breaker was used, and for he = 0.26 mm (case 2) a 
medium chip breaker was used. The result of the testing is presented in figure 4.10. 
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Figure 4.10: Tool life at the wear criterion VB = 0.3 mm for constant he while varying f and ap [83]. 

The result is troublesome if the he model is expected to be a technological quantity 
governing tool life. It is possible that the he model is not valid for large ranges of ap/f 
but still is a valid model when used within reasonable limitations. Several previous 
publications have used he successfully when modelling tool life [8, 32, 46, 51, 70, 71, 
84, 85].  

4.4 Varying flank wear criteria 

Two major limitations with the Colding model, mentioned in section 3.8, are: 

o Not being able to include varying flank wear when creating the tool life model.  

o It is not possible to calculate at what time a tool will reach a selected wear level 
over or under the tested wear criteria. 

In paper III  the Colding constants and the model error were studied when selecting 
different wear criterion when machining ASI4340 using coated cemented carbide 
inserts [70]. The Colding constants are presented in figure 4.11 for selected wear 
criterion VB = 0.1 to VB = 0.6. The higher model error and nonlinear behaviour for 
several constants for lower wear criteria was believed to be an effect of the tool coating, 
figure 4.12. 
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Figure 4.11: The Colding constants and the model error for different selected wear criteria from VB = 
0.1 (mm) to VB = 0.6 (mm) when machining ASI4340. 
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Figure 4.12: The wear development of the tool coating and the substrate material when machining 
ASI4340 with coated cemented carbid inserts. 

One solution to solve varying wear criteria is to extend and combine the Colding model 
with the Archard wear function [12] discussed in paper IV. Figure 4.13 and equation 
4.10 present the Ståhl et al. [71] version of Archard’s wear function that also takes into 
account the cutting geometry of the tool and of changes in the cutting forces present 
in the wear process [16, 85].  
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Figure 4.13: An idealized view of the cutting geometry for a cutting process, the directions of the 
coordinates which are shown, the components of the cutting force VB producing flank wear being 
indicated. 

𝑘଴ = 𝐷ଶଵ ∙ 𝑉𝐵 + 𝐷ଶଶ ∙ 𝑙𝑛 𝐷ଶଶ + 𝐷ଶଵ ∙ 𝑟ఉ𝐷ଶଶ + 𝐷ଶଵ ∙ 𝑉𝐵 − 𝐷ଶଵ ∙ 𝑟ఉ𝐷ଶଵଶ ∙ 𝑣௖ ∙ 2 ∙ 𝑡௘𝑏 ∙ 𝑡𝑎𝑛𝛼  4.10 

Where te is engagement time (min), vc cutting speed (m/min), VB flank wear (mm), 
D21 and D22 cutting force components (N), kc a wear function constant and rβ the edge 
radius. Equation 4.11 presents a combined Archard Colding model. 

𝑣௖ = 𝑑ଶଵ൫𝑉𝐵் − 𝑟ఉ൯ + 𝑑ଶଶ ∙ 𝑙𝑛 𝑑ଶଶ + 𝑑ଶଵ ∙ 𝑟ఉ𝑑ଶଶ + 𝑑ଶଵ ∙ 𝑉𝐵்𝑇஺஼ ∙ 120 ∙ 𝑑ଶଵଶ ∙ 𝑘଴஺஼tan ቀ𝜋 ∙ 𝛼180 ቁ  4.11 

When using the combined Archard-Colding model, cutting forces are needed from the 
experimental testing. Laakso et al. [86] suggested a novel approach where no force 
components are required based on the logit function, presented in equation 4.12, that 
was widely used by Joseph Berkson in statistics [87]. Figure 4.14 presents the results 
when applying the methodology suggested by Laakso et al. on the tool performance 
data presented in paper III. 

𝑓(𝑥) = 𝑙𝑜𝑔 𝑥1 − 𝑥 4.12 
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Figur 4.14: Logit tool wear model with Colding’s tool life equation for AISI 4340. upper) individual fit, 
lower)  general fit [86]. 

The model has a good performance if the fit is done to the whole data set or individual 
data sets with different cutting parameters. The logit model brings the benefit of 
including the full representation of the experimental data in the model, instead of only 
the selected limiting wear, and this is achieved by including only two additional model 
constants [86]. 
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4.5 The significance of the Colding constants 

The Colding model is based on five unique constants with no reported physical 
connection to the metal cutting process. Each constant will significantly change the 
curves and contribute to the fitting of experimental data. 

4.5.1 K constant 

Figure 4.15 visualizes the function of the K constant. When the K constant is increased 
the recommended cutting speed is increased and the curves are lifted upwards. The 
global maxima of the Colding curve for a tool life of 1 min is vc = eK. A higher K value 
in the Colding model will mean better machinability in the sense that the tool can be 
run with higher vc while still maintaining the same tool life. 

 

Figure 4.15: The impact of the K constant on the Colding model. 

4.5.2 H constant 

The H constant will shift the Colding curves horizontally to the left when decreased, 
visualized in figure 4.16. The equivalent chip thickness at the global maxima for a tool 
life of 1 min is he = eH. A Colding model with a higher negative value on the H constant 
will be more sensitive to an increase in he. Also, the global maximum will be shifted to 
a smaller value of he. 
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Figure 4.16: The impact of the H constant on the Colding model. 

4.5.3 M constant 

The M constant, visualized in figure 4.17, will form the curvature of the Colding 
curves. If M is negative the curves will be inverted pointing upwards and for M = 0 the 
curves will be represented as straight horizontal lines. A Colding model with a lower M 
constant will be more sensitive to an increase in he with regard to tool life. 

 

Figure 4.17: The impact of the M constant on the Colding model. 
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4.5.4 N0 constant 

The functionality of the N0 constant is visualized in figure 4.18. A decrease of N0 will 
tighten the gap between the curves. A Colding model with a lower value of N0 will be 
more sensitive to change of cutting speed with regard to tool life. 

 

Figure 4.18: The impact of the N0 constant on the Colding model. 

4.5.5 L constant 

The functionality of the L constant is visualized in figure 4.19. When L ≠ 0 the constant 
introduces a singularity to the Colding model, previously discussed in section 4.2.3. 

 

Figure 4.19: The impact of the L constant on the Colding model. 
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4.5.6 Statistical analysis of the Colding constants 

Colding equation is an empirical model with five coefficients – an assessment of 
statistical relevance of the coefficients and their confidence intervals in the scope of real 
cutting data for studied workpiece materials is of vital importance in order to validate 
the suitability of the model. 

To verify the ability of the Colding models to predict tool life, statistic characterization 
was performed with empirical data using ANOVA® in the MATLAB® environment. The 
22 tool performance data points presented in paper VI and paper VII [73, 88] were 
used in this study. Using such a small dataset for computation will affect the precision 
and accuracy of the ANOVA® analysis, preferably a larger dataset should be used. 
Unfortunately, the cost of collecting data did not allow for a bigger dataset in this study. 
The results of the modelling are presented in table 4.4. 

Table 4.4: Statistic characterization perfomed using ANOVA® for 22 tool perfomance datapoints. 

Term Estimate 
(with 95 % confidence) 

SE t-Stat p-value 

K 6.388  (6.119, 6.656) 0.10452 59.72 3.0071e-17 
H -1.813  (-2.295, -1.331) 0.25663 -5.6024 8.5901e-05 
M 0.704  (0.5175, 0.8904) 0.16214 3.1874 0.0071384 
N0 0.3875  (0.2344, 0.5407) 0.10996 4.2966 0.0008688 
L -0.1521  (-0.2865, -0.01768) 0.09594 -2.5092 0.0261330 

 

RMS Error: 0.222 
R2: 0.842 
F-statistic vs. zero model: 471 
p-value = 3.28e-14 
 

Figure 4.20a presents a 3D plot of log(vc-he-T ), 4.20b the residual of log(T) in the 
log(vc-he)-plane, 4.20c Plots the residuals for log(T) as a function of the fitted log(T) 
value and 4.20d a surface approximation of log(T) in the log(vc-he)-plane. Figure 4.21 
presents the tool life model in 3D (vc-he-T). 
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Figure 4.20: a) presents a 3D plot of log(vc-he-T ) b) the residual of log(T) in the log(vc-he)-plane, c) plots 
the residuls for log(T) as a function of the fitted log(T) value and d) a suface approximation of log(T) in 
the log(vc-he)-plane. 



63 

 

Figure 4.21: The Colding model in 3D in vc-he-T. 

The following conclusions can be drawn based on this statistical analysis: 

o ANOVA® analysis of the Colding model based on the experimental data set of 
22 measurements proves a good statistical relevance of the model with 97 % 
confidence interval. 

o All five model constants have a significant impact on the model with a 
maximum p-value for the coefficient L of 2.6 % at the 5 % significance level. 

This study is based on empirical data from machining tests. Errors and descriptions 
from workpiece material variations, tool variations and measurement deviations when 
measuring the level of wear etc. will have an effect and are included but considered a 
known-unknown in this statistical analysis as well as any modelling in this work. 

4.5.7 Adjusting the model 

A model based on tests in a well-controlled environment with a relative stiff machine 
setup, tight control of work material quality etc. can give discrepancies between the 
nominal or recommended data and the actual tool life given in the application at hand. 
One possibility for describing and handling such a situation is to differentiate Colding’s 
equation with regard to the relatively strong constant K that the equation contains. This 
enables one to create a new and more adequate tool life model. This methodology can 
also be used to extrapolate models without extensive testing between closely related 
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workpiece materials within a material group or tools within a group of similar 
performance and wear behaviour. 

Such a differentiation of the Colding model can be derived from equation 4.13. 

∆𝑇 = 𝑑𝑇𝑑𝐾 ∙ ∆𝐾 4.13 

where ΔK is the change in Colding’s constant K corresponding to the error in the tool 
life time ΔT. If the tool life time turns out to be 3 minutes shorter than was expected, 
ΔT = -3 minutes. This methodology is a simplification as the five constants in the 
Colding equation do have some dependency. 

Rewriting Eq. 4.13 for ΔK results in equation 4.14. 

∆𝐾 = ∆𝑇𝑑𝑇 𝑑𝐾  4.14 

A derivation of Colding’s equation (3.12) with regard to K results in equation 4.15. 𝑑𝑇𝑑𝐾 = 𝑒ି ுమିଶ∙ு∙௟௡(௛೐)ା௟௡(௛೐)మିସ∙௄∙ெାସ∙ெ∙௟௡ (௩೎)ସ∙ெ∙(ே଴ି௅∙௟௡ (௛೐))ே଴ି௅∙௟௡ (௛೐)  4.15 

An example of this methodology, paper V [89], is given in figure 4.22. Trials were 
conducted through longitudinal turning experiments while machining AISI 304. 
Coated cemented carbide cutting inserts were used as study subjects. Tools A, B and C 
are based on the same substrate material but with three different tool coatings. A full 
test series to create a Colding model for tool grade A was performed. Two tests were 
performed for tool grades B and C. One test to establish dT and the new K constant 
and one test to verify the accuracy of the model for tool grade. The error of the 
secondary test point was -9.9 % for grade B and -0.6 % for grade C, including the 
original model error of -3.1 %, presented in table 4.5 [89]. 
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Figure 4.22: Tool A (red), Tool B (blue) and Tool C (black): Cutting speed vc in relation to equivalent chip 
thickness he for 1(. . .), 5 (- - -) respective 20 (___) min tool life T in log-log scale. 

Table 4.5: The error of the secondary test points. 

Tool 
Type 

vc, exp 
(m/min) 

vc, mod 
(m/min) 

Error 
(%) 

vc, exp 
(m/min) 

vc, mod 
(m/min) 

Error 
(%) 

A 250 241 3.6 275 284 -3.1 
B 250 241 3.6 275 302 -9.9 
C 250 241 3.6 275 296 -0.6 

 

4.6 Selecting test points 

The Colding model, being an empirical model, will be sensitive with regard to the 
quality and the size of the dataset included when building the model. One issue with 
these types of models is the cost involved and the time needed for experimental testing. 
Therefore, the aim will always be to limit testing if possible, without losing confidence 
in the model’s predictive capacity. Model error is most commonly reported as the linear 
mean error or standard deviation error when predicting the tool performance points 
included in creating the model. This creates a bias that needs further investigation. 
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Two main questions are of interest: 

o How many tool performance data points should be included to create a stable 
model? 

o How should these tool performance data points be placed within the cutting 
data range (max vs. min vc, f, ap)? 

A clarification and definition of three types of model errors is needed for the purpose 
of this investigation, visualized in figure 4.23: 

o Approximative error (green): This is the model error commonly presented for 
tool life modelling. A number of tool performance tests are used to create a 
tool life model. This model is then tested on the data used to create the tool 
life model and the error of how well the model can approximate this data is 
presented. This is the type of model error that is presented in, for example, 
paper I.  

o Interpolative error (blue): This error includes one or more tool performance 
points not included when creating the model but these tool performance data 
points are within the range of included test points. 

o Extrapolative error (red): This error includes one or more tool performance 
points not included when creating the model and these tool performance data 
points are outside the range of included test points. 

 

Figure 4.23: Definition of the placemnent of tool perfomance test points used to claculate the model 
error, approximative (green), interpolative (blue) and extrapolative (red) error. 
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A total of 22 tool performance data points were included in this study, paper VI and 
paper VII [73, 88]. The included data and the experimental testing are presented in 
the papers. 

4.6.1 Size of dataset 

Figure 4.24 presents the error distribution when including 7, 10 and 13 tool 
performance data points. A randomizer was used to randomly select data points and 
therefore a mix of approximative, interpolative and extrapolative errors is presented. A 
Colding model was created based on the randomly selected tool performance data 
points and the model was then tested on the full dataset of 22 test points and the mean 
linear model error was calculated. This was repeated 1000 times.  

It can be noted that, as expected, the distribution of errors decreases as the dataset is 
increased. When including only 7 data points the majority of the models will have a 
model error of 2-5 % but still, it is very possible to find combinations of data points 
creating models with model errors over 10 %. 

The data presented in figure 4.25 is based on 4000 randomly created models for each 
case, 5, 6 and up to 18 data points included in the model based on the experimental 
dataset presented in paper VI and paper VII [73, 88]. 

 

Figure 4.24: The error distribution of approximative, interpolative and extrapolative mean errors for 
1000 Colding models based on 7, 10 and 13 tool performance data points. 
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In figure 4.25 (a-d)) the approximative error (a), interpolative error (b) and the 
extrapolative error (c) are separated, also the total error when testing each model on all 
available data is presented (d). 

Several conclusions can be drawn from the presented data: 

o Figure 4.25 a) The mean model error increases slightly as more tool 
performance data points are included, as expected. Still, the Colding model 
can approximate the data points with a low model error less than 3 %. This is 
the mean model error reported in [70, 84, 89]. 

o Figure 4.25 b) The mean interpolative error is below 5 % proving that for this 
dataset the Colding model can predict tool life well within the tested vc and he 
range. This is the error likely affecting an end user of the model where it is 
expected that the model, within given boundaries, can predict tool life with 
reasonable errors for various cutting data. 

o Figure 4.25 c) The mean extrapolative error is of limited interest as it is not 
sensible to predict tool life and cutting data outside the tested range of vc and 
he. Still, the Colding model does have some extrapolative accuracy hence 
further proving its capability as a tool life model. 

o Figure 4.25 d) the total error is based on a mix of approximative error (a), 
interpolative error (b) and extrapolative error (c) and it can be noted that the 
main contribution of model error comes from extrapolation. 
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Figure 4.25: The mean approximative error (a), interpolative error (b), the extrapolative error (c) and the 
total error (d). The error presented (┴,┬) is the 95th percentile. 

The presented data shows the importance of including enough data when creating a 
Colding model to secure the models validity. As this analysis is based on only one 
dataset general conclusions cannot be made. However, based on this dataset, a large 
improvement is found with regard to model error when increasing the dataset from 5 
data points to 9 data points. Over 13 data points the improvement to the models is 
minor. 

It should be noted that a randomizer was used to select the tool performance data 
points, which means that the presented total model error, figure 4.25d, is a mix of 
approximative, interpolative and extrapolative errors. It would be expected that with a 
more careful selection and placement of the test points, lower model errors could be 
achieved with smaller datasets, see 4.6.2. 

4.6.2 Placement of the test points 

The previous section investigated the importance of the size of the included dataset 
when creating a Colding model. This section investigates the importance of the quality 
of the included data set. More specifically, how to design the experimental setup when 
collecting data for a Colding model. The Colding model, based on five model 
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constants, needs a minimum of five tool performance test points to determine its model 
constants. This investigation is based on how to select five test points out of a dataset 
with 22 test points while keeping model error as low as possible. 

A total of 26,334 combinations of picking 5 data points out of 22 data points can be 
mathematically obtained. For all these combinations a Colding model was calculated 
and the mean deviation error (including approximative, interpolative and extrapolative 
errors) was calculated when testing each model on the full dataset. 

With resource efficiency in mind, one should minimize the metal consumed as chips 
and the time used for testing. Figure 4.26 presents the 26,334 models with the total 
amount of metal removed during the testing as a function of model error.  

 

Figure 4.26: 26,334 Colding models plotted (●) where the amount of metal removed during testing is 
plotted on the Y-axis and the model error (RMSE) is plotted on the X-axis. 

The optimal models with regard to workpiece consumption and model error can be 
found in the lower left corner of the plotted data. When analysing these models in 
depth there is no clear correlation between models with low model error versus high 
model error with regard to the amount of metal consumed during testing. Figure 4.27 
presents the 26,334 models as a total amount of machining time used during the testing 
as a function of model error. Also, it is not possible here to distinguish well performing 
models versus models with a high model error. 



71 

 

Figure 4.27: 26,334 Colding models plotted (●) where the macining time during testing is plotted on the 
Y-axis and the model error (RMSE) is plotted on the X-axis. 

A significant parameter when selecting input data in creating a model is how well the 
input data represents the outer max and min parameters, in this specific case, max and 
min vc, he and T. By maximizing the range of vc, he and T any extrapolative errors can 
be avoided as suggested in section 4.6.1. Figure 4.28 visualizes the weighted ratio of 
min/max for vc he T on the Y-axis and model error on the X-axis. It can be noted, as 
expected, that a larger ratio of the input parameters will increase the probability of a 
smaller model error. By maximizing this ratio no tool performance data point errors are 
from extrapolated cutting data, given that the presented errors from the models inside 
the blue box are only approximated and interpolated errors. 
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Figure 4.28: 26,334 Colding models plotted (●) where the wheighted ratio of vc he T is plotted on the Y-
axis and the model error (RMSE) is plotted on the X-axis. 

When studying the models with the highest available vc he T ratio in figure 4.28 (marked 
with a blue box), only 3 combinations of tool performance data points render a model 
with a model error larger than 10 %. An in-depth analysis of the models with the 
highest vc he T ratio and a model error under 10 % (marked with a red box) provide the 
following conclusions on how to avoid model error over 10 % for this data: 

o Maximize the range of cutting speed. 
o Maximize the range of equivalent chip thickness. 
o Maximize the range of tool life. 
o Include two cutting data points using the same  

equivalent chip thickness. 
To fulfil these criteria, but preferably avoiding issues like plastic deformation and build 
up edges, a suggestion of placing the five test points is presented in figure 4.29 and 
selected with the following criteria: 
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1. Smallest possible he within working range and high vc. 
2. Aiming for economical T and he. 
3. Minimum T and relatively large he. 
4. Maximum he within working range and economical tool life T. 
5. Maximum he, within working range, low vc and a high T. 

 

Figure 4.29: Suggestion on placement of the cutting data points in a test series of five tool perfomance 
tests. 
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4.7 Cost Optimization 

Previous sections in this thesis have manly focused on modelling tool life for varying 
cutting data. This section focuses on how these established tool life models can be used 
as decision support for optimising cutting data and selecting cutting tools. 

When optimizing cutting data, there are two major goals after securing a stable 
machining process that are meeting set criteria connected to the desired geometries and 
tolerances of the produced part as well as avoiding unpredictable tool deterioration. 
These two goals will either optimize with regard to minimizing machine time or 
minimizing part cost. If the part produced is dependent on several machining systems 
or several machining operations a bottle neck might arise. This will be a typical case of 
aiming to reduce machine time for one or several operations.  

If a machining centre or an operation has a utilization less than 100 %, cutting data 
can be optimized with regard to lowering part cost. A combination of the Ståhl cost 
model and the Colding model is presented in section 4.7.1, and in section 4.7.2 there 
are some examples given on how to use the model as decision support. The Cost 
Performance Ratio (CPR) is introduced in section 4.7.3. 

4.7.1 Ståhl cost model for varying cutting data 

When optimizing cutting data with regard to machine time, the highest possible MRR 
is the aim. This case will be based on the balancing of MRR, tool life and tool change 
time, discussed by Hägglund [32]. When optimizing cutting data with regard to part 
cost, a system approach is needed to connect cutting data to part cost. This model 
should include parameters such as quality rejections and downtime losses as well as 
setup times, tool transportation times, time for tool changes, batch sizes and all 
corresponding costs in a manufacturing system with detailed information on the 
machinability of the selected tool setup and work material. 

The Colding model can be used as an input model to a micro economic model such as 
the Ståhl cost model [35, 90]. This model was further developed by Windmark et al. 
as a Cost Performance Ratio (CPR) model to use as decision making support for e.g. 
new machine investments [34]. 

When connecting a tool life model, such as the Colding model, engagement time te, 
will be the governing parameter. The tool engagement time is calculated using equation 
4.16, using the volume of workpiece material to be removed V, the cutting depth ap, 
the feed f, and the cutting speed vc modelled using a Colding model.  
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𝑡௘ = 𝑉𝑎௣ ∙ 𝑓 ∙ 𝑣஼ 4.16 

The ideal cycle time t0 for one or several machining operations is defined to include 
engagement time per part te, tool transportation  and work material handling per part 
trem, and  tool changing time per part ttct [10]. Equation 4.17 presents the relationship 
between the times where T is the tool life and Ttct is the tool change time. 

𝑡଴ = 𝑡௘ + 𝑡௥௘௠ + 𝑡௧௖௧ =  𝑡௘ + 𝑡௥௘௠ + 𝑡௘𝑇 ∙ 𝑇௧௖௧ 4.17 

The total time to produce one part tpb including quality losses and setup time, is defined 
as the time to finish a full batch divided by the number of parts, presented in figure 
4.30. This can also be written as presented in equation 4.18. Production time per part 
is calculated based on setup time Tsu, batch size N0 and the quality parameters qQ and 
qS. 

𝑡௣௕ = 𝑇௦௨𝑁଴ + 𝑡଴(1 − 𝑞ொ)(1 − 𝑞ௌ) 
4.18 

 

Figure 4.30: The individual times that lead to the total manufacturing time per part tpb [10]. 

The loss parameter for the remaining time qrem (time for changing work material and 
tool transportation) is related to the engagement time te and presented in equation 4.19. 
In the same way, the loss parameter for tool changing time qtct is related to the 
engagement time te and the remaining time trem in equation 4.20. 
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𝑞௥௘௠ = 𝑡௥௘௠𝑡௘ + 𝑡௥௘௠ 4.19 

𝑞௧௖௧ = 𝑡௧௖௧𝑡௘ + 𝑡௥௘௠ + 𝑡௧௖௧ 4.20 

The total cost of producing a part, based on selected cutting data, is calculated using 
equation 4.21. Here the tool cost kA is divided per part using the number of cutting 
edges z and the ratio between tool life T and tool engagement time te. The cost of work 
material is affected by the rate of quality rejections qQ and the rate of material scrap qB. 
The cost of the work material is removed so as to only provide the cost of the operation. 
The hourly cost of running the equipment kCP, for idling equipment kCS and salary costs 
are dependent on engagement time. For idling equipment and salary cost, the 
equipment set-up time and the rate of time losses will contribute to the total cost 
volume. When determining the salary cost, the number of operator’s nop is used. If an 
operator is running several machines, the parameter will be a fraction. 

𝑘 = 𝑘஺𝑧 ∙ 𝑡௘𝑇 + 𝑘஻(1 − 𝑞ொ)(1 − 𝑞஻) − 𝑘஻ + 𝑘஼௉60 ∙  𝑡௘(1 − 𝑞௥௘௠) ∙ (1 − 𝑞௧௖௧) ∙ (1 − 𝑞ொ) + 𝑘஼ௌ60∙ ቆ 𝑡௘ ∙ 𝑞ௌ(1 − 𝑞௥௘௠) ∙ (1 − 𝑞௧௖௧) ∙ ൫1 − 𝑞ொ൯ ∙ (1 − 𝑞ௌ) + 𝑇௦௨𝑁଴ ቇ + 𝑘஽ ∙ 𝑛௢௣60∙ ቆ 𝑡௘(1 − 𝑞௥௘௠) ∙ (1 − 𝑞௧௖௧) ∙ (1 − 𝑞ொ) ∙ (1 − 𝑞ௌ) + 𝑇௦௨𝑁଴ ቇ 

     4.21 

The model to determine the cost per part can be used for several types of investigation. 
Not only can optimal cutting data with regard to part cost be calculated but any of the 
included parameters can be related and investigated with regard to part cost. Production 
capacity utilization URP is not included in the model presented and is therefore equal 
to 100 %. Production where URP < 100 % can be included in the model and has been 
discussed by several authors [16, 34, 90]. Optimization of cutting data towards highest 
possible MRR becomes obsolete when the production system is not fully utilized. 

 

 



77 

4.7.2 Ståhl cost model adapted for metal cutting 

Data presented in this section is based on a Colding model for the 22 experimental tool 
performance points presented in paper VII. A steel bar of C45 E is to be machined 
from a diameter of 200 mm to 194 mm using indexable cemented carbide inserts. No 
limitations are set on surface requirements, spindle speed or machine power, models to 
handle such limitations have been presented by Hägglund [32]. A total volume of 1000 
cm3 of workpiece material is to be removed. Nominal input parameters are presented 
in table 4.6. 

Four parameters are investigated bellow with regard to production time per part and 
production cost per part. Please note that the Y-axis is not held constant so as to more 
clearly display the output data from the cost model. Figure 4.31 presents the influence 
of selected feed. At a tool life of approximately 31 min the curves of feed 0.3 and 0.4 
are crossing. This is not a Colding singularity effect or an effect of data from the 
Colding model from the left side of the H-line, presented in section 4.2.3. In this case, 
the cutting data presented is well to the right of the singularity and H-line and the effect 
is based on a decrease of MRR due to low speeds. 

 
Figure 4.31: The effect of selecting f = 0.25, 0.3 and 0.4 mm/rev on the production time and part cost 

when removing 1000 cm3 of workpiece material. 
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Table 4.6: Nominal input data. 

Parameter Descipition Unit Value 
ap Depth of cut mm 3 
f Feed mm/rev. 0.4 
H Colding constant - -1.330771 
K Colding constant - 6.136025 
kA Cost of tool € 10 
kB Cost of material € 70 
kCP Machin cost (running) €/h 40 
kCS Machin cost (idle) €/h 35 
kD Salary cost for operators €/h 45 
L Colding constant - -0.288728 
M Colding constant - 0.609649 
N0 Batch size units 200 
N0 Colding constant - 0.498538 
nop Number of operators units 1 
qQ Rate of quality losses - 0.02 
qS Rate of time losses - 0.1 
qrem Rate of remaining time - calc. 
qtct Rate of tool changes - calc. 
rε Tool nose radius mm 0.8 
T Tool life min 4 to 40 
t0 Cycle time min/part calc. 
te Tool engagement time min/part calc. 
tpb Production time per part min/part calc 
trem Remaining time incl. workpiece change  

and tool transportation 
min/part 2 

Tsu Set-up time per batch min 180 
Ttct Tool change time min 2 
ttct Tool change time min calc. 
V Volume of work material to remove cm3 1000 
vc Cutting speed m/min calc. 
z Nr. of cutting edges units 4 
κ Major cutting angle degrees 95 

 

The effect of selecting different ap is presented in figure 4.32. The diameter of the 
workpiece is machined down from 200 mm to 194 mm with one tool passage of ap = 
3 mm, two tool passages with ap = 1.5 mm and three tool passages with ap = 1 mm. For 
this presented case, tool transportation between passages is neglected but it could easily 
be added in the trem parameter. If adding tool transportation, limiting the number of 
tool passages would be even further beneficial with regard to both production time and 
part cost. This result agrees with previous work by Hägglund [32] on optimizing 
cutting data where Hägglund suggest to: 

1. Maximize the depth of cut considering the applicable physical constraints. 
2. Maximize the feed considering the applicable physical constraints.  
3. Optimize the cutting speed considering the applicable physical constraints. 
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For a given operation using this approach, a higher MRR can possibly be achieved 
without decreasing tool life. 

 

Figure 4.32: The effect of selecting ap = 1, 1.5 and 3 mm on the production time and part cost when 
removing 1000 cm3 of workpiece material. 

The effect of the batch size N0 is investigated in figure 4.33. It should be noted from 
the figure that batch size and cutting data are not linked together, hence batch size is 
irrelevant when selecting cutting data but can have a large impact on both production 
time and production cost. The driving parameter is the setup time Tsu and costs 
associated with setup such as kCS and kD. This work does not intend to investigate batch 
size optimization nor warehouse management. Still, it is quite obvious that the batch 
size has a large impact on both production time and part cost. The product turnaround 
must be low, and costs associated with storage, including the cost of tied-up capital 
must be relatively high, not to mention producing extra stock as in this example case. 
The Ståhl cost model can be expanded to include costs related to batch size 
optimization, warehouse costs and other relevant parameters according to Windmark 
et al. [17]. 
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Figure 4.33: The effect of selecting N0 = 50, 100 and 200 parts on the production time and part cost 
when removing 1000 cm3 of workpiece material. 

The fourth and last parameter investigated is the tool change time, presented in figure 
4.34. Two setups are modelled, one where it is estimated that each tool change requires 
2 min of production stop, when the operator manually changes the tool or rotates the 
indexable inserts, Ttct = 2 min.  

 

Figure 4.34: The effect of a 2 min tool change time and a sister tool with no internal tool change time. 
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In the second setup a sister tool is used, which allows the operator to manually change 
the tool outside of the machine, hence no production stop is required during tool 
change, Ttct = 0 min. The alternative of using a sister tool is not affected by tool change 
time resulting in shortest production time at tool life T = 4 min and with a maximized 
cutting speed. The alternative with an internal tool change needs to be balanced 
between production time and tool change time and the lowest production time is at a 
tool life of approximately 9 min. Part cost has a minima for both alternatives as it 
requires a balancing of costs; tool cost increasing for low tool life and hourly costs 
increasing for long tool life. 

4.7.3 Cost Performance 

The Ståhl cost model for varying cutting data can also be used to analyze cost 
performance for two or more different cutting tools as presented in paper VIII. The 
benefit of the presented approach is not to compare two different tool materials using 
fixed cutting data. A typical example would be when analyzing time and cost 
performance of a Cemented Carbide CC tool compared to a Poly Crystalline Diamond 
PCD tool. To maximize MRR the CC tool is often benefited by a high depth of cut 
and feed while reducing cutting speed, whereas a PCD tool is benefitted by a low depth 
of cut and feed while increasing cutting speed [91]. Figure 4.35 presents a case of 
machining 10 cm3 Ti6Al4V with two grades of tool materials, uncoated cemented 
carbide CC and polycrystalline diamond PCD [91]. 

 
Figure 4.35: The perfomance in cost and time for a CC tool and a PCD tool machining 10 cm3 Ti6Al4V 

[91]. 
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The model presented can also be used to estimate the cost performance of a new tool 
selection: 

o At what tool cost is tool B cost neutral to reference tool A for a given machining 
operation? 

o For known tool costs, what performance is needed of tool B compared to tool 
A for a neutral part cost? 

This model can also be used to investigate surface tolerance requirements directly 
connected to tool nose radius and feed selection or workpiece material with varying 
machinability. 
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5 Summary and conclusions 

The appended papers are summarized in the following chapter. Eight papers are 
appended to this thesis. The main objective of this work is the development of tool life 
modelling and cutting data recommendations. The focus has been on empirically 
verifying existing models, suggesting improvements to data collection and finally 
connecting tool life and cutting data to part cost and production time. The conclusions 
of the results presented in the appended publications are also given. The last subsection 
covers suggestions for future research work. 

5.1 Summary of appended publications 

Different aspects of tool life and cutting data modelling have been investigated. Several 
different tool life models were investigated in paper I, the Woxén equivalent chip 
thickness was investigated in paper II, the Colding tool life model was investigated in 
papers II-VII and finally the Colding model was connected to production time and 
part cost in paper VIII. 

5.1.1 Paper I 

This paper investigates the most commonly used empirical tool life models on a large 
set of empirical data. A total of 11 sets of data and a total of 7 workpiece materials 
(steel, stainless steel and cast iron) were used in the investigation. It is concluded that 
the Colding tool life model is the most successful model in approximate tool 
performance for the investigated data. The work in this paper also concludes that he is 
the more superior than hm or a combination of f and ap in describing the uncut chip 
thickness when using the extended Taylor tool life model. Extrapolation on the left side 
of the Colding H-line is also investigated and it is concluded that the model error 
increases when the Colding curves are extrapolated as straight lines and particular high 
alloy steels and stainless steels are affected negatively. 
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5.1.2 Paper II 

Empirical data is used to evaluate the equivalent chip thickness model by Woxén. Two 
cases are investigated. In each case he is held constant and f and ap are varied. The ratio 
of ap/f was varied with a factor of close to 10 times. It is concluded that in this specific 
study the tool life was not constant for a constant he, contradicting the hypothesis of 
the study. In the paper, a relatively large ratio of ap/f was used, beyond the intended use 
of the tool geometry design. In an industrial application the range of recommended ap 
and f is smaller and therefore the he model can still be expected to give relevant results.  

5.1.3 Paper III 

This paper investigates the effect of different wear criteria on the Colding model, its 
five constants and the model error. For wear criteria of VB = 0.10 - 0.20 mm the 
approximate error is higher than for VB = 0.25 - 0.60 mm. It can be noted that the 
constants are affected by a change in wear criteria and all constants but the M constant 
shows a linear relationship to a change of wear criteria for VB > 0.25 mm. The non-
linear behaviour of VB < 0.25 mm is expected to be related to coating effects. It can be 
concluded that one set of Colding constants is only valid for one tool material and 
cannot model both coating and substrate material. 

5.1.4 Paper IV 

In this work two major limitations of the Colding model are investigated and a solution 
is suggested. Firstly, all data used to create a Colding model needs to have reached 
specific wear criteria. Secondly, when a Colding model is created, the wear criteria 
cannot be changed. These issues are solved by combining the Archad wear model with 
the Colding tool life model. It is shown that it is entirely possible to combine these two 
models and thereby, it is possible to include tool performance tests with varying wear 
criteria. Furthermore, this model can be reversed so that it is also possible to calculate 
the tool life for any selected wear criteria within the limitations of the model. 

 

5.1.5 Paper V 

In this investigation the extrapolative power of the K constant in the Colding model 
is investigated. Three tool grades, A, B and C, based on the same substrate material 
but with varying tool coatings are used in machining stainless steel ASI 304. A full 
set of tests is used to create a Colding model for tool grade A. Two additional tests 
were conducted for grades B and C respectively. The first test point was used to 
calculate ΔK and the second was used to verify the extrapolated tool life model for 
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grades B and C. It is concluded that for this set of experimental data the K constant 
had some extrapolative power and the model error of the extrapolated test points 
was below 10 %. 

5.1.6 Paper VI 

In this work the approximative, interpolative and extrapolative power of the Colding 
model is investigated. A set of 22 tool performance data points in turning C 45 E steel 
is used for the purpose of the investigation. It is shown that for any number of included 
data points the Colding model has a low approximative error. It is also shown that the 
interpolative and extrapolative error decreases rapidly when including up to 13 data 
points. Over 13 data points the decrease of interpolative and extrapolative model error 
was limited for this set of experimental data. 

5.1.7 Paper VII 

This work focuses on the most optimal way of selecting cutting data points when 
experimentally collecting data to create a Colding model. A set of 22 tool performance 
data points in turning C 45 E steel is used for the purpose of the investigation. It is 
shown that by only using five tool performance data points a model can be derived with 
a mean model error less than 10 % when tested on the full dataset. It is concluded that 
extrapolation should be avoided and therefore the range of the included parameters (vc, 
he and T) should be maximized. It is also shown that for the investigated set of data, 
two tool performance data points should have an equal he to minimize model error. 

5.1.8 Paper VIII 

This work presents a novel methodology combining the Colding tool life model and a 
previously presented model for a cost performance ratio. The developed methodology 
combines cutting performance and production performance to allow a comprehensive 
cost assessment for a production process. The assessment includes cutting data, tool life 
and cost of tool inserts, quality rejections, process availability, equipment investment, 
operators and facilities. A case study based on experimental data when machining 
Ti6Al4V with two grades of tool materials, uncoated cemented carbide and 
polycrystalline diamond, was presented, verifying the proposed methodology. 
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5.2 Conclusions 

Modelling tool life and cutting data in metal cutting is, as shown in this work, complex. 
It would have been impossible to investigate all aspects, models, cutting methods and 
commonly used tools and workpiece materials, thus several limitations have been 
applied. However, some conclusions can be made from the work presented in this 
thesis. Four major types of modelling approaches exist for tool life and wear modelling; 
empirical models, analytical models, numerical models and soft computing models. 
This work focuses on empirical models, as they can be used as decision support for 
several areas, from design to production with modest tool performance testing and low 
computational requirements.   

The title of this work is: Modelling tool life and cutting data in metal cutting – testing, 
modelling and cost performance. Different aspects of testing are investigated in paper 
VI and paper VII. The number of tool performance tests needed to secure a valid model 
is investigated as well as how these tests should be placed within the cutting speed range 
and the equivalent chip thickness range. Modelling has been investigated in paper I-V. 
It is concluded that the Colding model is a more valid model when compared to the 
more traditional extended Taylor model for the investigated data. Two different 
approaches to extend the Colding model for varying flank wear criteria have been 
presented, the concept of equivalent chip thickness has been investigated based on 
empirical tool performance data, and model modifications for varying performance 
have also been investigated. Finally, cost performance is introduced in paper VIII, a 
methodology whereby the Colding model is combined with a cost model for the 
calculation of part cost. This combination of models can be used as decision support 
for, among other things, cutting data selection and tool selection. 

Summarizing the research presented in this thesis, the following answers can be given 
to the previously defined research questions: 

RQ1. Is it possible to investigate the validity and further improve existing 
models for cutting data recommendation and optimisation using 
empirical data and today’s computational power for multiple 
commonly used work materials? 

A number of models have been investigated based on the empirical data in paper I and 
it is concluded that the Colding model is superior in modelling the investigated data. 
A number of improvements are suggested and some limitations have been noted 
relevant to tool life modelling. The Colding model can be combined with the Archard 
wear function to include varying wear criteria, paper IV. The K constant can be used 
with caution for adjusting the model for variation in performance, paper V. Caution 
should be taken when modelling low wear criteria, when the model is influenced by a 
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tool coating, paper III. Also, caution should be taken for large ratio of ap/f when using 
equivalent chip thicknesses, paper II. 

RQ2. How should experimental testing be conducted to secure an accurate 
tool life model, while limiting the resources required to conduct such 
tests? 

The variation of model errors based on the number of included test points is 
investigated in paper VI and the impact of how these test points are placed in the 
cutting speed and equivalent chip thickness range is investigated in paper VII. It is 
concluded that, for the investigated data, the Colding has a low interpolative error when 
based on only five tool performance tests. To minimize the amount of testing one 
should decide on a working range of cutting speed and equivalent chip thickness, where 
one intends to model tool life and cutting data and then include tests covering the full 
range of cutting speed and equivalent chip thickness. As the number of included test 
points are increased, model error decreases but over thirteen test points the model error 
improvements are limited for the investigated data. The author recommends, 
considering the cost and environmental impact of testing, that a reasonable number of 
tests to include for a Colding mode, based on five constants, would be six to ten tool 
performance tests covering the full working range of the tool. 

RQ3. How can tool life models be used to assess selection of cutting tools and 
their performance based on part cost? 

A methodology combining the Colding model and the Ståhl cost model has been 
developed and is presented in paper VIII. Based on this combined model, part cost and 
production time can be calculated for any selected cutting data or tool life. Additionally, 
any included parameter can be investigated as a parameter with regard to part cost or 
production time. 

5.3 Future Research 

During the last three decades, the amount of published research in the area of empirical 
tool life modelling in metal cutting is surprisingly limited, considering that these 
models are still highly relevant and the impact metal cutting has on our way of life. The 
research presented in this thesis is a step towards a better understanding of these models, 
what opportunities they offer as decision support and the limitations that exist. A 
considerable amount of research still remains to be done and this section reflects the 
author’s own thoughts on potential fields of research related to the subject presented. 

The Colding model, being an empirical model, has no clear connection to 
machinability. If the constants in the Colding model could be connected to physical 
parameters influencing machinability this would clearly help in limiting the testing 
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required. By not having to establish a specific model for each tool material and 
workpiece material but rather one model for a set of related tool materials and 
workpiece materials and then adjusting the model constants for varying machinability 
both costs and resources could be saved. 

Hybrid models have been touched upon but not mentioned in depth. The author sees 
two major approaches to introducing hybrid models. Firstly, combining the Colding 
model with analytical models describing tool deterioration to further allow for model 
adjustment whilst limiting testing. Secondly, using numerical models to perform tool 
performance testing and then feeding the results into a Colding model. With this 
approach, experimental testing can be limited and high computational times avoided 
when applying the model. 

The work presented focuses on turning and continuous machining. Models for 
intermittent machining and other cutting methods, such as milling and drilling, have 
been presented in literature but verification of these models based on empirical data is 
lacking. 

Cost performance and cost performance ratio is investigated in this thesis but, quite 
frankly, it only scratches the surface of a large research area. As machines become more 
interconnected, data becomes available for concepts like digital twins and digital 
manufacturing. To take full advantage of these concepts more advanced and precis 
models are needed. 
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