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Abstract

This thesis deals with estimation and classification problems of non-stationary
processes in a few special cases. In paper A and paper D we make strong as-
sumptions about the observed signal, where a specific model is assumed and the
parameters of the model are estimated. In Paper B, Paper C, and Paper E more
general assumptions about the structure of the observed processes are made, and
the methods in these papers may be applied to a wider range of parameter estim-
ation and classification scenarios. All papers handle non-stationary signals where
the spectral power distribution may change with respect to time. Here, we are in-
terested in finding time-frequency representations (TFR) of the signal which can
depict how the frequencies and corresponding amplitudes change.

In Paper A, we consider the estimation of the shape parameter detailing time-
and frequency translated Gaussian bell functions. The algorithm is based on the
scaled reassigned spectrogram, where the spectrogram is calculated using a unit
norm Gaussian window. The spectrogram is then reassigned using a large set of
candidate scaling factors. For the correct scaling factor, with regards to the shape
parameter, the reassigned spectrogram of a Gaussian function will be perfectly
localized into one single point.

In Paper B, we expand on the concept in Paper A, and allow it to be applied
to any twice differentiable transient function in any dimension. Given that the
matched window function is used when calculating the spectrogram, we prove
that all energy is reassigned to one single point in the time-frequency domain if
scaled reassignment is applied. Given a parametric model of an observed signal,
one may tune the parameter(s) to minimize the entropy of the matched reassigned
spectrogram. We also present a classification scheme, where one may apply mul-
tiple different parametric models and evaluate which one of the models that best
fit the data.

In Paper C, we consider the problem of estimating the spectral content of
signals where the spectrum is assumed to have a smooth structure. By dividing
the spectral representation into a coarse grid and assuming that the spectrum
within each segment may be well approximated as linear, a smooth version of the
Fourier transform is derived. Using this, we minimize the least squares norm of
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Abstract

the difference between the sample covariance matrix of an observed signal and
any covariance matrix belonging to a piece-wise linear spectrum. Additionally, we
allow for adding constraints that make the solution obey common assumptions of
spectral representations. We apply the algorithm to stationary signals in one and
two dimensions, as well as to one-dimensional non-stationary processes.

In Paper D we consider the problem of estimating the parameters of a multi-
component chirp signal, where a harmonic structure may be imposed. The al-
gorithm is based on a group sparsity with sparse groups framework where a large
dictionary of candidate parameters is constructed. An optimization scheme is for-
mulated such as to find harmonic groups of chirps that also punish the number
of harmonics within each group. Additionally, we form a non-linear least squares
step to avoid the bias which is introduced by the spacing of the dictionary.

In Paper E we propose that the Wigner-Ville distribution should be used as in-
put to convolutional neural networks, as opposed to the often used spectrogram.
As the spectrogram may be expressed as a convolution between a kernel func-
tion and the Wigner-Ville distribution, we argue that the kernel function should
not be chosen manually. Instead, said convolutional kernel should be optimized
together with the rest of the kernels that make up the neural network.

x



Populärvetenskaplig sammanfattning
på svenska

I denna avhandling undersöker vi så kallade icke-stationära signaler. Olika sig-
naler förekommer överallt omkring oss och innefattar allt som kan representeras
i form av en serie av tal. Exempel på signaler är all sorts inspelade ljud där mu-
sik, eller mänskligt tal ingår men även djurläten så som fågelsång, delfinklick eller
fladdermusklick som används för ekolokalisering. Hur vi människor uppfattar
dessa ljud beror på frekvensen som de svänger med. En ljudsignal med mycket
hög frekvens uppfattar vi som ljus och gäll, och en signal med låg frekvens uppfat-
tas som basal och mörk. En annan viktig aspekt av signalen är vilken amplitud
den har, det som i ljud-signaler motsvaras av volymen. Om en signal ändrar frek-
vens och/eller amplitud med tiden, vilket de flesta signaler gör, kallar vi den för
icke-stationär. Ofta vill man analysera signaler genom att beräkna frekvensen som
den svänger med, och dess amplitud, och i det icke-stationära fallet vill man alltså
då mäta hur frekvenserna och amplituderna i en signal ändras med tiden. Detta
fält av forskning inom signalbehandling kallas för tids-frekvens-analys. Detta är
ett svårare problem än man kan tro, och det finns inte en universallösning som
kan beräkna frekvens och amplitud för alla sorters icke-stationära signaler. För att
försvåra saken ytterligare innehåller en signal ofta inte bara en komponent, utan
är en sammansättning av flera signaler. Signalerna är heller nästan aldrig rena
utan störs av vad som kallas brus. Bruset i ljudinspelning kan till exempel bestå
av bakgrundsljud eller bara mätfel i mikrofonen som spelat in ljudet vilket kan ge
ett konstant sprakande bakgrundsljud.

I denna avhandling tittar vi på några utvalda specialfall och tar fram metoder
som är skräddarsydda för de olika fallen. Ett sätt att angripa problemen på är att
ställa upp en matematisk modell som man tror ska passa för signalen som man
vill undersöka. I den matematiska modellen finns parametrar som man kan vrida
på tills modellen passar den uppmätta signalen så bra som möjligt.

I papper A presenteras en metod där amplituden i signalen kan modelleras
av en så kallad Gaussklocka; en signalmodell av stor signifikans inom matematik,
statistik och signalbehandling. Det unika i metoden vi presenterar är att den är
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Populärvetenskaplig sammanfattning på svenska

oberoende av vid vilken tidpunkt i signalen som Gaussklockan befinner sig och
vilken frekvens signalen har.

I papper B generaliseras metoden som presenteras i papper A, och tillåter den
att modellera, eller skatta parametrarna, i vilken transient modell som helst.

I papper C presenteras en metod för att skatta frekvenserna i en signal där
man inte antar att det finns bara några få frekvenser, något som många metod gör.
Istället antas att det är en fördelning av alla möjliga frekvenser.

I papper D presenteras en metod för att skatta linjär chirpar. Chirpar är
signaler där frekvensen ändras kontinuerligt med tiden.

Slutligen presenteras, i papper E, en argumentation om hur tids-frekvens-
representationer av signaler kan användas i neurala nätverk; ett verktyg där datorer
tränas att klassificera signaler eller bilder utifrån många träningsexempel.

xii



Introduction

In this thesis, methods in time-frequency analysis are investigated and applied
in a selected set of special case scenarios. Time-frequency analysis is a useful tool
when faced with observations of a non-stationary process, i.e., a process where the
frequency content, or the power of the frequencies, is not constant for all eternity
(or more realistically, for the duration of the observation). Rather, the spectral
power distribution of the signal changes with respect to time. Throughout this
thesis, it is assumed that the reader is familiar with methods in stationary spectral
analysis. The introduction presents background information building up to the
five papers presented in this thesis. For a deeper dive into time-frequency analysis I
would heartily recommend Time-Frequency Analysis, Concepts and Methods, edited
by Franz Hlawatsch and François Auger [1].

In this introduction t will denote time, and ω frequency. A noise free signal
will be denoted y(t) and an observation of y(t) with additive, independently, and
identically distributed (i.i.d.) noise will be denoted x(t). The Fourier transform
will, in this introduction, be expressed in angular frequency, and is defined as

X (ω) =
∫ ∞

−∞
x(t)e−iωtdt (1)

The inverse Fourier transform is defined as

x(t) =
1

2π

∫ ∞

−∞
X (ω)eiωt dω (2)

1 Background

Time-frequency estimation has long been a useful tool in the analysis and clas-
sification of both naturally occurring signals, such as human speech, bird song,
and seismic signals etc., as well as artificial signals such as music, FM/AM radio,
and radar signals to give a few examples. By estimating how the frequency con-
tent in a signal or process changes over time, one gets an important insight into
the characteristics and behaviors, and help in classification, of the observed sig-
nal. The time-frequency estimators are in this introduction divided into two main

1



Introduction

groups; parametric and non-parametric estimators. When using a non-parametric
estimator, few assumptions, besides that the observation fulfill the Nyquist the-
orem, have to be made of the observed signal. For the parametric estimators, on
the other hand, one instead has to make quite clear assumptions of the signal in
question. By setting up a model of the signal, one may estimate the parameters
detailing the model, via optimization of some appropriately chosen cost function.
An estimate of the true time-frequency representation (TFR) can then be found
by optimizing the cost function, and calculating the theoretic time-frequency con-
tent given the model and estimated parameters. The model assumed in a para-
metric estimator has to be exact in terms of model-order. If one also wants to
estimate the model-order, i.e. the number of components in the signal, one may
turn to the sub-class of semi-parametric estimators, where a model assumption
must still be made, but where the number of components is not fixed.

1.1 A Chirp Signal Example

Throughout this introduction, a chirp signal will be used as an example to show
the performance of the TFR estimators that are presented. A chirp is an oscillating
signal where the frequency changes in a continuous fashion over time.

Example 1. In this toy example the signal is a two-component linear chirp signal i.e.,
on the form

x(t) =
2∑

k=1

akei
(

ωk t+
rk
2 t2

)

+ n(t) (3)

where both components have unit amplitude, a1 = a2 = 1, and where the starting
frequencies are set to ω1 = 0.5 and ω2 = 2 rad/s and the rate of changes are set to
r1 = 0.006 and r2 = 0.002 rad/s2. Further the signal is corrupted by additive i.i.d.
Gaussian white noise, n(t), with variance 0.1. The signal is 128 samples long and the
real part of a realization can be seen in Figure 1 and the ground truth TFR is seen in
Figure 2.

2 Non-Parametric Methods

The class of non-parametric methods is a good choice when little is known about
the observed signal or when an initial estimate is necessary. The estimates are

2
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Figure 1: Real part of a realization of the chirp signal in Example 1.

generally quite robust to prior assumptions, and if they are smoothed, also robust
in the terms of noise disturbances. They do however suffer from high variance and
low resolution. When investigating the properties of a time-frequency estimator,
there are a few properties that are of interest.

• Positivity

As the TFR is a distribution of the signal energy into the time-frequency
plane, an expected property of the TFR estimate is that it should be positive
everywhere, such that

TFR(t,ω) ≥ 0 ∀(t,ω) ∈ R
2 (4)

• Energy conservation

As the TFR distributes the signal energy into the time-frequency plane, the
total energy of the observed signal should be same as the total energy of

3
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Figure 2: The ground-truth TFR of the two-component chirp signal in Example
1.

TFR estimate, i.e.,

1
2π

∫∫

R2
TFR(t,ω)dtdω =

∫ ∞

−∞
|x(t)|2dt (5)

• Marginals

A stricter version of the energy conservation constraint is to enforce that the
energy distributed at each instantaneous time or frequency must equal the
energy of the signal at that exact time and frequency, respectively, expressed
as

∫ ∞

−∞
TFR(t,ω)dt = |X (ω)|2 ∀ ω ∈ R (6)

1
2π

∫ ∞

−∞
TFR(t,ω)dω = |x(t)|2 ∀ t ∈ R (7)

4



2. Non-Parametric Methods

2.1 The Spectrogram

The spectrogram is one of the first methods used to estimate the TFR. By letting a
suitable time-window, h(t), move along the observed signal, x(t), and estimating
the frequency content within each time frame one gets an estimate of how the
frequency changes over time, named the short time Fourier transform (STFT)

F h
x (t,ω) =

∫ ∞

−∞
x(s)h∗(t − s)e−iωsds (8)

where the spectrogram is then found as the squared absolute value of the STFT

Sx(t,ω) =
∣
∣
∣F h

x (t,ω)
∣
∣
∣

2
(9)

The time-window may be chosen to be a rectangular window, but more preferably
it should also apply smoothing of the TFR estimate, analogous to the stationary
spectral estimation case, to decrease side lobes and lower the variance. There are a
wide range of window functions suggested where the Hann, Hamming, Bartlett
and Blackman windows are a few common choices [2]. The choice of spectro-
gram analysis of signals is common in many fields, in part due to its simplicity
and intuitiveness and also due to that it fulfills nice properties such as that it is
real- and positive valued [3]. If a unit energy window function is used, it also
fulfills the energy conservation property. One drawback of this method however
is the resolution trade off between time and frequency. By applying a wide time-
window one will get a more accurate frequency estimate at the cost of poor time
resolution. Vice versa, a short time-window renders good resolution in time but
poor frequency estimates. Another drawback is the high variance of the discrete
Fourier transform.

In Figure 3, the spectrogram is shown for the two component chirp signal in
Example 1, where one may especially note the wideness of the two chirp compon-
ents. A unit norm Gaussian window function on the form

h(t) =
1

π1/4
√
λ

exp

{

− t2

2λ2

}

(10)

with shape parameter λ = 10, was used when calculating the spectrogram.

2.2 The Quadratic Class

A class of more recent methods of estimating the time-frequency distribution of
a non-stationary signal is the quadratic class of estimators, also known as Cohen’s

5
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Figure 3: Spectrogram of the two-chirp example computed with a unit energy
Gaussian window. Note the wideness of the two chirp components.

class, where the Wigner-Ville distribution (WVD) [4, 5] may be seen as the base
distribution, and is defined as

Wx(t,ω) =
∫ ∞

−∞
x
(

t +
τ

2

)

x∗
(

t − τ
2

)

e−iωτdτ (11)

Here, x
(
t + τ

2

)
x∗
(
t − τ

2

)
is the instantaneous covariance function, making the

distribution an intuitive transition from the stationary case. Benefits of the WVD
include that an instantaneous frequency (IF) will be well estimated for a single
component, but also that it fulfills a range of desired properties such as energy
conservation, that the marginal distributions in time and frequency are fulfilled,
and possible transition between signal representation and the TFR to name a
few [3]. The WVD is unfortunately not guaranteed to be positive. However,
the main drawback of the WVD is the cross-components that arises when the
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2. Non-Parametric Methods

analyzed signal is comprised of multiple components, making it difficult, if not
impossible, to interpret the resulting TFR estimate. Assume that an observed
signal consists of two components, i.e., x(t) = x1(t) + x2(t). The WVD is then
found as

Wx(t,ω) =
∫ ∞

−∞
x
(

t +
τ

2

)

x∗
(

t − τ
2

)

e−iωτdτ

=

∫ ∞

−∞

((

x1

(

t +
τ

2

)

+ x2

(

t +
τ

2

))

(12)

(

x1

(

t − τ
2

)

+ x2

(

t − τ
2

))∗
)

e−iωτdτ (13)

= Wx1(t,ω) + Wx2(t,ω) + 2Re {Wx1x2(t,ω)} (14)

The cross-components will be oscillatory and situated at the midpoint between
every pairwise combination of components existing in the signal.

The WVD of the chirp signal example is shown in Figure 4. One may note
how the IFs of the two components are almost perfectly localized, but also that
the oscillating cross-component between the two chirps makes the results harder
to interpret. This would be even harder if there also was a third component in
between the two, which essentially would be hidden by the cross-components.

The drawbacks of the WVD may be remedied, at the cost of lowered concen-
tration, using some 2D smoothing kernel, analogous with the spectrogram. This
gives rise to the quadratic class of TFRs [6]

Cx(t,ω) =
∫∫

R2
φ(s, ξ)Wx(t − s,ω− ξ)ds

dξ

2π
(15)

where φ(t,ω) is some chosen smoothing kernel function. Note that the spectro-
gram is actually a member of the quadratic class with smoothing kernel φ(t,ω) =
Wh(t,ω), i.e., the WVD of the window function.

Another way to investigate the cross-components, and the smoothing kernel,
is to transform the TFR into the ambiguity domain. The base distribution is then

Ax(ν, τ) =
∫ ∞

−∞
x
(

t +
τ

2

)

x∗
(

t − τ
2

)

e−iνtdt (16)

This may also be written as a transform of the WVD

Ax(ν, τ) =
1

2π

∫∫

R2
Wx(t,ω)e−itνeiτωdνdω (17)
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Figure 4: Wigner-Ville distribution of the chirp signal example. Note that the
two components may be identified and the oscillating cross-component is clearly
visible between them.

The ambiguity function is a function of time-lag, τ, and frequency-lag ν. Any true
component in the WVD will naturally have no time- or frequency-lag between
itself and itself, and will hence be situated in the origin of the ambiguity func-
tion. Cross-components arise when there is a time- and/or frequency-lag, as there
is between two different components, and the cross-terms will then be situated
away from the origin. A convolutional smoothing kernel in the time-frequency
domain will, due to the convolution theorem, be multiplicative in the ambiguity
domain. This gives the convolutional kernel a weighted masking interpretation
in the ambiguity domain, where we want to keep terms situated close the ori-
gin unaltered, and mask out terms away from the origin. The kernel function is
therefore commonly defined in the ambiguity domain.

An often mentioned kernel is the Choi-Williams (CW) kernel [7]. The kernel

8



2. Non-Parametric Methods

is defined in the ambiguity domain as

φCW (ν, τ) = exp
(
−α (ντ)2) (18)

Another common kernel is the Born-Jordan (BJ) kernel [8]

φBJ (ν, τ) = 2
sin
(
ντ
2

)

ντ
(19)

Both these kernel result in TFRs that fulfill the marginal property. For this prop-
erty to hold, the kernel must fulfill [3]

φ(0, τ) = 1, ∀ τ ∈ R (20)

φ(ν, 0) = 1, ∀ ν ∈ R (21)

This also means that all cross-components situated between terms that are loc-
ated in parallel with the time- or frequency- axes, i.e., with time-lag τ = 0 or
frequency-lag ν = 0, will be kept intact. As the example used in this introduc-
tion consists of two linear chirps, there will be cross-components parallel to the
frequency axis at every time instance, and the resulting TFR using CW or BJ will
still retain cross-components. The CW distribution of the chirp example is shown
in Figure 5, where one may note the retained cross-components between the two
chirps.

If more is known about the observation, a signal specific optimal kernel may
be used. An example is [9], where the mean-squared-error optimal kernel for a
stochastic processes with finite fourth order moments is derived. This is set up as

φopt(ν, τ) = arg inf
φ

∫∫

R2
E

{∣
∣Ax(ν, τ)φ(ν, τ) − E

{
Ay(ν, τ)

}∣
∣2
} dν

2π
dτ (22)

where E {·} denotes expected value, and y(t) is the noise free version of x(t). The
solution is

φopt(ν, τ) =







E{Ay(ν,τ)}E{A∗

x (ν,τ)}

E{|Ax(ν,τ)|2} if (ν, τ) ∈ Syx

0 otherwise
(23)

where

Syx =
{

(ν, τ) ∈ R
2 :

∣
∣E
{

Ay(ν, τ)
}
E {A∗

x (ν, τ)}
∣
∣ > 0

}
(24)
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Figure 5: Choi-Willims distribution of the chirp signal example. The CW ker-
nel removes a large part of the cross-terms that are not parallel with time- or
frequency-axes. Compare with the WVD (Figure 4) and note that mostly cross-
components parallel to the frequency axis is retained.

If there exists a (ν, τ) ∈ Syx such that E
{

|Ax(ν, τ)|2
}

= 0, the optimal kernel

does not exist, but may be approximated within the subset

Sε =

{

(ν, τ) ∈ Syx : E

{

|Ax(ν, τ)|2
}

> ε
∣
∣E
{

Ay(ν, τ)
}
E {A∗

x (ν, τ)}
∣
∣

}

(25)

Another approach is taken in [10], where kernels are optimized to separate differ-
ent classes in an existing training set. There are also adaptive kernels proposed,
where more general assumptions are made, see e.g., [11].

10



2. Non-Parametric Methods

2.3 The Reassignment Method

As mentioned in Section 2.1, a main problem with the spectrogram is the res-
olution trade-off. One solution to this problem is the so called reassignment
method, first suggested by [12], but was largely ignored at the time. However,
as the method was reintroduced in [13], with a more thorough investigation, it
received more attention. By reassigning every point of a TFR to its local center of
gravity, a sparse estimate of the TFR is obtained, making for a better estimate if
the spectral density is indeed sparse. The distance to the gravity center, for every
point (t,ω) in the time-frequency plane may, for any member of the quadratic
class, be calculated as

t̃x(t,ω) = t −
∫∫

R2 sφ(s, ξ)Wx(t − s,ω− ξ)ds dξ
2π

∫∫

R2 φ(s, ξ)Wx(t − s,ω− ξ)ds dξ
2π

(26)

ω̃x(t,ω) = ω−
∫∫

R2 ξφ(s, ξ)Wx(t − s,ω− ξ)ds dξ
2π

∫∫

R2 φ(s, ξ)Wx(t − s,ω− ξ)ds dξ
2π

(27)

where φ(t,ω) is a chosen kernel function. Using this, the reassigned TFR may be
expressed as

Rx(t,ω) =
∫∫

R2
Cx(s, ξ)δ

(
t − t̃x(s, ξ),ω− ω̃x(s, ξ)

)
ds

dξ

2π
(28)

where Cx(t,ω) is the member of the quadratic class calculated with φ(t,ω) as
kernel function and δ(t,ω) is the 2-dimensional Dirac function. This renders
a method giving sparse TFRs for sinusoids, impulses and chirp signals, whose
IF estimates will be perfectly localized. The spectrogram has become a common
choice to use for reassignment, again in part due to its simplicity to calculate and
in part due to its positive valued nature. Further, for the spectrogram, it was
shown in [13] that the center of gravity could be expressed compactly as

t̃x(t,ω) = t +Re

{
F th

x (t,ω)
F h

x (t,ω)

}

(29)

ω̃x(t,ω) = ω− Im

{

F
dh/dt
x (t,ω)
F h

x (t,ω)

}

(30)

where F h
x denotes the STFT of x(t) using h(t), F th using t · h(t), and F dh/dt

using dh(t)/dt as their respective window functions. Further, Re{·} and Im{·}

11
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denotes the real and imaginary parts of a complex valued number, respectively.
This renders a more computationally efficient method making it more viable to
use.

The reassigned spectrogram of the two-chirp example signal is depicted in
Figure 6. Note that the chirps are almost perfectly concentrated, apart from the
edges where leakage occur.

The expression of the reassignment may be compactly formulated in a com-
plex valued manner using the normalized reassignment vector [14]

rx(t,ω) =
t̃x(t,ω) − t

Δth
+ i
ω̃x(t,ω) − ω
Δωh

(31)

whereΔth andΔωh are the time- and frequency duration of the window function,
defined as

Δth =

√
∫ ∞

−∞
t2|h(t)|2dt (32)

Δωh =

√
∫ ∞

−∞
ω2|H (ω)|2dω (33)

A statistical analysis of the reassignment was made in [15, 16] where the prob-
ability density function of the normalized reassignment vectors in every point for
a signal observed in white, circularly symmetric, Gaussian noise was derived. If
the unit norm Gaussian window, defined in (10), is used when calculating the
spectrogram the probability density function may be expressed as

f (rx(t,ω)) =
1

π
(
1 + |rx(t,ω)|2|

)

[

1 +
Sy(t,ω)

σ2

|1 + rx(t,ω)ry(t,ω)∗|2
1 + |rx(t,ω)|2

]

× exp

{

−Sy(t,ω)

σ2

|rx(t,ω) − ry(t,ω)|2
1 + |rx(t,ω)|2

}

(34)

where σ2 is the variance of the additive noise, and Sy(t,ω) and ry(t,ω) are the
spectrogram and the normalized reassignment vector of the noise-free signal, re-
spectively. This gives a insight into the sensitivity the reassignment, with regards
to noise disturbances. In paper A, we construct a parameter estimator utilizing the
reassignment method. Using the above distribution function we can investigate
how the estimator behaves for different levels of additive noise disturbances.

12



2. Non-Parametric Methods

Figure 6: The reassigned version of the spectrogram in Figure 3 for the two chirp
example, where one may note that the localization is almost perfect for the two
chirps.

In [17] they further develop the reassignment method by introducing a para-
meter, making it adjustable and more versatile. There, the normal reassignment
was interpreted as one step in an iterative scheme to move energy towards a fixed
point. By introducing the non-normalized vector

R(t,ω) =






∫∫

R2 sφ(s,ξ)Wx (t−s,ω−ξ)ds dξ
2π

∫∫

R2 φ(s,ξ)Wx (t−s,ω−ξ)ds dξ
2π

∫∫

R2 ξφ(s,ξ)Wx (t−s,ω−ξ)ds dξ
2π

∫∫

R2 φ(s,ξ)Wx (t−s,ω−ξ)ds dξ
2π




 (35)

the common reassignment method can be expressed as

[
t̃x(t,ω)
ω̃x(t,ω)

]

=

[
t
ω

]

− R(t,ω) (36)
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They then present a method based on the Levenberg-Marquardt algorithm, where
the step taken depends on a ratio between the gradient of the center of mass plus
a constant, and the center of gravity itself, such that

[
t̃x(t,ω)
ω̃x(t,ω)

]

=

[
t
ω

]

− (∇R(t,ω) + cI ))−1 R(t,ω) (37)

where c is a parameter that may be tuned, and I is the identity matrix. By tuning
the parameter c, perfect concentration may be achieved after reassignment for a
larger set of signals than just chirps and impulses. In [18] we employ the inter-
pretation presented in [17], but keep the common reassignment vector. Instead,
we introduce separate parameters for the two dimensions, altering the step length
taken in each dimension, such that

[
t̃x(t,ω)
ω̃x(t,ω)

]

=

[
t
ω

]

−
[

ct 0
0 cω

]

R(t,ω) (38)

We show that by scaling the reassignment vector with a factor of two, in both
time and frequency, a Gaussian function is perfectly localized after reassignment,
if a matched Gaussian window is used. We further present how it may be used
to estimate the shape parameter detailing the function. This method is further
investigated in paper A where we show that a Gaussian function can be reassigned
into one single point, given that a Gaussian window is used, not necessarily the
matched one, and if the correct scaling factors are applied. In Paper B we show
that any transient and twice differentiable function can be reassigned into one
single point, if the matched window function and a scaling factor of two is used.

3 Parametric and Semi-Parametric Methods

In the recent decade, there has been a surge of parametric methods, where a model
of the observed signals is suggested and the parameters detailing the model are
estimated. Given a good model of the observed process, the rendered estimates are
generally quite accurate and robust in terms of noise disturbances and outliers [2].
However, if the model assumption is wrong, or even if only the model order
assumption is wrong, the accuracy deteriorates.

Assume that the observed signals may be modeled as

x(t) = f (t;ψ) + e(t) (39)
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3. Parametric and Semi-Parametric Methods

where f (·) is some model function and ψ is a vector of parameters detailing the
model. Further, denote the observation vector as

x = [x1, . . . , xN ]T (40)

where the j:th element in the vector, xj is observed at time tj, i.e. xj = x(tj), and
the observation times are collected as

t = [t1, . . . , tN ]T (41)

One common choice is then to minimize the distance between the observations
and the parametric model using some appropriate norm (commonly the ℓ2-norm
giving the least squares (LS) estimate). The estimate may then be formed as

ψ̂ = argmin
ψ

||x − f (t;ψ)|| (42)

where || · || is a chosen norm. Another choice is to use the Maximum Likeli-
hood method, i.e. make a distribution assumption on the noise of the signal and
maximize the likelihood function over the parameter(s) given the observation

ψ̂ = argmax
ψ

L
(
ψ|x
)

(43)

where L
(
ψ|x
)

is the likelihood function of the parameters given the observations.
The TFR estimate for the signal may then be obtained from the assumed model
using the estimated parameters.

In Paper C, we present a spectral estimator for both stationary and non-
stationary signals, where the spectral representation of the signal is assumed to be
smooth. The estimator may be interpreted both as a non-parametric method as
well as a parametrization of the spectrum of the process. In the non-stationary
case, the smoothness in the spectrum is accounted for by dividing the time-
frequency plane into a coarse grid structure where the spectrum within each grid
segment is assumed to be well approximated by a plane. Using this formulation,
an optimization function is set up where the distance between a covariance estim-
ate and any covariance belonging to a smooth spectrum is minimized.

3.1 Sparse Semi-Parametric Estimation

If one has a good idea of the model of the observed signal, but does not know the
model order, e.g., the number of components in a linear combination of some
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model function, one may want to turn to the set of semi-parametric estimators.
Assume that we have an observation x(t), on the form

x(t) =
K∑

k=1

αkf (t;ψk) + e(t) (44)

where K is the unknown number of components, αk is the amplitude, and e(t) ad-
ditive noise corruption, often assumed to be circularly symmetric Gaussian white
noise. One may then construct a large set of P candidate parameters

Ψ = [Ψ1, . . . , ΨP] (45)

where P ≫ K , and define a realization of the model given

dj = f (t;Ψj) ∀ j = 1...P (46)

By collecting all the candidate realizations into a matrix

D = [d1, d2, . . . , dP] (47)

an initial guess might be to estimate the amplitude of each candidate realization
using LS

ẑLS = argmin
z

1
2
||x − Dz||22 (48)

where z is the P ×1 vector activating the candidate realizations by assigning them
amplitude

z = [z1, z2, . . . , zP]T (49)

However, even if the signal is observed noise free and all parameter values ex-
ist with perfect accuracy in the dictionary, the solutions may be a combination
of all candidate realizations as the system is under-determined. If, additionally,
the signal is observed with noise corruption, the solution will most likely be a
weighted combination of all dictionary elements. An example of this may be seen
in Figure 7, where this is applied to Example 1. A dictionary is set up using all
possible combinations between 500 starting frequencies and 100 frequency rates,
i.e., 50000 dictionary entries in total. The absolute value of the solution to (48)
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Figure 7: The solution to (48) applied to the two-component chirp signal showing
the estimated amplitude for each of the 50000 dictionary elements. Note how all
dictionary components are activated.

is shown in Figure 7 where one can see that all dictionary entries are assigned a
non-zero amplitude.

To achieve the sought sparse solution it was suggested in [19] that an ℓ1-norm
penalty factor could be used

ẑLASSO = argmin
z

1
2
||x − Dz||22 + ρ||z||1 (50)

where the ℓ1-norm is defined as

||z||1 =

P∑

j=1

|zj| (51)

In (50), ρ is a weighting factor, which is tuned in respect to how sparse one desires
the solution to be. This method, denoted the LASSO-method (Least Absolute
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Figure 8: The solution to the (50) applied to the two-component chirp signal.
Note that four dictionary components are activated, i.e., the two pairs of non-
zero amplitudes, where as the signal only contains two components.

Shrinkage and Selection Operator), gained much popularity the recent decade.
The LASSO estimate is biased for two reasons. The first one is caused by the
term enforcing sparsity, which causes the amplitude of the activated compon-
ents to be erroneously estimated. This may be remedied by applying, e.g., a LS
step with only the activated dictionary elements. The second bias is introduced
by the spacing of the dictionary. The true parameter value(s) are probably not in-
cluded when creating the dictionary and hence only the closest one or two existing
neighbors are activated. In paper D we remedy this by including a non-linear least
squares step to estimate the parameter values outside the dictionary. Another issue
with the LASSO method is the choice of ρ, which gives weight to how sparse one
expects the observed signal to be. One may however easily confirm the resulting
model order by reconstructing the signal using the given parameter estimates and
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3. Parametric and Semi-Parametric Methods

computing the residual. If the residual is too large, ρ may be decreased, allowing
for more dictionary elements to be activated. If the reconstruction is "too good",
and/or is not sparse enough, i.e., we have over-fitting, one may want to increase
ρ. The LASSO approach is applied to the two-component chirp example and
the result is seen in Figure 8, where the ẑLASSO is plotted. Note that more than
two values in ẑLASSO are non-zero. As can be seen, two pairs of dictionary realiz-
ations are activated, which suggests that the true parameter values lies in between
those existing in the dictionary. This causes the model order to be erroneously
estimated. As suggested in [20] this may be remedied by instead adding weight-
ing factors for each value of z using a diagonal weighting matrix and iteratively
update it using previous estimates of ẑ

ẑ(b)
= argmin

z

1
2
||x − Dz||22 + ρ||W(b−1)z||1 (52)

W(b)
j,k =







1
|ẑb−1

j |+ε
if j = k

0 otherwise
(53)

where ε is a small factor to avoid zero-divisions and where W(0) is set to be the
identity matrix. The algorithm is generally quite robust to the choice of ε but
it is suggested to be set slightly smaller than the smallest expected component
magnitude in accordance to empirical evidence [20]. In the same paper, it is
also shown that this iterative weighting converges to a log-norm penalty func-
tion, making it a better sparsifying penalty function than the ℓ1-norm. Ideally,
one would like to penalize the number of activated candidate realizations in the
dictionary, i.e., use the ℓ0 norm which, by assuming 00 = 0, may be defined as

||z||0 =

∑

j

|zj|0 (54)

This is however neither a true norm, nor a convex function, making it difficult,
and computationally costly to minimize. Here, the log-norm penalty function is
a better approximation than the ℓ1-norm. A simple way to convince oneself that
this is a better approximation is

||W(b−1)z(b)||1 =

∑

j

|z(b)
j |

|z(b−1)
j + ε|

(55)
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Figure 9: The solution to (52) applied to the two-component chirp signal. Note
that two dictionary components are correctly activated, unlike the pure LASSO
solution in Figure 8.

where, if z(b)
j ≈ z(b−1)

j

|z(b)
j |

|z(b−1)
j + ε|

≈
{

1 z(b) 6= 0

0 z(b) = 0
(56)

i.e. the ℓ0-norm.

The results of the iterative weighted LASSO applied to the chirp signal in
Example 1 is seen in Figure 9 where two dictionary realizations are correctly ac-
tivated.
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3.2 Group Sparsity

A further development of this method was introduced in [21], where group
sparsity is sought; i.e., from a set of candidate parameters we want to find a few
number of groups of parameters that are, in some pre-defined way, connected.
To generalize further, the number of elements in each group is also assumed to
be unknown and the penalty term for sparsity is hence still included. The group
sparsity with sparse groups estimate is then stated as

ẑGS = argmin
z

1
2
||x − Dz||22 + ρ||z||1 + γ

Q
∑

q=1

||z[q]||2 (57)

where z[q] denotes the q:th group of corresponding candidate realizations in D,
Q is the number of candidate blocks in the dictionary, and ρ and γ are weighting
factors dictating the overall sparsity and the number of groups. This is utilized
in paper D where we look at linear chirp signals, which may be harmonically
related, i.e., there are overtones that are integer multiplications of some funda-
mental frequency, or chirp as in this case. Each group in the dictionary is then a
fundamental chirp and its overtones.

4 A Very Brief Introduction to Neural Networks

In paper E, we take a slight detour and look into applications of TFR as input to
neural networks (NN). A quick overview of NNs will therefore be given here.

Prior to the explosion of NNs in image analysis, image processing and image
classification required a great deal of craftsmanship. Features where pre-defined,
followed by investigation of how well these features could be used as an identifier
of a certain class of images as compared to other classes. By instead constructing
a network containing a multitude of parameters, and optimizing the parameters
using a training data set, there is no need to set any features by hand. Instead, the
features are found in the optimization scheme, and are "chosen" by the network to
separate different classes. The term neural network comes from the observation
that the structure may be an interpretation of how the brain is built up, where
similarly billions of neurons are connected to classify, interpret, and interact with
the world.

In a neural network, a neuron is defined as a node taking multiple input values
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outputting the weighted sum plus a bias term, i.e.,

h(k)
j = b(k)

j +

Nk−1∑

i=1

w(k)
j,i h(k−1)

i (58)

where h(k)
j is the jth neuron in the kth layer of the network. A layer can then be

more conveniently expressed in matrix form as

h(k)
= W (k)h(k−1)

+ b(k) (59)

where, if there are Nk neurons in the kth layer, the output is

h(k)
=

[

h(k)
1 , . . . , h(k)

Nk

]T
(60)

and (j, i)th entry in the matrix W (k) is w(k)
j,i . If the output of a layer of neurons

are sent directly to the next layer, the operation could be simplified to one single
layer

h(k+1)
= W (k+1)

(

W (k)h(k−1)
+ b(k)

)

+ b(k+1) (61)

=

(

W (k+1)W (k)
)

h(k−1)
+

(

W (k+1)b(k)
+ b(k+1)

)

(62)

There is therefore a need to add a non-linear function. Two of the commonest
choices of activation functions are the sigmoid function

σ(x) =
1

1 + e−x
(63)

and the Rectified Linear Unit (ReLu) function

ReLu(x) = max (x, 0) (64)

More choices are however of course available [22]. It is shown in [23], that any
continuous function may be arbitrarily well approximated using a finite number
of neurons with the sigmoid function used as activation functions. In [24] this is
shown to hold for any non-linear activation function, given enough layers in the
NN. Each layer in the NN can now be expressed as

h(k)
= f (W (k)h(k−1)

+ b(k)) (65)
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Figure 10: A simple example of neural network structure.

for some chosen activation function f (x). Multiple layers may then be connected,
where each the result from one is passed through an activation function and on
to the next layer. An example of a NN structure is depicted in Figure 10.

If the matrices defining each layer are optimized without any restrictions
(called a fully connected NN), there is a high risk of over-fitting. The parameters
in the NN might be drawn to identify features specific to the examples in the
training dataset, rather than a more general predictor. A common restriction to
apply to the matrices is to enforce them to be Toeplitz. This is a matrix formula-
tion of convolution, which also makes for a good interpretation of image feature
extraction.

The last layer consists of a well chosen cost function, where the structure of
the cost function depends on what problem the NN is set up to solve. If the NN
is used to solve a regression problem, the network may simply output the number
of values one wants to estimate. A distance measure may be applied to each of the
values against the known true values. If a classification problem is considered, the
output is commonly a vector with estimated probabilities of that an observation
belongs to each of the possible classes. A chosen distance measure is then applied
between the vector of probabilities and vector with zeros on all positions except
for the correct class which contains a one.

One can now pass a set of observations through the network, and evaluate
the result using the chosen measure. By calculating the gradient of the measure
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and exploiting the chain rule, one can now estimate how each parameter in the
network should be updated in each layer. Commonly, the gradients are estimated
using a smaller set of observations, also called a batch, and a small gradient step is
taken. A new batch is then evaluated, and parameters are updated again, and this
procedure is continued until convergence. There are multiple schemes for choos-
ing step-sizes when updating the parameters. An early method was stochastic
gradient descent where a constant stepsize is chosen, and a small step is simply
taken in the gradient direction, as estimated by the latest batch. Newer versions
often include a momentum term, where the so-called Adam-scheme has grown in
popularity as it is fast and consistently achieves good results [25].
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5 Outline of the Papers

This section gives an overview of the papers included in the thesis. Paper A,
Paper D, and Paper E are published; the versions herein have editorial changes
and minor mistakes are fixed. Paper B and Paper C are to be submitted.

Paper A: Parameter Estimation of Oscillating Gaussian Functions Us-
ing the Scaled Reassigned Spectrogram

In this paper we apply the scaled reassignment method to Gaussian bell functions.
If a Gaussian window function is used when calculating the spectrogram, perfect
concentration of the reassigned spectrogram can be achieved, with all mass in
one single point, if the correct scaling factor is used. The correct scaling factor
is a function of the shape parameters of both the Gaussian window and the ob-
served Gaussian function. By measuring the entropy of the reassigned spectro-
gram, when tuning the scaling factor, we can find a parameter estimate of the
observed function, when the entropy is minimized and (close to) perfect concen-
tration is achieved.

The work in paper A is published in part as

Maria Hansson-Sandsten and Johan Brynolfsson “The Scaled Reassigned
Spectrogram with Perfect Localization for Estimation of Gaussian Func-
tions", IEEE Signal Processing Letters, vol. 22, no. 1, pp. 100-104, 2015.

Johan Brynolfsson and Maria Hansson-Sandsten, “Parameter Estimation
of Gaussian Functions using the Scaled Reassigned Spectrogram", 23rd
European Signal Processing Conference, Nice, France, Aug 31 - Sept 4, 2015

and has been published in full as

Johan Brynolfsson and Maria Sandsten, “Parameter Estimation of Oscillat-
ing Gaussian Functions Using the Scaled Reassigned Spectrogram”. Elsevier
Signal Processing, vol. 150, pp. 20-32, Sept 2018

My Contributions: MS had the main idea for the project. I proposed the op-
timization scheme and derived and investigated the statistical properties of the
reassignment. I implemented the algorithm and did the simulations. The paper
was written jointly.
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Paper B: A Time-Frequency-Shift Invariant Parameter Estimator for
Oscillating Transient Functions Using the Matched Window Reassign-
ment

In the second paper we generalize the estimator in paper A to be applied to any
twice differentiable, transient and band-limited function. We show that the spec-
trogram of any function holding the stated properties may be reassigned into one
single point, if the window function used to calculate the spectrogram is a time-
reversed version of the envelope of the observed signal. We also show that it holds
for signals in any number of dimensions. Based on this we further generalize the
parameter estimator and also present a classification scheme based on the matched
reassignment.

The work in paper B is published in part as

Maria Sandsten, Johan Brynolfsson, and Isabella Reinhold, “The Matched
Window Reassignment", 26th European Signal Processing Conference, Rome,
Italy, Sept 3-7, 2018

Johan Brynolfsson, Isabella Reinhold, Josefin Starkhammar and Maria Sand-
sten, “The Matched Reassignment applied to Echolocation Data", 44th In-
ternational Conference on Acoustics, Speech, and Signal Processing, Brighton,
UK, May 12-17, 2019.

and the full paper is to be submitted.
My Contributions: MS had the main idea for the project. I derived the method
for complex, multidimensional signals, and proposed the parameter estimator. I
implemented the algorithm and did the simulations. IR constructed the classifier
and did the corresponding simulations. The paper was written jointly.

Paper C: Least Squares Estimation of Smooth and Mixed Spectra

In the third paper, we consider the problem of estimating spectral representa-
tions which are assumed to be smooth. We consider three different cases; one-
dimensional stationary signals, one-dimensional non-stationary signals, and two-
dimensional stationary signals. Here we divide the spectral representation into
segments, and assume the the spectral representation within each segment may be
approximated as changing linearly. We then construct a fast least-squares based
estimator as well as an optimizing scheme where we may update the location of
the separate segments, also allowing for mixed spectra.
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The work in Paper C is published in part as

Johan Brynolfsson, Johan Swärd, Andreas Jakobsson, and Maria Hansson-
Sandsten ‘Smooth Time-Frequency Estimation Using Covariance Fitting”,
presented at: 39th International Conference on Acoustics, Speech, and Signal
Processing, Florence, Italy, May 4-9, 2014.

Johan Swärd, Johan Brynolfsson, Andreas Jakobsson, and Maria Hansson-
Sandsten “Smooth 2-D Frequency Estimation using Covariance Fitting”,
22nd European Signal Processing Conference, Lisbon, Portugal, Sept 1-5,
2014.

Johan Brynolfsson, Johan Swärd, Andreas Jakobsson, and Maria Sandsten,
“Least Squares and Maximum Likelihood Estimation of Mixed Spectra",
26th European Signal Processing Conference, Rome, Italy, Sept 3-7, 2018

and the full paper is to be submitted.
My Contributions: The project was a close collaboration between JS and me.
The idea was conceived jointly. Derivation and implementations where done
jointly for the one-dimensional case and I extended it to the two-dimensional
and time-frequency cases. The paper was written jointly.

Paper D: Sparse Semi-Parametric Estimation of Harmonic Chirp Sig-
nals

In the fourth paper, we consider the problem of estimating possibly harmonic
chirp signals. A harmonic sinusoidal model is often used for many naturally oc-
curring signals, such as speech, but where inharmonicities are often seen. A har-
monic chirp model has been suggested as a more fitting model. Previously pro-
posed algorithms estimating harmonic chirp structures require both the number
of fundamental chirps as well as the number of overtones. Here we assume that
both are unknown and propose a semi-parametric, dictionary based algorithm.
To avoid the bias introduced by the dictionary approach an additional non-linear
least squares step is proposed.

The work in Paper D has been published in part as

Johan Swärd, Johan Brynolfsson, Andreas Jakobsson, and Maria Hansson-
Sandsten “Sparse Semi-Parametric Chirp Estimation”, The Asilomar Con-
ference on Signals, Systems, and Computers, Asilomar, USA, Nov 2-5, 2014.

27



Introduction

and has been published in full as

Johan Swärd, Johan Brynolfsson, Andreas Jakobsson, and Maria Hansson-
Sandsten, “Sparse Semi-Parametric Estimation of Harmonic Chirp Sig-
nals”. IEEE Transactions on Signal Processing, vol. 64, no. 7, pp. 1798-
1807, 2016.

My Contributions: The project was a close collaboration between JS and me.
The idea was conceived jointly. Derivation and implementations where done
jointly. JS had previously worked with the ADMM optimization scheme and
implemented it for this paper too. The paper was written jointly.

Paper E: Classification of One-Dimensional Non-Stationary Signals
Using the Wigner-Ville Distribution in Convolutional Neural Net-
works

In the fifth paper, we argue that when a time-frequency representation is used as
input to a neural network in a classification setting, the Wigner-Ville represent-
ation could be used for better accuracy, as compared to a manually chosen spec-
trogram. By allowing the neural network optimization to tune a convolutional
kernel function, the network may choose any member of the quadratic class.

The work in Paper E has been published as

Johan Brynolfsson and Maria Sandsten “Classification of One-Dimensional
Non-Stationary Signals Using the Wigner-Ville Distribution in Convolu-
tional Neural Networks”, 25th European Signal Processing Conference, Kos,
Greece, Aug 28-Sept 2, 2017.

My Contributions: I had the idea for the project and did the implementation
and simulations. The paper was written jointly.
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