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Event-Based State Estimation Using the Auxiliary Particle Filter

Johan Ruuskanen1 and Anton Cervin1

Abstract— Event-based sampling provides a way of lowering
the resource utilization in sensing and communication applica-
tions. By sending a sample only when some triggering condition
is fulfilled, we can ensure that the transmitted samples actually
carry innovation. However, in an event-based system, the state
estimation problem becomes complicated, as the information of
not receiving a measurement must be taken into consideration.

Recent research has examined the feasibility of using particle
filters for solving the event-based state estimation problem. To
the best of our knowledge, only the simple bootstrap particle
filter has so far been considered in this setting. We argue that,
as this filter does not fully utilize the current measurement, it
is not well suited for state estimation in event-based systems.

We propose an extension to the auxiliary particle filter
for systems with event-based measurements, in which certain
existing techniques for finding an approximation of the fully
adapted filter can easily be utilized. In a simulation study,
we demonstrate that at new measurement events, the benefits
of using the auxiliary particle filter increases when fewer
measurements are being sent.

I. INTRODUCTION

Event-based sampling, communication, and control has
gained increased attention in recent years [1]. One motivation
is to reduce the communication bandwidth and to prolong the
lifetime of battery-powered sensors. In this kind of setting,
an event triggering mechanism such as send-on-delta (SOD)
[2] is designed and implemented in the sensor node. In other
cases, event-based sampling is inherent in the measurement
device. Examples of this include wheel encoders, digital
positioning sensors, and A/D converters with a resolution
down to 1 bit.

With event-based sampling, the state estimation problem
becomes non-trivial even for the case of linear process
dynamics with Gaussian additive process noise (LG). The
key difficulty is that even the absence of measurements
contains some information, which in general can not be
described using a Gaussian kernel. One notable exception
is the usage of stochastic triggers proposed in [3], [4], for
which the closed-form, optimal filters for LG systems can
be found. For deterministic triggering methods, such as the
common SOD method, this is no longer the case. Here, non-
LG filtering techniques must be employed. Popular nonlinear
extensions to the Kalman filter [5] such as the extended
Kalman filter and the unscented Kalman filter [6] are not
suitable since they assume a Gaussian noise model. A better
candidate for event-based state estimation is the particle filter,
which makes no particular assumptions on the noise [7].

State estimation under event-based sampling carries some
similarity to estimation with missing values [8] or quan-
tized measurements [9]. In both cases the particle filter has
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been considered [10], [11], [12]. The key difference to the
missing value concept is the fact that absent measurements
carry no innovation, while the nature of event-triggering
gives information about the measurement when no triggering
has occurred. Compared to quantized measurements, the
quantization level gives an area of possible values for the
true underlying measurement, which the event-triggering also
provides. However, in the quantized case this area is fixed,
while in the event-based case the area is free to change at or
between new events. Further, a shift to a new measurement
in a quantized system will also be quantized, while in event-
based settings new measurements are not distorted.

A handful of earlier works on event-based state estima-
tion using particle filters exist. In [13] the use of event-
based sampling in nonlinear filtering is described, and as
an example a particle filter is demonstrated. In [14], Sid and
Chitraganti derive an event-based extension to the particle
filter where the likelihood is computed using numerical
integration. In [15], Davar and Mohammadi derive an event-
based particle filter tailored for an LG system with SOD
triggering. In the work by Liu et al. [16], the particle filter
is used as a central event-based estimator, where the sensor
triggering conditions are governed by local, less cumbersome
estimators. These works all utilize the bootstrap particle filter
(BPF) [17]. The BPF is an easy-to-implement version of
the standard particle filter, in which the particles are simply
propagated according to the process model. This has a major
drawback that becomes particularly amplified in conjunction
with event-based sampling—it does not utilize the latest
measurement in the propagation/resampling step. This can
lead to particle depletion at the critical instant of processing
a new measurement.

In this work we propose to use the auxiliary particle
filter (APF) [18] to improve the estimator performance at
new measurement events. Assuming a known triggering
condition, we show that, by using an approximation of the
likelihood based on a Gaussian mixture model, an adequate
proposal distribution and approximate predictive likelihood
can be found. The likelihood approximation was previously
proposed by Sijs and Lazar [19], who used it for event-
based state estimation in conjunction with a Gaussian state
approximation in each step to form their event-based state
estimator (EBSE). By contrast, using a particle filter, we are
able to track the non-Gaussian state distribution at all times.

The rest of the paper is organized as follows. In Sec. II,
event-based state estimation and its implications are pre-
sented. In Sec. III, the auxiliary particle filter is reviewed.
In Sec. IV, a motivation is first provided on why the APF
extension is more important in event-based settings, and then



a framework on how to extend current methods for designing
of APF filters to event-based system is presented. In Sec. V,
the benefits of utilizing the APF over the BPF in an event-
based setting is demonstrated on an example system. Finally,
in Sec. VI, the results and findings are discussed.

II. EVENT-BASED STATE ESTIMATION

In this paper we consider the state estimation problem for
the discrete-time state-space model

xk = f(xk−1, vk), yk = h(xk, wk), (1)

where k ∈ N is the time index, xk ∈ Rn is the unknown
state vector, and yk ∈Rm is the known measurement vector,
while vk ∈ Rv and wk ∈ Rw are mutually uncorrelated
noise processes following some known distributions. The
transition function is defined as f : Rn × Rv → Rn and
the measurement function as h : Rn × Rw → Rm. Let
p(A |B) denote the probability density function (PDF) of A
conditioned on B. Further assume that the PDFs of the state
and measurement vectors can be found as xk ∼ p(xk | xk−1)
and yk ∼ p(yk | xk), denoting the transition and likelihood
densities, respectively. Finally, denote an event at time k as
γk = 1 and the absence of an event as γk = 0.

In the state estimation problem, we are tasked with finding
the sequence of hidden state vectors x1:T given the observed
measurements y1:T . From a Bayesian point of view, this can
be formulated as p(x1:T | y1:T ), i.e., finding the distribution
of the hidden state vectors conditioned on the observed mea-
surements. In many settings, it is most relevant to consider
the causal filtering problem, in which the measurements
yk+1:T are not available at time k. Assuming causality,
the state-space density can be rewritten as the following
recursion using Bayes’ law:

p(x1:k | y1:k) = p(x1:k−1 | y1:k−1)
p(yk | xk)p(xk | xk−1)

p(yk | y1:k−1)
.

(2)
In an event-based setting, new measurements are not guar-
anteed to be available at each time instance k. From the
viewpoint of the observer, the set of all possible values can
be formalized as

Yk =

{
{yk}, γk = 1,

Hk, γk = 0.
(3)

If a new measurement is obtained, then the set of possible
values will simply be the sent value yk. Otherwise, the
possible values will belong to some set Hk that depends
on the event generation. The likelihood over Yk can be
expressed as

p(Yk | xk) =

∫
p(Yk | ȳk)p(ȳk | xk)dȳk. (4)

For a deterministic triggering rule, a new event is guaranteed
to be generated once a measurement is outside some area
Ξ. If no event is generated, then P (yk ∈ Ξ | γk = 0) = 1.
Following the reasoning from [19], the likelihood over Yk
can thus be expressed as

p(Y | yk, γk) =

{
δyk

(x) γk = 1,

U(ȳk ∈ Ξ) γk = 0,
(5)

where δyk
(x) is the Dirac delta evaluated at yk, and U(ȳ ∈Ξ)

the uniform distribution over the area Ξ.

III. THE AUXILIARY PARTICLE FILTER

Particle filters are a class of sequential Monte Carlo
methods commonly used in state estimation, which aim
at approximating the posterior p(x1:k | y1:k) with a set of
discrete points referred to as particles. In this paper we only
give a quick walk-through of the most important concepts
for the APF. For a more thorough and rigorous derivation
spanning the basic sequential Monte Carlo methods up until
the auxiliary particle filter, we refer to the compendium by
Doucet and Johansen [7, Ch. 3-4].

Define a particle i as the Dirac delta with its entire
support located at Xi, i.e., δXi(x). Using a set of N
particles, an approximation of an arbitrary density p(x) can
be found as p(x) ≈

∑N
i=1 δXi (x), where Xi ∼ p(x). In

general, generating samples from p(x) can be hard, if not
impossible. Instead, particles can be drawn from a proposal
density Xi ∼ q(x) and weighted as W i ∝ p

(
Xi
)
/q
(
Xi
)

to generate the approximation p(x) ≈
∑N

i=1W
iδXi . For a

state estimation problem, this can be formulated as drawing
i sequences {Xi

1:T }i=1:N with the corresponding weights
{W i

1:T }i=1:N to form

p(x1:k | y1:k)≈
N∑
i=1

W i
kδXi

1:k
(x1:k) , ∀k ∈ 1 : T. (6)

To draw and weight the particles, the recursion (2) can be
utilized at each time step k as

Xi
k ∼ q

(
xk |Xi

k−1, yk
)
,

W i
k ∝W i

k−1

p
(
yk |Xi

k

)
p
(
Xi

k |Xi
k−1

)
q
(
Xi

k |Xi
k−1, yk

) .
(7)

Starting from some initial distribution Xi
0 ∼ p(x0), the

particles and weights obtained from this recursive formula
can be shown to generate an approximate state-space density
that converges as N→∞. To make the algorithm feasible for
a finite number of particles, however, a couple of extensions
can be made.

First, finding a good proposal density is of importance.
In order to minimize the variance of the weights, it should
optimally be chosen as q(xk | xk−1, yk) ∝ p(yk | xk)p(xk |
xk−1). Finding this optimal proposal is often not possible;
instead it must be approximated in some manner. Another
simple solution is setting the proposal to the transition
density, q(xk | xk−1, yk) = p(xk | xk−1), which results in
the bootstrap particle filter.

Secondly, resampling of the particles is commonly intro-
duced. In each step, the propagation will disperse the parti-
cles evermore over the state space, resulting in a majority of
the total weight ending up in a small subset of the particles.
By resampling the particles this weight degeneracy can be
remedied. Let ai be indexes drawn from the categorical
distribution C

(
{W i

k}i=1:N

)
. The resampled particles with

their corresponding weights then become

{Xi
1:k,W

i
1:k}i=1:N ≈ {Xai

1:k, 1/N}i=1:N . (8)



Performing resampling in each step if often not necessary.
Instead it can be triggered when the effective sample size
Ne ≈ 1/

∑N
i

(
W i

k

)2
falls below some limit. The recursive

algorithm (7) together with the resampling step constitutes
the general particle filter algorithm.

As with the propagation density, the resampling could also
be conditioned on the current measurement yk. This is the
idea behind the auxiliary particle filter, where the predictive
likelihood p (yk | xk−1) is used evaluate the likelihood of
observing yk for a particle at time k − 1 and used in
the resampling step, i.e., V i

k−1 ∝ W i
k−1p

(
yk | Xi

k−1

)
. The

indexes ai are then drawn from C
(
{V i

k−1}i=1:N

)
instead,

and the resampled particles propagated and weighted as

Xi
k ∼ q

(
xk |Xai

k−1, yk
)
,

W i
k ∝W ai

k−1

p
(
yk |Xi

k

)
p
(
Xi

k |Xai

k−1

)
p
(
yk |Xai

k−1

)
q
(
Xi

k |Xai

k−1, yk
) . (9)

Finding the predictive likelihood is in general difficult.
Instead, an approximation can be used. However, if the true
predictive likelihood is obtainable and used in conjunction
with the optimal proposal, the APF is referred to as fully
adapted [20].

IV. APPROXIMATING THE FULLY-ADAPTED FILTER FOR
EVENT-BASED SYSTEMS

Earlier work has extended the bootstrap particle filter for
event-based systems with deterministic kernels. However,
the lack of inclusion of the current measurement makes the
BPF worse than the ordinary particle filter. This should also
be true for event-based systems. Moreover, we argue that
inclusion of the current measurement is even more important
in event-based settings. In these systems, one can typically
have long periods of no measurements between rare instances
of new events. The approximated state estimate density right
before an event at time k would be broad, depending on the
broad spectrum of the particles Xi

k−1 that could generate a
high likelihood on Yk−1. When a new event happens, it will
due to the nature of event-triggering most probably be at a
location where p(Yk−1 | xk−1) is low. Thus, by not utilizing
the information from the event, Xi

k−1 propagated in the BPF
manner will most likely end up with a low p

(
yk |Xi

k

)
,

resulting in a bad approximation of the target distribution.
The same could be argued for the inclusion of the APF

extension. As a new event indicates that the measurement yk
is outside the kernel interval defining the broad likelihood
p(Yk−1 | xk−1), only a fraction of the particles with a high
likelihood on Yk−1 would actually have a large predictive
likelihood on yk. In other words, the states of the true
underlying yk−1 will most likely be located at the “edges”
of the likelihood density. Particles not located in this vicinity
would have practically zero likelihood of generating the
observed event yk, and thus give a poor performance on the
approximation of the state estimation density, even though
the chosen proposal is sound. The larger the kernel interval
is, the more particles should have a low predictive likelihood.
By using the APF approach, this effect should be mitigated

(a) Using only the transition density in drawing new particles.

(b) Using a well-chosen proposal density instead.

(c) Using a well-chosen proposal density for drawing new particles and the
predictive likelihood in the resampling step.

Fig. 1: Illustration of the effect of using a well-chosen proposal density
and a resampling strategy conditioned on the predictive likelihood in a one
dimensional event-based setting. The blue lines represent a snapshot of the
underlying posterior density p(x1:k | Y1:k), the line with a broad bump
represents the likelihood with no triggered event γk = 0 while the line with
the narrow bump represents the likelihood with a triggered event γk = 1.
The markers represent the particles.

by choosing particles in the resampling step that would have
a high p(yk | xk−1).

Thus far, a motivation as to why it could be of importance
to use an APF over a BPF in event-based systems has been
provided. See Fig. 1 for an illustration. We now show that
constructing an APF for an event-based system is entirely
possible, with a proposal and approximate predictive likeli-
hood approximating the fully-adapted filter. First, we state
two lemmas that will be needed.

Lemma 1: Given the joint distribution of two correlated
Gaussian distributed variables, x ∈ Rn and y ∈ Rm,

p(x, y) =N

((
x
y

) ∣∣∣∣∣
[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, (10)

the conditional distribution with respect to y = α becomes
p(x | y = α) =N (x | µ,Σ) ,

µ= µ1 + Σ12 (Σ22)
−1

(y−µ2) ,

Σ = Σ11−Σ12 (Σ22)
−1

ΣT
12.

(11)

Proof: See [21, p. 116 - 117].

Lemma 2: The product of two independent Gaussian den-
sities becomes a new Gaussian density weighted with a
Gaussian function:
N (x | µ1,Σ1)N (x | µ2,Σ2)

=N (µ1 | µ2,Σ1 + Σ2)N (x | µ3,Σ3) ,

µ3 =
(
Σ−1

1 + Σ−1
2

) (
Σ−1

1 µ1 + Σ−1
2 µ2

)
,

Σ3 =
(
Σ−1

1 + Σ−1
2

)
. (12)

Proof: See [22]. With a few algebraic manipulations
the expression can be written as two normal densities.

Consider the likelihood for the event-based system with
deterministic sampling. When an event is triggered (γk =
1), the likelihood reduces to the normal state-space model
likelihood density by (5) applied to (4). In the case of no



event (γk = 0), the likelihood reduces to the integral

p(Yk | xk) =

∫
p (ȳk | xk)U (ȳk ∈ Ξ) dȳk

=
1

Z

∫
Ξ

p (ȳk | xk) dȳk,
(13)

where Z is the normalizing constant. For a one-dimensional
h(xk, wk), where the likelihood density has a known prim-
itive and the bounds of Ξ are known, the integral is trivial
to evaluate. In [15], this is used for the case when the
likelihood is Gaussian, but it is applicable to a much broader
class of densities. If the density instead has an unknown
primitive and/or is multivariate, the ideas from constrained
Bayesian state estimation can instead be utilized, as Liu et
al. [16] have shown. Thus the weights of a particle filter
(7) or APF (9) in an event-based setting with deterministic
triggering can always be found for some q (xk | xk−1,Yk)
and p̂ (Yk | xk−1). To find these densities, the two cases
γk = 1 and γk = 0 will be considered separately.
γk = 1: Here, p (Yk | xk) reduces to the original likeli-

hood density p(yk | xk) for the state-space model (1). The
problem boils down to finding a proposal and approximate
predictive likelihood for an ordinary system, for which
many results exist [20]. One solution is to first create a
joint Gaussian density p(xk, yk | xk−1) from the state-space
densities. Since yk given xk is independent from xk−1, the
joint density is proportional to the optimal proposal and can
be found using Bayes as

q(xk | xk−1, yk)∝ p(yk | xk)p(xk | xk−1)

= p(xk, yk | xk−1).
(14)

Using Bayes again, we can find the following expression:
q(xk | xk−1, yk)∝ p(xk, yk | xk−1)

= p(xk | xk−1, yk)p(yk | xk−1)

∝ p(xk | xk−1, yk).

(15)

Since yk and xk−1 are given, the predictive likelihood
p(yk | xk−1) simply becomes a scaling factor that can be
removed by proportionality. If the system is LG, then the
joint Gaussian (14) can be found analytically. If the system is
additive Gaussian but not linear, the resulting joint Gaussian
can be approximated by, e.g., linearization [23] or exact
moment matching [24]. Otherwise, Gaussian approximations
of the state-space densities can first be found as

p(yk | xk)≈N
[
yk |E (p(yk | xk)) ,

α1V (p(yk | xk))
]
,

(16)

p(xk | xk−1)≈N
[
xk |E (p(xk | xk−1)) ,

α2V (p(xk | xk−1))
]
,

(17)

where α1, α2 are scaling factors to keep the support of the
approximations wider than the original densities. The joint
Gaussian density can then be found either directly if linear,
or through approximations. From the joint Gaussian, the pro-
posal can be calculated using Lemma 1, and the approximate
predictive likelihood can be found as the marginalization of
the joint probability over xk:

q (xk | xk−1, yk) =N (xk | µ3,Σ3) ,

p̂ (yk | xk−1) =N (yk | µ2,Σ22) .
(18)

γk = 0: Following Sijs and Lazar [19], the uniform
distribution in the likelihood (5) can be approximated by
a mixture of M Gaussians with the means located at some
discretization of the kernel interval, ŷjk ∈ Ξ ∀j ∈ [1,M ], and
with some covariance matrices, V j

k . Using this approxima-
tion, the likelihood can be written as

p (Yk | xk) =

∫
U (ȳk | ȳk ∈ Ξ) p (ȳk | xk) dȳk

≈ 1

M

M∑
j

∫
N
(
ȳk | ŷjk, V

j
k

)
p (ȳk | xk) dȳk.

(19)

For this integral to be tractable, the original likelihood p(yk |
xk) cannot be allowed to be arbitrarily defined. Instead,
for an arbitrary system we could approximate the original
likelihood with a Gaussian to allow the integral to be
evaluated. Use the same notation as in (16):

p̂(yk |xk) =N
(
yk |E (p(yk | xk)) , α1V (p(yk | xk))

)
. (20)

Using this approximation, the likelihood (19) can be rewrit-
ten using Lemma 2 as

p̂(Yk | xk) =
1

M

M∑
j

∫
N
(
ȳk | ŷjk, V

j
k

)
p̂ (ȳk | xk) dȳk

=
1

M

M∑
j

N
(
ŷjk | E (p(yk | xk))

V j
k +α1V (p(yk | xk))

)
=

1

M

M∑
j

p̂
(
ŷjk | xk

)
.

(21)

Since the Gaussian weights are independent of ȳk, the
integral over the resulting density becomes

∫
N (ȳk |

µ3,Σ3)dȳk = 1. The following optimal proposal can then
be stated:
q(xk | xk−1,Yk)∝ p(Yk | xk)p(xk | xk−1)

≈ 1

M

M∑
j=1

p̂
(
ŷjk | xk

)
p(xk | xk−1).

(22)

Using the same logic as for γk = 1, the joint Gaussian density
can be found either directly or by first approximating p(xk |
xk−1) by a Gaussian as in (17):

q(xk | xk−1,Yk)∝ 1

M

M∑
j=1

p
(
ŷjk, xk | xk−1

)
∝

M∑
j=1

p
(
xk | xk−1, ŷ

j
k

)
p
(
ŷjk | xk−1

)
.

(23)

The proposal thus becomes a mixture of Gaussians p
(
xk |

xk−1, ŷ
j
k

)
found using Lemma 1, where each Gaussian is

weighted using the predictive likelihood p
(
ŷjk | xk−1

)
, found

by marginalizing the joint distribution over xk. Similarly, the
predictive likelihood of Yk can be found as

p(Yk | xk−1)≈
∫

1

M

M∑
j=1

p̂
(
ŷjk | xk

)
p(xk | xk−1)dxk

∝
M∑
j=1

p
(
ŷjk | xk−1

)
.

(24)



V. SIMULATION STUDY

In order to evaluate the performance of the suggested
proposal and approximated predictive likelihood, a simu-
lation study is performed on an LG system sampled with
a deterministic event kernel. Both the BPF and the APF
are compared to the EBSE filter introduced by Sijs and
Lazar [19]. The system considered is the same simple, one-
dimensional target tracking problem as Davar and Moham-
madi used for demonstrating their event-based BPF [15]:

xk =

[
0.8 1
0 0.95

]
xk−1 + vk vk ∼N

(
0,

[
0.1 0
0 0.1

])
,

yk =
[
0.7 0.6

]
xk +wk wk ∼N (0, 0.01). (25)

As event-kernel the simple SOD method for a one dimen-
sional measurement is considered:

{zk, γk}=

{
{yk, 1} if |yk − zk−1|> δ,

{zk−1, 0} otherwise.
(26)

Each simulation was run for 1000 time steps over different
settings of the two parameters N—number of particles and
δ—event kernel width. For each parameter pair, the simu-
lation was run 1000 times, with a new system simulated
for each run, to create an accurate Monte-Carlo estimation
of performance. For the particle filters, adaptive resampling
with systematic resampling was used in the resampling step
where the limit for the effective sample size was set to
Nlim = N/2. In the special case of a LG system, the joint
density (14) can for γk = 1 be found exactly as
p(xk,yk | xk−1) =

N

((
xk
yk

) ∣∣∣∣∣
[
Axk−1

CAxk−1

]
,

[
Q QCT

CQ CQCT +R

])
.

(27)

By using Lemma 2 and marginalization over xk, the proposal
density and predictive likelihood can be found as

p(yk | xk−1) =N (yk | CAxk−1, S) ,

q(xk | xk−1, yk) =N (xk | µq,Σq),

µj
q =Axk−1 +QCTS−1 (yk −CAxk−1) ,

Σq =Q−QCTS−1CQ,

S = CQCT +R. (28)

For γk = 0, the proposal and approximate likelihood can be
found in similar manner as

p̂ (Yk | xk−1)∝
M∑
j=1

p̂
(
ŷjk | xk−1

)
,

q (xk | xk−1,Yk)∝
M∑
j=1

p̂
(
ŷjk | xk−1

)
N
(
xk | µj

q,Σq

)
,

(29)

where

p̂
(
ŷjk | xk−1

)
=N

(
ȳjk | CAxk−1, S

)
µj
q =Axk−1 +QCTS−1

(
ŷjk −CAxk−1

)
Σq =Q−QCTS−1CQ,

S = CQCT +R+V j
k .

(30)

The reader can recognize the formulas for µq and Σq from
the Kalman filter.

At each event, the uniform distribution will need to be
approximated by a Gaussian mixture with M densities,
located at ŷjk with covariance V j

k . For the choice of the SOD
kernel, the length of Ξ is static at 2δ. M and V j

k can thus
be chosen as static numbers. The points ŷjk are chosen to
be equidistant over the kernel interval, with the first and last
points situated at the edges of the uniform distribution to
ensure that the approximation does not lose accuracy at these
vital places.

The number of discretization points was chosen to M = 5,
with a manually tuned V j

k = 2δ/5 · 0.5, ∀j. The choice of
Vk is based on the length of Ξ, divided by the number of
points scaled with a constant. The same Gaussian mixture
approximation is used for both the APF and the EBSE filter.
Since we are dealing with an LG system, a comparison is
also made with a standard Kalman filter to form the baseline
optimal estimator for δ = 0.

The simulation study was implemented in Julia v.0.6.3 and
can be found on Github1.

Results
The results of the simulation study are displayed in Fig. 2

and 3, where the mean squared error (MSE) between the
estimated and true states for the different estimators and
parameter settings are shown. In Fig. 2, the MSE as a
function over δ with N = 500 is depicted, while in Fig. 3,
the MSE as a function over N with δ= 4.0 is shown instead.

In Fig. 2a and 3a, the MSE was evaluated over all time
steps. As can be seen, the choice of estimator only seems to
have an impact when considering a low number of particles
N . Otherwise the estimators have an equal performance.
This is most likely due the nature of event triggering, which
trades performance for an reduction in sent measurements.
These “acceptable errors” defined by δ then overshadow any
noticeable gains in using either of the considered estimators.

If we instead only consider the MSE at times k where
γk = 1, thus examining the ability of the algorithms to
adapt to new events, we get the results shown in Fig. 2b
and 3b. Note that Fig. 3b is plotted in log scale. Here it
is clear that the APF outperforms both the BPF and the
EBSE filter in terms of estimation error. The error of the
APF seems to evolve more slowly with increasing δ than the
two other filters, and it manages with a fewer particles than
the BPF. This is in accordance with our earlier motivation,
as the APF manages to better capture the true underlying
state right before an event by resampling conditioned on
the new measurement. In comparison, the EBSE utilizes the
Gaussian mixture approximation to create a single Gaussian
approximation of the true state. However, right before an
event, this single Gaussian approximation no longer gives
an accurate representation of the true underlying state, as it
will be close to the borders of the likelihood set.

Finally, in Fig. 2c, the average number of triggered events
γk = 1 per time series for Fig. 2a and 2b is shown, and in
Fig. 3c, the average number of numerical errors per time

1https://github.com/JohanRuuskanen/event-based_
apf

https://github.com/JohanRuuskanen/event-based_apf
https://github.com/JohanRuuskanen/event-based_apf
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Fig. 2: Result of the simulation, plotted over the SOD event kernel width
δ for a particle count of N = 500.
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Fig. 3: Result of the simulation, plotted over the particle count N for a
SOD kernel width of δ = 4.

series for Fig. 3a and 3b is instead displayed. A numerical
error happens when the likelihoods for all particles are too
low, such that the normalization of {W i

k}i=1:N becomes
unfeasible as

∑N
i=1W

i
k ≈ 0. As can be seen, the number

of numerical errors becomes fairly large at low N for the
BPF while they are virtually non-existent for the APF.

VI. CONCLUSION & DISCUSSION

In this paper we have presented a general framework
on how to extend the auxiliary particle filter to event-
based systems with deterministic kernels via a Gaussian
mixture approximation of the uniform distribution in the no-
event likelihood. Existing methods for finding the proposal
and approximate predictive likelihood that approximates the
fully-adapted filter via a joint Gaussian naturally fall into this

framework. The results presented in the simulation study give
strength to the motivation given in Sec. IV, as conditioning
the proposal and resampling on the current measurement
have a large impact on estimation accuracy when considering
the immediate effect of a new event.

The strength of particle filters lies in their ability to tackle
non-LG problems, so a natural question that arises is whether
this approach can be used to solve event-based nonlinear
state estimation problems. In the simulation study we only
considered the LG case, mainly to demonstrate the benefits
of the APF and the increasing degeneracy for the BPF in an
event-based setting. But when deriving the event-based APF
extension, no assumptions on linearity and Gaussianity are
made—only that the transition and likelihood densities can



be approximated adequately as Gaussians by tuning α1, α2.
Extensions to certain well-behaved non-LG system should
therefore be straightforward using already existing methods
for finding proposals in these settings. However, more re-
search is needed to validate this claim. Initial examination
has shown that both the BPF and our event-based APF break
down when considering typical nonlinear particle filter test
systems sampled with common deterministic triggering rules.
A probable root cause of this is the fact that common kernels
are designed for linear systems. An interesting direction for
future work could thus be to identify trigger kernels that can
incorporate nonlinearities in a suitable manner.

A valid critique of our choice of approximating the uni-
form distribution with M Gaussians for deriving the proposal
and approximate likelihood, is that each particle must be
evaluated over these M points at each γk = 0, potentially
increasing the computational burden from O(N) to O(NM)
at these time instances. In our simulation study we chose M
and V j

k by hand, but an interesting question for future work
would be to examine how M can be minimized by clever
positioning of the discretization points and choice of V j

k and
still retain a good estimation accuracy. Another possibility
to reduce the computational overhead is to consider heuristic
solutions where for example the bootstrap filter could be used
to propagate particles between new events, and the APF used
when an event is triggered.

It is worth noting that the comparison with the BPF filter
is not entirely fair, as the computational burden of the APF is
greater. However, by timing the execution time for the APF
and matching it to the computation time for the BPF by
increasing its N and to the EBSE filter by increasing its M ,
we still retained an advantage for the APF, albeit smaller
than in Fig. 2 and 3. To draw any definitive conclusions
about such a comparison, time would need to be spent on
optimizing the choice of M , V j

k and the implementation.
Finally, particle filters are in general sensitive to increasing

dimensions. For event-based systems, this curse of dimen-
sionality should be even worse as the particles at γk = 0 will
span a larger area in each dimension compared to γk = 1.
Although the APF mitigates this problem somewhat, it is still
dependent on there existing at least one particle close to the
true underlying state that could be used to form the posterior
approximation. It could thus be worth considering particle
filtering methods that does not resample, but transform the
particle set before propagation, e.g., the feedback particle
filter [25], to increase robustness as the dimensions increase.
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