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Feasible coordination of multiple homogeneous or heterogeneous mobile
vehicles with various constraints

Zhiyong Sun, Marcus Greiff, Anders Robertsson and Rolf Johansson

Abstract— We consider the problem of feasible coordination
control for multiple homogeneous or heterogeneous mobile ve-
hicles subject to various constraints (nonholonomic motion con-
straints, holonomic coordination constraints, equality/inequality
constraints etc). We develop a general framework involving
differential-algebraic equations and viability theory to describe
and determine coordination feasibility for a coordinated motion
control under heterogeneous vehicle dynamics and various
constraints. A heuristic algorithm is proposed for generating
feasible trajectories for each individual vehicle. We show several
application examples and simulation experiments on multi-
vehicle coordination under various constraints to validate the
theory and the effectiveness of the proposed algorithm and
control schemes.

I. INTRODUCTION

In the active research field of mobile robot motion plan-
ning and control, multi-vehicle coordination and cooperative
control has been and will remain an attractive research topic,
motivated by an increasing number of practical applications
requiring multiple robots or vehicles to cooperatively per-
form coordinated tasks. A fundamental problem in multi-
vehicle coordination is to plan feasible motion schemes and
trajectories for each individual vehicle which should satisfy
both kinematic or dynamic requirement for all vehicles,
and inter-vehicle geometric constraints that define a given
coordination task.

Typically, an individual vehicle is subject to various
kinematic motion constraints which limit possible motion
directions. In the seminal paper by Tabuada er al. [1], the
problem of motion feasibility was studied in the context
of multi-agent formation control. Via the tools of differ-
ential geometry, feasibility conditions were derived for a
group of mobile agents to maintain formation specifications
(described by strict equality constraints) in each agent’s
motions. Recently, the motion feasibility problem in multi-
vehicle formation and cooperative control has resumed its
interests in the control and robotics community. The paper
[2] discusses coordination control with dynamically feasible
vehicle motions, and solves a rigid formation shape main-
tenance task and formation reconfiguration problem. Our
recent work [3] investigates the formation and coordination
feasibility with heterogeneous systems modelled by control
affine nonlinear systems with drift terms (which include
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fully-actuated systems, under-actuated systems, and non-
holonomic vehicles). The paper [4] discussed cooperative
transport of a buoyant load using two autonomous surface
vehicles via feasibility coordination approach. More recently,
the work by Colombo and Dimarogonas [5] extends the
motion feasibility condition in [1] to multi-agent formation
control systems on Lie groups.

Coordinating multiple vehicles often involve various types
of inter-vehicle constraints, typically described by equality or
inequality functions of inter-vehicle geometric variables. For
example, a practical coordinated motion may be described
by some inequality constraints that require a bounded inter-
vehicle distance between mobile vehicles; i.e., a lower bound
to guarantee collision avoidance, and an upper bound to
avoid communication loss due to excessively long ranges. As
another example, multi-robotic visibility maintenance control
is also often modelled by certain inequality constraints [6].
All these practical coordination control scenarios call for a
general framework for multi-vehicle coordination planning
and control under various constraints. We remark that the
above referenced papers [1]-[5] only discussed formation or
coordination control for multiple vehicles with strict equality
functions. This paper will focus on a more general prob-
lem in multi-vehicle coordination control that also includes
inequality constraints, or a mix of equality and inequality
constraints. Our tools to solve feasible coordination problem
of multiple vehicles with various constraints are an interplay
of differential geometry for nonlinear control [7], viability
theory [8] and differential-algebraic equations and inequali-
ties.

In this paper, a synthesis of coordination control under
various constraints will be provided, which include vehicles’
kinematic constraints (often modelled by nonholonomic mo-
tion constraints) and inter-vehicle constraints (which include
holonomic formation constraints, inequality functions or a
mix of various constraints). We will also devise a heuristic
algorithm to solve the proposed feasibility equations and
inequalities that generate feasible trajectories for all vehicles
to achieve a coordination task.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we introduce some standard notions and
tools of differential geometry and nonlinear control from [9],
[10] which will be used in the main part of this paper.

A. Distribution, codistribution and vehicle models

A distribution A(x) on R™ is an assignment of a linear
subspace of R™ at each point . Given a set of & vector fields



Xi(z), Xa(x), - , Xi(x), we define the distribution as
A(z) = span{ Xy (), Xp(z), -, Xi(2)}.

A vector field X belongs to a distribution A if X (x) € A(x),
Va € R", and we assume all distributions have constant rank.
A codistribution assigns a subspace to the dual space,
denoted by (R™)*. Given a distribution A, for each z
consider the annihilator of A, which is the set of all covectors
that annihilates all vectors in A(x) (see [7, Chapter 1])

At ={we R")|(w, X) =0, VX € A}. (1)

In this paper, we model each individual vehicle’s dynamics
by the following control-affine form

I
Di :fi,OJFZfi,jui,ja )
j=1
where p; € C; € R™ is the state of vehicle i (C; denotes the
configuration for vehicle ¢, for which we embed C; in R™
where n; denotes the dimension of state space for vehicle
1), fi,0 is a smooth drift term, and w; ; is the scalar control
input associated with the smooth vector field f; ;, and [; is
the number of vector field functions.

B. Viability theory and set-invariance control

In this paper, we will treat coordination tasks with in-
equality constraints, and a key tool to address inequality
constraint is the viability theory and set-invariance control
[8], [11]. Consider a control system described by a differ-
ential equation ©(t) = f(x(t),u(t)). A subset F enjoys the
viability property for the system @(t) if for every initial state
x(0) € F, there exists at least one solution to the system
starting at z(0) which is viable in the time interval [0,7]
in the sense that V¢t € [0,t],z(t) € F. A key result in the
set-invariance analysis, the celebrated Nagumo theorem, is
stated as follows (see e.g. [11] or [8]).

Theorem 1: (Nagumo theorem) Consider the system
z(t) = f(x(t)), and assume that, for each initial condition
in a set X C R", it admits a globally unique solution. Let
F C X be a closed and convex set. Then the set F is
positively invariant for the system if and only if

f(a(t) € Tr(@), ¥a € F. )

where T'r(z) denotes the contingent cone of F at x.
For the definition of contingent cone and generalizations of
the Nagumo theorem, see [8].

The condition in Theorem 1 is only meaningful when
x € bnd(F), where bnd(F) denotes the boundary of F.
Therefore, the condition in (3) can be equivalently stated by

F(z(t)) € Tr(z), Yz € bnd(F). @)

The above condition clearly has an intuitive and geometric
interpretation: if at z € bnd(F), the derivative & = f(x(¢))
points inside or is tangent to F, then the trajectory x(t)
remains in F.

Now we consider a viable set F parameterized by an
inequality associated with a continuously differentiable func-

tion g(x) : R" = R,
F = {zlg(z) < 0}. (5)
In this way, the calculation of Tx(x) is simplified to be
Tr(z) = {v € z| (v, Vg(z)) < 0}, (6)

for any g(x) = 0 and T'r(x) = R™ when g(z) < 0. For the
set F defined in (5), a consequence of Nagumo theorem is
the following lemma on a controlled-invariant set.

Lemma 1: (Set-invariance in control, [11]) Consider a
set JF parameterized by an inequality of a continuously
differentiable function g(x): F = {z|g(x) < 0}. Then the set
F is positively invariant under the dynamic control system
z(t) = f(a(t),u(t)) if ©(t) € Tr(z) of (6), or equivalently

(Vg(@), f(z(t),u(t))) <0, Vo:g(z(t)=0. (7)
C. Problem formulation

Consider a group of n vehicles, whose kinematic equations
are described by the control-affine systems (2) with possibly
different kinematics and/or drift terms. We assign the vehicle
group with a coordination task, described by inter-vehicle
geometric equality or inequality constraints that incorporate
formation, flocking or other cooperative tasks. Two key
problems to be addressed in this paper are the following:

o Determine whether a group of homogeneous or hetero-
geneous vehicles can perform a coordination task with
various constraints;

« If the coordination task with various constraints is feasi-
ble, determine feasible motions that generate trajectories
for an n-vehicle group to perform the task.

III. FORMULATION OF COORDINATION CONSTRAINTS
A. Motion constraints arising from vehicle kinematics

In this subsection we follow the techniques in [3], [10]
to formulate vehicle’s kinematic constraints using (affine)
codistributions. A vehicle’s kinematics modelled by a nonlin-
ear control-affine system (2) with drifts can be equivalently
described by the following affine distribution

A= fio+span{fi1, fio, -, fin }- ®)

For the system (2) with drifts, one can obtain a corresponding
transformation with equivalent constraints via the construc-
tion of covectors

wij(Pi)Pi = Gij, J=1,---,n; =1, &)

where the term ¢; ; is due to the existence of the drift
term f;o. We collect all the row covectors w; ; as g, =
Wiy wie, oy w17, and similarly define Tk, =
(¢i1,Gi2s ** »Qim,—1;] " - By doing this, one can write (9) as

Qk,pi = Tk,, (10)

where the subscript K stands for kinematics. Furthermore,
we collect all the kinematic constraints for all the n vehicles
in a composite form Qp = [, Q-+, Qf |7, Tk =
[T, . Tx,. -+, Tk |". For ease of notation, we collect
all of the vehicles’ states together, denoting them by the



composite state vector P = [p{ ,pg,---,p, |". Thus, the
overall kinematic constraint for all the vehicles can be stated
compactly as Q K(P) = Tk . We remark that if the drift term
fio satisfies f; o € span{f; 1, fi2, -, fis.}, then one can
choose a control u; to cancel the drift, and the affine control
system with a drift term (2) can be reduced to a drift-free
control system.

B. Motion constraints arising from coordination tasks

In this section we formulate motion constraints from
coordination tasks using distributions/codistributions.

1) Coordination with equality constraints: We follow
the formulation in [12] (also treated in [3]) and describe
the (possibly time-varying) equality constraints encoded in
a network. We assume a networked multi-vehicle control
system modelled by an undirected graph G, in which we
use V to denote its vertex set and £ to denote the edge
set. The vertices consist of n homogeneous or heteroge-
neous vehicles, each modelled by the general dynamical
equation (2) with possibly different dynamics. The graph
consists of m edges, each associated with one or multiple
inter-vehicle constraints describing a coordination task. A
family of (possibly time-varying) equality constraints ® is
indexed by the edge set, denoted as ®g(P,t) = {Py;}(;
with (i,7) € €. For each edge (i,7), ®;;(pi,p;,t) is a
continuously differentiable vector function of p; and p;
defining the coordination constraints between the vehicle
pair ¢ and j. The constraint for edge (i,j) is enforced if
®,;(pi,p;) = 0. To satisfy an equality constraint for edge
(4,4), it should hold that

d 0P, 0P, 0P,

—®;(pi,pj; t) = 2P Lp; Jo—=0. (11
a2 (Pis iy 1) o P o, P (11)
A coordination task is maintained if ®¢(P,t) = 0 is

enforced for all the edges. Coordination feasibility requires
that if the constraint is satisfied at time ¢y = 0, then it should
be satisfied for all time ¢ > ¢y under suitable coordination
controls. Thus, one can obtain

d 0 . 9D
GOP0) = 5P+ = =0,

Now we group all the constraints for all the edges by
writing down a compact form T = —[- - -, (ag)t” )]
By employing the fact that partial derivative (vectors) and
differentials (co-vectors) are dual in R™, we identify a cod-
stribution matrix Qg associated with the Jacobian 0® /9P
using the nominal dual coordinate basis from the differential
[dP], from which one can reexpress equation (12) as

Qp(P) = Tg.

(12)

13)

where the subscript E' stands for equality constraints. For
time-invariant equality constraint, one has Tg = 0. In
summary, the vector field P defined by the above equation
(13) represents possible motions for all the vehicles that
respect the coordination equality constraint.

2) Coordination with inequality constraints: Now we
consider a feasible coordination problem involving inequality

constraints. A family of inequality coordination constraints
Te = {Zi;} ;) is indexed by the edge set £, and each edge
(i,7) is associated with a function Z;;(p;,p;) ' which is
assumed continuously differentiable. The constraints for the
edge (i, 7) are enforced if Z;;(p;(t),p;(t)) <0 V. Now we
consider the subset of active constraints among all edges,

We remark that the set x(P) is a dynamic set along time
as it involves the edge set with active constraints when
the condition Z;;(p;,p;) < 0 is about to be violated. An
inequality constraint for edge (¢, 7) is maintained if
d 0L, 0Z;;
S = Ty, 1p: <0, V(i,5) € x(P).
atti = Gp Bt g, Pi S (i,7) € x(P)
At any point in time, all the active constraints in the edge
set x(P) generate a codistribution
QI:[vﬂlT, """ ]T? V(Z7J)EX(P)7

17

15)

(16)

where the subscript I stands for inequality constraints, and
Qr;; is obtained by the Jacobian of the vector function
Z;; using the nominal coordinate basis [dp;, dp;] associated
with the active constraint Z;;(p;,p;) = 0. Based on the
Nagumo theorem and Lemma 1, to guarantee the validity
of the inequality constraints, the control input u(t) =
[ur(t) T, ,u,(t)T]" for each vehicle should be designed
such that Q; P(P,u(t)) <0, Y(i,4) € x(P).

IV. COORDINATION FEASIBILITY AND MOTION
GENERATION

A. Coordination feasibility with inequality task constraints

We first state the following theorem on a feasible coordi-
nation for an n-vehicle group with kinematic constraint and
inequality constraints in a coordination task.

Theorem 2: The coordination task with inequality con-
straints has feasible motions if the following mixed
(in)equalities have solutions

QP =Tk,

QP <0, V(i,j) € x(P), (17)

where x(P) denotes the set of active constraints among all
the edges.

B. Coordination feasibility of multiple vehicles with both
equality and inequality task constraints

We now consider coordination tasks with both equality
and inequality constraints. The following theorem determines
coordination feasibility with various constraints.

Theorem 3: The coordination task with both equality and
inequality constraints has feasible motions if the following

! In this paper we only consider time-invariant functions Z;j(pi,pj) in
the inequality constraint. Extensions to time-varying inequality constraints
are also possible, by employing the temporal viability regulation theory [13].



mixed equations and inequalities have solutions
QP =Tk,
QpP = Tg,

QP <0, Y(i,j) e x(P), (18)

where x(P) denotes the set of active constraints among all
the edges.

Proofs of the above theorems follow from the analysis in
Section III and are omitted here. Extensions to the leader-
follower coordination case are available; see [14].

C. Generating vehicle’s motion and trajectory for a feasible
coordination

The feasibility conditions presented in Theorems 2 and 3
involve the determination of the existence of solutions for an
algebraic equation and a mixed inequality with equations.
Algorithm 1 presents a heuristic approach to determine
coordination feasibility and motion generation for the multi-
vehicle coordination control under both equality and in-
equality constraints. The algorithm does not generate all
feasible motion directions, but only a set of feasible motions
depending on the choice of virtual input w;. Generalizations
of the algorithm and selections of optimal motion directions
will be in future research. Note also when a feasible motion
is determined with a set of virtual input w;, the actual
control input u; can be readily calculated via each vehicle’s
kinematic equations.

V. APPLICATION EXAMPLES: COORDINATING MULTIPLE
VEHICLES WITH DISTANCE AND HEADING CONSTRAINTS

A. Typical vehicle kinematics and coordination constraints

In this section, we consider several application case studies
to illustrate the proposed coordination theory and algorithms.
Two types of vehicles, a unicycle-type vehicle and a car-like
vehicle, will be considered in the examples. The unicycle
vehicle is described by

&; = v; cos(6;),
Ui = v; sin(6;), (19)
éi = Uy,

where the state variable is p; = [z, y;,0;] T € R? xS! € R3.
The kinematic constraint for a unicycle-type vehicle can be
equivalently stated by the annihilating codistribution Qp, =
A = span{sin(6;)dz; — cos(6;)dy; }.

Further consider a car-like vehicle (see e.g. [15]), whose
kinematic equation is described by

&; = ui1c08(6;),
Ui = u;,18in(6;),
0; = w1 (1/1;)tan(¢;),
bi = Ui 2, (20)

with the state variables p; = (z;,v;,0;, ;) € R? x St x
S!, where (z;,%;) are the Cartesian coordinates of the rear
wheel, 60; is the orientation angle of the vehicle body with

Algorithm 1: Coordination feasibility checking and mo-
tion generation.
1 Initialization: Qg,, Tk,, g, Tr, X(P), Qr;
2 Construct the overall kinematic codistribution
matrix Qg and the vector Tk .

3 while Running do

4 Solve equality [ ?2[; } P= [ ?f; }
if Solution does not exist then
Return: No solution;

Condition checking STOP.

else

N2 - B WY ]

Calculate a special solution to the above
equality constraint equation, denoted by K;

10 Determine k basis vectors of Null ([ Sy }),

Qg
denoted by K, Ky, -+, K.
11 end

12 if x(P) = 0 (No active inequality constraint) then
13 Feasible motions P = K + 37", Kjw;, where
w; is a set of virtual inputs that activate the
associated vector field Kj;

14 Return: a set of feasible motions

P=K+ >y Kiwy (according to different
choices of wy).

15 else

16 for [ =1,2,--- ,k do

17 Calculate and obtain the codistribution
matrix €27 for active equality constraints,
with V(4, j) € x(P);

18 if Q7 (K + Kyw;) <0 for certain w; then

19 Return: A feasible motion

P =K + Kjwy.

20 end

21 end

22 end

23 if [ > k then

24 Return: Feasible solution not found. Try again.

25 end

26 end

respect to the x axis, ¢; is the steering angle, and [; is the
distance between the midpoints of the two wheels. The model
(20) describes kinematic motions for a typical rear-wheel-
driving car, which is subject to two non-holonomic motion
constraints (rolling without slipping sideways for each wheel,
respectively). In an equivalent compact form, one can write

Pi = [0, Ui, 03y 0] T = finuin + fiouio, 21

Wlth fi,l = [cos(ﬁi),sin(ﬁiL(l/li)tan(@),O]T and fi’g =
[0,0,0,1]T. The distribution generated by the two vector
fields f;1 and f; o is described by A; = span{f; 1, fi2},
which can be equivalently stated by the annihilating co-



Fig. 1. Illustration of a visibility inequality constraint, IZ.(?), bounding the
direction b; to the blue cone defined by a;; and the half apex angle ;.

distribution: Qp, = A = span{sin(; + ¢;)dx; — cos(0; +
¢;)dy; —1;cos(¢;)db;, sin(0; )dx; —cos(f;)dy; }. Consider two
of the previously defined vehicles in the form (10) sub-
indexed ¢ and j respectively, as illustrated in Fig. 1. A
common coordination task may include a simple inter-vehicle

distance equality constraint,
o1 1 1
)« 5w —x)’ + 5 — ) — 55 =0,

for some d;; > 0, which generates a codistribution matrix

—dx;) + (yi —y;) (dy; —dy;)]. (23)

In a practical setting, however, it may be useful to consider
a distance constraint in terms of a two-sided inequality,
1 1 1 2 1 2
7« 5(d5)° < S — )" + Sy —wy)* <

with d_

(22)

1
QG = [(@; —;)(dz;

1
S5 @4

df > 0, and codistribution matrix given by

lel) Q(lg. if the right inequality becomes active, or
Q(Ill) ;= 79(1)1__ if the left inequality becomes active.

Another useful inequality constraint often encountered in
visibility maintenance control in multi-robotic systems is the
so-called visibility constraint, see e.g. [6]. This constraint
seeks to constrain the heading angle of vehicle j such that
vehicle ¢ always resides in a cone of visibility (see Fig. 1).
Instead of defining this constraint with the arctangent func-
tion as in [6], we consider an equivalent inequality constraint
using cosine apex angle, thereby avoiding issues with the

range of the arctangent function. Let a;; := [x; —x;, y; — ;]
b; 1= [cos(6;),sin(0;)], ¢; := [—sin(d;), cos(d;)], and form
the inequality constraint

Iz(f) : cos(aij)<aij, (l,‘j>1/2 < <aij, b]> (25)

The associated codistribution matrix can be derived as

Q@ _ {0 ¢) L[ Jdn e,
7 (aij, aij) \ laij,aig) \ 7| 4y —dyl

1,35

(26)

when the inequality constraint (25) becomes active.
Remark 1: 1t should be noted that the constraint (26) may
become singular due to the division by (a;;,a;;), a corner

|)ans).

case to be revisited and addressed in the examples.

B. Coordinating a unicycle and a car-like vehicle

Consider a two-vehicle group, one described by the uni-
cycle equation and the other by a car-like dynamics. The two
vehicles assume a task to cooperatively maintain a constant
distance d;5 and a heading or visibility inequality constraint.

The joint codistribution matrix from both kinematic con-
straint and distance equality constraint can be obtained as
(using the dual space basis [dz1,dys, - ,dgs,dfs]): Q =
[sin(6 )dz1 —cos(61)dyy, sin(fa+d2)dxe —cos(fa+da )dys —
lgCOS(¢2)d92, sin(62)dx2 — COS(eg)dyg, ((L‘l — xg)(dxl —
dzs) + (y1 — yg)(dyl dyz)]. The solution to the algebraic
equation Q(P) =T = O is obtained as P = Zl w K with
K, =10,0,1,0,0, 0 O} , K5 =10,0,0,0,0,0,1] , and

[ cos(01) (cos(02)(x1 — x2) + sin(02)(y1 — y2)) ]
sin(61) (cos(6s)(z1 — :(C)Q) + sin(62) (y1 — y2))
cos(f2) (cos(01)(x1 — x2) + sin(01) (y1 — y2))
sin(6y) (cos(0y)(z1 — x2) + sin(61) (y1 — y2))
itanqbg (cos(01)(z1 — z2) + sin(61)(y1 — y2))

0

Ks

By following Algorithm 1, the coordination feasibility and
motion generation result is given in the following lemma.

Lemma 2: Consider a two-vehicle group consisting of a
unicycle-type vehicle and a car-like vehicle, with a coordi-
nation task of maintaining a constant inter-vehicle distance
d12 and a heading/visibility constraint described as above.
By using the above derived control solutions:

« The inter-vehicle distance is preserved with the above-
derived control for any wj.

o If initially the heading/visibility inequality is satisfied,
then a feasible control always exists (with the possible
choice of wy;) that preserves both distance equality and
heading/visibility inequality constraints.

C. Multiple homogeneous vehicles with mixed constraints

Now we consider multiple unicycle models described
by (19), with one leader vehicle p;(t) € R? € R?® x St
and two followers po(t),ps(t) € R? x S' € R3. The
kinematics yield an annihilating co-distribution sin(6;)dx; —
cos(6;)dy; = 0, resulting in an Qx € R3*Y with T =
[0,0,0]T. The leader is constrained to follow an arbitrary
reference trajectory in terms of two continuous control
inputs vy ,-(t),u1,(t). These time-varying speeds are in-
corporated as two equality constraints, with cos(6)dzy +
sin(61)dyr = v1,(t), db1 = uq,(t), represented in the
standard compact matrix form with Qg € R?*? with T =
[Ulm(t),ul,r(t)]—r S RQ.

In order for the followers to maintain visibility of the
leader, we pose two inequality constraints in the form (25),
enforcing 152) and Ig) with a maximum heading angle of
Af15 = Af;3 = 0.4 (rad). The annihilating codistribution
matrices ngb and 9(1223 are given in (26), which are omitted
here for brevity. As was noted in Remark 1, these matrices
are well defined when the distance between the vehicles is



non-zero. To eliminate the possibility of singular solutions,
a distance inequality constraint is posed in the form (24) as
70 and 7). with dj, = djy = 1 and df, = dfy = 2.
We note there exists a direction (a1;,b;) = 0, at which
the motion solution becomes singular when activating any
distance constraint IS). This caveat is conveniently avoided
by the posed heading inequality constraint, effectively bound-
ing (a1;,b;) > dyjcos(ar;) = 0.92. Consequently, any
feasible motion found by Algorithm 1 satisfying the posed
inequality constraints gives rise to non-singular, well-defined
solution control flows. Combining the constraints yields
Qr = ()T TQP)TQP)T] € RO, of
which at most four constraints may be active at any point
in time (the distance upper and lower bound cannot be met
simultaneously). This complex system with one leader vehi-
cle (with predefined constrained speeds) and two following
unicycles always has feasible coordination motions in all
possible combinations of these constraints when checked
with Algorithm 1. To show the found solutions in practice, a
simulation was run with the three vehicles, recomputing the
virtual inputs w; € R each time an inequality constraint was
activated. We consider a leader vehicle reference trajectory
v1-(t) = 2sin(t), wu1,-(t) = 2cos(2t), which is followed
perfectly when incorporated through time-varying equality
constraints, as demonstrated in Fig. 2. Furthermore, the two-
dimensional trajectories of the leader (red) and followers
(blue, green) are depicted in Fi%. 2, along with the distance
inequality constraints {Z- (é),I é)}, and the cosine angle
inequality constraints {Ig ,Ig } for maintaining visibility,
which are met at all times.

More application examples and demonstrations can be
found in the online arXiv version [14] and the accompanying
video.

VI. CONCLUSIONS

In this paper, we discuss the coordination control problem
for multiple mobile vehicles subject to various constraints
(nonholonomic motion constraints, holonomic formation
constraints, equality or inequality constraints, among others).
Using tools from differential geometry, distribution/codistri-
butions for control-affine systems and viability theory, we
have developed a general framework to determine whether
feasible motions exist for a multi-vehicle group that meet
both kinematic constraints and coordination constraints with
a mix of inequality and equality functions. A heuristic al-
gorithm is proposed to find feasible motions and trajectories
for a group of homogeneous or heterogeneous vehicles to
achieve a coordination task. Several case study examples
and simulation experiments are also provided to illustrate
the proposed theory and coordination control schemes.
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