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Abstract 

The paper analyses dwell time delays for commuter trains in Stockholm and 

Tokyo. In both cities, small dwell time delays of at most five minutes make 

up around 90% of the total delays. Therefore, it is valuable to understand 

and deal with these disturbances. To this end, we use high resolution data on 

dwell times and passenger counts from both countries over the last several 

years. We find that these data alone can explain about 40% of the variation 

in dwell time delays and produce simple models which can be used in 

practice to assign more appropriate dwell times. A change of 15 passengers 

per car, in Tokyo translates to a delay of about one second. For every 10 

remaining passengers per door in Stockholm, the delay increases by about 

one second, and one boarding or alighting passenger per door corresponds 

to about 0.4 seconds of delay. We also find that trains in Tokyo are much 

more congested than in Sweden, and that at most stations in the latter, the 

exchange of passengers is modest. In both cities, the range of dwell time 

delays is quite narrow, with between 40 and 50 seconds separating the 5th 

and 95th percentiles. This indicates further that most delays, by far, are very 

small, and that even small adjustments to dwell times can make a big 

difference in the overall picture. To facilitate such improvements, key 

stakeholders and practitioners are closely involved with the research.    
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1 Introduction 

A problem across the world is that trains are often delayed. In major cities, 

where the flow of trains and passengers are large, even minor delays cause 

considerable inconvenience for both commuters and train operating 

companies. This paper studies commuter trains in Stockholm and Tokyo, 

two cities where minor delays are ubiquitous and larger ones are not 

uncommon.  

In Stockholm, only 56 % of commuters report being satisfied with the 

punctuality of commuter trains, which is the lowest across all public 

transport options (Trafikförvaltningen Stockholms Läns Landsting, 2018). 

This is the single most important influencing factor for their overall 

satisfaction with the transportation mode. Thus, if the delays could be 

reduced, there is a clear potential for increasing the attractiveness and 

ridership of trains in Stockholm.  

In the Tokyo-area, approximately 38 million train journeys are made 

every day (Tomii, 2013). During the rush hours, it is common for a single 

train to carry about 2 000 passengers and for trains to depart every two 

minutes on each line. Thus, even the slightest delay quickly spreads between 

trains and affects large numbers of passengers. Because of this, trains in 

Tokyo are very often delayed by several minutes during the rush hours, and 

this affects millions of people and causes considerable costs to society.  

In Stockholm and Tokyo, minor delays of at most five minutes make up 

96 and 97 % of delay hours respectively. In both cities, the delays mostly 

occur at stations in the form of dwell time delays. In Stockholm, 91 % of the 

total delay time is generated at stations, while the corresponding figure in 

Tokyo is 88 %. Thus, small dwell time delays make up a clear majority of 

all delays.  

The objective of this paper is to study the dwell time delays that occur in 

both railway systems. Different timetabling policies are discussed, and 

detailed passenger count data is used to help explain the delays in both cities. 

The ambition is that the study will lead to better timetable planning, which 

will in turn lead to a decrease in delays and improved punctuality in both 

cities. This will improve the daily commutes of millions of people and make 

public transportation more attractive. 

2 Background 

In an overview of timetabling research, Hansen (2009) concludes that one 

of the key issues for high quality timetables is using realistic dwell times, 

and that this is often not the case, neither in practice nor in modelling. 



Bender, Büttner & Krumke (2013) also state that the time required for 

passenger boarding and alighting at stations is a critical element of overall 

train service performance. There is considerable empirical evidence for this 

across the world, of which we can only cite a few pieces here. 

In New Zealand, Ceder & Hassold (2015) found that one of the main 

causes for delays was heavy passenger load, which increased dwell times.  

In Norway, Olsson & Haugland (2004) studied punctuality and found that 

the boarding and alighting of passengers was the single most important 

influencing factor in congested areas. Considering stations in the Oslo area, 

Harris, Mjøsund & Haugland (2013) found that the delays were often small 

in nature, poorly recorded and not well understood.  

In the Netherlands, Wiggenraad (2001) studied seven stations in detail, 

finding that dwell times are longer than scheduled, that the scheduled dwell 

times were the same at peak and off-peak, and that passengers concentrated 

around platform access points. Focusing on the station area of the Hague, 

Nie & Hansen (2005) also concluded that dwell times at platforms are 

systematically extended, partially due to the behaviour of the train 

personnel. Studying punctuality and delays at stations, Yuan & Hansen 

(2002) found that the mean excess dwell time was around 30 seconds, and 

that this sometimes depended on the train having arrived early and not being 

permitted to depart before the schedule, but also due to a lack of discipline 

with train drivers and conductors.  

In Sweden, previous research (Palmqvist, Olsson & Hiselius, 2017) 

shows that most delays happen during scheduled stops. Analyses of such 

stops reveal a wide variation in dwell times (Heinz, 2000), while interviews 

with timetable planners (Palmqvist, Olsson & Winslott Hiselius 2018) 

indicate that dwell times in Sweden are not scheduled to account for the 

number of passengers, rush hour traffic, and the like.  

In Japan, Kunimatsu, Hirai & Tomii (2009) describe the mechanism of 

how a dwell time is exceeded because there are many passengers. This delay 

increases the distance between trains and allows more people to accumulate 

at the next platform, so that both the congestion and delay increase further 

and continue to be amplified, in what they call a “snowball effect” – similar 

to bus bunching. They then create a simulation model to evaluate timetables, 

with input from smart card data, which takes these interactions into account.   

There is also a literature focusing more explicitly on the boarding and 

alighting of passengers, as well as their behaviour on platforms and in 

stations. Seriani, Fujiyama & Holloway (2017) have done detailed 

observations at metro stations in the United Kingdom to examine how 

queues and lanes form when boarding trains, the densities of passengers and 

distances between them, in the semi-circular area outside the doors. Several 



publications (such as Kamizuru, Noguchi & Tomii 2015; Qi, Baoming & 

Dewei 2008; Seriani & Fernandez 2015; Baee et al. 2012) deal with 

simulations of passengers moving between the train and platform to study 

various kinds of passenger management strategies. Fujiyama & Cao (2016) 

instead used smart-card data to study how long passengers spend at railway 

terminals, beyond simply walking from the access point to the train, a factor 

which influences and increases the level of congestion at stations.  

Finally, there is a literature on modelling dwell times. Buechmuller, 

Weidmann & Nash (2008) modelled dwell times in Switzerland, breaking 

them down into five components, and used over three million observations 

for calibration. D’Acierno et al. (2017) modelled how they depend on the 

congestion and flows of passengers. Most use track occupancy data, like 

Pedersen, Nygreen & Lindfeldt (2019) who studied how dwell times vary 

over time and running direction in Norway, Longo & Medeossi (2008) who 

applied their dwell time models in micro-simulation, Li, Daamen & Goverde 

(2015) who focused on short intermediate stops in the Netherlands, and 

Kecman & Goverde (2015) who were interested in real time prediction. 

Others, like Li, Yin & He (2018) use a combination of track occupancy data 

and manual observations, and this is what we do in this paper.  

3 Method 

3.1 Data 

Four datasets are used and combined in this paper, as outlined below.  

(1) Train movements in Stockholm. This data is derived from the 

signalling system and specifies the arrival, departure and passage times at 

stations. The times are truncated as to only contain minutes and hours, not 

seconds. Data from seven years, 2011-2017, is used, for a total of 16.6 

million train movements.  

 (2) Automatic passenger counts in Stockholm. About one eighth of 

commuter train cars in Stockholm are equipped with automatic passenger 

counters, which detect the boarding and alighting of passengers at stations. 

These cars are circulated among the different branches of the network, to 

provide data on most trains and stations from time to time. Along with the 

counts of passengers, the equipment also provides both run and dwell times 

with a precision of one second. We have 5.5 million such observations 

spanning the years of 2013-2017.  

(3) Train movements in Tokyo. These are also generated from the 

signalling system from a railway company and specifies times at stations, 

but with a precision of seconds. The data spans six years, from 2013 to 2018, 



and contains 63.7 million train movements.  

(4) Manual passenger counts in Tokyo. At least twice every year manual 

passenger counts are conducted for trains at stations, to estimate the level of 

on-train congestion. While this is only a spot check, it is the result of 

considerable effort and provides valuable insights into how the number of 

passengers varies between trains and stations. From about 6:30 to 9:00 in the 

morning, staff at a handful of stations observe all trains that stop or pass by, 

making note of exact arrival and departure times, the train number and the 

number of cars, as well as the estimated congestion rate on the train. 

Approximately 50 trains are observed in this manner, per station, and over 

the years 2013-2018, over 4000 observations were made.  

3.2 Combining the Data 

As the data from the two countries varied slightly in structure, different 

methods had to be used to combine them.  

In the Japanese case, we mainly make us of the manual observations, as 

these are generally of a higher quality and the more relevant ones to use, and 

the number of observations is sufficient for our purposes. In the timetable 

dwell times are set intended to correspond to the times that are measured 

using the manual methods: from the train stopping to starting its movement 

at the platform. The automatic system instead uses the occupation of track 

circuits, which are located further out on the respective sides, and on average 

registers times that are about 20 seconds longer. However, a problem with 

manual observations is that mistakes can sometimes be made, and we have 

used the larger dataset of automatic registrations to be able to detect these 

errors. Because of how the measurements are made, the manual ones should 

never be longer than the automatic ones. In such cases, we have simply 

excluded the observation as faulty. The connection between the two datasets 

was quite straightforward, as they both contain station names, dates and train 

numbers that match up very well and, in the end, we produced 2 684 good 

matches. In the future, it may be possible to do some extrapolation from 

these onto other train numbers or dates, but for now we have stuck with the 

observations themselves.  

 For the Swedish case, the process was not so straightforward. The on-

board system did not contain train numbers matching those used in the 

dataset from the signalling system. As a first step, however, observations 

were merged from being door by door, to a train level, with averages across 

the different doors. The number of doors per train with the measuring 

equipment varied from one to eight, with four being the most common. 

Then, these trains were matched to train numbers in the larger dataset, 

following some assumptions: that the dates and stations were the same, that 



the origins and destinations match up, and that the total deviation between 

the arrival and departure times between the two sets was less than two 

minutes. We know that the coding of station names, as well as origins and 

destinations, sometimes differs between the two sets, but because both 

datasets were quite large the number of matches is quite good, even without 

considering such cases. Finally, we excluded any cases where there was 

more than one possible match, focusing on the clear and unambiguous ones.  

For the Swedish data, we primarily used the connection between the two 

datasets to filter out any observations with unusually long scheduled dwell 

times. The on-board system does not state the scheduled times, only the 

observed ones, while the infrastructure-based system only retains the 

minutes, not the seconds. However, we know from timetable planners that 

the scheduled dwell time for commuter trains in Sweden is, in most cases, 

42 seconds, with a few exceptions. Some peripheral stations instead have 30 

seconds, Stockholm Central Station around two minutes, and a few other 

cases where trainsets turn around or are either combined or separated also 

have longer dwell times. To get rid of the shorter times, we asked planners 

which stations had shorter times, and excluded observations from these. In 

order to get rid of the stops with longer scheduled times, we used a threshold 

of one minute in the larger off-board dataset. Finally, to harmonize with the 

Japanese data which was only collected between six and ten in the morning, 

on Mondays and Tuesdays in April, May and November, we filtered out any 

observations outside of these time intervals. This greatly reduced the amount 

of observations, from about 180 000 to around 3 300, but this later number 

is more comparable to the number of Japanese observations. The regression 

results vary slightly between how this filtering is done, with coefficient 

estimates and the R2 both shifting by a few tenths of a percentage point, but 

not in any major ways.   

3.3 Analysing the Data 

In the analysis we are primarily concerned with using the information on 

passenger volumes to explain the variation in dwell time delays. In the 

Japanese data, this exists in the form of an estimated congestion rate, which 

is the ratio between the number of people on board a train, to the number of 

seats and handles for standing passengers to hold. The train cars in Tokyo 

have four doors and are 20 meters long, each with about 58 seats and 92 

handles, and are usually combined in sets of eight or ten cars. In Stockholm, 

the commuter trains are composed of either six or twelve cars, each of which 

is about 18 m long with two doors and room for 62 sitting and 71 standing 

passengers. For these trains we have explicit counts of the number of 

boarding, alighting, and passing passengers from sensors at between one and 



eight doors per train. The total capacity for a full-length train is 1600 people, 

averaging 66.7 per door, compared to 37.5 in Tokyo. In both cities, we also 

have information of the incoming arrival delay, as well as dummy variables 

for the different stations, hours, months, and weekdays.  

The effects are studied using regression analysis with the software R. A 

number of regressions have been performed, using different combinations 

of the variables, their squares and interactions, and both with and without 

intercepts. With the regressions we essentially have two purposes: (1) to 

estimate the degree to which we can explain the variation in the dwell time 

delays, using passenger data, and (2) to estimate the impact of passenger 

volumes on the dwell time delays, in a comprehensible way. The first point 

relates to the coefficient of determination, the R2 or adjusted R2, while the 

second has to do with coefficient estimates. To fulfil the first purpose, it is 

relevant to include both squared variables, as well as variable interactions, 

as these may well, in fact, have impacts on the delays and add to the share 

which we can explain. The second purpose, however, is better served by 

keeping the models simple and straightforward, sacrificing explanatory 

power for interpretability. In this paper, we will only present the coefficient 

estimates for the second set of models, but also mention the degree to which 

more complicated models can add to the picture.   

4 Results and Analysis  

The following sections describe the two cases and presents the results of 

some regression analyses on the data. The first sections describe how dwell 

times are scheduled in both cities, what the delays are like, and how the 

passenger volumes differ. The fourth and fifth section describe how much 

of the delays can be explained by the passenger volumes and estimates that 

can be relevant for timetable planning.   

 

Table 1. Percentiles describing the arrival and dwell time delay 

distributions across the two cities.  

 Percentile 5% 25% 50% 75% 95% 

Arrival Delay (s)      

Stockholm  -300 0 60 60 120 

Tokyo  -20 3 25 63 158 

Dwell Time Delay (s)      

Stockholm  -8 -1 6 14 34 

Tokyo  -21 -4 5 15 30 



4.1 Scheduled Dwell Times 

The railway companies in the two cities have different policies on 

scheduling dwell times. The default in Stockholm is to use 42 seconds 

regardless of day, time or station, with a few exceptions. Stockholm Central 

Station is one such exception, when the dwell times are extended, as are 

stops where trains are coupled, separated or turned around. At a few small 

stations in the periphery times are either lowered to 30 seconds or extended 

to handle meetings on single track sections. In most cases, however, the 

scheduled dwell time is 42 seconds, and these are the ones that we use in 

this study. In Tokyo, the dwell times are adjusted to a much greater extent. 

The range is quite similar to that found in Stockholm, but the variation is 

greater: the 5th, 25th, 50th, 75th and 95th percentile values are 40, 45, 50, 60 

and 115 seconds, respectively. Almost across the board, the dwell times in 

Tokyo also longer than the 42 seconds used in Stockholm, and adjustments 

are made in five-second intervals, across different train numbers, stations, 

and hours.  

4.2 Arrival and Dwell Time Delays 

The delay scenarios are quite similar in both cities. Arrival delays are not 

measured as precisely in Stockholm as in Tokyo, which makes it difficult to 

compare them in detail. Overall, however, in both scenarios a small share of 

trains arrives early, while the median is for delays of 60 seconds in 

Stockholm and 25 seconds in Tokyo. Arrivals are rarely delayed by more 

than two or three minutes, with the 95th percentile in Stockholm being 120 

seconds, and in Tokyo 158 seconds. In both cases, the signalling data 

contains a larger share of trains arriving early than the count and combined 

data.  

Dwell time delays are remarkably similar across the two combined 

datasets. In Stockholm the median delay is 6 seconds, compared to 5 in 

Tokyo, and the 95th percentile values are 34 and 30 seconds respectively. 

About the same share of trains make up time during the stops, in the two 

cities, but in Tokyo the ones that do make up slightly more time, with the 

fifth percentile being 21 seconds early there, compared to 8 seconds in 

Stockholm. The range of dwell time delays, from the 5th to the 95th 

percentiles, are quite small and comparable: 42 seconds in Stockholm and 

51 seconds in Tokyo. As these are commuter trains, however, stops are 

frequent, and the seconds add up.  

4.3 Passenger Volumes 

Perhaps the biggest difference between the two cases is the number of 

passengers. In Tokyo, the trains that we study are often very congested, as 



seen in Table 2. The congestion rate is defined so that 100 represents all 58 

seats being taken, as well as all of the 92 standing positions with handles. In 

the data we study, the 25th percentile has a congestion rate of 105, the median 

is 130, and the 95th percentile 180. The lowest we see, in the 95th percentile, 

is 60, corresponding to 90 passengers and a case where all seats are taken, 

and about an equal amount of people are standing.  

In Stockholm the number of passengers is less extreme. Despite the 

observations also being made during the morning rush hours, the figures 

suggest that the median scenario is two people alighting, four boarding, and 

25 remaining, per door, corresponding to a congestion rate of 43. When the 

95th percentile values are added together, there are 104 passengers on board 

per door, or 208 per car, compared to 270 in Tokyo. The peak congestion 

rate of 156 in Stockholm is also lower, but comparable to, the peak of 180 

in Tokyo. The relatively low numbers of boarding and alighting passengers 

depend in part on the fact that we excluded stations with longer dwell times, 

for reasons described in section 3.2, and thus omit both the central station 

and the origins of many trains, where the number of passengers is larger. 

Stockholm also has a more monocentric structure than Tokyo, and generally 

lower levels of population density and congestion. 

As the measurements are made automatically in Stockholm, and 

manually in Tokyo, there may be issues of calibration or measurement error. 

The engineers and planners responsible in Stockholm say that the 

measurements are not very accurate for high flows, and systematically gives 

too low values in such cases. This implies that the figures from that city are 

 

Table 2. Percentiles describing the passenger volumes in either city. The 

figures from Stockholm are passengers per door, with either 12 or 24 doors 

per train. Congestion rate in Stockholm is defined per door, so that a value 

of 100 entails 67 passengers (31 sitting, 36 standing). In Tokyo it is 

normalized per car so that 100 entails 150 passengers (48 sitting, 92 

standing), split across four doors.  

  5% 25% 50% 75% 95% 

Stockholm       

Alightings/door 0 0 2 7 21 

Boardings/door 0 1 4 9 22 

Passing Travellers/door 3 12 25 43 82 

Congestion Rate 4 19 43 78 156 

Tokyo      

Congestion Rate 60 105 130 150 180 



underestimated, rather than overestimated, although it is unclear to what 

degree. As we see in Table 2, the flows are not large at most of the stops we 

include in this analysis, so this is unlikely to be an issue here, and more likely 

to cause problems in Stockholm Central Station, which we have omitted 

from the analysis.  

4.4 The Contribution of Passengers to Delays 

To estimate how much of the dwell time delays can be explained by 

passenger data, we use linear regression models including both squared and 

interaction terms. These models are impractical to use and interpret, but their 

adjusted R2 values provide a convenient estimate of how much information 

is contained in the data. We also include terms for the arrival delay and, in 

the case of Tokyo, scheduled dwell time, as these can be expected to interact 

somewhat with the passenger flows. Dummy variables for stations, 

weekdays, months, etc. are not used, because they do not help us estimate 

the influence of the passengers. Summaries of the two respective models are 

presented in Table 3. The data in Stockholm could explain slightly more of 

the variation than that in Tokyo, which is to be expected as it also contained 

the number of people getting on and off, rather than only counting those on-

board.  

In both cases, about 40% of the variation is explained using the full 

models, and about half as much by the simple models. While the models are 

in no way complete, and the residuals are not normally distributed, these 

levels are reasonable. There are many other factors which affect delays, such 

as weather, train interactions like meetings and overtakes, driver behaviour, 

technical errors in the train or infrastructure, etc. Thus, there is no reason to 

 

Table 3. Summary statistics from linear regressions in Tokyo and 

Stockholm. The full models include squared and interaction terms, the 

simple ones do not.  

 Full models Simple models 

  Tokyo Stockholm Tokyo Stockholm 

Residual standard error 16.87 16.13 19.53 19.02 

Degrees of freedom 2621 3046 2681 3297 

Multiple R2 0.3951 0.4687 0.1712 0.2004 

Adjusted R2 0.3806 0.4242 0.1703 0.1995 

F-statistic 27.18 10.54 184.7 206.6 

Coefficient estimates 63 255 3 4 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 



believe that the exchange of passengers, alone, would explain all of the 

variation in delays, even though it may be one of the more important causes. 

In this light, levels between 20 and 40% are reasonable.  

4.5 Relevance to Timetable Planning 

To make timetables in practice, simpler models are required. We have thus 

also performed linear regressions without considering squared terms or 

interactions. The summary statistics are presented in Table 4, and they had 

about half as much explanatory power as the full models, with adjusted R2 

values of about 0.17 in Tokyo and 0.20 in Stockholm. The coefficient 

estimates are found in Table 4 and can be used as a reference when allocating 

dwell times in the timetable planning process. 

In Tokyo, we find that a rise in the congestion rate of 10% corresponds 

to an increased dwell time delay of about one second. Discussing this result 

with timetable planners at the relevant company, they say that this figure is 

close to their intuitive sense, even though they do not have a formal model. 

For arrival delay and scheduled dwell time, we find small negative effects. 

This implies that trains that arrive late have slightly shorter dwell times than 

otherwise, and that the influence of the staff and driver are somewhat 

successful in reducing delays. Longer scheduled dwell times see slightly less 

delays, indicating that they include some margins, not just the minimum 

required time for the increased congestion rates.  

In Stockholm, we see a rather large effect from both alighting and 

boarding passengers. The estimates are about 0.4 seconds per person and 

door, in either direction, and these are additive. We also see an effect from 

congestion, as the number of passing travellers further increases the delays.   

 

Table 4. Coefficient estimates on the impacts on dwell time delay, from 

the simple linear regression models in Tokyo and Stockholm.  

      Estimate Std. Error t-value Pr(>|t|) 

Tokyo     

Arrival Delay   -0.0479 0.0057 -8.35 <2e-16 

Congestion Rate    0.1051 0.0047 22.30 <2e-16 

Scheduled Dwell Time  -0.0707 0.0068 -10.40 <2e-16 

Stockholm  
   

Arrival Delay   0.0001 0.0000 3.970 7.33e-05 

Alightings/door 0.3889 0.0438 8.881 < 2e-16 

Boardings/door 0.4103 0.0453 9.060 < 2e-16 

Passing Travellers/door 0.0968 0.0128 7.573 4.70e-14 



Arrival delays essentially have no impact on the delays in Stockholm, partly 

because of limitations when combining the data in section 3.3, and the 

scheduled dwell times in the sample are all the same, so it is not possible to 

estimate any further impact from them.  

5 Conclusions  

In conclusion, the data we use in this study can explain approximately 40% 

of the variation in dwell time delays in rush hours. While by no means 

perfect, this is high compared to other studies attempting to explain delays 

or punctuality with empirical data. It is also a reasonable number, 

considering the range of other factors which can cause delays.  

The number of passengers differs greatly between the two cities, with 

trains in Tokyo being on average much more congested, and trains in 

Stockholm often having empty seats even during the morning rush hours. 

The median values are 58 passengers per car in Stockholm compared to 195 

in Tokyo, and the difference in capacity is not nearly so large. The dwell 

time delay distributions are quite similar across the cities: ranging from -8 

to +34 seconds in Stockholm, and -20 to +30 seconds in Tokyo, as we 

compare the 5th and 95th percentiles. The ranges are narrow, suggesting 

further that seemingly small delays add up to large numbers, and underlining 

the importance of well-calibrated high-precision data. Arrival delays are also 

similar across cases, although the data from Stockholm is less precise in this 

regard. The early arrivals there are also more extreme, with the 5th percentile 

being at -300 seconds compared to -20 in Tokyo.  

 Estimates from our simpler models, which can be used in practice, 

suggest that a rise in the congestion rate of 10% leads to about one additional 

second of dwell time delay in Tokyo. This value is close to the intuitive sense 

of the planners there. In Stockholm, we have measurements on the number 

of boarding and alighting passengers per door and find that every one of 

these causes about 0.4 seconds of delay, which is a relatively large number. 

There is also an influence from the number of passengers remaining on-

board, due to crowding, and for every ten such people per door, delays 

increase by about one second.   

The results we have presented can be used in practice to help assign better 

dwell times. If planners know roughly how many passengers get on and off 

at a station, or the level of congestion, these figures can be converted to 

seconds, with which the dwell times can be extended or shortened. In Tokyo 

such modifications are common, but they are based on the planners’ 

experience, informed by the measured congestion rates. A model such as 



this can help make this implicit knowledge more explicit, and to help 

planners who do not yet have so much experience. In Stockholm, and many 

other cities where dwell times are not usually adapted to the passenger flows, 

our results can help to start and inform such a process.  

By extension, this work will help to reduce the delays plaguing train 

operations both in the two cities of Stockholm and Tokyo, and further afield. 

In Stockholm, 91 % of all delays are small dwell time delays, five minutes 

or less, and on average they cause about 29 500 train delay hours per year. 

For the railway company we study in Tokyo, one of many in that city, the 

corresponding figures are 88 % and 69 000 train delay hours. While it is 

somewhat difficult to go from train delay hours to person delay hours or 

punctuality, clearly, the potential for improvement is considerable. Even a 

small decrease in these delays would have considerable benefits for both the 

railway operators and the passengers. Adjusting the dwell times to the actual 

flows of passengers is one way to achieve this.   
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Bender, M., Büttner, S. & Krumke, S.O., 2013. “Online delay 

management on a single train line: beyond competitive analysis”. Public 

Transport, 5, pp. 243–266. DOI: 10.1007/s12469-013-0070-z 

Buchmueller, S., Weidmann, U. & Nash, A., 2008. “Development of a 

dwell time calculation model for timetable planning”. Presented at 

Computers in Railways XI, proceedings in WIT Transactions on the Built 

Environment, 103, pp. 525-534.  

Ceder, A. & Hassold, S., 2015. “Applied analysis for improving rail-

network operations”. Journal of Rail Transport Planning & Management, 

5, pp. 50–63. 

D’Acierno, L., Botte, M., Placido, A., Caropreso & Montella, B., 2017. 

“Methodology for Determining Dwell Times Consistent with Passenger 

Flows in the Case of Metro Services”. Urban Rail Transit, 3(2), pp. 73–89. 



DOI: 10.1007/s40864-017-0062-4.  

Fujiyama, T. & Cao, B., 2016. “Lengths of Time Passengers Spend at 

Railway Termini”. Presented at 2016 IEEE International Conference on 

Intelligent Rail Transportation (ICIRT), Birmingham, 2016. DOI: 

10.1109/ICIRT.2016.7588723.   

Hansen, I.A., 2009. “Railway Network Timetabling and Dynamic Traffic 

Management”, 2nd International Conference on Recent Advances in 

Railway Engineering (ICRARE-2009), pp. 135-144. 

Harris, N.G., Mjøsund, C.S. & Haugland, H., 2013. “Improving railway 

performance in Norway”. Journal of Rail Transport Planning & 

Management, vol. 3(4), pp. 172-180. 

Heinz, W., 2000. Passagerutbyte i tåg - mätningar av av- och 

påstigningstider samt ansats till modell för att beskriva samband. Royal 

Institute of Technology, Stockholm. 

Kamizuru, T., Noguchi, T. & Tomii, N., 2015. ” Dwell Time Estimation 

by Passenger Flow Simulation on a Station Platform based on a Multi-Agent 

Model”. Presented at the 6th International Conference on Railway 

Operations Modelling and Analysis (RailTokyo2015).   

Kecman, P. & Goverde, R.M.P., 2015. “Predictive modelling of running 

and dwell times in railway traffic”. Public Transport. DOI: 10.1007/s12469-

015-0106-7. 

Kunimatsu, T., Hirai, C. & Tomii, N., 2009. “Evaluation of timetables by 

estimating passengers' personal disutility using micro-simulation”. 

Proceedings of the 3rd International Seminar on Railway Operations 

Modelling and Analysis (RailZurich), Zurich, 2009.  

Li, D., Daamen, W. & Goverde, R.M.P., 2015. ” Estimation of train dwell 

time at short stops based on track occupation event data”. Presented at the 

6th International Conference on Railway Operations Modelling and 

Analysis (RailTokyo2015).   

Li, D., Yin, Y. & He, H., 2018. “Testing the Generality of a Passenger 

Disregarded Train Dwell Time Estimation Model at Short Stops: Both 

Comparison and Theoretical Approaches”. Advanced Transportation, Vol. 

2018. DOI: 10.1155/2018/8521576.  

Longo, G. & Medeossi, G., 2012. “Enhancing timetable planning with 

stochastic dwell time modelling”. Presented at Computers in Railways XIII,  

WIT Transactions on the Built Environment, 127, pp. 461-471.  

Nie, L. & Hansen, I. A., 2005. ”System analysis of train operations and 

track occupancy at railway stations”, European Journal of Transport and 

Infrastructure Research, vol. 1, issue 5, pp. 31-54. 

Olsson, N. & Haugland, H., 2004. “Influencing factors on train 

punctuality - results from some Norwegian studies”. Transport Policy, issue 



11, pp. 387-397.  

Palmqvist, C.W., Olsson, N.O.E. & Hiselius, L., 2017. “Delays for 

Passenger Trains on a Regional Railway Line in Southern Sweden”. 

International Journal of Transport Development and Integration, vol. 1(3), 

pp. 421-431. 

Palmqvist, C.W., Olsson, N.O.E. & Winslott Hiselius, L., 2018. “The 

Planners’ Perspective on Train Timetable Errors in Sweden”. Journal of 

Advanced Transportation, vol. 2018. DOI: 10.1155/2018/8502819.  

Pedersen, T., Nygreen, T. & Lindfeldt, A., 2019. “Analysis of Temportal 

Factors Influencing Minimum Dwell Time Distributions”. Presented at 

Computers in Railways XVI, WIT Transactions on the Built Environment, 

181, pp. 447-458.  

Qi, Z., Baoming, H. & Dewei, L., 2008. ”Modeling and simulation of 

passenger alighting and boarding movement in Beijing metro stations”. 

Transportation Research Part C, 16, pp. 635-649.  

Seriani, S. & Fernandez, R., 2015. ”Pedestrian traffic management of 

boarding and alighting in metro stations”. Transportation Research Part C, 

53, pp. 76-92.  

Seriani, S., Fujiyama, T. & Holloway, C., 2017. “Exploring the 

pedestrian level of interaction on platform conflict areas at metro stations by 

real-scale laboratory experiments”. Transportation Planning and 

Technology, 40(1), pp. 100-118, DOI:  10.1080/03081060.2016.1238574.  

Tomii, N., 2013. ”Beyond the wave of “Big Data” – How we can realize 

robust train operation using train operation record data?”. Japanese Railway 

Engineering, 179. 

Trafikförvaltningen Stockholms Läns Landsting, 2018. ”Årsrapport 

Upplevd kvalitet – SL och Waxholmsbolaget 2017”. Stockholm: 

Stockholms Läns Landsting.  

Wiggenraad, I.P.B., 2001. Alighting and boarding times of passengers at 

Dutch railway stations. TRAIL Research School: Delft. 

Yuan, J. & Hansen, I.A., 2002. “Punctuality of Train Traffic in Dutch 

Railway Stations”. Presented at International Conference on Traffic and 

Transportation Studies (ICTTS), Guijin, 2002. DOI: 10.1061/40630(255)73. 

 

 


