
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

DMAC: Deadline-Miss-Aware Control

Pazzaglia, Paolo; Mandrioli, Claudio; Maggio, Martina; Cervin, Anton

Published in:
31st Euromicro Conference on Real-Time Systems

DOI:
10.4230/LIPIcs.ECRTS.2019.1

2019

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Pazzaglia, P., Mandrioli, C., Maggio, M., & Cervin, A. (2019). DMAC: Deadline-Miss-Aware Control. In S.
Quinton (Ed.), 31st Euromicro Conference on Real-Time Systems: ECRTS 2019 (Vol. 133, pp. 1:1–1:24). Article
1 (Leibniz International Proceedings in Informatics (LIPIcs)). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
https://portal.research.lu.se/en/publications/e101ed99-db0e-4492-9c1c-5578226d8964
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1

DMAC: Deadline-Miss-Aware Control
Paolo Pazzaglia
Scuola Superiore Sant’Anna, Pisa, Italy
Department of Automatic Control, Lund University, Sweden
paolo.pazzaglia@sssup.it

Claudio Mandrioli
Department of Automatic Control, Lund University, Sweden
claudio.mandrioli@control.lth.se

Martina Maggio
Department of Automatic Control, Lund University, Sweden
martina.maggio@control.lth.se

Anton Cervin
Department of Automatic Control, Lund University, Sweden
anton.cervin@control.lth.se

Abstract
The real-time implementation of periodic controllers requires solving a co-design problem, in which
the choice of the controller sampling period is a crucial element. Classic design techniques limit the
period exploration to safe values, that guarantee the correct execution of the controller alongside the
remaining real-time load, i.e., ensuring that the controller worst-case response time does not exceed
its deadline. This paper presents DMAC: the first formally-grounded controller design strategy that
explores shorter periods, thus explicitly taking into account the possibility of missing deadlines. The
design leverages information about the probability that specific sub-sequences of deadline misses
are experienced. The result is a fixed controller that on average works as the ideal clairvoyant
time-varying controller that knows future deadline hits and misses. We obtain a safe estimate of the
hit and miss events using the scenario theory, that allows us to provide probabilistic guarantees.
The paper analyzes controllers implemented using the Logical Execution Time paradigm and three
different strategies to handle deadline miss events: killing the job, letting the job continue but
skipping the next activation, and letting the job continue using a limited queue of jobs. Experimental
results show that our design proposal – i.e., exploring the space where deadlines can be missed and
handled with different strategies – greatly outperforms classical control design techniques.

2012 ACM Subject Classification Computing methodologies → Computational control theory;
Computer systems organization → Embedded software; Software and its engineering → Real-time
systems software; Theory of computation → Stochastic control and optimization

Keywords and phrases Weakly-Hard Real-Time Systems, Deadline Miss Handling, Control Design

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.1

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.3

Acknowledgements All authors from Lund University are part of the ELLIIT Excellence Center.
This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

1 Introduction

Controllers are often executed alongside other tasks in a real-time platform, demanding that
the scheduler ensures the timely execution of both the controller and the real-time workload
that the platform should execute. Controllers can be designed taking into account resource
limitations and scheduling constraints [16, 55, 54].

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 1; pp. 1:1–1:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.pazzaglia@sssup.it
mailto:claudio.mandrioli@control.lth.se
https://orcid.org/0000-0002-1143-1127
mailto:martina.maggio@control.lth.se
https://orcid.org/0000-0003-4889-8772
mailto:anton.cervin@control.lth.se
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
https://dx.doi.org/10.4230/DARTS.5.1.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 DMAC: Deadline-Miss-Aware Control

Studying the optimal design of a control task to be run alongside a given real-time workload
can be considered an instance of the general problem of composability. Composability is the
capability to integrate new functionalities into a preexisting system. This issue is particularly
relevant in the automotive field, where the production of new vehicles requires a tight coupling
of new software together with legacy code, with minimal adjustment of the original structure.
In general, adding a new control task to a given taskset implies combining requirements
that come from both control theory and real-time implementation. These requirements
are different and often conflicting. As an example, selecting a high execution rate for the
controller improves the control performance, but at the same time limits the guarantees
on the timely completion of the control task code and forces the engineers to take into
account overruns [13, 41]. Moreover, minimizing the monetary cost of the final system is an
ever-present priority and over-provisioning resources is usually not a viable solution.

Timing constraints in real-time systems are modeled as deadlines, i.e., a threshold that the
execution time of each task instance (job) should respect. We refer to a job that successfully
completes its execution before the corresponding deadline as a deadline hit event. If the
job could not terminate its execution before that deadline instant, we say that it missed its
deadline. In hard real-time systems, missing a deadline has been always seen as a risk that
must be avoided, with possibly catastrophic consequences. In reality, a limited number of
deadline misses is an acceptable condition for many cyber-physical and control systems, since
well-designed controllers often expose intrinsic robustness to timing non-idealities. Recently,
researchers have then tried to formally relax deadline constraints, introducing the weakly
hard real-time system paradigm [7] to describe the case where tasks are allowed to miss a
limited number of deadlines. However, often control engineers lack information about the
timing behavior of the control task and the taskset structure. Understanding how a control
loop behaves under deadline misses may open the door to new and better control designs.

Inspired by this challenge, in this paper we tackle the problem of designing a controller
for a generic physical plant, while exploring a range of periods which have historically been
avoided for co-design: we are here interested in those period values that are shorter than
the worst-case response time of the task, thus neglecting the common hypothesis of hard
deadlines. Our design problem is to run the controller alongside a preexisting taskset. Tasks
are described with probabilistic execution times, ranging from a best case to a (rare) worst
case value. By leveraging the flexibility of robust control design techniques, we here propose
a novel method for creating an optimal fixed controller, the Deadline-Miss-Aware Control
(DMAC), which can be implemented in a real-time task that may miss some deadlines.

The DMAC design takes into account how the controlled system behaves when different
patterns of hit and missed deadlines occur. For robustness, DMAC considers a safe (pes-
simistic) probability of deadline miss events. Lack of scalability impedes the computation
of deadline miss probabilities analytically. However, bounds are extremely pessimistic and
would not aid the control design method. To overcome this limitation, we obtain an estimate
of deadline miss occurrence simulating the schedule execution, drawing execution times (for
all the tasks) from the corresponding probability distributions. A robust control tool, the
scenario theory [11], provides the means to select the worst-case sequence of misses and hits
from the simulations. Leveraging the scenario theory, our approach allows us to provide
probabilistic guarantees for worst-case conditions both in terms of the probability of not
having taken into account conditions that will eventually manifest, and in terms of the design
confidence. We obtain a controller which is optimal and robust to worst-case conditions.

The analysis presented in this paper considers three different strategies for handling
deadline misses: kill the job that missed the deadline, let it continue and skip the next
job, or let all jobs continue until completion, but limiting the ready queue to the most

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:3

recently activated among the pending jobs (in addition to completing the one that missed
the deadline). We implement the controller following the Logical Execution Time (LET)
paradigm [28]. To the best of our knowledge, this is the first attempt to design an optimal
controller for a real-time system that is aware of deadline misses and miss-handling strategies.

2 Methodology

The aim of DMAC is to provide the first control synthesis method that is robust both with
respect to deadline misses and with respect to the strategy used to handle them. Our control
design leverages knowledge of the probability that different sequences of deadline hits and
misses may occur, and produces a fixed controller that is (on average) optimal with respect
to a defined cost function. We obtain such knowledge by formulating a chance constrained
optimization problem in a probabilistic framework, and obtaining guarantees on both the
probability of neglecting important information and the confidence in the design.

2.1 Overview and Terminology
We present here an overview of the approach adopted for the control design and evaluation.
For the application of the approach we rely on the following input data:

ε: The user selects a defined value of ε, that represents a worst case bound on the
probability of carrying out the control design operations neglecting important information.
We rely on the generation of sequences of deadline hits and misses, from which we select
the worst case and design our controller to be robust with respect to such worst case.
While ε can be selected to be as small as possible, we still need to accept a certain
small probability that the next generated sequence would be worse than the worst case
generated up to the current one.
1− β: The user selects a value for the confidence that one can have in the probabilistic
guarantee that the approach is providing. The value of 1− β is determined together with
the value of ε, to indicate that the approach is based on a confidence 1 − β that the
probability ε is the true probability of missing important information.
Γ: The taskset that our design is targeting. We assume that additional (hard real-time)
load is run alongside the controller task.
njob: Our control design is based on extracting timing behavior from simulations of a
certain number of control jobs. The length of the sequences used for the controller design
can be chosen depending on physical parameters, for example assuming that after a
certain number of jobs the controller has settled. We recommend to select a value that
contains at least a few hyperperiods, to capture chain effects if they happen.
Jseq: The cost function that is used to evaluate the produced sequences to select the
worst-case sequence for the controller design.
ξ: The strategy used to handle a deadline miss. We consider three different strategies:
killing the job that missed the deadline, letting it continue and skipping the next job, or
letting it continue and enqueuing the next job (up to a maximum of one enqueued job at
any point in time).
Jctl: The cost function that is used to evaluate the controller behavior and compare the
different deadline miss handling strategies.

Figure 1 visually shows the different steps, inputs and outputs. As shown in the figure,
our approach feeds the probability bounds (ε and 1 − β) to the “Scenario Theory” [11]
block. The scenario theory is used in control for the design of robust controllers to handle

ECRTS 2019

1:4 DMAC: Deadline-Miss-Aware Control

Scenario
Theory Scheduler

Ω = {ω1, . . . , ωnsim}

. . .

Sequence
Selector

ω∗

Controller
Synthesis

Performance
Evaluator

{ε, 1− β}
Probability

Bounds

nsim

Jseq

y

Jctl

ξ: Strategy for
Deadline Miss

{Γ, njob}

Figure 1 Approach Overview.

uncertainty that is a priori unpredictable in the disturbance values and in the system model.
In this paper we reinterpret the scenario results to enable a control synthesis strategy that
uses deadline hits and misses information and provides (probabilistic) guarantees.

The scenario theory is a formal tool that determines how to analyze experimental data.
In particular, we schedule our taskset extracting execution times from the corresponding
probability distributions that are known in the Γ taskset. The theory provides us with
information on how many experiments (scheduling simulations) we should execute in order
for the probability that unforeseen circumstances are worse than the gathered data to be
lower or equal to ε with confidence 1− β. We denote the number produced by the scenario
theory with nsim. For each of the nsim experiments, we randomly sample the probability
distributions of the task execution times, to generate a set Ω = {ω1, . . . , ωnsim} scheduling
sequences, in which the control task executes for njob times, using strategy ξ to handle the
deadline misses. Using our scheduler, we record sequences of deadline hits and misses.

We evaluate each of these sequences with a cost function Jseq, identifying the worst
sequence ω∗, from the control perspective. From this sequence we extract the probability
of deadline hits and misses for each of the njob instances of the control task and the joint
probability distribution for each sequence of hits and misses needed for the control design.
The controller synthesis block uses the extracted information for the control strategy design.
The generated controller is then evaluated when the taskset is executed and the controller
is connected to the real plant, using a cost function Jctl, which allows us to compare the
performance of different deadline management strategies. We can then determine the best
deadline management strategy and control period for the system under analysis.

As output of our approach we obtain y, the evaluation of each tested strategy ξ for the
specific problem. As a by-product, we also obtain the set of sequences Ω. If we are not
satisfied with our controller behavior, we can analyze the set of sequences to understand how
to improve the control performance (i.e., for example optimize a certain task in the taskset).

Paper Organization

In the following, Section 3 discusses the model used for both the plant and the taskset,
and Section 4 describes the behavior of the system using different deadline miss handling
strategies. Section 5 presents the control design approach. In Section 6 we present the
framework that we use to obtain probabilistic information about the scheduler behavior, and
the scenario theory. In Section 7 we show our experimental setup and the evaluation criteria,
and present our results. Section 8 discusses related work, and Section 9 concludes the paper.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:5

3 System Model and Problem Definition

This section introduces the models used in the paper. Section 3.1 describes the model of the
taskset executing on the hardware. Section 3.2 discusses the models of plant and control
task. Finally, Section 3.3 introduces the three strategies used to handle deadline misses.

3.1 Taskset Model
In this paper, a real-time workload Γ is defined as the union of a (given) set of generic hard
real-time periodic tasks, plus a real-time control task τd, which is the target of our design, i.e.,
Γ = Γ′

⋃
{τd}. In this description, Γ′ is a set of NT periodic tasks, i.e., Γ′ = {τ1, τ2 . . . , τNT

}
and τd is an additional periodic task that contains our controller operation. We assume
that each task τi is independent from the others and released synchronously at a given
starting instant. The tasks are scheduled using a fixed priority scheduling policy (e.g. Rate
Monotonic) with preemption, and the indexing reflects their priority ordering, i.e. τi has
higher priority than τj if i < j. In our design problem, τd is the task with the lowest priority.

Each task is characterized by a tuple of parameters, τi = (Ci, fCi , Di, Ti). Here, Ci is a
random variable that represents the task execution time, while fCi (c) is its probability density
function, i.e. ∀c ∈ N, fCi (c) = P{Ci = c}; Di and Ti are deterministic values, representing
respectively the task deadline and period. In accordance with the literature on real-time
applications for control systems, task periods are chosen among a limited set of possible
values, typically related to physical requirements of the control task [32, 39].

For each task τi, we consider a discrete probability distribution Ci with Ni integer values,
ranging between a Best Case Execution Time (BCET) Cmin

i and a Worst Case Execution
Time (WCET) Cmax

i . Furthermore, we consider tasks that behave well in most cases, i.e.,
tasks whose probability density functions are skewed towards lower values. In fact, while our
approach can be applied to systems with generic probability density functions, we want to
capture tasks which experience occasional faulty conditions. This choice is in agreement with
most works that analyze execution time distributions for real-time tasks [53]. We will generally
refer to the utilization of taskset Γ′ as the worst-case utilization, i.e. UΓ′ =

∑NT

i=1(Cmax
i /Ti).

We denote each periodic instance of τi ∈ Γ with the term job, and define it as Ji,k, with
k = 1, 2, . . . representing the job index and i representing the task index. For every job
Ji,k, ai,k denotes the activation instant, and ai,k+1 − ai,k = Ti. Since we are considering
synchronous release conditions, ∀i, ai,0 = 0 holds. In the following, Ri,k represents the
random discrete variable that models the response time of Ji,k. The Worst Case Response
Time (WCRT) of task τi is denoted as RWi and computed with standard techniques [33], by
considering the condition where every task experiences its WCET. Similarly, the Best Case
Response Time (BCRT) [43] is introduced as RBi and computed considering that every job
executes with its BCET. Finally, in this work all tasks τi in Γ′ are schedulable, i.e. RWi ≤ Di

for each τi. However, this hypothesis will not be required for τd. We will only assume that
at least one job of τd respects its deadline, i.e. RBd ≤ Dd.

3.2 Plant and Controller Model
The plant to be controlled by τd is described as a linear time invariant, multi-input multi-
output system in continuous time. In line with standard assumptions, we assume the plant
to be controllable and the state to be fully measurable. The plant dynamics is described as

ẋ(t) = Ac x(t) +Bc uc(t) + vc(t). (1)

ECRTS 2019

1:6 DMAC: Deadline-Miss-Aware Control

Sampler Controller Hold

Plant

x(tk) u(tk)

vc(t)
uc(t)x(t)

Td

Figure 2 Plant and controller with time-triggered sampler and hold devices.

In Equation (1), every element in bold represents a vector, while Ac and Bc are the constant
matrices that encode the dynamic evolution of the system. The term x(t) denotes the system
state vector and ẋ(t) its time derivative. The term uc(t) is the vector that contains the
control signals. The vector vc(t) represents the plant disturbance, modeled as white noise
with known covariance matrix Rc. The goal of the control is to minimize a cost function,
defined as the mean value of a quadratic function of the state vector and the control vector:

Jctl = E
{∫

xT(t)Q1cx(t) + uc
T(t)Q2cuc(t)

}
. (2)

Here, E indicates the expected value, while Q1c and Q2c are constant positive semidefinite
matrices and design parameters of the controller. They represent the trade-off between
regulating x(t) to zero and the cost of using the control signal uc(t). This cost function is
used both as a controller design objective and for performance evaluation of the control task.

The plant is connected to the controller via time-triggered sampler and hold devices as
shown in Figure 2. The behavior of these devices can be modeled as a dedicated task that
reads and writes data with zero execution time and highest priority. The plant state is
sampled every Td time units, implying x(tk) = x(kTd). The control job Jd,k is released at
the same instant, i.e. ad,k = kTd, and the sensor data x(tk) is immediately available to it.
Based on the state measurement, the controller computes the feedback control action u(tk).

As an hypothesis, our control task τd executes under the Logical Execution Time paradigm.
Indeed, the job Jd,k computes the control output using x(tk) but makes it available to the
actuator only at the first deadline instant after the termination of its execution. The control
actuation is then held constant until the next update. This means that, if all jobs finish
before their deadline, the following equation holds:

uc(t) = u(tk), ad,k +Dd ≤ t < ad,k+1 +Dd. (3)

The execution time of the control task τd is given as a random variable with known probability
density function, and is treated equivalently to any other task in Γ′. On the contrary, the
deadline Dd and period Td of the control task τd are part of the design. Being a LET task,
we restrict our analysis to the implicit deadline case (Dd = Td), although in principle the
approach in the paper can be applied to other relative deadlines (and corresponding output
times). We further assume that the execution time properties of the controller do not change
with different periods and different controller parameters (since only the values of some
parameter are modified but the operations done by the control task are the same).

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:7

In the paper, τd is not treated as a hard-deadline task. On the contrary, we actively look
for those values of Td such that the resulting task may miss some deadline with probability
greater than zero, but still being able to guarantee a good control performance. This is to
increase the system utilization, and consolidate workload on one single core. In Section 5, we
present how to properly characterize the timing behavior of the controller and its synthesis.

I Remark 3.1. In this paper, we work under the assumption that τd is the task with the lowest
priority. If other tasks with priority lower than τd do exist, the design proposed hereafter is
still valid in principle, since those tasks cannot interfere with τd. However, if this is the case,
the range of possible values of Td should be tied with the schedulability guarantees for the
lower priority tasks. We reserve to analyze this more general case as a future work.

3.3 Handling Deadline Misses
In classic control design, the control task behavior is assumed to be strictly periodic, or at
least periodic with limited reponse time jitter [16]. To provide an implementation enforcing
periodicity for a controller on a real-time platform, one usually selects a period for the control
task that is greater or equal than the task’s WCRT. This approach is safe but can be very
pessimistic. In fact, WCRT conditions may be extremely rare. Selecting the period with the
mentioned constraint could limit the achievable control performance, since longer sampling
periods in general mean worse disturbance rejection and smaller stability margins [15].

The approach presented in this paper explores the possibility of designing a control task
with periods smaller than its WCRT, i.e., Td < RWd , thus greatly extending the design space.
We remark that, with Td ≥ RWd there are no deadline misses, and standard approaches for
the control design can be used [29, 4, 55].

Choosing Td < RWd implies the risk that the control task will miss some deadlines. A
deadline miss is a timing violation that can produce unbounded response times, due to
self-pushing [47], and therefore it should be properly handled. In this work, we consider
three different strategies to handle deadline misses, that have previously been explored in the
control community [13]: (i) to kill the job that has not completed at the deadline, (ii) to let
the current job continue but skip the next job(s), and (iii) to let the job continue, placing
the next job(s) in a queue of length one. In more detail, these strategies behave as follows:

Kill: A control job that is not able to terminate within its deadline is dropped at the
deadline instant. When a job is killed, its (partial) computation is discarded and no
output is produced. We assume that this dropping mechanism has negligible overhead
and internal states of the controller are not altered by the partial computation.
Skip-Next: A control job that is not able to terminate within its deadline is allowed
to continue until completion. However, whenever the active job exceeds a deadline, the
next instance of the control job is not activated (skipped). This is based on the idea that
completing a job that has already started is preferred to starting a new one and incurring
the risk that the computation runs longer than the deadline again.
Queue(1): A control job that is not able to complete its execution within its deadline is
allowed to continue its execution, while the following jobs are put in a queue that can
contain a single element. Thus, at the activation of a new job, if there is already an active
instance, the new job is enqueued, overwriting the currently existing job in the queue.
Only the most recently arrived job is stored in the queue and is activated as soon as the
current job completes.

An example of a schedule under the three strategies is presented in Figure 3, where the
odd jobs are shown in dark gray, while the even jobs are shown in light gray. With the Kill
strategy, the first job is killed at its deadline, before completing its execution. With the

ECRTS 2019

1:8 DMAC: Deadline-Miss-Aware Control

ad,1 ad,2 ad,3 ad,4

time

Kill

Skip-Next

Queue(1)

• •
•

Figure 3 Schedule example using the three proposed strategies to handle deadline misses. Those
jobs that missed a deadline (or are skipped) are marked with a red cross on their deadline, while a
green dot identifies deadline hit events.

other two strategies, the job is given additional time in the second period, and is therefore
able to complete, albeit running over time. With the Skip-Next strategy, the second job is
not started, since there is an active control job that has not terminated its computation.
With the Queue(1) strategy, the second job also runs over time, due to interference. In
general, the Kill and Skip-Next strategies avoid self-interference conditions. This is not true
for the Queue(1) strategy. However, Queue(1) may be seen as a particular case of finite
buffer strategy [1], where the freshest job of the queue is always preferred, discarding the old
one that has not yet started. This choice helps reducing the amount of self-interference and
avoids unbounded response times. In practice, a job that is delayed more than one period by
self-interference is skipped and the next one is put in the ready queue.

A sequence of consecutive control jobs may contain a certain number of jobs that are not
actively contributing to the actuation u(t). This happens either with jobs that are terminated
before completing their execution (killed) or with jobs not executed at all (skipped). For
those jobs, a proper response time value may not be defined. Moreover, under Queue(1)
strategy, it may happen that the output of a job which completes its execution after missing
one or more deadlines is overwritten by the next job, if the latter completes before the same
deadline. We therefore define the set of jobs that produce an output control that is actually
provided to the physical plant, as the set of valid control jobs.

I Definition 3.2 (Valid control job). A valid control job ν is a job that successfully completes
its execution and whose generated output is not overwritten before the next deadline instant.

For each time interval [0, t), we show that is possible to extract the ordered sequence of
v valid jobs, defined as S = {ν1, ν2, ..., νv} (where the index does not count the passing of
time) and the relation v ≤ dt/Tde trivially holds. The sequence of valid jobs depends on the
strategy used to handle deadline misses, and will be described in Section 4. Our control
design should be robust not only to the possibility of missing deadlines, but also to the
different pattern of delays that are produced depending on the strategy used to handle the
miss event. In the following section, we discuss how this affects the control task behavior.

4 Controller Behavior with Deadline Misses

In theory, choosing a shorter period allows the discrete-time controller to achieve better
control performance [5]. However, real-time constraints become harder to satisfy, due to
the increased interference from higher priority tasks. Since we are targeting periods shorter
than the WCRT, the probability of missing a deadline for the control task is greater than

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:9

τd
time

ad,k ad,k+1 ad,k+2 ad,k+3 ad,k+4

σk σk+1

hk hk+1

• •

Figure 4 Example of delay and hold values for Skip-Next strategy.

zero. A controller designed with standard techniques and subject to overrun may still display
some intrinsic robustness when experiencing occasional deadline misses [13, 41]. However,
the controller performance depends strongly on the deadline miss handling strategy, and
may become unacceptable when the probability of missing a deadline is too high. Here we
analyze the timing properties of a control task subject to deadline misses. We show that
only two parameters are needed to fully characterize the miss impact. We build the rules for
computing them and extract the sequence of valid control jobs.

4.1 Defining Delay and Hold

Missed deadlines invalidate one of the basic hypothesis of control theory, which is the
periodicity of the output pattern [41]. In this work, we exploit the knowledge of deadline
misses directly in the control design step. For this purpose, we need to characterize how
deadline misses affect the control performance. We fully describe the effect of deadline misses
of LET-based controllers with two parameters, named respectively delay and hold interval.

I Definition 4.1 (Delay σk). The delay σk experienced by a control job Jd,k is defined as the
time interval between the activation instant of the job ad,k and the instant where its control
output is made available to the actuator.

In other words, the delay σk represents the time from sampling the plant state until
updating the control signal. Using the above formulation, σk can only be properly defined
for jobs that correctly complete their execution: if a job is killed or skipped, no delay
information can be extracted, since its computation does not properly finish. We will refer
to this condition as an undefined delay, represented with the symbol ∞. From a control
perspective, the delay experienced by each (completed) job must be compensated accordingly
by a predictor that computes the expected state at the output instant (tk + σk), using the
knowledge of the current state x(tk) and the control output(s) active in that time span.

I Definition 4.2 (Hold interval hk). Given a control output computed by Jd,k and available
at the actuator for the first time at tk + σk, the hold interval hk is the time interval between
tk + σk and the first instant where a new control output is made available.

In other words, the hold interval hk indicates the lifetime of the control signal computed
by the k-th controller job and thus represents the time interval in which the computed control
signal is held constant. Similarly to the delay, the definition of hk is meaningful only for jobs
that correctly complete their execution. If job Jd,k is killed or skipped, the hold interval
is undefined and will be represented with the symbol ∞. Moreover, if job Jd,k correctly
completes its execution, but its output is overwritten by the output of job Jd,k+1 before
being used, we will assign a hold value hk = 0. Figure 4 shows an example of delay and hold
intervals for a sequence of four jobs using the Skip-Next strategy.

ECRTS 2019

1:10 DMAC: Deadline-Miss-Aware Control

4.2 Computing Delay and Hold
Under ideal timing conditions – i.e., when all the deadlines of the control task are hit – the
control signal produced in one period is always applied in the next period. The controller
should thus compensate for a fixed delay σk = Td. In this situation, the delay and hold have
the same value and they are often not even defined as two different parameters. However,
when considering deadline misses, σk and hk may assume different values. Figure 4 shows
one such example, where σk = 1Td, hk = 2Td, σk+1 = 2Td, and hk+1 = 1Td.

The potential differences between the delay and hold values have several consequences
for the control design. First, a predictor designed for a one period delay may produce a
value that is incorrect for longer delays. Second, a control signal calculated for a short hold
interval could be too aggressive if applied in longer intervals. Lastly, the resulting delay–hold
pattern may change across multiple control activations and depends heavily on the deadline
miss handling strategy that has been chosen.

Computing the values of σk and hk for each Jd,k in a schedule is then crucial for the
control design process. In fact, knowing in advance the values of delay and hold interval
of each job, enables the design of an optimal time-varying controller, that for each control
job selects how to compensate the particular combination of σ and h for the current and
following jobs. This however would require a clairvoyant controller, that is not practically
realizable. Here we extract the possible pairs (σk, hk) that may happen in a given scheduling
sequence, and their associated probability, to design a fixed controller that behaves as close
as possible to the ideal unrealizable one. We discuss the controller synthesis in Section 5.

Knowing σk and hk for a given job Jd,k, it is also possible to determine whether the k-th
control job is valid. This corollary follows from the definition of delay and hold interval:

I Corollary 4.3. A job Jd,k is valid if and only if it is possible to define both its delay σk and
hold interval hk (i.e., they are finite numbers) and if the hold interval is greater than zero.

As a consequence, the pairs (σk, hk) can be leveraged to extract the set of ordered valid
jobs, which are the ones effectively used for building the controller. We now discuss how to
compute σk and hk for each Jd,k with the different miss-handling strategies. First of all, it is
worth noting that the definition of σk is strictly related to the notion of response time of job
Jd,k. In fact, the control output computed by Jd,k is dispatched to the actuator at the first
control activation (i.e. the closest incoming deadline) that follows the termination of Jd,k.
The delay σk of Jd,k can then be computed (for each strategy) as follows:

σk =
{
dRd,k/TdeTd if Jd,k completes
∞ otherwise. (4)

Trivially, the maximum value for σk is σ̄ = dRWd /TdeTd. While extracting σk requires only
the knowledge of Jd,k, in order to compute the value of the hold interval hk it is necessary
to know the behavior of the control jobs executing after Jd,k, until the release of a new
control update. In practice, this means that only a finite number of sub-sequences needs to
be checked for characterizing all possible combinations of (σk, hk). Below, the equations for
computing hk for each strategy are presented in detail.

4.2.1 Hold Interval with Kill Strategy
Using the Kill strategy, the control job either finishes within one period or it is killed at
its deadline. An arbitrary sequence of deadline misses may happen between two jobs that
complete successfully. Denoting with λk,Kill the number of consecutive jobs that miss their

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:11

deadline after Jd,k, the hold interval associated to Jd,k is computed according to

hk =
{

(λk,Kill + 1) · Td if Jd,k completes
∞ otherwise (if Jd,k is killed).

If Jd,k has been killed, hk is not defined. Note that if some weakly hard constraint is known
for τd, the values of λk,Kill to check may be upperbounded with the maximum possible
number of consecutive deadline misses of that task.

4.2.2 Hold Interval with Skip-Next Strategy
Using the Skip-Next strategy, no new job may be activated while the active one is executing.
Denoting with λk,Skip-Next the number of skipped jobs that directly follows Jd,k, the hold
interval of a job Jd,k can then be computed as

hk =
{
σk+1+λk,Skip-Next if Jd,k completes

∞ otherwise (Jd,k is skipped).

If Jd,k is skipped, hk is not defined. Intuitively, this means that for the Skip-Next strategy,
the hold value of one completed job is equal to the delay of the subsequent job that completes
(i.e., of the next valid job). In the example of Figure 4, job Jd,k terminates correctly, while
Jd,k+1 does not complete before its deadline. Jd,k+2 is then skipped. The hold value hk is
therefore equal to the delay σk+1 which is 2Td since the job has an overrun. The hold value
hk+1 is equal to the delay of the next completed job Jd,k+3, i.e., hk+1 = σk+3 = Td. The
values that λk,Skip-Next may assume are upperbounded by dRWd /Tde − 1.

4.2.3 Hold Interval with Queue(1) Strategy
Using the Queue(1) strategy, if a job misses its deadline, two scenarios may happen: it
completes before the deadline of Jd,k+1, or it finishes later, then some of the subsequent jobs
is skipped. In both those cases, however, the instant where the control output is published to
the actuator falls exactly one period (Td) after the activation of the next valid job. Denoting
with λk,Queue(1) the number of (eventually) skipped jobs that directly follows Jd,k, the hold
value hk for job Jd,k is computed as follows:

hk =

σk+1 if Jd,k hits its deadline

σk+1+λk,Queue(1) − Td if Jd,k misses its deadline
∞ otherwise (skipped).

If Jd,k is skipped because it is removed from the queue due to a subsequent activation, hk is
not defined. Note that if Jd,k misses and Jd,k+1 hits its deadline – i.e., if both the k-th and
the k + 1-th control jobs complete before during the k + 1-th period – then σk+1 − Td = 0,
and the control signal produced by Jd,k is never actuated. Finally, values of λk,Queue(1) are
upperbounded by d(RWd − Td)/Tde − 1.

5 Synthesis of Deadline-Miss-Aware Controllers

Standard digital control design assumes that samples are taken regularly and that there is a
(most likely known and constant) delay from sampling to actuation [5]. When deadlines are
missed, the actual hold and delay intervals will deviate from the assumed values, as explained
in the previous section. This control jitter leads to degraded performance, and, in extreme

ECRTS 2019

1:12 DMAC: Deadline-Miss-Aware Control

τd

time

an−1 an
(tn − σn)

tntn−1

σn

ψ2n ψ1n

• •

Figure 5 Example of ψ1n and ψ2n.

cases, even to instability of the control loop [16]. With some knowledge about the jitter,
however, it is possible to synthesize a controller that partially compensates for the timing
irregularities. We outline two variants of our Deadline-Miss-Aware Control designs below.

5.1 Clairvoyant Controller Synthesis
The controlled system evolution can be derived by sampling the plant only at the update
instants of each valid job νn, i.e. at the time where the control output produced by νn is
provided to the actuator. With a slight abuse of notation we will refer hereafter to the
pair of delay and hold relative to νn as (σn, hn), while its activation instant is an. The
update instant of the control output produced by νn can then be defined as tn = an + σn.
Moreover, the relation tn+1 = tn + hn trivially holds. For each valid control job νn in
sequence S = {ν1, ν2, ..., νv}, the state evolution can be calculated as

x(tn+1) = x(tn + hn) = A(hn)x(tn) +B(hn)u(tn) + v(tn), (5)

where x(tn) is the state measurement sampled at time tn, u(tn) the control output released
at time tn, and v(tn) a discrete-time model of the plant disturbance. The discrete matrices A
and B are sampled from Ac and Bc of (1), respectively, with the step hn. It is worth noting
that different matrices A(hn) and B(hn) are created, depending on the possible values of hn.
In fact, a system described in this way behaves as a switched-linear system [48]. Computing
the matrices can be done with standard procedures for sampled-data systems [5].

If the timing behavior of all jobs was completely known in advance, we would be able to
design, by looking offline at the schedule, an optimal time-varying controller that minimizes
the cost function (2). We call this a clairvoyant controller. The optimal control signal to be
applied in the hold interval hn is given by

u(tn) = −Lnx(tn), (6)

where the sequence of feedback gain matrices
{
Ln
}

are obtained as the solution to a
time-varying Riccati equation involving the sequences

{
A(hn)

}
,
{
B(hn)

}
, and the sampled

equivalents of the cost matrices Q1c and Q2c. The feedback matrices can be calculated
off-line and stored in a table for on-line use.

The control law (6) cannot be implemented as it stands, though. The control action must
be computed based on a state measurement that is σn time units old. Hence the controller
must also predict the state from time tn − σn to tn. Note however that in the time interval
between tn − σn and tn, the control actuation may not be constant, thus a slightly different
modeling is needed. We will refer to the estimate of the state as x̂, which is computed as

x̂(tn) = A(σn)x(tn − σn) +A(ψ1n)B(ψ2n)u(tn−2) +B(ψ1n)u(tn−1). (7)

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:13

Here, ψ1n represents the time interval in [tn − σn, tn] when the control actuation of the
previous valid job u(tn−1) is held constant, while ψ2n is the (possible) interval where u(tn−2)
is active. For the sake of clarity, an example is shown in Figure 5. An operative procedure
for computing ψ1n and ψ2n is given as follows:

ψ1n = an + σn − (an−1 + σn−1), ψ2n = an−1 + σn−1 − an. (8)

5.2 Robust Controller Synthesis
The clairvoyant controller has two drawbacks. First of all, it relies on exact knowledge of the
execution of the system, ahead of time. This is only possible in very special circumstances.
The other drawback is that it is time varying, which is more complicated to implement and
requires extra memory to store the time-varying feedback gain and prediction matrices. A
more realistic approach is instead to design a fixed, robust controller, based on the statistical
properties of the system.

Again starting from the sampled system description (5), we can instead solve a stochastic
Riccati equation [38] based on the possible values of A(hn) and B(hn) and their relative
frequency in the schedule during the execution of the system. The control law is then

u(tn) = −L̄x(tn), (9)

where L̄ is a fixed gain matrix obtained from the solution to the stochastic Riccati equation

X̄ = E

{[
A(hn)T

B(hn)T

]T

S̄

[
A(hn)T

B(hn)T

]
+
[
Q1(hn) Q12(hn)
Q12(hn)T Q2(hn)

]}
S̄ = X̄11 − L̄TX̄22L̄

L̄ = X̄−1
22 X̄

T
12.

This would be the optimal fixed-gain control law if the matrices A(hn) and B(hn) were
random and independent from job to job. In reality, there is time dependence between the
hold intervals due to the scheduling algorithm, and the control law is hence only sub-optimal.

The predictor (7) must also be modified to work with statistics rather than known-ahead
values. The state can be predicted using expected value calculations as

x̂(tn) = E {A(σn)}x(tn − σn) + E {A(ψ1n)B(ψ2n)}u(tn−2) + E {B(ψ1n)}u(tn−1). (10)

Again, the predictor will only be sub-optimal due to the time-dependence induced by the
scheduling algorithm.

5.3 Controller Synthesis Example
The synthesis methods presented above are illustrated in a simple control example, which
was used to evaluate the performance of a standard (non-deadline-miss-aware) controller
under various overrun strategies in [13]. The plant to be controlled is an integrator process
described by the parameters Ac = 0, Bc = 1, Q1c = 1, Q2c = 0.1 and Rc = 1. The plant is
controlled by a control task with stochastic execution times, executing alone in a CPU. The
execution time may assume value equal to 1 s with probability 0.8, or uniformly distributed
in the interval (1, 2] with combined probability 0.2. For periods ranging between 1 and 2, we
compare the resulting performance under the Kill, Skip-Next, and Queue(1) strategies in
Figure 6. Since Jctl is defined as a cost, lower values in the graph mean better performance.

ECRTS 2019

1:14 DMAC: Deadline-Miss-Aware Control

1 1.2 1.4 1.6 1.8 2
2

3

4

Td – Kill

J
ct

l

Classic Control DMAC Clairvoyant

1 1.2 1.4 1.6 1.8 2
Td – Skip-Next

1 1.2 1.4 1.6 1.8 2
Td – Queue(1)

Figure 6 Control synthesis example: single task with deadline misses.

For each configuration, a standard controller (designed assuming no missed deadlines), a
robust controller, and a clairvoyant controller are designed, and the performance of each
controller, measured in terms of the cost function (2), is evaluated using JitterTime [14]
in a simulation of 100,000 jobs. It can be noted that there is a strict ordering from the
worst performance under standard control to the best performance under clairvoyant control,
as expected. This means that designing control strategies that take into account deadline
misses is beneficial in all cases. The DMAC design does not achieve the optimal cost that
the clairvoyant design is able to achieve, but systematically beats classical control design due
to its delay and hold compensation.

As the period is decreased from 2 to lower values, the Kill and Queue(1) strategies
initially behave similarly, with decreasing cost. In fact, in the case of a miss followed by a
deadline hit, the Kill and Queue(1) strategies have the same behavior (since the output of
the late-completed job under Queue(1) is overwritten by the completion of the next one).
Skip-Next initially has an increase in cost due to the waste of resources when a very small
overrun leads to a whole period being skipped. For smaller task periods, Queue(1) suffers
performance degradation and even instability (Jctl →∞) due to the lag introduced by the
queuing. The Kill and Skip-Next strategies perform the best at Td = 1, with very similar
results for this example.

It should be noted that the results are problem dependent, and it is hard to judge whether
Kill or Skip-Next works the best in general. In all examples, however, we have found that
better performance can be achieved by shortening the period and allowing a few deadline
misses. Some tests that include higher-priority tasks Γ′ are presented later in Section 7.

6 Stochastic Analysis

Section 5 introduced a control design technique that exploits information about the probability
of sequences of deadline hits and misses for the control job. Here, we provide a framework to
robustly estimate these probabilities, and at the same time preserve a pessimistic bound that
allows us to mitigate the effect of worst-case conditions. We formulate the estimation problem
as a chance-constrained optimization problem [37], i.e., an optimization problem where we
look for the probabilities of different sequences of hits and misses given the worst-case
realization of the uncertainty inherently present in the taskset execution.

Analytical approaches extracting the probability of hits and misses for a schedule of jobs
are either extremely pessimistic [17] or have a high computational complexity [51]. This
limits the applicability of these techniques in non-trivial cases. Moreover, there are few works
dealing with joint probabilities of consecutive jobs, like [49], but they still lack of scalability.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:15

To handle the scalability issue, we adopt a simulation-based approach, backed up by the
scenario theory [11], that empirically performs the uncertainty characterization, and provides
formal guarantees on the robustness of the resulting estimation. The scenario theory allows
us to exploit the fact that simulating the taskset execution (with statistical significance) is
less computationally expensive than an analytical approach that incurs into the problem of
combinatorial explosion of the different possible uncertainty realizations. In practice, this
means that we: (i) sample the execution times from the probability distributions specified
for each task, fCi (c), (ii) schedule the tasks, checking the resulting set of sequences Ω, and
(iii) find the worst-case sequence ω∗ based on the chosen cost function. The probabilities
of sequences of hits and misses are then computed based on this sequence, and used in the
design of the controller to be robust with respect to the sequence. We use the scenario theory
to quantify, according to the number of extracted samples, the probability ε of not having
extracted the true worst-case sequence and the confidence in the process 1 − β. Scenario
theory has for example found use in the management of energy storage[20].

6.1 Scenario Theory

The scenario theory has been developed in the field of robust control to provide robustness
guarantees for convex optimization problems in presence of probabilistic uncertainty. In these
problems, accounting for all the possible uncertainty realization might be achieved analytically,
but is computationally too heavy or results in pessimistic bounds. The scenario theory
proposes an empirical method in which samples are drawn from the possible realizations
of uncertainty, finding a lower bound on the number of samples. It provides statistical
guarantees on the value of the cost function with respect to the general case, provided that
the sources of uncertainty are the same.

One of the advantages of this approach is that there is no need to enumerate the uncertainty
sources, the only requirement being the possibility to draw representative samples. This
eliminates the need to make assumptions on the correlation between the probability of
deadline misses in subsequent jobs. If interference is happening between the jobs, this
interference empirically appears when the system behavior is sampled. While there is no
requirement on subsequent jobs interfering with one another, there is a requirement that
different sequences are independent (i.e., each sequence represents an execution of the entire
taskset of a given length, in the same or possibly different conditions). Taking the worst
observed case in a set of experiments, the scenario theory allows us to estimate the probability
that something worse than what is observed can happen during the execution of the system.

Specifically, for a sequence ω we define a cost function Jseq(ω), that determines when we
consider a sequence worse than another (from the perspective of the controller execution).
Denoting with µtot(ω) the total number of job skips and deadline misses that the control
task experienced in ω, and with µseq(ω) the maximum number of consecutive deadline misses
or skipped jobs in ω, we chose to use as a cost function the following expression:

Jseq(ω) = µtot(ω)µseq(ω) (11)

to determine the worst-case sequence of hits and misses. Given a set of sequences Ω =
{ω1, . . . ωnsim}, we select ω∗ = arg max

ω∈Ω
Jseq(ω). The choice of the cost function is anyhow

not-univocal. For instance, other viable alternatives would be: (i) the number of sub-
sequences of a given length with at least a given number of deadline misses, or (ii) the
shortest subsequence with more than a given number of deadline misses.

ECRTS 2019

1:16 DMAC: Deadline-Miss-Aware Control

6.2 Formal Guarantees
The scenario theory allows us to compute the number nsim of simulations that we need to
conduct to reach the required robustness ε and confidence 1−β. The parameter ε is a bound
on the probability of the obtained result being wrong, i.e., on the probability that another
simulation would lead to a sequence with a higher cost function Jseq than ω∗. The parameter
1 − β represents the confidence we have in this result, i.e., the probability of ε being an
incorrect bound. It can also be interpreted as the probability that the drawn nseq sequences
are representative enough of the whole set of possible uncertainty realizations.

Equation (12) shows the relation between the number of experiments nsim, ε and β [11].
Here, d is the number of optimization variables used for the selection. The cost function Jseq
that we defined takes as argument only a sequence ω, hence d = 1.

d−1∑
i=0

(
nsim
i

)
εi(1− ε)nsim−i ≤ β. (12)

Specifying β and ε univocally determines nsim. If β and ε are sufficiently small, we can use
the worst-case sequence for the design of the controller with high confidence.

6.3 Application and Threats to Validity
Similarly to any other empirical approach, the validity of the scenario theory depends on the
representativeness of the sampling set. In our case, for example the validity of our results
depends on the significance of the probabilistic execution time distributions for all the tasks.

Furthermore, the length of the simulations is a critical parameter. We simulate the system
for a number njob of executions of the control task. Clearly, we want to select njob to cover
an entire hyperperiod (to achieve complete analysis of the interferences between the tasks).
In practice, we want to be able to detect cascaded effects that might happen due to the
probabilistic nature of the execution times of the tasks. Some samplings could in fact make
the utilization of instances of the taskset greater than one. For this reason simulations that
include several hyperperiods should be performed. On top of that significancy with respect
the controlled of the physical system is required (since the existence of the hyperperiod is not
always guaranteed), hence the length of the simulated sequences should cover its dynamics.

7 Experimental Evaluation

This section presents and discusses the results obtained with our synthesis method. Experi-
ments are obtained generating synthetic real-time workload. First, we generate the tasks Γ′
and τd. We then use a simulator to draw execution time realizations from the determined
probability distributions for the tasks and generate schedules and sequences of deadline hits
and miss with different deadline-miss handling strategies, according to the scenario theory
parameters. We select the worst-case sequence and use it for control design. Finally, we
test the obtained controller on the physical plant, computing the control performance Jctl.
Section 7.1 describes our experimental setup, while Section 7.2 discusses our results.

7.1 Setup
To generate the taskset, and its execution time probability distributions, our experimental
evaluation follows this procedure:

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:17

Using the UUnifast algorithm [8], we generate an initial taskset Γ′, composed of NT − 1
tasks and having utilization UΓ′ . We order the tasks using Rate Monotonic priority. In
the following, we show examples where NT ∈ {5, 10, 20}, and UΓ′ ∈ {0.70, 0.80}. Tasks
periods are chosen randomly from a bucket of values, ranging between 100ms and 1000ms,
with steps of 10ms. The execution times generated by the UUnifast algorithm are set as
the WCETs of the tasks. All tasks in the generated task set must respect their (hard)
deadlines using the WCET values.
For each generated taskset, we build a control task τd. The control task is set to have
the lowest priority in the set. We assume that the interval of interesting periods for the
controller spans between 0.5 s and 2 s. These values are chosen according to the physical
constraints that the plant imposes (e.g., the speed of the plant dynamics). We then select
a random value for the WCET of τd, ensuring that the response time of its critical job
(which corresponds to the WCRT of τd in case no deadline is missed) is between 2 s and
2.5 s. This choice guarantees that in the interval of interest, the control task has non-zero
probability of missing at least one deadline.
For each task in the taskset we randomly choose the BCET, such that the the BCRT of τd
lies below the lower limit of 0.5 s of our interval of interest (coherently with our hypothesis
that the controller period should be higher than its BCRT). Since the execution time
probability of each task is skewed towards lower values, we expect that the probability
distribution of response times will be skewed in the same direction too. We experimented
with many values for the controller BCRT RBd . We found two representative intervals,
that show different trends and behaviors and therefore selected for visualization the cases
in which RBd ∈ [0.15, 0.25] s and RBd ∈ [0.4, 0.5] s.
For each task, we choose Ne points uniformly spaced in the interval between the task
BCET and its WCET as possible execution times. In our tests, we selected Ne = 5, but
a higher number of points does not pose any scalability issue. The probabilities for each
possible execution time have been assigned with the following heuristic: the lowest half
(rounded up) of values have assigned a probability of that cumulatively sums up to 0.75,
while the remaining sums up to 1− 0.75 = 0.25. This choice is based on the assumption
that, realistically, the probabilities should be skewed towards the lower values.

For each period of interest Td, we evaluate the control design as follows. We use a
simulator, built in C++, to generate the sequences used for the scenario theory. We choose
ε = 0.003 and β = 0.01, obtaining a value for the number of simulations equal nsim = 1533.
A number nj = 500 of control jobs has been chosen as representative temporal horizon for
our system. After choosing a target period Td for the controller in the interval [0.5, 2] s,
the simulator generates a vector of jobs activated in the time interval njob Td. Each job is
characterized by its activation instant, priority, deadline, and an execution time (drawn from
the probability distribution described above). The simulator computes the response time
and the delay σk of each control job, by using the three deadline miss strategies – i.e., Kill,
Skip-Next, Queue(1). For each sequence of control jobs the simulator computes a cost Jseq,
weighting both the total number of deadline misses and the maximum number of consecutive
ones as shown in Equation (11).

The worst-case sequence is the input of our control design script, expressed as a vector of
delays. The Matlab control design script computes the hold interval using the rules presented
in Section 4.1, and selects the set of valid control jobs from the sequence. The average
probability of all combinations of delay and hold values are extracted from the sequence, and
used to build the DMAC controller, as shown in Section 5.2.

ECRTS 2019

1:18 DMAC: Deadline-Miss-Aware Control

0.5 1 1.5 2

2

4

6

8
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td – Kill

J
ct

l

DMAC Jmax Jmin Classic Control

0.5 1 1.5 2

NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td – Skip-Next
0.5 1 1.5 2

NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td – Queue(1)

Figure 7 Comparison of DMAC with different deadline miss handling strategies (average, maxi-
mum, and minimum performance) with classical control.

Finally, the performance of the controlled system, where the control update is driven by
the sequence of delays and holds from task schedule, is computed using JitterTime [14], a
simulation-based tool for analysis of control systems performance inspired by Jitterbug [34]
and TrueTime [15]. This new tool, built entirely in Matlab, is able to model transitions
between different states with variable and conditional probabilities (overcoming some of
the limitations of Jitterbug). JitterTime tests the various sequences of job schedules (with
randomly generated execution times), producing the average and worst-case performance of
the controller in terms of the cost function Jctl.

7.2 Results
We conduct some experiments to study how the control performance, defined in Equation (2),
changes when the control task period Td assumes different values in the interval of interest.
In the following, we show results obtained in different configurations. Specifically, for each
deadline miss strategy we vary: (i) the number NT of tasks in the taskset, (ii) the utilization
of Γ′, (iii) the control task best case response time RBd , and (iv) the dynamics of the physical
plant to be controlled.

Figure 7 shows that DMAC design outperforms the classical control design (remember
that Jctl is defined as a cost, thus the lower, the better). We use the same plant as described
in Section 5.3. From left to right, the figures show the cost function Jctl obtained with
the Kill, the Skip-Next, and the Queue(1) strategy when the period Td varies. Solid lines
represent the average performance of the DMAC controller (in the nsim simulations). Dash
dotted lines show the average performance of the classical control design method. When
the period decreases, DMAC consistently and increasingly outperforms the classical design,
obtaining a lower cost function. To ensure the robustness of the DMAC controller, we also
plot the maximum and minimum cost obtained during the nsim simulations (respectively
using dashed and dotted lines). The area between the maximum and the minimum cost
(which apparently includes the average value) is narrow, validating the robustness claim.

In Figure 8 we investigate the effect of varying the number of tasks NT and the best case
response time of the control task RBd . The number of tasks does not have a dramatic effect
on any of the controllers, but the performance of a controller with the Kill strategy seem to
benefit from an increase in the number of tasks. More generally, however, the Kill strategy is
dominated by both the Skip-Next and the Queue(1) performance, that allow the design to
reach shorter periods and to lower the cost function. The Kill strategy, that was achieving
very good performance when tested with a single control task, does not handle additional
load well. In fact, the failure of the Kill strategy is due to cascaded effects – killing subsequent

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:19

2

4

6

8
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

J
ct

l
Kill Skip-Next Queue(1)

NT = 10, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

NT = 20, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

0.5 1 1.5 2

2

4

6

8
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.40, 0.50] s
Integrator

Td

J
ct

l

0.5 1 1.5 2

NT = 10, UΓ′ = 0.7
RB

d ∈ [0.40, 0.50] s
Integrator

Td

0.5 1 1.5 2

NT = 20, UΓ′ = 0.7
RB

d ∈ [0.40, 0.50] s
Integrator

Td

Figure 8 Control cost function for the Integrator plant with different miss-handling strategies,
varying the number of tasks, and the best case response time.

0.5 1 1.5 2

5

10

15

20
NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
Integrator

Td

J
ct

l

Kill Skip-Next Queue(1)

0.5 1 1.5 2

NT = 5, UΓ′ = 0.8
RB

d ∈ [0.15, 0.25] s
Integrator

Td

0.5 1 1.5 2

NT = 5, UΓ′ = 0.7
RB

d ∈ [0.15, 0.25] s
First Order System

Td

Figure 9 Control cost function varying utilization and plant dynamics.

jobs due to interference introduces long delays for the control signal, while allowing the job to
terminate anyway (as the other two strategies do) leads to better performance. The Queue(1)
and Skip-Next strategies behave similarly for both low values of RBd and high number of
tasks. However, the Queue(1) shows some local performance drop in the cases of higher RBd .
This happens when the average delay is just before the threshold of 2Td, i.e. when high
delays but few skips occur. We then conclude that Skip-Next strategy is the most robust to
both variations in the number of tasks NT and in the best case response time RBd .

We conducted an extensive amount of tests, but due to space restrictions we can only
show a limited number of additional results. Figure 9 shows the effect of increasing the
utilization of Γ′ and of changing the plant dynamics. An increase in utilization does not
change the trends that can be observed (the Kill strategy being outperformed). However,
changing the dynamics of the plant from a (marginally stable) Integrator to an (unstable)
First-Order system has a dramatic effect on the cost function. The Queue(1) strategy behaves
similarly (although better) with respect to the Kill strategy, not being able to handle short
periods. The Skip-Next strategy, on the contrary, shows robust performance with respect
to period shortening. The qualitative dependence on the plant dynamics will be explored
further in future research.

ECRTS 2019

1:20 DMAC: Deadline-Miss-Aware Control

8 Related Work

When designing a discrete time controller, it is fundamental to study if timing non-idealities
may occur and how much they could harm the performance of the controlled system. The
problem of analyzing the effects of late information on the system performance [31] has
raised particular interest, especially in networked systems. In fact, transmission delays and
packet drops may happen frequently when the transmission channels are heavily loaded or
noisy. These timing effects are usually characterized as independent events with Gaussian
distributions, or using worst case bounds [6]. By leveraging the knowledge of the timing
non-idealities, many works proposed solutions for assuring the stability of the system [10, 35]
and improving the control performance [44]. Sinopoli et al. [45] proposed an optimal control
design for networked system leveraging the probability of packet losses. Similarly, the problem
of designing an optimal control considering packet drops from the sensor is faced in [26]
and [50]. In [46], the authors design an adaptive control that switches between normal, abort
and skip mode depending on the delay (but which is always lower than than the period).

When dealing with controllers implemented in real-time systems, however, a different and
more complex analysis is needed. Here, the input-output delay experienced by the control flow
comes from the interference of higher priority tasks due to limited computational resources,
that may even cause some job to miss their deadlines. Unforeseen delays may be caused,
for example, by overload activations [27, 54], cache misses [22, 3] or complex interactions
between scheduling and system state [9]. In recent works, systems that experience deadline
misses are described using the so called weakly-hard model [7]. In this model, the possibility
of missing a deadline is upper-bounded by a constraint (m,K), which gives the maximum
number of deadlines m that may happen every K activation of a task. This model has proved
being suitable for studying the effects of missed deadlines on the performance of control
tasks and scheduling [42, 24]. A detailed modeling of the control performance considering
different deadline miss handling strategies is presented in [41]. The effects of missed deadlines
on system performance have been studied also using co-simulation [40]. Other works faced
the co-design problem in overloaded systems by using complex mechanisms that take into
account system stability and processor load [25, 56, 19].

In this paper, we study the effects of missed deadlines on the control performance by
describing miss and hit events in a probabilistic fashion. The urge to bound WCET estimation
and ensure timing correctness of systems led to the development of many probabilistic
modeling techniques with remarkable success when applied to real systems [12, 52, 21, 30].

In our paper we assume that the execution times of each job are assumed as indepen-
dent [36, 2], but we overcome the limitation of classical approach, not requiring that response
times are modeled as independent variables. Exact methods for computing probabilistic
response times of jobs exist [23], but their major downside is that they do not scale well and
are applicable only to limited task sets and short hyperperiods. Other approaches face the
problem by extracting probabilistic bounds with various approximation techniques [17, 51, 18].
The particular case of extracting joint probabilities of successive jobs is however less studied,
and has been found e.g. in [49]. Again the work in [17] develops a bound for l-consecutive
deadline misses, but it is still insufficient for our purposes. The path chosen for our work
leverages the scenario theory approach [11] for performing a robust estimate of the hit and
miss probabilities, by simulating multiple possible schedules.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:21

9 Conclusion

This paper presented DMAC, a novel control design technique for building a fixed Deadline-
Miss-Aware Controller. It also contributes with a methodology to evaluate control design
strategies in the presence of deadline misses and possible overruns. Our controller leverages the
probability of possible sequences of missed deadlines to compensate for the introduced delays.
Our experimental results show that our design obtains better performance, while (safely)
exploring period ranges that are usually avoided in state-of-the-art approaches. Moreover,
we discussed how the control performance changes with respect to different deadline miss
strategies and different taskset parameters. This paper highlights how, choosing the deadline
miss handling strategy is one of the most critical parameters in the control design.

References
1 Leonie Ahrendts, Sophie Quinton, and Rolf Ernst. Finite ready queues as a mean for overload

reduction in weakly-hard real-time systems. In Proceedings of the 25th International Conference
on Real-Time Networks and Systems, pages 88–97. ACM, 2017.

2 Sebastian Altmeyer, Liliana Cucu-Grosjean, and Robert I Davis. Static probabilistic timing
analysis for real-time systems using random replacement caches. Real-Time Systems, 51(1):77–
123, 2015.

3 Sebastian Altmeyer and Robert I Davis. On the correctness, optimality and precision of static
probabilistic timing analysis. In Proceedings of the conference on Design, Automation & Test
in Europe, page 26. European Design and Automation Association, 2014.

4 Amir Aminifar, Soheil Samii, Petru Eles, Zebo Peng, and Anton Cervin. Designing high-quality
embedded control systems with guaranteed stability. In 2012 IEEE 33rd Real-Time Systems
Symposium, pages 283–292. IEEE, 2012.

5 Karl J Åström and Björn Wittenmark. Computer-controlled systems: theory and design.
Courier Corporation, 2013.

6 Philip Axer, Maurice Sebastian, and Rolf Ernst. Probabilistic response time bound for CAN
messages with arbitrary deadlines. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2012, pages 1114–1117. IEEE, 2012.

7 Guillem Bernat, Alan Burns, and Albert Liamosi. Weakly hard real-time systems. IEEE
transactions on Computers, 50(4):308–321, 2001.

8 Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

9 Alessandro Biondi, Marco Di Natale, Giorgio C Buttazzo, and Paolo Pazzaglia. Selecting the
transition speeds of engine control tasks to optimize the performance. ACM Transactions on
Cyber-Physical Systems, 2(1):1, 2018.

10 Rainer Blind and Frank Allgöwer. Towards networked control systems with guaranteed
stability: Using weakly hard real-time constraints to model the loss process. In Decision and
Control (CDC), 2015 IEEE 54th Annual Conference on, pages 7510–7515. IEEE, 2015.

11 Giuseppe C Calafiore and Marco C Campi. The scenario approach to robust control design.
IEEE Transactions on Automatic Control, 51(5):742–753, 2006.

12 Francisco J Cazorla, Eduardo Quiñones, Tullio Vardanega, Liliana Cucu, Benoit Triquet,
Guillem Bernat, Emery Berger, Jaume Abella, Franck Wartel, Michael Houston, et al. Proartis:
Probabilistically analyzable real-time systems. ACM Transactions on Embedded Computing
Systems (TECS), 12(2s):94, 2013.

13 Anton Cervin. Analysis of overrun strategies in periodic control tasks. In Proc. 16th IFAC
World Congress, Prague, Czech Republic, page 137. Citeseer, 2005.

14 Anton Cervin. JitterTime 1.0 reference manual. Technical report, Department of Automatic
Control, Lund University, 2019. Technical Report TFRT-7658.

ECRTS 2019

1:22 DMAC: Deadline-Miss-Aware Control

15 Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and K-E Arzen. How does control
timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime.
IEEE control systems, 23(3):16–30, 2003.

16 Anton Cervin, Bo Lincoln, Johan Eker, Karl-Erik Arzén, and Giorgio Buttazzo. The jitter
margin and its application in the design of real-time control systems. In Proceedings of the 10th
International Conference on Real-Time and Embedded Computing Systems and Applications,
pages 1–9. Gothenburg, Sweden, 2004.

17 Kuan-Hsun Chen and Jian-Jia Chen. Probabilistic schedulability tests for uniprocessor fixed-
priority scheduling under soft errors. In Industrial Embedded Systems (SIES), 2017 12th IEEE
International Symposium on, pages 1–8. IEEE, 2017.

18 Kuan-Hsun Chen, Georg Von Der Brüggen, and Jian-Jia Chen. Analysis of deadline miss
rates for uniprocessor fixed-priority scheduling. In 2018 IEEE 24th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 168–178.
IEEE, 2018.

19 Hoon Sung Chwa, Kang G Shin, and Jinkyu Lee. Closing the gap between stability and
schedulability: a new task model for Cyber-Physical Systems. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 327–337. IEEE, 2018.

20 G. Darivianakis, A. Eichler, R. S. Smith, and J. Lygeros. A Data-Driven Stochastic Optimiza-
tion Approach to the Seasonal Storage Energy Management. IEEE Control Systems Letters,
1(2):394–399, 2017.

21 Robert Davis, Tullio Vardanega, Franck Wartel, Liliana Cucu-Grosjean, et al. PROXIMA: a
probabilistic approach to the timing behaviour of mixed-criticality systems. Ada User Journal,
2:118–122, 2014.

22 Robert I Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and Liliana Cucu-Grosjean.
Analysis of probabilistic cache related pre-emption delays. In Real-Time Systems (ECRTS),
2013 25th Euromicro Conference on, pages 168–179. IEEE, 2013.

23 José Luis Díaz, Daniel F García, Kanghee Kim, Chang-Gun Lee, L Lo Bello, José María López,
Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of periodic real-time systems. In
Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE, pages 289–300. IEEE, 2002.

24 Goran Frehse, Arne Hamann, Sophie Quinton, and Matthias Woehrle. Formal Analysis of
Timing Effects on Closed-Loop Properties of Control Software. In RTSS, pages 53–62, 2014.

25 Mongi Ben Gaid, Daniel Simon, and Olivier Sename. A design methodology for weakly-hard
real-time control. IFAC Proceedings Volumes, 41(2):10258–10264, 2008.

26 Vijay Gupta, Babak Hassibi, and Richard M Murray. Optimal LQG control across packet-
dropping links. Systems & Control Letters, 56(6):439–446, 2007.

27 Zain AH Hammadeh, Sophie Quinton, and Rolf Ernst. Extending typical worst-case analysis
using response-time dependencies to bound deadline misses. In Embedded Software (EMSOFT),
2014 International Conference on, pages 1–10. IEEE, 2014.

28 Thomas A Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A time-
triggered language for embedded programming. In International Workshop on Embedded
Software, pages 166–184. Springer, 2001.

29 Byung Kook Kim. Task scheduling with feedback latency for real-time control systems.
In Real-Time Computing Systems and Applications, 1998. Proceedings. Fifth International
Conference on, pages 37–41. IEEE, 1998.

30 Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J Cazorla. A cache
design for probabilistically analysable real-time systems. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 513–518. EDA Consortium, 2013.

31 Antzela Kosta, Nikolaos Pappas, Anthony Ephremides, and Vangelis Angelakis. Age and value
of information: Non-linear age case. In Information Theory (ISIT), 2017 IEEE International
Symposium on, pages 326–330. IEEE, 2017.

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin 1:23

32 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

33 John P Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In
Real-Time Systems Symposium, 1990. Proceedings., 11th, pages 201–209. IEEE, 1990.

34 Bo Lincoln and Anton Cervin. Jitterbug: A tool for analysis of real-time control performance.
In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., volume 2, pages
1319–1324. IEEE, 2002.

35 Steffen Linsenmayer and Frank Allgower. Stabilization of networked control systems with
weakly hard real-time dropout description. In Decision and Control (CDC), 2017 IEEE 56th
Annual Conference on, pages 4765–4770. IEEE, 2017.

36 Rui Liu, Alex F Mills, and James H Anderson. Independence thresholds: Balancing tractability
and practicality in soft real-time stochastic analysis. In Real-Time Systems Symposium (RTSS),
2014 IEEE, pages 314–323. IEEE, 2014.

37 Bruce L. Miller and Harvey M. Wagner. Chance Constrained Programming with Joint
Constraints. Oper. Res., 13(6), 1965.

38 Johan Nilsson, Bo Bernhardsson, and Bjorn Wittenmark. Stochastic analysis and control of
real-time systems with random time delays. Automatica, 34(1), 1998.

39 Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The ROSACE
case study: From Simulink specification to multi/many-core execution. In 20th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 309–318, 2014.

40 Paolo Pazzaglia, Marco Di Natale, Giorgio Buttazzo, and Matteo Secchiari. A framework
for the co-simulation of engine controls and task scheduling. In International Conference on
Software Engineering and Formal Methods, pages 438–452. Springer, 2017.

41 Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses. In 30th Euromicro
Conference on Real-Time Systems (ECRTS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

42 Parameswaran Ramanathan. Overload management in real-time control applications using
(m, k)-firm guarantee. IEEE Transactions on Parallel and Distributed Systems, 10(6):549–559,
1999.

43 Ola Redell and Martin Sanfridson. Exact best-case response time analysis of fixed priority
scheduled tasks. In Real-Time Systems, 2002. Proceedings. 14th Euromicro Conference on,
pages 165–172. IEEE, 2002.

44 Luca Schenato, Bruno Sinopoli, Massimo Franceschetti, Kameshwar Poolla, and S Shankar
Sastry. Foundations of control and estimation over lossy networks. Proceedings of the IEEE,
95(1):163–187, 2007.

45 Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, and Shankar
Sastry. An LQG optimal linear controller for control systems with packet losses. In Decision and
Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference
on, pages 458–463. IEEE, 2005.

46 Damoon Soudbakhsh, Linh Thi Xuan Phan, Anuradha M Annaswamy, and Oleg Sokolsky.
Co-design of arbitrated network control systems with overrun strategies. IEEE Transactions
on Control of Network Systems, 5(1):128–141, 2018.

47 Youcheng Sun and Marco Di Natale. Weakly Hard Schedulability Analysis for Fixed Priority
Scheduling of Periodic Real-Time Tasks. ACM Transactions on Embedded Computing Systems
(TECS), 16(5s):171, 2017.

48 Zhendong Sun. Switched linear systems: control and design. Springer Science & Business
Media, 2006.

49 Bogdan Tanasa, Unmesh D Bordoloi, Petru Eles, and Zebo Peng. Probabilistic response time
and joint analysis of periodic tasks. In Real-Time Systems (ECRTS), 2015 27th Euromicro
Conference on, pages 235–246. IEEE, 2015.

ECRTS 2019

1:24 DMAC: Deadline-Miss-Aware Control

50 Eelco P van Horssen, AR Baghban Behrouzian, Dip Goswami, Duarte Antunes, Twan Basten,
and WPMH Heemels. Performance analysis and controller improvement for linear systems
with (m, k)-firm data losses. In 2016 European Control Conference (ECC), pages 2571–2577.
IEEE, 2016.

51 Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katharina
Morik. Efficiently Approximating the Probability of Deadline Misses in Real-Time Systems.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 106 of ECRTS. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

52 Franck Wartel, Leonidas Kosmidis, Code Lo, Benoit Triquet, Eduardo Quinones, Jaume Abella,
Adriana Gogonel, Andrea Baldovin, Enrico Mezzetti, Liliana Cucu, et al. Measurement-based
probabilistic timing analysis: Lessons from an integrated-modular avionics case study. In
Industrial Embedded Systems (SIES), 2013 8th IEEE International Symposium on, pages
241–248. IEEE, 2013.

53 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, et al.
The worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):36, 2008.

54 Wenbo Xu, Zain AH Hammadeh, Alexander Kroller, Rolf Ernst, and Sophie Quinton. Improved
deadline miss models for real-time systems using typical worst-case analysis. In 2015 27th
Euromicro Conference on Real-Time Systems (ECRTS), pages 247–256. IEEE, 2015.

55 Yang Xu, Karl-Erik Årzén, Anton Cervin, Enrico Bini, and Bogdan Tanasa. Exploiting job
response-time information in the co-design of real-time control systems. In Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2015 IEEE 21st International
Conference on, pages 247–256. IEEE, 2015.

56 Tatsuya Yoshimoto and Toshimitsu Ushio. Optimal arbitration of control tasks by job skipping
in cyber-physical systems. In Proceedings of the 2011 IEEE/ACM Second International
Conference on Cyber-Physical Systems, pages 55–64. IEEE Computer Society, 2011.

	Introduction
	Methodology
	Overview and Terminology

	System Model and Problem Definition
	Taskset Model
	Plant and Controller Model
	Handling Deadline Misses

	Controller Behavior with Deadline Misses
	Defining Delay and Hold
	Computing Delay and Hold
	Hold Interval with Kill Strategy
	Hold Interval with Skip-Next Strategy
	Hold Interval with Queue(1) Strategy

	Synthesis of Deadline-Miss-Aware Controllers
	Clairvoyant Controller Synthesis
	Robust Controller Synthesis
	Controller Synthesis Example

	Stochastic Analysis
	Scenario Theory
	Formal Guarantees
	Application and Threats to Validity

	Experimental Evaluation
	Setup
	Results

	Related Work
	Conclusion

