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On the small crack fracture mechanics 

P. S T A H L E  

Division of Solid Mechanics, Lund Institute of Technology, Lund, Sweden 

(Recdved July 6, 1981; in revised form June 12, 1982) 

A B S T R A C T  
The limit of validity of linear fracture mechanics is specified by the minimum allowable crack length through an 
ASTM convention. Extension into the non-linear region ought to imply an extension towards smaller allowable 
Cracks. In order to elucidate the question "How short is the smallest crack that fits the methods of fracture 
mechanics, and how do shorter cracks than that behave?" a pilot investigation is carried out. The process region is 
modelled as a Barenblatt line region and plastic flow off-side the process region is neglected. Results show that 
instability occurs before the process region is fully developed (as at large cracks) if the crack is short. This implies 
large deviations from the large crack fracture mechanics if the crack is very small. Even cracks of infinitesimal 
length are included in the study. 

1. Introduction 

The validity of the linear fracture mechanics was clearly specified quite early by the ASTM 
convention [1] 

a >~ 2.5(Klc/ay) z 

where a is a significant crack length parameter, Kic the fracture toughness and ay the yield 
stress. The role of linear fracture mechanics is, however, very limited in engineering practice. 
Very often cracks much smaller than those for which linear fracture mechanics is applicable 
are detected. However, there does not seem to be a reliable condition for the validity of non- 
linear fracture mechanics, for instance of the variety that uses J-integral methods. The 
present work is intended as a study of small cracks, extended towards vanishing crack 
lengths. It is a pilot study, only, because the total dissipative region is assumed to consist of a 
Barenblatt type process region [2]. This implies, among other things, that no stable crack 
growth takes place (even though the edge of the process region moves stably under con- 
trolled conditions). However, it is believed that the investigation may help to shed some 
light on the specific phenomena appearing in connection with very small cracks. 

2. The model 

A homogeneous elastic body containing a mode I crack with the length 2a0 and decohesive 
process regions with the length ( a -  a0), each, is considered (see Fig. 1). A stress a~ is 
remotely applied under conditions of plane stress or strain. The fracture process takes place 
at the decohesive regions where the stress is decreasing at increasing displacement. These 
regions are supposed to grow symmetrically in the crack plane y = 0. 

A simple model of the relationship between bonding force per unit area and dis- 
continuous displacement, ayr vs. v, describes the mechanical properties of the process region 
(Fig. 2), and introduces a length quantity, that may serve as a scaling factor. 
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Figure 1. An infinite body with a crack, under plane stress or strain. 

For a crack of length 2ao, the total length of the discontinuous zone, i.e. crack plus 
process regions, 2a, is asked for. The solution is governed by the remotely applied stress a~, 
and the material is described by the modulus of elasticity E, Poisson's ratio v and a yield 
strength large enough in comparison with the maximum stress in the process region, ao, that 
plastic flow does not occur off-side the process region. During the process of loading, the 
length of the process region increases, giving larger and larger displacements at the crack tip 
until the limit displacement v* is reached. The process region is then said to be fully 
developed since after this the tip of the region can only advance if the crack grows under the 
constraint ary(v > v*) = 0. 

3. Analysis 

The model corresponds to the following problem in the theory of elasticity: A linearly elastic 
semi-infinite body, occupying the upper half plane y > 0, is subject to the remote stress troo 
and the following boundary conditions on y = 0; 

~Xy ~ 0 

ayy = 0 for Ixl < ao, 

ary = art(v) for ao < Ixl < a, 

and v = 0 for a < Ixl. 
(1) 

ayy 

~o 

V ~ 

Figure 2. Decohesion stresses v s .  discontinous displacements at the process region. The stresses can be zero at 

parts where v < v*, if these formed the original slit from which the process region develops. 
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The Muskhelishvili [3] complex potentials 4(z) and ~(z) are used, where z = x + iy. By 

defining 4(z) as ~5(z) + z~'(z)  + ~(z) in y < 0, one may  eliminate ~k(z) and obtain 

ax~ + art = 214(z) + ~(~)] (2) 

a , ,  -- izx, = 4(z) + 4(5) + (z -- z-)ff'(z-) (3) 

and 
2#(p' + iv') = x4(z) - 4(~) -- (z -- ~)~'(~) (4) 

where 

~(3 - v)/(1 + v) in plane stress 
p = E/[2(1 + v)] and x = ( 3  - 4v in plane strain. 

Wi thou t  loss of  generality the plane strain case is chosen for inspection. Solutions for plane 
stress are obtained by replacing v with v/(1 + v) and E with E(1 + 2v)/(1 + v) 2. 

Along the x-axis (3) and (4) will give, due to the symmetry  of  zxy and u with respect to 

the line y = 0, 

and 

ffyy = 4 +  -Jr- 4 -  

e(1 - v  2) 
~v/~x  - iE ( 4 +  - 4 _ )  

where 

4_+ (x) = lim 4 ( x  +__ iy) y > O. 
y~O 

Thus the boundary  conditions can be written on the form 

4+ (t) + G(t)4_ (t) = f ( t )  

where 

and 

1 for I t l < a  
G(t) = - 1  for a < Itl 

f ( t ) =  { ; y r ( t  ) for ao < ltl < a 
for Itl < ao and a < It[. 

(5) 

The solution (c.f. Muskhelishvili [3]) is 

4(z)  = (i/rc)z(z 2 - a2) - 1/2 o. (t)(t 2 _ aZ)l/2(z 2 _ tz) - 1 dt  + (z 2 - a2) - 1/2p(z) (6) 
o 

where p(z) can, on account  of  the symmetry  and by letting z --* oe be identified with cruz/2. 
The assumpt ion that the stresses should remain bounded  everywhere and especially at z = 
_+ a implies 

) fa'o ~" 
~r~ o = (2/~ (t)(a 2 _ t2) - 1/2 dr. (7) 
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Letting y ~ 0, (5), (6) and (7) give 

fo 
Ov/Ox - 4(1 --  v 2) x(a2 _ x2 )_ 1/2 6~r(t)E(a 2 _ t2)l/E(x 2 _ t2) - i  _ 

~ E  d ao 

_ ( a  z _ r E ) -  i / z ]  dt.  (8) 

It is easily checked that  the boundedness  of the stresses at the process region implies that  it 
closes smoothly,  that  is v oc (a 2 - x2) a/2 close to the tips of the process regions. After 

integration (8) reads 

v(x) - 2(1 - v 2) 6rr(t){ln[(a2 _ x2)i/2 + (a a _ t2)i/2 ] _ 
nE o ,o 

- lnl(a e -- xa) i/e - (a e - te)i/a I - 2[(a z -- x2) / (a  e --  tz)] 1/2} dt. (9) 

In the model  it was assumed that  ayy is a given function of  v. Knowledge of this function 

enables calculation of relations between 6ry and x for the process region. Conversely, given a 

distribution with respect to x,  the resulting 6y r vs. v relationship can be calculated. Here, two 

choices for the o-rr distribution at the process region are evaluated, one for a linear 6y r vs. x 

relationship: 

m ° d e l  A: 6yr 6 D (  1 x - a ) = Vo/V* (10) 
a 0 - a 

where Vo is the displacement at the crack tip, and one for a linear 6rr vs. v relationship: 

model  B: art = 60(1 - v(x)/v*). (11) 

Model  B certainly describes reality better than model  A. A certain o'rr vs. x relationship gives 
rise to different 6rr vs. v relationships, depending upon  which instant of the process region 

growth  is selected for inspection. The reason why model  A nevertheless is used depends 
upon  its suitability for analytical treatment. Compar i son  between the two models will later 

be made. 

M o d e l  A:  ayr = o-rr(x, Vo) 

V o = v ( x =  a o)  

l 

- -  1 i 

Clo Cl 
~- -  X 

~ y y  

Figure 3. Displacement and stress distribution at the process region. The stresses are connected with the displace- 
ments through the relationship cryr(ao) = ~rD(1 - Vo/V*). 
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The idea of  model  A is to fix two points of  the resulting ¢rrr vs. v relationship namely o-ry = a o 

at x = a where the displacement is approaching  zero and at the crack tip x = ao where the 

stress is supposed to assume the value go(1 - Vo/V*) where Vo is the displacement at this 
point  (see Fig. 3). The integration of (9) and (7) is straight forward but cumbersome.  The 

result is 

v (x )=  2(1--v2)a° ( [  a .Vo/V,l l ((aZ--a~'~'/2"~ ~/~ 1 • a o c o t h -  x _ 

a - a o  ) 

I. 2--X2 
1 ao 

+ - - ' ( V o / V * )  
a - a o 2 

+(a--x2) ' /2(a - ao)1/2]} 

aoo = (2/re)°-° { [  1 a -- a ao (v°/v*)] c°s- l (a° /a)+ 

+ (Vo/V*)[(a + ao)/(a -- ao)]l/z~. 
) 

_cot,.((...,T) x 2 + 

(12) 

(13) 

No te  tha t  c o t h -  1 x = (1/2) ln[(x + 1)/(x - 1)]. The length of the process region (a - ao) is 

determined by the remote stress ao~. Here solutions are produced using a and a o as para-  
meters in calculating aoo. To  do this (12) is used to determine the crack tip displacement 

Vo/V* = lim v (x ) / v*  = 2 f l l n f l / [ 1  + fl + 2 f l l n f l / ( 1  - [3) - ~] 
x ---~ a o 

(14) 

where two dimensionless quantities, fl = ao/a and ~ = •Ev*/[2(1 - v2)aoa] are introduced. 

Thus  a situation where the tip of  the process region is advancing while the crack tip remains 

constant  prevail when Vo < v*. After the limit v 0 = v* is reached a and a o are no longer 

independent  but  ao must  be chosen to fulfil the condit ion v o = v*, that  is, when a is 

increasing, a o must  increase too, to prevent v o from getting larger than v*. In  this case a o is 
found by put t ing Vo/V* = 1 in (14), which leads to the expression 

xEv* 
a° - 2(1 - vE)aD fl(1 - fl)/(1 - 132 + 2fl21nfl). (15) 

Model B: art = ¢ryr(v ) 

°yy ~yy 

~O (1 - V(Xi+ 1 ) / V * )  
% (1 - V(Xi) /V*)  

J 

% 

I I 
_A I 

i X 
, ;/, 
CtoX i xi÷ 1 a v(xi÷ v(xi) 

I 

. J  • . . . .  

V *  

.~--V 

Figure 4. One of the N parts from which a complete process region is constructed. Stresses are linearly distributed 
with respect to x in each part but the magnitudes are chosen to give a linear ¢ryy vs. v relationship. 
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For  the second choice, model B, a numerical solution is obtained using (12). The interval 
between ao and a is divided into N parts of equal length in which the stresses are supposed 
to vary linearly with with respect to x. To begin with, a solution for a "process region" 
extending from a~ to ai+ 1 (see Fig. 4) is constructed. Putting 

[ a, 
art(x) -= aD 1 ai+l (v(ai)/v*) + (v(a~+O/v*) + 

ai + 1 - -  a i  ai + 1 --  ai 

1 )1 + "(v(al)/v*) (v(ai+ 1)Iv*) x 
a , +  , - a ,  a , +  l - a ,  

for a~ < x ~< ai+ 1, the displacements caused by this stress distribution can be calculated 

v(x) = a(x)" v(a3 + B(x)'v(ai+O + C(x) 

where A, B and C are determined by calculating the integral in (9) after change of the 
interval al to ai+ 1. Superposing such stress distributions to form a complete process region v 
becomes a function of x and a linear function of v(ai) where i = 1, 2, 3 . . . .  N - 1. 

N - - 1  

v(x) = O(x) + ~ E(x) ' v (a i )  (16) 
i = O  

A system of N equations is obtained by letting x assume the values ao, a l . . .  a n -  1. This can 
be written on a simpler form 

V = D + E . V  

where V = (v(ao), v ( a O . . ,  v(aN_ 1)) r and D and E are N × N matrixes. Now the displacements 
V are found to be 

V = (I - E)-~D 

where I is the unit matrix. From these, the displacements throughout the process region are 
found using (16). 

4. Result 

With the models studied formation of process regions occurs at infinitesimally small load. 
With increasing load the process regions grow into the elastic material, replacing the linear 
elastic continuum with a linear ary vs. x relationship (Fig. 5a) or a linear o-yr vs. v relationship 
(Fig. 5b). In both cases the relation ary = ao(1 - Vo/V* ) is fulfilled at the crack tip. The 
consequence is that the stress discontinuity here, must drop as the process region penetrates 
into fresh material, since the crack tip displacement, as is seen from the analysis, is increasing 
monotonically. For a certain length of the process region the stress discontinuity vanishes, 
i.e. when v = v* at x = ao. From here on, the crack expands with the subsidary condition 
that ay r must be zero behind the point where v = v*. These situations, when the process 
region is fully developed are separately treated below and specify a well defined group of 
solutions where a~  and ao are uniquely determined for every choice of %r vs. v relationship. 

During the formation of the process region, a remotely applied stress equilibrates the 
stresses o'yy in the crack plane, y = 0. This remote stress is plotted vs. length of the dis- 
continuous zone in Figs. 6a and 6b. Starting at (A) with a slit of length. 4hEy*l[ (1  --  v2)ao], 

the process region expands under an increasing remote stress to (B). When the region 
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d= .I~ 

- 12 0 - - X  

ayy/cr o 

t d= .lA 

- - - X  

fl 

d = .  7 A  d = . 7 ~  

t2 >t I 

d =.98A~ ~ d:.87~ t3>t2 

a) b) 

Figure 5. Development of the stresses at a process region, originating from a slit, upon loading. (a) corresponds to 
model A and (b) to model B. d = a - ao is the length of the process region and 2 = n E v * / ( 2 ( 1  - v2 )ao)  is a length 
parameter. 

expands further the remote stress decreases and finally the fully developed state of the 
process region is achieved at (C). While the state of the discontinuity has extended from a slit 
(A) to a crack with a fully developed process region at (C), the crack length, i.e. the length of 
the traction free surface, has remained constant. It is also observed from Fig. 6, that the 
crack cannot be held stably at equilibrium, under fixed load conditions, beyond the point 
(B). Nevertheless physical states past maximum load, where the discontinuous zone is 
enlarged under a decreasing remote stress, may be of practical interest considering the finite 
stiffness of engineering structures, under so called fixed grip conditions. 

In the case of large slits, maximum load occurs immediately before the process region is 
fully developed (see Fig. 6 and appendix). So, no matter the length of the crack, no stable 
crack growth is found, only a stable growth of the process region, since instability always 
occurs before the process region is fully developed, i.e. before crack growth. 

Analysing the load response of a body with an infinitesimally small crack, it is found 
that a process region with a constant cohesive stress is developed but when the zone length 
reaches a size of about rcEv*/[2(1 - V2)0D], it collapses and a crack is formed. 

Fully developed process region. To analyse the growing crack one must find a pair a and ao 
such that v = v* at x = a o. The procedure for model A is shortly, to find, for a fixed quotient 
fl = ao/a, the length of the crack, ao, from (15). The analysis is uncomplicated and it is easily 
seen that all solutions are covered. The function f(fl) = fl(1 - fl)/(1 - f12 + 2fl21nfl) (c.f. 
Eqn. (15)) is single-valued in the interval 0 < fl < 1 and by inspection one finds that fl ~ 1 
implies ao ~ oo and fl --* 0 implies ao ~ 0. The region lengths are shown in Fig. 7. The length 
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°~ / e °  .ao=O 
1. ____ z2__. 

"..~.~ ao =. O I A 

.8 ~ i f a o = . l A  

.6 "~.C 
, , o o :  

.2 ('ao= 1~ 

0 i 
ao=. gA, 1. 2, 

(2" 

3. 

A - l eng th  o f  de fec t ,  a o = . ~  

B -  po in t  o f  ins tab i l i t y ,  ao_-.43t 

C - fu l ly  developed process-r ,  ao= 4A, 
D . . . . . . . . . . . . .  ao>.  g2t 

...... Stable e q u i l i b r i u m  

. . . . .  Unstable . . . .  

2( 1- 22_)=0 ] 
~rfv * ] 

b) 

~/~o 
I. 

.8 

.g 

. 2  

0 

¢~ao= 0 

-,jr. oo 
I I ]  ~ a  o = .  1.~ 

( v 
/%,,  

% - - I R  i 

1. 2. 

a - [ e ( t  L v2___)%] 

3. h e y *  J 

Figure 6. G~ vs. total defect length 2a. (a) model A and (b) model B. The path A-B-C-D in (a) describes the stable 
(A-B) and unstable (B-C-D) equilibrium of a crack developed from a slit of the length 2a o = .82. 2 = hey*~(2(1 
- v 2 ) ~ o ) .  

of the region is 

a - ao = 9rcEv*/[2(1 - -  V2)0"D] 
{1; when ao --+ 0 

where g = f(fl)(1 - fl)/fl --* when ao --* oo 

for model A. The numerical calculations of model B give 

.87 when a o--.0 #--, 

.46 when a o--, oo. 

Figure 8a and 8b illustrate the stress distribution at the process region for cracks of different 
lengths and their corresponding ay r vs. v relationships. The area under the graph art = ayr(v) 
represents the amount of energy consumed in the fracture process, per produced unit surface 
area. According to the Griffith concept [4] this energy equals the elastic energy released at 
unit length crack growth and unit length thickness of the body, for a crack at equilibrium. 
Knowing the energy of the elastostatic field in the case of a point shaped process region, that 
is, when the crack length, 2a o, is large compared with the length of the process region, the 
appropriate remote stress is 

[ 2E~ l t /2"  

ao~= n a o ( l _ v 2 )  
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Figure 7. Length of the process region us. crack length at the onset of instability and for the fully developed process 
region (dotted lines). The asymptotic values of a - a, at infinitly large cracks are .5 and .46 times nEv*/(2(1 
- v2)o,) for model A and B respectively. 

Figure 8. Cohesive stress cr, us. distance a - x from the crack tip and us. discontinuous displacement in the process 
region. The figure displays the solution for a crack length .21 and the asymptotic solutions for an infinitly large 
crack and for a crack of zero length. 
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Here, using a line shaped process region, the asymptotic state of a large crack is examined. 
The remote stress in the case of an infinitely large crack is shown for model A (see appendix) 
and for different number of intervals, for model B. All results can be written on the form 

a~o = h Effov* 
nao(1 -- v 2) 

where h is a numerical factor, the value of which is given in the following table: 

model A B (N = 2) B (N = 5) B (N = 10) 

h (8/9) 1/2 = .9428 0.9871 0.9983 0.9997 

As expected, the results show that the critical energy release rate is 27 = 2 ary dv in both 

model A and B. In model B this implies 27 = aDv* (since h ~ 1 as N ~ m) and in model 
A: 27 = (8/9)crov*. The appropriate o-ry vs. v relationship for model A is shown by the curve 

ao ~ oo in Fig. 8a. 
Figure 9 shows the remote stress for small cracks when the process region is fully 

developed.  However, this state is never reached under the condition of static equilibrium, 
since the maximum remote stress has occurred earlier. Thus, for instance, (13) gives 

a ~ o ~ a o [ 1 - ( 1 - 2 / z C ) V o / V * ]  as a o ~ 0  

while the stress has dropped to (2/rc)crD when the process region is fully developed. Thus 
instability occurs when the remote stress reaches the value ~o- 

Instability.  When very large bodies or load control are concerned, maximum remote stress is 
the significant fracture stress. At this stress the stable behaviour is replaced by unstable 
growth of the process region (i.e. increase of a) followed after some delay by unstable 
crackgrowth (i.e. increase of ao). 

Figure 7 shows the length of the process region at onset of instability. For  model A the 
equation da~/d f l  = 0 has been used. This is equal to d~r~/da = 0 since the crack length ao is 

~o/% 

.2 A 

I I ao.12(l-v2)%|~ " o 
/ J 0 1. 2. 3. ~ E v  * 

Figure 9. Remotely applied stress a~o vs. crack length 2ao, when the process re ,on is fully developed. Note that this 
stress is not necessarily equal to the maximum remote stress. 

1. 

.8 

2 
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constant at onset of instability and fl = ao/a. Together with (13) and (14) this gives the value 
of fl and thus the length of the process region. Note that dct/dfl = s/ft. It is observed (see Fig. 
7) that the length of the process region approaches zero for small cracks. In fact it can be 
shown that a -- ao ,~ a ,-~ [ln(const./ao] - 1/2 as ao ~ 0. 

Models A and B differ only slightly as regards prediction of the critical remote stress 
tr®c at onset of instability as a function of the crack length. Thus assuming the two models to 
give the same prediction for very large cracks the maximum deviation, which occurs for 
vanishingly small crack length, is only a few per cent, see Fig. 10. The figure also show the 
relative difference in predictions by conventional large crack fracture mechanics and model 
B. Also here the two predictions are assumed to coincide for very large cracks. The 
prediction 

tT~o c = K]c(irao) 1/2 

by conventional fracture mechanics gives the relation between o%c and the non-dimensional 
crack length in Fig. 10 after recognizing that 

Kit = [2yE/(1 - v 2] 1/2 = [aov*E/(1 -- v2] 1/2. 

The ASTM convention of linear fracture mechanics can be written 

ao[2(1 - v2)cro/TzEl~ *] >1 5/7z. 

As can be seen from Fig. 10 this implies less than about 5% difference in the prediction of 
o'ooc between conventional large crack fracture mechanics and model B. An attempt to 
extend the validity of conventional large crack fracture mechanics to smaller crack lengths 
would result in increasing differences with decreasing crack length. Thus the remote stress 
try' c predicted would be about 50 per cent higher if conventional large crack fracture 

mechanics were used instead of model B (or model A) for a crack length that is about one 
tenth of the minimum length allowed by the ASTM convention. 

100 • 

a~c - (cr~c)B 
( ~ooc J B 

50*/, 

Z O*/, t 

3O% 

20*,/, 

10% 

• 
/Result of large crack 

~ u r e  A i ~  nics 

i 

0 I I 2 3 
I ASTM limit 

a [2C1-:)%1 
5 °'L "] 

Figure 10. The relative difference in maximum remote stress a~c as predicted by (1) large crack fracture mechanics 
and model B and (2) model A and model B. 
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For  large cracks onset of instability and fully developed process region coincide, and, as 
has been seen, the models  are in agreement  with the Griftith model  [4], since it predicts 
instability when the elastic energy released f rom the stress-strain field equals the energy 
required to produce fracture surfaces. 
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Appendix 

Dugdale  [5] gave the length a - a o of a strip shaped plastic zone with a constant  cohesive 
stress o- o through the relat ion 

t/re ~r~o '~ 
ao/a = cos ~-~-~-D ) 

The  relation is obta ined identically f rom (13) if v o is equal  to zero. 
Later  Bilby, Cottrell  and Swinden [6] derived expressions for the displacement  at the 

process region which are in agreement  with (12) if Vo is put  to zero. 
T o  obtain  solutions for large Cracks in the case of the approx imate  model  A, let 

aoaEo/K~c tend to infinity. With  coordinates  according to Fig. A1 the stress at  the process 
region t ransforms to 

a(~) = ao(1 + (¢ - 1)Vo/V*) (A1) 

and the dimensionless displacement  is found f rom (12) 

v(~)/v* = (2&/~){(1 -- ~)1/2 _ ¢ t anh-1[ (1  - -  ~)1/2"] _[_ 

+ (Vo/V*)(~/2)[( 2 -- ~ ) t a n h - l [ ( 1  _ ~)1/2] _ (1 -- ¢)1/z]} (A2) 

: a o / a  ~ = x / a  1 

~ = 1 _ ~ =  a - a o  
a 

5-- ~ -~_  x-ao 
a - ao 

Figure A1. Dimensionless coordinates. 
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Figure A2. Stress intensity factor vs. length of the process region for an infinitely large crack. 

where ~ = rcEv*/[2a(1 -- v2)aD]. 

The crack opening displacement can be calculated from the expression 

Vo = lim v(~) 
~--,0 

The result 

relY* = 26/~ (A3) 

can be used together with (A2) to give 

v(~)/v* = (23/~){(1 - ~3/c0(1 - ~)1/2 _ [1 - (2 - ~)6/~]~ t anh-1[ (1  - ~)1/2]}. (A4) 

When  a body  containing a crack with an infinitesimally small process region is subject to 

small loads v o ~ v* and as a consequence of  (A1) we have a Dugdale  model. According to 
(A2) 

v(~)/v* = (2&/a){(1 - ~)1/2 _ ~ t a n h -  1[(1 - ~)1/23} 

which is equal to the displacement in the cohesive zone given by Rice [-7]. 

Each value of  the load parameter  K~ = o-~(~Zao) I/2 below K~c corresponds,  for a fixed 

crack length 2ao, to a certain length, a - ao, of  the process region. F r o m  (13) and (A3) it is 
found 

K I = 2eD]-i -- (2/3)(6/c~)](2a6/rc)l/2. 

M a x i m u m  of KI is found for & = ~/2 which implies a - a o = uEv*/[4(1 - v2)ao] (see Fig. 
A2). Wi th  the present boundary  condit ions this would correspond to onset of  crack growth,  
i.e. a growing a o. This means that  the crack grows when 

K, = (2/3)(2Ev*ao/(1 - -  Y2)] 1]2 

which is consistent with the fact that  27 = (8/9)aDv* for model  A. When  6 = ~/2 it is also 

found f rom (A3) that  v o = v*. So, unlike the short  crack (c.f. Fig. 6) the large crack grows at 
the instant  the process region is fully developed. 

A numerical investigation of  the B model  makes it possible to plot KI as the process 
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r e g i o n  d e v e l o p s  (see Fig.  A2). M a x i m u m  r e m o t e l y  a p p l i e d  l o a d  is f o u n d  w h e n  t he  p r o c e s s  

r e g i o n  h a s  g r o w n  to  t h e  l e n g t h  a - ao = .46zcEv*/[2(1 --  v2)O-o] g iv ing  

KI = [ E v , a o / (  1 _ •2)'] 1/2 

as i t  s h o u l d ,  s ince  he re  t he  " s u r f a c e  e n e r g y "  27 = aoV*. 

RI~SUMI~ 

La limite de validit6 de la m6canique de rupture lin6aire est d6terminbe par la longueur de fissure minimale permise, 
selon une convention adopt6e par I'ASTM. Une extension dans des r6gions non lin6aires devrait impliquer une 
extension vers des fissures admissibles de plus petites longueurs. Une 6rude pilote a 6t6 entreprise en vue d'61ucider 
la question suivante: quelle est la plus courte fissure ~ laquelle s'applique la m6thode de m6canique de rupture et 
comment se comportent les fissures plus courtes que celle-lh?. On a mod61is6 une r6gion de travail comme une 
r6gion lin6ique de Barenblatt et on a n6glig6 les 6coulements plastiques hors de la r6gion de travail. Les r6sultats 
montrent qu'une instabilit6 se produit avant que ne se d6veloppe compl&ement la r6gion de travail (ainsi que c'est 
le cas pour des grandes fissures) si la fissure est courte. Ceci implique de grandes d6viations par rapport ~ la 
m6canique de rupture applicable aux fissures larges, si la fissure est tr6s petite. On inclut m~me dans l'6tude le cas de 
fissures de longueur infinit6simales. 


