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A NOTE ON NECKING IN THIN CRACKED PLATES AT LARGE SCALE YIELDING 

P. STAHLE 

Division of Solid Mechanics, Lund Institute of Technology, Lund, Sweden 

ABSTRACT 

INTRODUCTION 

Necking is the dominant process at fracture of thin plates. It implies 

continuous cross-sectional slip and requires a three-dimensional analysis to 

be fully understood. Dugdale, however presented a solution r 1] by using a 

two-dimensional approach for a mode I crack developing necks in an infinite 

plate of an elastic-perfectly-plastic material. He assumed that the plate was 

unlaxially stressed normal to the crack at infinity and that plasticity was 

confined to a narrow strip ahead of the crack tip. 

Drucker and Rice [2] later argued that the Dugdale mpdel is consistent 

only at plane stress and a Tresca material. For both Tresca and von Mises 

materials the effective stress exceeds the yield stress in large regions 

off-side the necking region at plane strain whereas it is less than the yield 

stress in the entire plane outside the necking regions at plane stress. 

However the rule of plastic flow is generally violated at plane stress for a 

von Mises material but not so for a Tresca material. The flow rule by 

definition meaning that the plastic strain increments are normal to the flow 

surface, implies that necking is allowed only if the strain increment is zero 

along the necking region. 

However, even in the case of Tresca materials, the realization of a 

Dugdale type region might be difficult. The difference between the stresses 

normal and parallel to the crack is constant throughout the crack plane and 

its extension. Therefor, under a uniaxial stress state at infinity compresslve 

stresses parallel to the crack prevail near the crack surfaces and hence there 

is a risk for local buckling. Buckling is however not mandatory in reality, 

since the finite plate thickness-width ratio allows small but finite loads 

without buckling and, moreover buckling, might be suppressed by the aid of 

external supports. 

A convex yield surface like the one for von Mises materials implies field 

equations of three different kinds, c.f. Hill [4]. To the left of the maximum B 
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the field equations are hyperbolic and allow necking in two different 

directions and to the right they are elliptic and do not allow necking at all. 

As the stress state at B is approached from the left side the angle between 

the two directions for necking decrease and in the limit the field equations 

are parabolic and only one direction is allowed. For all stress states between 

A and C in Fig. 1 the field equations for Tresca materials are parabolic only 

allowing necking in one direction. It is believed that the yield surface is 

convex for most real materials and that von Mises materials in this respect 

provides a better qualitative description of the behaviour at necking in a 

Teal material. A further indication of this is that assumption of a Tresca 

material does nol enable an explanation of the fact that necking of a plate 

without a crack seldom is formed transversly to but rather at an angle about 

200 - 40 0 from the transverse direction. 

In an earlier paper [ 5] necking at small scale of yielding was 

investigated for Tresca and von Mises materials. It was then found that the 

necking region is embedded in a diffuse plastic zone for both materials at 

strain hardening. For an elastic-perfectly-plastic Tresca material the plastic 

zone is shrunk to a strip containing only the necking region whereas for a von 

Mises material the necking region is degenerated to infinitesimal length in 

the crack tip vicinity (see Fig. 2). 

In the present paper an investigation of an elastic-perfectly-plastic von 

von Mises Tresco 
0, 0, 

B riI1l/;/)/. 
le parabolic , (' 

C 
parabolic 

Fig. 1. The yield surfaces for von Mises and Tresca materials. Necking is 
allowed in two different directions for the stress states from A to B on the 
yield surface for von Mises materials whereas the stress states from B to C 
do not allow necking at all. For Tresca materials necking is allowed in one 
direction for the stress states from A to C. 
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Mises material at a large scale of yielding is carried out and at the end of 

the paper some experiments supporting the results are discussed. 

Tresca von Mises 

~raCk r C 
zone 

plastic zone 

crack 

necking region necking region 

Fig. 2. Plastic zones and necking regions for elastic-perfectly-plastlc von 
Mises and Tresca materials. The length of the necking region is infinitesimal 
for the von Mises material. For the Tresca material the plastic zone consists 
exclusively of the necking region. 

THE DUGDALE MODEL 

Consider an infinite plate of an elastlc-perfectly-plastic von Mises materIal 

with the yield stress c y ' A crack is situated at Ix I<a, y=O (see Fig. 3). A 

remote load 0
00 

is assumed at infinity. Plasticity is assumed to be confined to 
y 

necking regions at a~ I x I <a+d, y=O. 

The analytical solution is easily found (see for instance Westergaard 

[ G] ). One obtains: 

and 

co 
o = y 

00 
- c = c y x 

00 
- 0 y 

along y=O. The flow rule can be written: 

deP/(o -c 12) = x x y 
de:;P/(o -0 12> = 

Y Y x 

(1) 

(2 ) 

dyP 1(3't' ) 
xy xy 

(3) 

It is now assumed that the elastic strain increment is much less than the 

plastic counterpart at necking. Thus the condition for necking is that the 

strain along the neck must be zero [4], Since only necking straight ahead of 
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r ~ 

l 1 l l x 

'Id" 20 , d" 

(1) 

Fig. 3. An infinite plate with a crack. The load a is remotely applied. 
y 

the crack is considered it follows that 

4 

(4 ) 

where the superscript 0 denotes stresses at the necking region. By insertion 

of stresses at infinity and at the necking region it follows from (2) that 

which gives 

(1)1 D a a = y y 

(1) 

a 
x 

1/2 

(1) 

- a 
y 

(5) 

(6 ) 

since aOl)=O. Using (4) the effective von Mises stress is found to be /30° at the 
x 0 y 

neck and thus ay = 2ay/.J3 where ay is the yield stress. From (6) one obtains 

the condition 

(1) 

i.e. a Dugdale necking region is possible only for one specific value of ay. 

(7 ) 
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A MODIFIED MODEL 

It was shown in the previous section that the Dugdale solution is satisfied for 

a ratio O;/Oy = 11./3. Below this ratio a diffuse plastic zone ought to be 

developed and a necking region might be embedded in this zone, e.g. at small 

scale of yielding where <:1;/<1y .. 0, a diffuse plastic zone develops where as 

the condition for necking, i.e. that the strain along the neck is zero , is 

fulfilled In a small region in the vicinity of the crack tip [5]. 

For a ratio C1;/C1y > 1/./3 the stress C1~ > 2<:1~ and thus according to (3) 

the strain along the necking region is less than zero. Then lines of zero 

extension can be found at as I x I <a+d, y=O in two directions slanting 

symmetrically with respect to the x-axis, indicating that the assumption of 

Dugdale necking along y = 0 must be dropped. This invites for an 

investigation of a crack forming an angle to the x-axis. A coordinate system 

~ and 11 is introduced with the ~ axis at an angle ~ to the x-axis. 

A crack I ~ I <a, '1=0 is considered and necking regions are assumed at 
CIO 

as 11; I <a+d, '1=0 (see Fig. 4). The load C1 is remotely applied. Thus 
y 

t t 

0 00 
. y 

t t 

CIO 
Fig. 4. An infinite plate with a slanted crack. The load <:1 is remotely 
applied. y 
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00 00 
(8) C1~ = C1 (1 - cos2.)/2 

y 

00 C1°O(1 cos2t1»/2 (9 ) C1 = + 
'1 Y 

00 
C1

00 
sin(2t1»/2 (10) ~~'1 = y . 

00 00 00 
where C1~, C1'1 and ~~'1 are the remote stresses. The condition that stresses 

should be finite everywhere gives the following stresses in the necking 

region: 

One also obtains: 

for 1"\ = 0 and 

D 
C1~ = 

00 -1 n/2 C1 Icos [a/(a+d)] 
'1 

00 -1 
n/2 ~~'1/cos Ca/(a+d)] 

( 11> 

(12) 

(13) 

(14) 

where the last equation follows from the flow rule and the condition that dE~ 
= O. Equations (8), (9), (11), (13) and (14) give 

cos(2~) = C8/ncos- 1 (a/a+d) - 1]-1 (15) 

Furthermore the yield condition reads 

(16) 

and hence, by use ot <11>, (12) and (14): 

(17) 

By use of (8), (10) and (15) dla can be eliminated and one finds after some 



calculations, 

2 1 + tan 2p 
2 1 + 4tan 4> 

7 

(18) 

The fact that 4> depends on (j04 implies that the assumed with straight . y 
necking regions cannot be realized by a monotonically increased load. 

However, the model strongly suggests a deviation of the necking regions from 

a path straight ahead of the Up of a crack oriented along 4> :: O. In fact 4> is 

observed to increase rapidly with increasing load (see Tab. 1>. Thus the 

crack must be slanted to 20 0 at a load only about 5% above the load allowing 

necking straight ahead of the crack tip i.e. (j~ = (jy/J3. For a~/ay-+l.0 the 

crack should be slanted 35.3°, the same angle as for necking in a plate 

without a crack (c.i. Hill [4]). 

Table 1. 

The angle ell for the slanted crack for 
04 

different ratios of a yla y 

0.5774 0.0 

0.5794 10.0 

0.6093 20.0 

0.7559 30.0 

1.0 35.3 

NUMERICAL ANALYSIS 

To further enlighten the behaviour during necking a finite element analysis is 

carried out. An elastic-perfectly-plastic van Mises material is assumed, 

characterized by Young's modulus E, Polsson's ratio v= 0.3 and the yield 

stress ay. A plate is assumed to occupy the space I x I !::20a, I y I ~20a and 

I z I !::hl2 and a crack is situated at I x I <a, y=O. It is assumed that the plate is 
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large enough to be regarded as infinite even at a large scale of yielding. The 
ot 

load 0 y is applied at the edges I x '~20a, I y I ~20a. 

Solutions symmetrical with respect x and y for which 

uC-x,-y) = u(-x,y) = -u(x,y> (19) 

v(-x,-y> :: -v(-x,y> = -v(x,y> (20) 

are looked for. Then only one quarter, 0~x~20a, 0~y~20a, of the plate has to 
00 

be considered. The load (1 is applied in increments at 0<x<20a, y=20a. The 
y 

boundaries at x=20a, O~y~20a and the crack surface at O<x<a, y=O are traction 

free. The remaining boundary condi lions are 

't' = 0 xy 

u = 0 

at x=O, O~y~20a and 

at a~x<20a, y=O. 

't' = 0 
xy 

v = 0 

(21) 

(22) 

(23) 

(24) 

In addition to this the possibility for solutions anti-symmetrical with 

respect to x is also investigated. For these 

u(-X,-y> = -u(x,y> 

v(-x,-y) = -v(x,y) 

(25) 

(26) 

Here one half of the plate O~x~20a, I y I ~20a has to be considered. The load 
ot 

(1 Y is applied in increments at O<x<20a, J y '=20a. The boundaries at x=20a, 

I y I ~20a and the crack surface at O<x<a, y=O are traction free. The remaining 

boundary condi lions are 

uCy) = -uC-y) (27) 

v(y) = -v(-y> (28) 

at x=O, I y I ~20a. 

For the symmetrical case the region OSx~20a, OSy~20a is covered by 144 

8-node isoparametric elements. A region around the crack tip with an 

extension of 0.168 times 0.16a is covered by 64 equal square elements. The 
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linear size of these elements 1n the crack tip vicinity is thus 0.02a. 

For the anti-symmetrical case the region 0~x~20a, I y I 520a is covered by 

288 8-node isoparametric elements. The mesh is symmetric with respect to y=O 

and the upper part y~O equals the one described for the symmetrical case. 

A code ( 7 J based on a modified Newton-Raphson iteration procedure 

proposed by Nayak and Zienkiewicz [8] has been used for the non-linear 

analysis. This method produces numerically stable solutions for both 

elastic-perfectly-plastic as well as strain softening materials. Element 

stiffnesses are calculated numerically at 2 by 2 integration points. The load 

is applied 1n 15-20 equal increments. Iteration for equilibrium is performed at 

each load increment. 

RESULTS 

The cross sectional slip takes place at planes inclined about 45° to the x-y 

plane (see Fig. 5). Therefore the width of the necking region is finite and 

approximately equals the plate thickness. Within the FEM approximation 

strain localize in a band with a width depending on the element size. Due to 

the limited representation of large strain gradients the strain at the necking 

region is distributed over one or two element hights depending on the 

orientation of the element with respect to the neck. 

Fig. 5. Necking is a matter of cross sectional slip at planes inclined 45° to 
the x-y plane. It is observed that a region with a width equal to the plate 
thickness is involved in the necking process. 
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Ill) 

At the load CS
y

ICS y =O.3 a diffuse plastic zone is developed for the 

symmetrical case. The plastic zone contains a small region straight ahead of 

the crack tip with an elliptic stress state inhibiting necking. Regions with a 

hyperbolic stress state implying two sets of characteristic curves along 

which the condition tor necking is fulfilled are developed symmetrically 

above and below the crack plane. This is in accordance with what was 

reported for the case ot small scale yielding [5]. Fig. 6 shows these regions 

and the characteristic curves. One observes by comparing the present 

solution with [5] that the region with an elliptic stress state is more 

extensive at small scale yielding. Fig. 6 also shows the distribution of the 

cross sectional strain E which is observed to be rather smoothl y distributed z 
with a maximum straight ahead of the crack tip but without a distinct necking 

region. 

Figure 7 shows the distribution of the strain E and the characteristic . z 
curves for a load CS;ICS y=O.4. A clear localization of strain forming a neck is 

visible in the direction straight ahead of the crack tip. The characteristic 

curves indicate that necking would be allowed at almost any direction 

diverging radially out from the crack. It is also noted that the stress state is 

hyperbolic in the entire plastic zone. At a larger load CS;ICS y=O.5 (see Fig.8) 

strains are still large straight ahead of the crack tip but the angular 

distribution near the crack tip is rather smooth up to an angle about 45 0 to 

stress state 
.It_ ...... 

ref. [5} 

t
y . 

hyperbolic stress state 
0.040 tI'!,-- ~ elliptic -11- - 11-

, ~.:Y 
0.040 0.080 x-a 

plastic zone 
0.3 
0.6 
0.9 
1.2 
2 
5 

Fig. 6. Characteristic curves along which the condition for necking is 
fulfilled and curves for constant strain at a load CS Ill) ICS y=O.3. The resulting 
strain is independent of the material parameters E Ind CSy and is given as 
EzE/CSy • 
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I \ 

I , 
, I 
\ I 
). I " I ~ f 0.04a 0.08a 0.120 x- a 
crock tip 

11 

t 
crock tip 

iICt 
Fig. 7. Same as Fig.G for 0yIOy=O.4. A neck is formed straight ahead of the 
crack tip. 

y y plastic zone 

~~------
0.3~/' 

0.120 0.120 

0.080 0.080 

I'" 0.040 0.080 0.120 0.160 x-a t 
crack tip 

01) 

Fig. 8. Same as Fig.G for a IOy=0.5. Strains are observed to increase in a 
direction out of the crack pl~ne. The angle between the x-axis and a straight 
line from the crack tip to the remote tip of the plastic zone is 40 0 • 
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the x-axis. At a larger distance from the crack tip strains are concentrated 

in a region directed 40° to the x-axis even though a necking region is not 

visible. The characteristic curves show that the condition for necking is 

fulfilled at an angle of 33° to the x-axis at the end of the plastic zone remote 

from the crack tip. Near the x-axis where the angle decreases to zero. 

Surprisingly the stress state" is again elliptic in a few elements at the front 

of the plastic zone near the x-axis. 

Finally Fig. 9 shows the characteristic curves and the strain distribution 
eo 

for CJ yICJy=0.6. Here the plastic zone extends outside the region with the 

uniform mesh. A meaningful continuation to larger loads would require 

remodelling of the mesh. This has not been done. 

The strain distribution is rather similar to the one shown in Fig. 8. A 

necking region is not visible. The width of the band of concentrated strain is 

almost the same as in Fig. 8. Only the length of the band is increased. The 

width is about 3 times the element height and it is thus assumed that the 

strain distribution is independent of the element size. Characteristic curves 

show that the condition for necking is fulfilled in a direction about 35° to the 

x-axis in the banded part of the plastic zone. 

Since there could be some doubt as regards the uniqueness of the 

symmetrical solution the anti-symmetrical case was also investigated but the 

differences were negligible. Note that solutions fulfilling boundary conditions 

y y 

0.160 

0.120 

, I I ... 
0.040 0.080 0.12a 0.160 0.200 x-a t 

crack tip 

Fig. 9. Same as Fig.6 for CJoo ICJy =0.6. Strains is localized in the same direction 
as in Fig. 8. Y 

X-Q 
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for symmetrical solutions also fulfill the boundary conditions for 

anti-symmetrical solutions. Thus if the symmetrical solutions are stable they 

will result even if the boundary conditions (27) and (28) are used. Even when 

the elastic-perfectly-plasUc material is replaced with a slightly softening 

material symmetrical solutions are obtained. 

EXPER.IMENTS 

An investigation of necking in thin sheets of aluminum SIS 4007-14 and SIS 

4007-18 has been carried out [3]. The height b of the sheets was 320mm for all 

specimens. Different widths w from 50mm to 320mm were examined. 

Thicknesses h were Imm, 2mm and 3mm. 0.3Smm wide cracks were cut out by a 

fine saw to lengths from 20mm to 120mm from a 2.4mm drill hole. The crack 

edges were sharpened with a razor blade (see Fig. 10>. A Mohr-Federhaff 

tensile test machine was used to perform the tests at a low strain rale. 

At these experiments necking generally started and proceeded in a 

direction independent of the original crack length and plate dimensions but 

dependent on the rolling direction and the plate thickness. This suggests that 

the angle of necking at a crack for a homogeneous plate should equal the 

angle for necking in an homogeneous plate wi thout a crack [9]. 

In a few cases, especially for the thinner plates (lmm and 2mm) frClcture 

started straight ahead of the crack tip to about 0.2a - 0.3a and then continued 

at an angle to the x-axis as described above. 

-<c:::;===~~. 2.4 mm > 

Lsmm -+I-
O.3mm 

Fig. 10. Manufactured crack profile. 


