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1. Introduction

From being a relatively exclusive field of research up to about the middle of the 1950’s,
fracture theory has developed into a major research area within the field of mechanics.
To some extent this expansion has been driven by the scientific challenge to potential
researchers since fracture mechanics naturaily supplies very complex and many faceted
problems both to the theoretical and to the experimentally orientated scientist. However,
it seems that the main factor responsibie for the large resources devoted to the subject is
the technological need for reliable methods for fracture assessment. As technological
systems become more complex and of more sophisticated design the risk of fracture
increases, as well as the potential losses should a failure occur. Today, the bulk of frac-
ture research is orientated to a few, rather specific, industrial sectors of which the most
important are the aircraft, nuclear energy and military industries.

It is the opinion of the present authors, that several basic unresolved questions
remain in fracture mechanics and that attention devoted to these appears to be somewhat
stagnating, The main object of the paper is to review a number of these questions in light
of some of the more recent findings and also to focus on some not so recent resutts which
perhaps have not received the general atiention they deserve. lt is not the intention to
present complete solutions to the questions here but rather to draw the attention to some
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short-comings of the present knowledge. The discussion will be confined to cases with
straight symmetrical cracks (mode I) in two-dimensional bodies under plane strain condi-
tions. Occasionally, anti-plane shear (mode III) analogues of these problems are dis-
cussed because of the simpler mathematical formulation which may help to bring insight
even inthe more complicated situations.

More complex problems like three-dimensional, mixed mode and plane stress cases
have many features in common with the mode I plane strain case and in those respects the
discussion is relevant even for these. However, there are several additional complexities
and in our opinion it is unlikely that much progress can be made with the more complex
cases before fuller understanding of the simpler ones has been obtained. For the same
reason fatigue and stress corrosion cracking is excluded from explicit discussion. Linear-
ized geometry description will be assumed unless large deformations effects are explicitly
discussed.

The ultimate aim of fracture theory is to formulate criteria for the initiation and the
continuation of crack growth that are suitable for use within a continuum mechanics
mode! of a body. One basic item towards the development of such criteria is the model-
ling of the crack tip region. Several questions immediately arise. Can the constitutive
behaviour assumed for bulk deformation of the body be extrapolated to the tip region or
is special constitutive modelling necessary? One may ask if it is really necessary to
bother about the crack tip behaviour at all. In many commonly used fracture models very
little regard to the crack tip region is taken and to some extent such considerations are
deliberately avoided.

2. General Aspects on Crack Tip Modelling

The concept of a crack tip is a2 mathematical idealization. In a real body there is a region
of relatively small size within which processes of material degradation operate which
finally may lead to the creation and separation of new surfaces. These micro-processes
may be of several different kinds depending on the material properties and the particular
conditions prevailing. Various models have been proposed and analysed. The mechan-
ism of void initiation, growth and coalesence has been suggested as appropriate for duc-
tile crack growth in metals while in materials like concrete, micro-crack formation and
growth is considered to be the most important mechanism.

The term physical modelling will here be reserved to mean models where void
growth, micro-crack formation etc. are modelled in such detail that the development of
individual voids is followed. In some cases even modelling on the dislocation level is
done. In contrast, by the term continuum modelling is meant models where the degrada-
tion processes are not followed in detail but rather through constitutive assumptions about
continuum stresses and strains. In this latter category models with displacement discon-
tinuities in cohesive zones will also be included.

There are several reasons why continuum modelling is preferred to physical model-
ling. The most obvious one is that physical models easily become very complicated. To
model a complete structure on such a fine scale that a single micro-crack can be described
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easily exhausts the capacity of even the largest computers. Instead, when physical
modelling is attempted, only the region in which the micro-processes are active is
modelled. The size and the boundary conditions of this region is taken from a continuum
solution where the crack tip region constitutive behaviour is the same as for the surround-
ing material. For this approach to be relevant the solution outside the crack-tip region
must not depend too much on the processes within the region. This is one of the require-
ments for autonomy to prevail. This concept was introduced by Barenbiatt [1] and has
later been discussed by Broberg [2]-[3]). Autonomy, will be discussed more extensively
below.

There is also a more fundamental reason why physical modelling cannot provide all
the answers 10 the problem of how to describe a crack tip. It has been pointed out by
Goodier [4] among others that even for a mode! on the micro-scale, fracture criteria-are
still needed to predict when the final micro-separation occurs. If void growth is modelled
with continuum plasticity models ligament instability may be predicted. In order to
predict separation some mechanism for this must be introduced into the constitutive rela-
tion. Likewise, metal physicists use concepts like the Griffith criterion in order to predict
when a micro<crack becomes unstable. The rather paradoxical situation may occur that
one has to use fracture criteria on the micro-level of precisely the same nature as those on
the macro-level for which one originally used the physical model.

This does of course not imply that physical modelling is unnecessary. It often hap-
pens that the fracture criterion on the micro-level is much simpler than the one on the
macro-level, It may for example be possible to apply linear elastic fracture mechanics to
describe the growth of micro-cracks in a local environment. If autonomy is violated in
that the growth of individual voids or micro-cracks influence the outer state appreciably
there is not much choice but to use physical modelling. We will however restrict the sub-
sequent discussion to continuum modelling.

The viewpoint will be taken that the effects of the various micro-processes operating
can adequately be represented by appropriate continuum constitutive modelling and thus
that details of the micro-behaviour are not imporiant on the higher level. This is obvi-
ously an assumption of central character and is also one that the present authors do not
claim expertise in delineating. We feel that this is certainly an area where further
research is needed.

In the following the concept of a process region will be used. A process region is a
region wherein the special constitutive assumptions needed to take account of micro-
behaviour of the discussed type becomes significant. Obviously depending on the nature
of these constitutive assumptions the border between the process region and the normal
material may be diffuse in consistence with what might be found in a real body. The dif-
ferent constitutive assumptions may somewhat loosely be divided into three categonies.

a) No panticular constitutive modelling is made. Conventional material models
developed for nommal structural calculations are used everywhere. The process
region will thus be of an infinitesimally small size. A particular fracture criterion
must be supplied to determine the motion of the crack tip. The strains at the tip
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approach infinity and thus also the stresses for hardening materials.

b) Separation of surfaces is admitted in the constitutive model if some measure, usually
the maximum principal stress, exceeds a critical value. During the separation pro-
cess there is a traction between the surfaces gradually dropping to zero as the dis-
placement discontinuity increases. The fracture crterion is specified once a
cohesive law has been adopted. These models give a surface process region if the
material outside a cohesive zone behaves in a normal fashion.

¢) Softening behaviour is introduced into the constitutive laws. This can be done in
several ways. One class of models that has achieved some popularity, e.g. Bui and
Ehrlacher [5], is the damage accumulation type of models. Here the micro-damage is
assurned to be describable by one or more internal state variables. The rate of these
is governed by the stresses and/or strains. The state variables enter as parameters in
the constitutive laws. If the equations are suitably constructed all stresses and
strains remain finite and the crack growth conditions can be formulated directly in
terms of strains or stresses. If the process region is defined as a region where dam-
age has occurred it is seen that this is in general a volume.

Other possibilities for introducing softening effects are through non-local constitu-
tive models (Eringen et al (6]). Here the stress at a point is assumed to depend on a func-
tional of the strains in some finite neighbourhood. Also in this case non-singular stress
and strain states may result and thus the fracture criterion cap be formulated simply.

Models leading 10 volume process regions commonly result in complicated compu-
tations. In a numerical treatment stability problems easily occur. One may of course alsc
combine models of type b) and c). This has not been attempted according to the
knowledge of the authors.

Models of type €) are not further discussed here since it is believed that the impor
tant features of having process regions with finite dimensions are well demonstrated by
type b) models. In many cases cohesive zone models can be used as approximations fo)
volume process regions and the considerable extra complications with type c¢) modelt
may not be worth the effort. However, no such comparison is so far available in the
literature so this remains an open question.

3. Cohesive Zone Models

Cohesive zone models are well-known and seem to originate from a suggestion by
Prandt] [7]. It is assumed that the crack surfaces start 1o separate if some measure of the
stress or strain state exceeds a critical level. Usually this is taken as the normal stress per:
pendicular to the prospective crack plane in a mode 1 case, but there is no reason why the
conditions for the onset of separation could not equally well be based on a strain measure
Between the partly opened crack surfaces there is a traction p, that depends in some way

on the surface displacement v (Fig. 1), for example of the form (1).

e i i i
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Here 1 denotes time and the m’s are the numbers of the respective derivatives that appear
in the law. In most applications the simpler form (2) is used.

py=fC(v)~ (2)

Here f¢ is a decreasing function which goes to zero at some value v, of the Jlsplacement.

Even more general forms than (1) may be used when the intention is to model compli-
cated micro-processes. Non-local formulations, i.e. when p, depends on a spatial func-
tional of v, are examples of such generalizations. However, the practical difficulties
involved in determining a suitable separation law in a particular case are probably so
large that in most cases simple forms are preferred.

Once the separation law is specified the fracture problem is reduced to the solution
of a boundary-value problem and the remaining difficulties are of a computational nature.
These are in most cases considerable especially if the surrounding material behaves non-
linearly or inertia effects are important. The motion of the front (x, = a*(r)) and the trail-
ing (x; =a” (1)) ends of the cohesive zone are not given a priori but are part of the solu-
tion. This together with the negative stiffnesses associated with a fc that is decreasing
with increasing v may become prohibitive to a successful numerical solution. These dif-
ficulties are likely to be most pronounced for very small zones. Large gradients then
occur and a high resolution in the numerical scheme is needed. It is thus of great interest
to investigate when the cohesive zone can be approximated by a point-sized process
region and how the fracture criterion should then be formulated. This is a question of
autonomy which is discussed in more detail below.

The main difficulty is how to obtain the separation law. With the viewpoint taken
here that the cohesive zone reflects complicated micro-processes it seems that physical
modelling ought 10 be the main tool if one desires anything but the simplest type of laws.
Direct observation appears unrealistic. Hillerborg et al [8] suggests that for fracture of
concrete the separation law can be taken from observations of the stress-strain behaviour
of uniaxial tension tests of uncracked specimens.

If no physical arguments for a specific cohesive law are at hand it might be the
wisest to choose a simple few-parameter description, for example a linearly varying f¢
which can be described by two parameters, the maximum traction pg,, and v,,. Alterna-
tively one of these parameters can be replaced by the specific separation energy Ys per
unit area. In the linearly decreasing case s equals p,, v,,. [n order to determine these

parameters fracture tests can be conducted as in common fracture testing. The increased
complexities in order to determine say two parameters are however considerable com-
pared to the case when only one parameter is to be evaluated.
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It may be of some interest to calculate the energy flow to the cohesive region. Let-
ting T be the total power supplied to the cohesive zone per unit thickness, this is easily
obtained as

a’ a*
T=T,+T,=2|[pyde, - [y, | 3

Here h, is the x,-component of the heat-flux vector A; defined as positive directed out
from the cohesive region. It can firstly be observed that the thermal flux T, is not directly
coupled to the mechanical power T,,. T, together with the dissipation in the cohesive
zone determines the temperature which of course is of importance for the mechanical pro-
perties. The thermal flux can however not be used directly in the mechanical process.
This point is trivial in context with cohesive zones but is more involved when dealing
with singular crack tips, since then the separation of energies may sometimes be difficult
to perform.

It is often preferred to expressed the energy flow to the tip region in terms of energy
per unit crack advance. That this is not a uniquely defined quantity in the cohesive zone
case is already clear from the fact that the crack tip velocity cannot be unambiguously
defined. Choose, however, for definiteness the velocity of the front end a* as characteriz-
ing velocity. Introducing the coordinate transformation (4) the mechanical energy flow
per unit front end advance ¥y,, can be written as (5).

x| =x-a"(t) )

Q
'Ym=—2 j py%dxl""% .[ py"'dxll

a —a* | a g g
Vi ] 0
=ys-2| [ pyav— [ pyvax; |, (5)
v{a’) a—a’
t5=2[p,dv. )
1]

The quantity s is the specific separation energy per unit area and it is seen that in general
Yn differs from yg by a time-dependent part as was noted by e.g. Schapery [9] and Freund
[10]. This underlines the fact that a cohesive zone model is in general not compatible
with a criterion of a prescribed energy flux to the tip region as has been discussed by Rice
[11]. It is only under conditions of steady-state crack growth that the energy flow per
unit area of crack advance is equal to ys since then the second and third terms in Eq. (5)
vanish. This fact is however of minor interest since the presence of a cohesive zone alters
the fields around the tip region and the energy flow as calculated from a case without a
zone in general will be different. Since thus the boundary value problem in any case has
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to be solved with a cohesive zone, knowledge of the energy flow becomes redundant.

The only situation when there can be a possibility of equivalence between the
cohesive zone description and an energy criterion is the limiting case when the zone size
tends to zero. Willis [12] showed that in the quasi-static case and in the case of steady-
state crack growth in linearly elastic materials these two descriptions become equivalent
as the zone size decreases to zero. Apart from analyses of elastic materials there seem not
to exist any well-established results of this character. The most important conclusion is
that however small the cohesive zone there is always a finite energy flow to it. This
observation is likely to be true for all finite size crack tip models and the question is
whether such a requirement should also be put on crack-tip models of type a) i.e. with
zero dimensions.

4. General Aspects of Singular Crack Tip Models

The attention will now be focussed on singular crack tip models i.e. when conventional
non-softening laws are used to model the entire problem. For many material models the
fields can be written in the following way (see Fig. 2 for notation).

0;(r0.0) = S;(r; Qo(1).d) + Sy(r.4.1) M
£i(r.9.0) = Ey(r 4, Qc(0).d) + Ey(r.u) ®)
ui(r9.0) = Ui(r4iQu(0).a) + Ugtr 9.0) , ©)

Here Qq, O and Q, are scalar time functions depending on the entire problem. §;,E;
and U; are problem independent functions that dominate the fields as r—0.

Hm(S;S,)(SuSu) =0, (10)
r=0

}EnO(Eijéij)/(EklEkl) =0, (1
Hm(U, 1,0, (Ui Ui} = 0. (12)

The strength-parameters Qg, Q¢ and Q, are interdependent through the constitutive law.

In history-dependent materials the relation between these may become complicated so
that a reduction to a one parameter description is impractical.

In many cases the crack-tip functions §;; etc. are of the following simple form

8; =rL;.4)Q.), O<o<l, (13)
Ej=rPe;(0.0)0(1),  0<Pp<i, (14)
Ui=r®1Qu9.4). (15)

For such cases Strifors [13] has pointed out that the particle velocities and accelerations
can be expressed as
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. .a“i

u-s-a— , asr—0, (16)
ax,

. -2 azui

u—a T asr—0. (17
8x,

The crack-tip is then moving under locally steady-state conditions. This simplifies the
calculation of the energy-flow to the crack-tip and also means that conclusions about the
singular behaviour can be obtained from steady-state solutions.

It should be pointed out that there are cases when the fields in the crack tip vicinity
cannol be written under the form given by Egs. (7)-(17). The most notable is the elastic
perfectly plastic material model which is discussed below.

A concept of central importance in fracture mechanics is that of autonomy (c.f.
Barenbilatt [1], Broberg [3]). A (Fig. 3) crack growth initiation and propagation problem
is considered which is modelled by a particular set of constitutive relations. This model
will be termed 1 in the following. It is assumed that for model I the fields are given by
Eqs. (7)-(9). Let C;(t) be a curve that encloses a region around the tip where the fields

are given 10 a prescribed relative accuracy 8 by the first terms of Egs. (7)-(9).

In addition a model 11 of the same problem is considered which is equal to model |
except for a region in the vicinity of the crack tip where the constitutive relations are dif-
ferent from those of model I. This may for example be due to modelling of decohesive
processes. This region is enclosed by a curve C, which is assumed to be wholly con-
tained within C;. Because of this different behaviour the fields outside C, will also differ
from that of model |

O, (r0,0) = A0, (r §.1) + S;(r 0; Qo) + S;;(r,0,0) (18)
£,(r,0.0) = A2, (r,0u) + E (r.0: Qrd) + Ej(r,0,0) , (19)
u(r,0.0) = Ay (r,0.0) + U, (r; Q,.8) + Ui(r0u1) . (20)

A curve Cy(r) is now defined for model 11 outside which the fields are given to the

prescribed relative accuracy § at the time ¢ by the last two terms of Egs. (18)-(20). Obvi-
ously C;; will depend on the assumed constitutive behaviour both within and outside C,

and in some cases such a curve may not exist. Assume however for the moment that Cj
exists,

Autonomy is now said lo prevail if A¢,;Ae,; and A, outside C,, and conversely the
state within C, depend within the relative accuracy 6 only on the properties within C, and
on the time-histories of Q,, Q¢, @, and 4. If autonomy is at hand it enables us to express
the state within C, in terms of parameters of model I. This is very important since in
most cases one is ignorant of the behaviour within C, or wants to avoid the more ela-
borate modelling.
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Autonomy will obviously prevail if C;; is wholly contained within C; since then the
state of the annular region between Cy; and C; is given by the singular terms of Egs. (7)-
(9) only. Intuitively we wouid expect this to be the case if the region within C,, is suffi-
ciently small and the govemning equations of the material outside C, are elliptic. For
quasi-static behaviour and a linearly elastic material outside C,, Broberg [2] has shown
that the assumption of autonomy is satisfied if C, is fully contained within C,, and Cy
does not reach the outer boundary. These requirements are obviously less restrictive than
those mentioned above. It is possible that a similar behaviour may be found for other
material models but no results of a general nature seem to exist. This is for obvious rea-
sons a problem area which is certainly worthy of further research pursuits.

By the definition of autonomy the state within C, will be-determined by a functional
dependent on the time-histories of the strength parameters Q and the velocity a. For a
stationary crack tip the complete time-histories must in general be considered while for a
growing crack only a part of the time-history needs to be considered. Suppose that the
crack tip is at gy at a certain time instant #,. The state of the region within C,, will give

effects on the fields outside C, that are not considered in model 1. When autonomy pre-
vails however these effects can be neglected at sufficiently far distances ahead of ap. Let
us denote the distance needed for these effects to be neglected by 1., which is in most
cases smaller than the extent of Cp,. 1., will depend on the material properties and on
the size of C,. Thus the state within C, at the time instant ¢ corresponding to the crack
‘tip position ag+1y,;, will not depend on the time-histories of the Q's and a before £5. The

time-histories of the parameters can be represented by a Taylor series. The state of the
crack tip at the time ¢ is then expressible by a function A of the time-derivatives of the
Q’s and 2. Regarding the velocity of the tip as a state-variable we can then write

a0, dQ, dQ. 4

a(ty=h N )
dz*' ark a a™

, 0%ki<Ses, (21)

A certain derivative can be neglected if its contribution to the time-history between 1, and
t is small. If for example a derivative of Q satisfies

mm

/‘1

amm

] — 1 < 1Qu0) (22)
e

the derivative can be neglected. 4, is the mean velocity during the considered time inter-
val. If C, and thus 1., become infinitesimaily small all derivatives with ;>0 can be

neglected and @ becomes a function of the momentary values of the O parameters. Furth-
ermore if the relation between these parameters is time-independent Eq. (22) can be
stated in terms of one of the parameters, say Qg.
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An imponant special case is when the material both inside and outside C, is not

explicitly time-dependent and inertia effects can be neglected. The crack growth equation
can then be formulated in terms of one strength parameter, say Q4. If furthermore Qg is

monotoneously increasing, the time derivatives can be replaced by derivatives with
respect to (4. Since the singularity under these assumptions does not depend on a, the

crack growth equation (21) reduces o Eq. (23) even if 1, does not vanish
da
40,
Integration with respect to Q4 then gives Eq. (24) which is of the form frequently used in
quasi-static fracture mechanics.

a-ap=H(Q,) . (24)

=h(Qy) - (23)

The concept of autonomy used here is somewhat different from that introduced by Baren-
blart {1] and Broberg [2]. These authors considered mainly stationary cracks under
monotonic loading. In their case autonomy implies that the state of region within C, is

always the same at crack growth initiation.

It should be realized that the previous discussion is purely heuristic and the conciu-
sions have only been strictly verified for elastic cases (¢.f.[2).[12]). It seems worthwhile
to investigate these questions more extensively. One way of performing such studies is to
mode! the process region by a simple cohesive zone model. By solving the same prob-
lems both with and without this zone one can study the conditions under which autonomy
in the sense implied here develops and also how the crack growth equation (21) should be
formutated.

In the discussion nothing has been said about the nature of the processes within C,,.
In one way the discussion may be seen as leading to the conditions that have to be satis-
fied if some special modelling of the top region is to be avoided. It is analogous to the
concept of small-scale yielding. Thus, the concept of autonomy may be applied on dif-
ferent levels. Only the existence of an autonomous region with respect to the particular
model chosen is needed. However, the growth equation (21) can be formulated in a
simpler manner if auionomy regions on a finer scale can be detected.

The existence of an autonomy region is obviously a necessary requirement for any
criterion based on a singularity strength parameter. The use of a path-independent
integral is not in general a remedy for loss of autonomy. Suppose that an integral is
path-independent for the material behaviour assumed outside the curve C,. 1f autonomy
does not prevail the fields within C, are not given by a single parameter and there is no
reason why the chosen path-independent quantity should be a measure that is appropriate
for characterizing the state within ¢,,.

H C, is too large so that no autonomy develops, one way to proceed is to use more
appropriate modelling. An example is furnished by the development of the theory of
quasi-static fracture in metals. For very small plastic zones, linear elastic fracture
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mechanics works well since autonomy exists with respect to the elastic model. When the
plastic zone grows bigger, theories essentially based on deformation type plasticity are
often applied since a region may exist where the fields are accurately described with this
constitutive assumption. This model works fairly well until, due to crack growth, the
effects of unloading become important and the autonomy concept breaks down. lnstead,
one can consider modelling of the growing crack with aid of incremental plasticity
models and base the growth equation on the singular description associated with those
models. It may well be that the region within C; is now so small that effects of the

decohesive process prohibit a region of autonomy with respect to the incremental plastic
model. The next step would then be modelling of the process region by either a cohesive
zone or a volume process region. However, the complexities rapidly increase as more
complicated models are ised. Even the continuum plasticity is not without severe prob-
lems in a proper modelling of hardening characteristics etc. Also effects of large defor-
mations become more prominent as the scale is decreased. :

For these reasons other routes instead of more detailed modelling are often preferred.
In most of these the fracture criterion is based on some quantity that is not a direct meas-
ure of a singuiarity. Such criteria are discussed below.

5. Energy Flow to the Crack-Tip

Since long the flow of energy to the crack tip has been considered important for crack
growth studies. Numerous articles have been devoted to the discussion of this coneept.
Strifors [13]-[14] considers in depth the energy and entropy balances at 2 moving singular
tip under general three-dimensional and large deformation conditions. Earlier, Kostrov
and Nikitin [15] derived some of the results under small deformation assumptions. From
{15] the following result is obtained for the power T supplied to a moving singular tip

. 1., .
T= P—T@i e+ = Hiki ]pa&-imyu,«hj ndc . (25)

C is a curve enclosing the tip (see Fig. 4), c is a line-coordinate along this curve, ¢ is the
internal energy per unit mass, p the density and h; the heat flux vector. §, is the

(]
Kronecker symbol.

Utilizing the resulis for asymptotically steady crack motion Egs. (16)-(17), Eg. (25)
takes the following form for the energy flow per unit crack advance.

1
= fim —
Y C’ma'é

e+]3a‘2u,-‘,u,,1 }pa'ﬁu—éo,-}u,'l-h, n,—dc . (26)

It is immediately clear from Eq. (26) that a finite non-trivial value for ¥ is obtained only if
the integrand behaves as 0G-~" for r—0. It is furthermore noted that ¥y comprises the total
energy flow including the thermal flux. In accordance with the previous discussion it is
desirable to singie out the mechanical part of y i.e. ¥,. In order to do this some
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constitutive assumptions are made which are somewhat more restrictive than entirely
necessary for obtaining the desired result. For-the sake of clarity it is assumed tha
mechanical power can be divided into one elastic and one inelastic part.

0,4€; =0,e8 + 0,6/ = w4 = v @7,

It is assumed that the elastic energy is wholly reversible and that the nonelastic
energy is purely dissipative i.e. converted into heat. The equation of local entropy bal-
ance (28) can be found in any textbook on thermodynamics

h

5| * ps, (28)

J

ps =

s is the entropy per unit mass, 8 the temperature and s’ the internal entropy production

rate per unit mass. Under the assumptions made above, the internal entropy production
consists of two parts

ps=2— _p 50 9)

Using Eqgs. (28)-(29) together with the local energy balance (30) the expression (31) for
the internal energy is obtained
pe = C,jé,-j - h,J N (30)
pé =0, + p8s — w' = o,e) + pbs . 31

With this partitioning of the intemnal energy it is reasonable to single out the mechanical
part of T as follows

T,,,=éi_rﬂ)§

w4 —;'pu',u': ]dsu + O’,jd, "ij : (32)

Again utilizing Eqs. (16)-(17) we obtain the mechanical energy flow per unit crack
advance v,,.

Y = Iim @

C—-0 c

w

+ %pa'zui_,u,_, ]811 - O'U'll,'l n]'dC . (33)

In order to get meaningful results for 7y and 7, it must be required that Eqs. (26) and

(33) give unique results regardless of how the limiting process is done. This requires an
asympiotic path-independence and Strifors [13] shows that under the assumption of regu-
lar boundary conditions on the crack surface this requires that the divergence of the
integrand within the parentheses then must be 0(r~2) as r—0. For Eq. (26) this results in
the following condition
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. .3 . . -
pae; +pau; U — aO',-I-JM,-_[ - aC,'jE,‘j_l - th = 0(" 2) . (34)

Observing the steady-state results for the time-derivatives of u; it is immediately obtained

from the equation of motion and the local form of the energy balance Eq. (30) that Eq.
(34) is satisfied. Performing the same operation on Eq. (33) results in

W'&() + pa'zu,-_,u,-‘“ = O 40— Oj€ij) = O(r_z) . (35

From the equations of motion and Eq. (27) it is found that this condition is not satisfied
unless 6; = dw*/de;; + O(r~%). Thus the material must behave elastically as r—0 in order
to give a unique value of 7y, This result was obtained in [13]-[14] for more general con-
ditions by consideration of the entropy balance. Thus if the material allows for energy
dissipation as the crack tip is approached no unique value for the mechanical energy flow
can be obtained and this precludes the use of an energy criterion within the considered
model. In fact materials that do not behave elastically in the limit do not seem to give
even a non-zero towl energy flow y because of the nature of the singular solution. A
more formal approach to the energy balance has recently been given by Lidstrom [16],
whose results do not, however, alter the general conclusions advanced here.

Nakamura et al [17] have derived an expression for the energy flow to the tip in
terms of mechanical quantities only. Corresponding to Eq. (25) their results read as

T' = é'_%é { ad,; + oyu; |n;dc . (36)
c

| I
w + Epu,—u,-

w=]wdr . 37)
0

The result (36) is obtained in the same way as Eq. (25) if the heat flux is set to zero. It
might, however, be of interest to compare the expressions for the general case. If the

local energy balance Eq. (30) is integrated with respect to time and the result substituted
for e in Eq. (25), the difference between the two integrals can be written as

1
T-T =éi_rpoi (—{h,,,-dr)da,,-h, ndc . (38)

Clearly, if k; does not behave as 0(r™"), the heat flux will not contribute to the integrals
and they will be equal, including the case when the material behaves asymptotically elas-
tic. In cases when h; is 0(-"") they seem not in general to yield equivalence results. This
point may, however, be of mostly academic interest since then an energy balance criterion
seems doubtful anyway.

It is obvious from Eq.(34) that Eq. (36) is asymptotically path-independent as was
noted in [17]. Both Eq. (26) and Eq. (36) are strictly path-independent under steady-state
conditions and this property has been utilized by Freund and Hutchinson [18] for



206 Crack Growth Criteria and Crack Tip Models

evaluation of the energy flow to the tip of a crack moving steadily in an elastic visco-
plastic material.

Because of the limiting process involved in calculating v its value is completely
determined by the stength and the form of the singularity. Thus, the fracture criterion
can equally well be formulated in terms of the O parameters as in Eq. (21) and no addi-
tional advantage has been obtained by using the energy flow expression. In many cases,
however, the form of the singularity leads to a zero energy flow. One may ask what phy-
sical relevance should be attached to a fracture criterion based on a singularity with such
a form. Consider again the models 1 and 11 discussed previously and let model H contain
a small but finite process region of size C, while model 1 has a singular crack tip field
which admits no non-zero value of ¥. In model 1 a finite energy flow to the region within
C, of say s would then be expected. Across the curve C; the energy flow is then gen-
erally not equal to ;. Since we do not require that the fields within C;, coincide for
mode! 1 and II, the only requirement on mode! 1 would then be that the flow of energy
across Cy is the same in both models. The vanishing of y as the crack tip is approached is
thus of no consequence and a growth equation of the form (21) can be used. This will
however be dependent on a number of time-derivatives of the 's. The dependence on
derivatives cannot be expected to vanish unless C,, and thereby C; and Iy, tends 1o
zero. As C, tends to zero, model I will successively become a better approximation of
model il and the curve €, where an energy flow larger than v; is required, will shrink.
In the limit models I and Il coincide and the energy flow becomes y;. Based on these
arguments the following conjecture s made. It is probably only possible to wholly
neglect the dependence on derivatives of Q and a in the fracture equation (21) when the
singulanty is such that a non-zero energy flow to the crack tip results. The practical
implications of this observation are unknown. It may however explain to some extent the
difficulties in obtaining a unigue relation between the strength parameter and the crack tip
velocity frequently encountered in dynamic fracture mechanics.

6. Fields at Stationary Crack Tips in Different Materials

Crack tip fields for model I and different non-linear-materials have gained much interest
during the last decade. Problems with enormous analytical difficulties are often posed.
One indication of this is that several problems have not yet been solved while contradic-
tory solutions have been proposed for a few other problems. Unfortunately many of the
solutions only serve as academic exercises, particularly so for asymptotic fields when
moderate strain rates and hardening rates of practical significance are considered. We
cefer to the variety of cases where the region of validity for the solution is extremely
small. Here a few asymptotic crack tip solutions are examined with respect to the exten-
sion of the region where these can be assumed to approximate the exact solution within a
centain error §. Crack tip fields for mode I, plane strain are examined but in many cases
for which estimates cannot be found, the mode 11l counterparts have been examined. It is
assumed that the conclusions regarding the validity of asymptotic solutions are due to the
material behaviour, rather than the crack mede. Special interest is attached in the fact that
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the ellipticity of the governing equations seems to be very weak for common metallic
materials. The implication is that the process region is autonomous only when the plastic
2one is autonomous.

A common feature for the asymptotic stress and strain fields is that they can be
expanded in separable terms. This is something that can be expected when the govemning
equations are elliptic but it may not be so for hyperbolic equations and as a consequence
the strain field cannot be determined from an asymptotic analysis for perfectly plastic
materials. For all cases reviewed, the asymptotic solution for stresses can be expanded in
the form (see Fig. 2 for notations).

05 = QPR (NHZMO+OPREP () + (39)
and for cases of hardening materials strains can be written in the form

2)
g = e(l)Rt(l)(r) eljn(@ + Q}:mRtm E,-j @)+

. (40
where  the  terms W ROy >R VRP(rgy»..  and
RIVEVROrgy»>RP(rYRP (rg)>> - - for any fixed ratio rirg<l if ry ‘s sufficiently

small. Q& and Q0 are intensity factors.

Rice [19] showed that the Prandil slip line field provides the limiting stress state as
r—0 for a stationary crack in a plate of an elastic perfectly plastic material. Contained
plastic yielding and plane strain was assumed. One finds that all strain components
remain finite and the stresses are constant, as the crack tip is approached from ahead in a
sector ~m/4<¢<n/d. In the sectors mA<dp<3n/4 and ~3md4<h<-m/4,r™! singularities
result for the shear strain while all other strain components remain finite. The stress field
is of a centered fan type. The remaining parts adjacent to the crack surface are constant
stress sectors of the same type as the one ahead of the crack tip. The solution yields a dis-
placement discontinuity [u,] at the crack tip

K}
[“zl—-§(1+V)E

. (41)

Oy
where & is a numerical constant. Using a finite element method Levy et al. [20] estimated
€ to be 0.33 at small scale yielding. The numerical calculations showed that the solution
in (19) covers a substantial part of the plastic zone. Note that the angular distribution is
left undetermined by the asymptotic analysis.

An asymptotic stress and strain field for a static crack in a linearly hardening
material was given by Hutchinson [21]. As one might expect an Irwin-Williams type of
singularity (r~'"% dependent stresses and strains) is obtained as for a linearly elastic
matenial. A simple change of notation is made to the solution for the linearly elastic
material, i.e. E—(EE,)" where E, is the tangent modulus at plasticity and Poisson’s ratio
v is put to 1/2.
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It is readily noted that the limiting solution for £,—0 does not reduce to the solution

for the perfectly plastic material. In numerical calculations the region of validity for the
numerical solution is observed to decrease with decreasing tangent modulus E,. Simul-
taneously the solution in a region with an outer limit at say one fourth of the distance to
the elastic plastic boundary and an inner limit very close to the tip, coincides with the
asympitotic solution for the perfectly plastic material. Thus a solution that is well approx-
imated by the solution for the perfectly plastic material imbeds an asymptotic square-root
singular solution for which one may assume that the region of validity vanishes as the
perfectly plastic limit is reached. Since metallic materials of practical interest have har-
dening rates E,, typically less than 0.01E, it might be interesting to quantitatively exam-
ine the region of dominance for the asymptotic solution. The elastic plastic mode I prob-
lem poses extreme analytical difficulties, but since some information might be obtained
from the corresponding, analytically simpler mode 11l problem, this is instead chosen for
examination. The comparison is further encouraged since the same behaviour of the near
tip field has been observed at the transition from linearly hardening to perfectly plastic
materials for both the mode I and mode Il problems.

A solution for a static mode I1I crack in a body of a perfectly plastic material and a
small scale of plastic yielding was first given by Hult and Mcclintock [22]. The result
was later extended by Rice [23] for a strip geometry and large scale yielding. The shear
strain €,, is 0(r™") whereas €,, remains finite in a centered fan slip line field, which covers

the entire plastic zone.

If we introduce a hodograph with r=gF/(20¢,) on the crack surface, effective strain
€=[4/3(e% + e2)1', effective stress 0,=[3(c2+0¢)]"? and assume that proportional
loading prevails in the near tip region then the following equation (cf.[23]) results

de, °F oF

O, €, +g,=——~-AF=0 for A=135,.. . 42
““do, 92 ‘e, o (42)
The stress-strain relationship
G, S,‘j
g =g5+n|— -1 5 (43)

is assumed at plasticity, i.e. when 6,>0y. Here e are the elastic strain components, 7 is
a hardening parameter which equals 3/20y(def/da,) where g7 is the effective plastic
strain. Oy is the yield stress and s; is the stress deviator.

Equation (42) may be integrated in a straight-forward manner. However, the result-

ing implicit expressions for r become very lengthy already for A23. Thus, we write along
the crack surface as follows '
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3e,
] A (44)

2n

-1
9 Ha s D P
r=> 7 log[l+ 3, ] []+ n ] +ayf

where f({)—{™ when {—ec and t={6y/(9G))(0y/G + 21). G is here the shear modulus.
ap and a| are arbitrary constants. Inversion of (44) under the assumption that 4 is non-

Zero gives
9 a 1n
- 67_n+_H r } )

81  6uag | [ pag

n,
r |4
ay 9

If the assumptions of small scale yielding are invoked it can be shown that the solution is
obtained by putling ay = R, and a, = 0. After matching of the plastic zone to the linearly

elastic remote field one finds that

2
KII/

Oy

3

b= o (46)

For small scale yielding, mode I case and assumed proportional loading it can be shown
[23] that the shape of the plastic zone, for all values of 7, 1s circular and its radius equals
R,. Now the region of dominance for the asymptotic solution

-2
’
e 47)
can be estimated in relation to ag =R, which at small scale yielding is the radius of the

plastic zone but generally is just a load parameter related to the plastic zone size. Thus
we obtain

9 o, Oy+20n
r<—8cy———5—
16 (Gm)
For a material with a rather high hardening rate given by 11=500,/G, if a largest error & of

10% is allowed, the crack surface strain according to (45) can be approximated by the
asymptotic term (47) only for a distance from the crack tip

r<23107R,. (49)

R, (48)

The conclusion must be that the practical significance of the asymptotic solution even for
high hardening rates is very limited, for small scale yielding and probably also for many
cases of well-contained plastic yielding, since the region of validity at small scale yield-
ing is extremiely small, certainly when it is compared to the process region. It should be
emphasized that this might not be true for cases of a very large scale of yielding, for
which large strains in the crack tip neighborhood might promote the development of an
asymptotic one term field. If this is the case, then the conclusion must be that near tip
fields at smail scale yielding cannot be directly compared with those at large scale
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yielding.

Further it is noted by insertion of (47) arrd (48) into (43) that the effective stress, o,
is asymptotically independent of the hardening rate and about 7.70y at the border of the
region where the single term approximation is valid. Tt is suggested that stress strain rela-
tionships aken from tensile tests are of very lintle significance and should be used with
caution since one might question the reliability of the material behaviour assumed, and of
the extrapolation of experimental results to these high stress levels.

The dominating singular term in a series expansion for a power law hardening
material was given by Hutchinson [21] and Rice and Rosengren [24]. Al plasticity the
stress strain relationship

eij =71(0f/0y)"(51j/0() » i (50)

was considered, where 1} and n are hardening rate parameters. The von Mises yield cri-
terion and its associated plastic flow rule was chosen. The asymptotic radial dependence
of the so-called HRR-type is, both for mode 1 and mode 111, given by

Ry=r7'1(14n), (51)
for stresses and
Re=r"I(14n) , (52)

for strains. The angular functions attached to these functions of r were numerically
estimated for different hardening rates n.

In order to examine the relation of the asymptotically dominating field to higher
order terms in a series expansion for a near tip solution, we again choose the simpler
mode I case for inspection and refer to Eq. (42). A more general stress strain relation-
ship for plasticity is then assumed as
. (53)

g, =€;+M

After insertion into (40) a complex series expansion results. For finite values of G and n
and n>2 we find after some calculations that the leading terms of the expansion for g, are

given as
~ni{n+1) lin ~(n-1¥{n+1)
e = |- ey 4o (54)
ag n+l 3l dg

where a is a length parameter related to the remote load. The linear extension R, of the

plastic zone at small scale yielding for the material given by (53) is
R, =3"*""(2n)""Go'ay. In relation to R, the region where the one term approxima-

tion is valid is given by
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n+l
n+l Oy
r<[2n8 ZGT]R”' (55)

Assuming a fairly high hardening rate by choosing the parameters n=1, n=5 and a
ratio G/oy = 100, one finds that the region where the single term asymptotic solution (52)
is valid is given by

r<23107'%, . (56)

We conclude that the asymptotic solution is of minimal practical significance also for this
material. An important step in fracture analyses is to include rate effects. This has been
done not only for running cracks for which rate effects play an important role but also for
stationary cracks for which rapid changes of remote load may cause high strain rates.
Many investigations refer 1o visco plastic materials according to the so-called Perzyna
model, which for perfectly plastic materials can have the form \

g =¢g;+Q

m
c 8ij
——-1{ = for 6,20y ,
Oy

&
é,-j = é,; for o,<oy, (57)

where Q is a viscosity parameter. For stationary cracks it was shown by Riedel and Rice
[25] that the dominating singularity is of HRR-type (cf.(51) and (52)) if the exponent m is
greater than one. A square-root singular behaviour as for the linearly elastic material
dominates the near tip field for m less than or equal to one. In the latter case it seems rea-
sonable 1o use the intensity of this termn as fracture parameter. This is however only obvi-
ous if the region where the r~'2 singular term, in an expansion of the linear elastic near
tip field, dominates, and is considerably larger than the process region. At present there
does not seem to be any general result clarifying this quantitatively. It is an important
subject for further research. A visco plastic material of the Bodner-Partom type was
investigated by Achenbach, Nishimura and Sun [26]. They were able to show that the
asymptotic behaviour for a stationary crack is, as regards the particle velocity, o'
with r logr and r for second order terms. They also showed, by choosing as example a
titanium material, that the dominance of the ™' term is very limited. The boundary
value problem considered was a cracked plate which was instantaneousiy Joaded at small
scale yielding conditions. The near tip stress field was monitored at a very small distance
from the crack tip, i.e. 107 of the crack length. It was found that the stress field initially
is O(r‘“z) but very soon, after about 107%, the r log(r) term becomes significant. Furth-
ermore, afier about 4 107% even the two term solution =2 and r log(r) in combination
rapidly gives a very poor description of the particle velocity field, e.g. the error is as large
as 23% at 5 107%. Since the analysis was made for an instantaneously applied load the
conclusion for practical cases is that the r~"2-term is only significant if the rise time for
the full remotely applied load is less than 107%. For a practical case this means that if say
K;;=100MPaVm then K, has to be larger than 108MPaVm/s , which is an extremely high

rate,
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7. Fields At Moving Crack Tips In Different Materials

The earliest asymptotic solution for a quas! statically growing mode 1 crack in an elastic
perfectly plastic material was obtained by Slepyan [27). Influence of inertia was
neglected and a Tresca yield criterion and associated flow rule was used. The crack tip
field was shown to divide into four angular sectors. A point in the vicinity of the crack
tip experiences first a plastic constant stress sector and then a centered fan slip line sector
followed by an elastic unloading sector and finally a trailing plastic sector. Strains were
shown to vary logarithmically with r.

For Poisson’s ratio v=1/2 all isotropic yield criteria with associated flow rules are
equivalent at plane strain and thus the solution is also valid for von Mises materials. The
result was later extended for von Mises matenals and arbitrary v by Drugan, Rice and
Sham {28]. A fifth angular sector had 1o be inseried between the centered fan slip line
sector and the elastic unloading sector. This fifth sector is plastic with a stress field
which cannot be described as a slip line field.

Recently, Ponte Castaieda [29] has considered the problem of a quasistatically
growing crack in a linearly hardening von Mises materiaf (¢f. Eq. (41)). Solutions were
sought of the form

Oy

h=ap

]
r .
—13,,- ] Jovn). (58)

Here R, is a length parameter relaied to the linear extension of the plastic zone and
1’ =(1 +1G/oy)™". The exponent B was found to decrease with decreasing strain har-
dening. The general tendency for small values of 1’ suggest that B tends to a small but
finite value. The latter is inconsistent with the corresponding result found for the per-
fectly plastic material. It is however argued in [29] that the result for small values of 1°
might be anomalous, due to the numerical formulation, which implicitly assumes con-
tinuity in velocity and thus cannot deal appropriately with the possibility of discontinui-
ties or rapid changes in the velocity field,

in [29], the mode 1 case is considered as wel. The numerical results strongly sug-
gests that ﬁ_\fn_' for small values of ;" and it can indeed be shown analytically that this
result is valid as 1" —0. Stahle [30] has found that B:—0.83\r[l? in the limit. It can also
be shown that even though the general character of the fields is similar to the perfectly
plastic counterpan, the result is rather different in the limit 1" —0 as compared to the
result for perfect plasticity. Elastic unloading occurs at the angle ¢=19.71° for the per-
fectly plastic material whereas this angle- is 33.2° in the limiting case of a hardening
material with n° —0. It is not clear whether a second order solution can be found through
the limit analysis or not. By assuming. a priori, the same angular distribution as for the
perfectly plastic material, analytical calculations (cf.{30)) show that the particle velocities
are given asymptotically by
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-

! -B

R,

R_,, sin(¢) , (59)

¥n"
d3= A ‘

as 1" —0. A and B are constants that cannot be determined by the asympiotic analysis.
By choosing Ry = R, exp{log(A/B )I(2‘J1T)) the result (59) can, for small values of ", be
expanded in a logarithmic senes:

li3=2JAB

r T]. 3 T .
log Ry + 6 og R, + ]sm¢ (60)

One observes that this reduces to the result for a perfectly plastic material (cf.[29]), in the
limit as 0" approach zero. Assume for a moment that the exact solution to our boundary
value problem is given by

T N

sing . (61

r

Ry

li:; = VAB

Ro

Asymptotically the solution is approximated by

s —\AB |~ ad )
u3 =NAB —R: sing . (62)
The inequality
i - i 2’
S| <o (63)
U3 RO

is chosen for a limit below which w3 is considered to dominate the solution. If, for metal-

lic materials, a rather high hardening rate n° = 0.01 is chosen, the inequality (63) is ful-
filled for

r<107R,. 64)

By inspection of (61) one observes that the displacement rate is zero at r=R,. Since the

displacement rate at the elastic plastic boundary must be comparatively small, it seems
reasonable to assume that Ry is of the same order as the linear extension of the plastic
zone. Thus it is here argued that the range of validity of (62) is extremely sipall if we are
confined to metallic materials. In fact the single term ™" (or even r %Y1 ) solution is,
under these conditions, of very little practical interest since the extension of the region
where the single asymptotic term dominates is hardly larger than the process region and
certainly not imbedding it.

Steady state crack growth was investigated for power law hardening materials [31].
The solution has however not been verified in any other investigations. An atiempt 10
demonstrate the analytical result numerically a FEM analysis has been made but this
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does, according to the view of the present authors, not seem to be very reliable for materi-
als with reasonable hardening rates. The reason is that the solution [31] which predicts
0, «<[log(r)]"*" and g;=[log(r))"""*") does not diverge in any significant way from the
result for the perfectly plastic material, e.g. @ o const. and g;e<log(r). The character of
the secondary term has not, 1o the knowledge of the present authors, yet been obtained,
neither for the mode 1 nor for the mode 11l cases. The extent of the region where the solu-

tion proposed by [31] dominatess the near tip ficld can therefore not be estimated. On the
" other hand one can assume that the field in the outer pants of the plastic zone can be
expanded in a logarithmic series for which the leading term is the solution for the per-
fectly plastic material. Now one may ask "When do these two solutions diverge in any
significant way?". The answer can be found if we compare the two solutions for either
stresses or strains. We also assume that the two solutions give the identical result at, say
r=R,. Then the ratio has reached a factor 2 at 1.1 IO‘7R, and if a minimum factor of {0
is asked for, then this is found at r=exp(—10‘)-R,, which 1s at a ndiculously small distance
from the crack tip.

We now discuss crack tip fields at steady motion where inertia effects are con-
sidered. It was shown quite recently (Leighton et al. [32]) for the mode I problem of
steady crack motion in a perfectly plastic material for which the effects of inertia were
considered that particle velocities are asymptotically independent of the distance from the
crack tip. The result is based on the assumption that the hydrostatic stress is bounded.
The Tresca yield criterion was used together with von Mises flow rule which is reason-
able only for the case v=1/2. A log(r) term independent of the angle was ruled out as it
was shown that jumps in strain rate contradict the principle of maximum plastic work if
this term is retained. At vanishing crack speed the near tip strain field does not reduce to
quasistatic near tip field [28] and it is claimed in [32] that the region where the dynamic
crack tip field is valid vanishes as the crack propagation speed decrease 10 zero. It was
observed by Achenbach and Dynayevsky [33] that the stress state approaches the modi-
fied Prandtl slip line field for the perfectly plastic material.

Turning again to the mode I case, the asymptotic solution for €5, along the x;-axis

straight ahead of the crack tip
for a dynamically propagating crack is

c
€3 = — [-%-1]1:10). 5=0, (65)
a

due to Stepyan [27). Here 4 is the crack tip speed and C, is the shear wave speed. The
result for quasistatic crack growth (a=0) is ¢.1.[27].

£y = 1-—ln(r)+%ln(r)2 . x,=0. : (66)

The exact solution was obtained by Freund and Douglas (35] by means of the hodo-
graph transform. It reduces to the correct asymptotic behaviour (65) in the crack tip
vicinity and the solution reduces to (66) at every point on the crack line as the crack tip
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speed vanishes. Thus an estimation of the region of validity for the dynamic tip field (65)
is possible. It was assumed in [35] that dominance of the solution (65) prevails when the
ratio of magnitudes between the asymptotic solution (65) and the exact solution is 1/10.
Then, if a=0.2C, the region extends 1o less than 4-107® of the distance to the elastic plas-
tic boundary, along the crack plane. If a = 0.3C,, which in practice is a rather high crack
growth rate according to {35], it appears that the range of validity is less than 1/100 of the
distance to the elastic plastic boundary, i.e. less than the extension of a typical process
region.

For dynamic crack growth in linearly hardening materials, results due to Achenbach
et al [36] show that the asymptotic solution can be written:
B

— | T;(0.4) as r—0. 67)

c;; = Oy N
14

The parameter B and the angular functions X; were estimated numerically. It was noted
that the solutions converge to the quasi-static result [29] for vanishing crack tip speed.
The results also indicate that the crack tip speed C,, determined as (G,/p)"? where G, is
the plastic tangent modulus, is a limit beyond which solutions of the form (67) cannot be
found.

Regarding the asymptotic solution (67) one might, due to what was found for the
limiting steady state case and for the perfectly plastic case, have strong doubts whether
there is a significant region of validity in practical cases defined by, say a<0.3C, and
E, <0.01E. Unfortunately, results were only obtained for hardening rates higher than this
due to numerical difficulties. Recently, Ostlund and Gudmundsson [37), who considered
the same problem, also included the effects of reversed plasticity. Their resalts do not
significantly change the conclusions of [36].

It was shown by Lo [38] and Brickstad [39] that the Perzyna visco plastic material
model gives a linearly elastic near tip field for m<3. A quantitative analysis was per-
formed in [18] by means of a path independent integral for steady state situations
(c.f.(39)). The investigation shows that the strain rates near the tip of a running crack
(@=0.1C,) are so high in the major part of the plastic zone that for a typical ferrous
material elastic strains are dominating. It is thus claimed that the energy release rate in
this region is found by applying the square root singular solution for the linearly elastic
material. The findings for a linearly elastic material, where the series expansion

ok ™V 4 ey o+ kyr ' 4 o (68)

should be applied, suggest that the dominating r~/2 term might be valid only in a small
fraction of the zone where the elastic strain rates dominate. The prospect of finding an
autonomous near tip region is however somewhat better than for the other situations
reviewed in the present paper. We note that at a distance less than, say, 1/10 to 1/100 of
the plastic zone size the ratio between the ™" and the constant term is increased by a
factor 10 at the peripheral parts of the plastic zone. It seems that the asymptotic field
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supplies a few-parameter description of the process region characteristics within the
specific class of problems considered. It must however be noted that the frame work of
autonomy must be used with caution.

For a moving crack in a visco plastic material of the form (57) with m>3, Hui and
Riedel [40] (for the quasi static case) and Lo [38] (for the dynamic case) showed that the
singular field behaves as

O

i

. lim
é] rVmE(6) as r—0 . (69)

The most remarkable feature of this singularity is that it does not depend in any way on
the outer field and is thus not of use for formulating a growth equation. Again the exten-
sion of the zone where the singularity dominates may be very small as is indicated by
estimates in [38) and [40]. Yang and Freund [41] recently considered the mode IIl ver-
sion of the present problem with a2 modified constitutive relation. The difference with
respect to the relation (57) is that visco plastic relaxation is not permitted so that the
effective stress remains constant until the effective strain decreases, whereupon purely
elastic loading occurs. As a result an elastic wake exists behind the moving tip unlike the
situation for the original equation where the tip is completely surrounded by the visco
plastic field. In this way the solution will then contain an arbitrary magnitude constant.
Obviously, the question of the significance of this result requires further research espe-
cially in clarifying the nature of constitutive visco plastic relations at high strain rates.

We may note that all singular solutions presented in this section with the expection
of the visco plastic material with m <3, have an asymplotic behaviour that does not permit
any energy flow 1o the tip and that the path-area integrals discussed below cannot be used
to determine the singularity strength.

8. Path-Area Integral and Other Singularity Measures

The viewpoint advanced so far in this article is that if some particular constitutive model
has been adopied the crack growth equation should be formulated in terms of an ampli-
tude measure of the singulartty (Eq. (21)), provided that the process region is sufficiently
imbedded in the singular field. In most cases analytical solutions cannot be obtained and
there remains the problem of extracting the amplitude parameter from, say, a FEM-
solution. It is then important that the chosen way of evaluating the singular behaviour
does not depend on the particular way of discretizing the problem. In the authors® experi-
ence, it is often difficult to evaluate the amplitude directly from stresses and strains since
the singular solution is in many cases valid only over a very small region and the costs of
computing may be prohibitive. The use of special elements where the desired displace-
ment behaviour is incorporated in the element formulation can significantly reduce this
difficulty. Akin [42] has proposed a method for modifying the shape functions of an arbi-
trary iso-parametric element so that the displacements behave as r' P(0<B<1) for r—0.
In a study by Thesken and Gundmundson [43] this element is compared to conventional
elements for elasto-dynamic problems with a stationary crack tip. They find a certain
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improvement by using the Akin element, but an even better accuracy is obtained when
the stress-intensity factor is evaluated by means of a path-area integral.

It appears that the use of a path or a path-area integral is a great advantage when
evaluating the singularity strength. Recently Moran and Shih [44] discussed path
integrals and path-area integrals extensively. One of their main conclusions is that most
of the proposed path-independent integrals are variations of a basic result and can there-
fore not add any new knowledge about fracture problems. They noted however that
differences between the different integrals exist with regard to usefulness in numerical
evaluations. To this end they advocated the use of domain integrals. We shall here intro-
duce this class of integrals in a slightly different way from that used in ref. [44].

Let C be a curve enclosing the crack tip and let A denote the area enclosed by it.
The crack surfaces are assumed traction-free. Now a weight function g(x;) is introduced
of which should be differentiable within A. Consider now a path-area integral of the fol-
lowing form
1=¢

The integrand of the area-integral should be chosen so that / becomes indpendent of the
choice of C. Assume for the moment that C is a closed curve not enclosing the tip and
that the divergence theorem can be used on the line-integral. It is easily found that /
taken over a closed area is zero if Z is chosen as

w+ %pd;d, ‘5,/ ~ Oju;, |gn;dc + IZdA . (70)
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In the derivation of the last line the equations of motion and the definition of strain have
been used. Since the crack surfaces are traction free, / becomes independent of the
choice C when it encloses the tip. We note that under steady-state conditions, since
time-derivatives are replaccd by x,-derivatives, the second parenthesis of the last member

of Eq. (71) vanishes.
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For the particular case when g s constam and equal to unity within A and on C Enq.
(70) obtains the form

-4

This equation and integrals of similar form have been discussed by several authors (Atluri
[45], Kishimoto et al {46], Strifors {47) among others). If the crack growth is asymptoti-
cally steady-state it is obvious that the area integral vanishes for small areas around the
tip. Thus a finite, non-zero value of / can only come from the line integral and this only
if the integrand behaves as 0"y as r—0. Thus we cannot expect a finite value of / from
Eq. (70) for moving cracks in materials where the singularity is not of the elastic type.
This has been pointed out in [44]). Any finite values that are obtained from calculations
on moving cracks in rate-independent elastic-plastic materials are due to discretization
errors in the numerical procedure.

1 ..
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For stationary cracks there is a wider class of problems where the integral in Eq. (70)
can be expected to yield a finite non-zero value since, as seen previously, the singularities
for stationary cracks in most cases. give the r~'-dependence of energy density. The local
steady-state argument used for moving cracks is not relevant for stationary cracks. The
area-integral vanishes however for an infinitesimal path for the following reasons. If the
fields at the tip can be written as Eqs. (13)-(15) the first two terms of the integrand cancel
each other in the limit. The particle velocity and acceleration are non-singular and the
strength of the singularity of the displacement gradient is such that the area-integral van-
ishes for infinitesimal areas. This leads to the condition that the J-integral, which is the
first part of / in Eq. (70), is asymptotically path-independent for stationary tips.

Another choice of the weighting function is employed in [44], where it is required
that g4 approach unity at the tip and be zero on the curve C. Then the line-integral van-
ishes and the remainder (i.e. the second term in Eq. (68)) is the domain integral discussed
in [44}. Since ¢ goes to unity at the tip, this domain integral will yield the same value of
I as Eq. (70) and the comments made above are relevant also to this case.

It is of interest to investigate if some other choice of the weighting function can give
finite non-zero values for cases when energy density has a weaker singularity than =",
Suppose that ¢ is chosen so that the resulting integrand of the line integral is precisely
0(r™') as r—0. Then the line-integral gives a finite value. It is however seen that the first
part of the integrand of the area-integral then behaves as 0(r~) for r—0 and the area-
integral is divergent as Inr for r—0. Thus it seems that the present type of integrals are
of no use in determining the singulanity strength for moving crack tips in materials that do
not behave asympiotically elastic and one is instead forced to use direct observation of
stress or stain components. In fact it does not seem to be possible to construct a path or
path-area integral that remains path independent and at the same time yields bounded,
non-trivial values for cases when the energy is not 0(>™").
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Other singularity measures have been suggested for use in fracture criteria, most not-
ably the crack tip opening displacement (CTOD) and the crack tip opening angle
(CTOA). The problem with these is that, except for some special cases, they cannot be
unambiguously related to the singularity strength and therefore tend 1o depend very much
on the calculation model (e.g. the mesh division in a FEM analysis). The problem is
equivalent to that of extracting the singulanty strength from calculated displacement
values and there seems to be no special reason to attach any particular significance to the
CTOD or the CTOA, especially since these are difficult to observe directly in experimen-
taton.

9. Initiation of Quasi-Static Crack Growth in Elasto-Plastic Materials

Numerous articles have been written on the subject of quasi-static crack growth initiation
and propagation in materials that can be described by an elasto-plastic constitutive model.
Consider first the initiation of growth. Since in this case the integral / (Eq.(70)) gives a
non-trivial value, which in most cases is a unique measure of the singularity strength, it
seems appropriate o base a criterion on this quantity. In common practice the J-integral,
which is the first part of (70), is used. If the integration path is taken in the near vicinity
of the tip J will coincide with / even in situations where the loading system is non-
proportional. It has been verified by several studies (c.f.Shih{48]) that under monotonic
one-parameter loading the state in the entire structure of commonly used specimens is
near proportional loading so that path-independence of J 'is obtained even for more
remote integration paths. However, in many situations of practical interest, several
independent load systems may act on the body and the loading state may be far from pro-
portional. The safest course is to use the complete expression for /. A particular problem
occurs for non-hardening materials (c.f.Broberg{2]). Here the angular variau.ons of the
strains are not given by the asymptotic solution as discussed above and a unique charac-
terization with the J-integral is-not possible in a strict sense.

In practice empirical or semi-empirical procedures are often used to evaluate J. In
most cases these procedures are based on the assumption of proportional loading and may
be unreliable in more complex loading situations. Some progress in this direction hag
been reported by Sonnerlindh and Kaiser [49], who find good agreement between an
approximate procedure and FEM results for non-proportional loading of single-edged
notched specimens.

Consider now experiments performed on different geometries of the same material
under uniform environmental conditions but varying loading conditions. If inaccuracies
in the experimental procedure and material scatter can be neglected, a properly calculated
singularity parameter should be constant at-crack growth initiation for the different exper-
iments. Systematic differences in the results will then be due to loss of autonomy with
respect to the chosen model. One reason for this is that the process region, as previously
defined, is too large. Another reason may be that the bulk properties of the material are
not modelled accurately enough. The distinction between these causes is diffuse and
according to our definition of autonomy both can be considered to give loss of autonomy.
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As a particular example consider inaccuracy in the modelling of strain hardening.
Different assumptions about the hardening properties lead to different singularities which
in principle are not comparable. If, however, significant discrepancies from the assumed
hardening only occur for high values of strain the zone with deviating material behaviour
may be so small that autonomy with respect to the chosen models prevails. It appears
more important to model the material properties at low values of strain than at high
values. The procedure of converting hardening materials into perfectly plastic materials
using the mean value of yield strength and ultimate strength, which is common in
engineering type fracture criteria, seems questionable in light of these arguments.

When the assumption of autonomy with respect to the singularity strength parameter
fails, one possible way is to consider other terms in a series representation of the fields
around the tip. The success of such a procedure depends on how well separated the con-
tributions from different terms are, and can not be expected to work well for materials
with a low degree of hardening. Furthermore, the fracture criterion will then contain
several parameters which considerably complicates evaluation and prediction.

In many investigations it is is assumed that crack growth starts when some measure
of strain or stress at a fixed distance in front of the iip reaches a critical value. This dis-
tance is chosen with regard to the physical properties of the material, such as the spacing
between inclusions. Whether the criterion is based on stress or strain depends on the anti-
cipated fracture mechanism. For a ductile fracture the-criterion is based on a strain meas-
ure, such as the effective plastic strain, while for a cleavage failure the stress 0, is usually
chosen.

These criteria are special cases of a more general type which we here term activation
zone criteria. The crack growth is assumed to be governed by some functional of stress
and/or strain evaluated over a field volume, the activation zone. These models have some
similarity with the process region models in that the crack growth behaviour is governed
by the state in a finite volume as opposed 1o criteria based on the singularity parameters.
The activation zone models do, however, differ markedly from process region models
since the possible processes in the activation zone are assumed not to affect the constitu-
tive behaviour of the material, Another difference is of course that the activation volume
is fixed and its determination is not a part of the solution as is the case for process region
models.

Clearly, if the activation zone is contained within the curve C; defined above, an

activation zone criterion is equivalent to a singularity based criterion. If it is larger than
the region where the singular field dominates, the fracture criterion will obviously be
dependent on the non-singular parts of the fields. Whether it is meaningful to assume the
presence of a large activiation zone and at the same time neglect all possible changes of
the material behaviour seems doubtful to the present authors.

The activation zone models are mostly not used as altemnatives to singularity param-
eter models. More common is t0 assume the crack tip field to be determined by the
singularity parameter and to use an activation zone criterion on a smaller scale in order to
predict the dependence of the critical singularity parameter on other variables such as
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temperature or physical material properties. One advantage with such a procedure is that
fracture toughness can be connected to conventional material properties, such as fracture
strain, at least in a formal way. This can also be achieved by use of process region
models at the expense of considerably more complicated calculations. It should be
pointed out that the general argument given above against activation zone models is
equally relevant for the case when the activation zone is wholly contained within C;.
since in the near tip region it is most likely that the constitutive behaviour is different
from the assumed one.

If a singularity parameter criterion is adopted and material parameters such as yield
stress, hardening moduli etc. are kept fixed it is immaterial whether the crack growth cri-
terion is based on Qg or Q; since these are then uniquely related. If, on the other hand,
the fracture behaviour is studied as function of a quantity such as temperature that affects
the constitutive properties it can be of interest to base the fracture criterion on different
singularity parameters. A reasonable assumption would be that cleavage ¥racture is
governed by O, and ductile fracture by Q.. It is assumed that the crack sizits to grow if
one of the criteria (73) and (74) are satisfied.

Q5(/:0y ... ) 205, (13)
Qe(/:6y,... ) 205™ (74)

Depending on the chosen constitutive model, different parameters will enter the expres-
sions for Q4 and Q.. By varying some quantity (e.g. temperature) the critical value of J
can be found as function of this quantity. It is howeer necessary that the type of singular-
ity remains the same, otherwise no comparisons are possible without introducing a finite
length into the model.

10. Quasi-Static Crack Growth in Efasto-Plastic Materials

Al moving tips in elasto-plastic materials the character of the singularity is considerably
different from that of a stationary tip. Since the asymptotic behaviour is such that the
terms in the integrand of the /-integral do not have r™' dependence, this integral cannot be
used to calculated the singularity strength from say 2 FEM computation. As far as the
authors know there is no general method for doing this. Although recently the under-
standing of singularities at moving crack tips has been considerably advanced, it is ony
for one particular case that definite results for the connection of singularity strength and
other loading parameters has been obtained. Rice and coworkers (]50),[51) and [28])
derived the following result for growth under smalf-scale yielding conditions in an elastic
perfectly plastic material with yield stress 6y. The swength of the outer elastic field is

given by the value of J equal to X FO-VAYE.

Oy I,
u2(¢=1t)=xr?ln—r‘ as r—0, 5)
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r=A —5 exp

EJ
ay

1+ %—E——@»] . (76)

The dimensionless constant ¥ is given by the asymptotic solution, while the con-
stants A and { must be determined by a complete solution, and this was done for the
small-scale yielding case from FEM-calculations in [S1]. The parameter r, characterizes

the crack surface displacement uniquely and it is reasonable to state the growth equation
in terms of r,. Rice et al [51} investigated the criterion that r, is maintained constant dur-
ing growth and gave results for J as a function of crack growth.

Extension of these results to cases with more extensive yielding appears cumber-
some. Rice et al [51] conjecture that the functional form of the singularity remains the
same for many cases although the parameters x and { will depend on the particular prob-
lem and will not in general be constants. Furthermore, the complete asymptotic stratn
distribution contains functions of ¢ that are problem dependent so that in a strict sense a
one-parameter description of the crack tip state can never be obtained for a perfectly plas-
tic material. It is also not clear which parameter should be chosen to measure of the outer
field.

In the analysis of refs.[50]-[51] no reference is made 10 the definition of J and this
parameter is mainly chosen for convenience since its meaning in small-scale yielding is
well-defined. Rice et al [51] discuss different definitions of J. They define Jp as the

deformation theory value, i.e. essentially the J-value that would result if the crack tip
remained stationary and were monotonically loaded to the actual load level, while Jg is

defined as the value that would result from a formal evaluation of the line integral taken
around a remote contour for a growing crack. In {51] the relative merits of these different
definitions with respect to theisr use in Eq. (75) is discussed in a qualitative manner, but
this discussion does not give conclusive evidence that any one of these measures is
appropriate for characterizing the singulanty strength. In conclusion, there are few argu-
ments for a unique problem independent J-Aa relation in perfectly plastic materials that
is valid for all scales of yielding. Indeed the analysis of [51] indicates a pronounced
geometry dependence for low values of dJz/0a where J; denotes the resistance as meas-

ured inJ. A discussion of these questions has also been made by Broberg [3].

For hardening inaterials the J-integral has also been suggested as a suitable parame-
ter, but on rather different grounds as compared to the approach for perfectly plastic
material. The basic arguments were given by Hutchinson and Paris [52]. They argued
heuristically that, subject to certain restrictions, a singular field of the deformation theory
type prevails outside the zone near the tip where the unloading effects make the deforma-
tion theory assumption non-valid. Using the terminology used in this paper, in model 1
the siress state is essentially one of radial loading so that a deformation theory is applica-
ble. Model 11 is the same problem solved for an incremental plasticity law. Hutchinson
and Paris argue that the extent of C,, i.e. where loading path effects are important, is of

the same order as the amount of crack growth. Furthermore, in order to ensure that a
deformation theory field develops, they require that the strains produced in the outer parts
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of the plastic zone by the increase of the external loading dominate over the strains due to
the increase in crack length. These requirements lead to two criteria for application of the
so-called J-controlled crack growth.

Aa<w, min(a,b) an
daJ J
aa > 5 (78)

where b is the remaining ligament of the body.

The values of the constants ®, and ®, have been subject to discussion and several

experimental investigations have been devoted to the determination of these. However,
the geomnetries tested are not very different and also differences in materials between the
different investigations make any more definite conclusions difficult.

We have not been able to find any analytical or numerical work that verifies that a
deformation theory singularity actually is maintained during crack growth up to the limits
indicated by (77) and (78). As discussed previously the existence of an observable defor-
mation theory field is not necessarily required for autonomy with respect to a deformation
type model to prevail. This aspect seemns, however, not to have received any atiention.
Some of the resuits discussed previously regarding singular fields in hardening materials,
cast some doubt on the possibility of autonomy with respect to the deformation theory
model, since the extent of the region where the hardening singularity prevails is
extremely small at least for smalil-scale yielding in materials with norma! hardening
behaviour.

Another question that so far has not been extensively studied is which measure of
the external field should be used to charcterize the strength of the singularity. Bven if a
deformation theory field is maintained it remains to relate it to the outer loading. Clearly
if such a singularity prevails and the loading outside the plastic zone is proportional then
the J-integral evaluated for the actual state around a path enclosing the plastic zone will
be a unique measure of the state within the zone. If the assumptions of Hutchinson and
Paris [52] are satisfied then Jg, as defined previously, is an appropriate measure. In the
case when the deformation theory field dees not prevail the question becomes more com-
plicated. It is then not ascertained that either J¢ or Jp, as defined above, are appropriate

measures of the singularity strength.

In practice often Jp is used. It follows from the previous discussion that its use is
only justified for the hardening case provided it coincides with J¢. If the hardening
singularity does not develop, neither the use of Jr or Jp has been shown to describe the
near tip state except for small-scale yielding.

An example has been analysed numerically in order to determine whether there are
any significant differences between these measures. A center crack tensile configuration
was studied and the finite element model of one quarter of it is shown in Fig. 5. The

material was assumed to be linearly hardening with a tangent modulus of 0.01 E which is
a fairly high value for metaltic materials. The material is assumed to harden isotropically
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and follow the Mises flow criterion and the associated flow rule. The FEM-calculations
were performed with ABAQUS[53] in the following way. First J, was calculated from
runs with stationary cracks in the interval 0.475 <a/d<0.525. Jp was evaluted as function
of the nominal load with the virtual crack extension force method as well as from a line
integral evaluation. The integration path was taken outside the plastic zone boundary and
as a result Jp(0g.a) was obtained. A Jg—Aa relation of the following form was now
assumed

JR =Jc+C_/A(1. (79)

From Eq. (79) together with J,(0g.a) the load Gy(a) was obtained as function of crack
length assuming an initial length a.

In the second step calculations were performed where the crack was advanced
through the mesh by the nodal relaxation technique. The relation between load and crack
length (0(a)) obtained in the previous step was assumed for these calculations. The J
value was then calculated by using line integral evaluation for the growing crack. The
results from one such simulation of crack growth are shown in Fig. 6. The scale is non-
dimensionalized by divided J by J3 = (aoy’/2.5E). a is chosen as the mean crack length
0.5d. With this scaling one unit on the J-axis corresponds to the ASTM-limit for small
scale yielding. The particular Jg—Aa curve assumed for this run and also the Jp—Aa
curve is shown in the figure. Also shown are the elastically calculated J¢ values for the
actual load and crack length. The most remarkable feature is the approximate equality of
Jp and Jp, which is also found from the rigid plastic solution in [51]. It should be
pointed out that in [51] other configurations were considered for which Jp, deviates sub-
stantially from Jr. An isolated example of this kind does not permit any far-reaching

conclusions, but at least it is demonstrated for this case that the current practice of using
Jp is not unfounded. For the question of whether Jr or Jp, is a suitable measure of the

singularity strength, the present analysis does not fumish any answers. This would
require analyses of different configurations with a much finer mesh, so that the near tip
field could be resolved.

In conclusion there remains a lot of research to be done before the theory of quasi-
static crack growth in elastic-plastic materials can be said to be well understood. Of par-
ticular importance are methods for relating the singularity strength to external loading.
Equally important is to obtain a good estimate of the extent of the region where the singu-
larity is dominant in order to judge its physical significance. A particular issue of interest
is the effect of the hardening. The results discussed here indicate that for normal degrees
of hardening the material could as well be considered as perfectly plastic at least for
moderate levels of yielding. For many problems of contained plasticity an analysis along
the lines of ([50]-[S1]) appears to be more relevant than an analysis founded on the
assumption of pronounced hardening.
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Obvicusly there is a legitimate engineering interest in obtaining simple methods
capable of estimating the loading bearing capacity much less accurately than what is
aimed for in scientific studies. Several such methods do exist, e.g. options | and 2 of the
R-6-method (54]. The main problems with methods of this kind is that they are essen-
tially empirical methods, i.e., they have been constructed more or less directly on experi-
mental observations. The results of these experiments are expressed in terms of a few
easily calculated variables. Then by bounding the experimental points in the space of
these variables, this space is divided into a safe and non-safe region. Obviously this kind
of method works well if the object under consideration is sufficiently similar to the
objects that were the basis for the method. The predictive capacity of such methods for
situations far from the experimental basis is potentially smaller than for methods with a
firmer theoretical foundation.

11. Dynamic Crack Growth Initiation and Propagation

The term dynamic crack growth, encompasses situations in which inertia effects or strain
rate effects on the material behaviour become important. This can be the case at initiation
of crack growth if the applied loading is rapid enough. Such effects also become impor-
tant for rapid growth of cracks and possible arrest even if the loading is of quasi-static
nature.

The main problems of analysing dynamic crack growth dre of the same nature as for
quasi-static growth. Usually, a model with a point-sized process region is used. The
strength of singularity for the chosen constitutive model has to be evaluated in the analyt-
ical treatment and then to be cormrelated to experimental results. All of the difficulties
connected with this procedure that have been mentioned for the quasi-siatic case remain,
and additional ones due to inertia and strain rate effects are added.

The problem of initiation of growth from a stationary crack has mostly been
analysed assuming purely elastic behaviour, Methods to take transient dynamic loading
into account are now well established and the calculations are routine. However, the
experimental studies performed have not been successful in demonstrating the applicabil-
ity of dynamic elastic fracture theory. Results from different investigators performing
expenments on the same material show little coherence (c.f.Nilsson[55}). These
discrepancies can partly be ascribed to weaknesseés in the experimental techniques. The
main problem is that of determining when crack growth occurs. Despite the efforts
devoted to this problem a reliable method still does not exist, with the possible exception
of costly high speed photography. Another possible cause of the discrepancies is that
linear elastic’ theory is not sufficient. Some analyses for particular cases of non elastic
material behaviour have been performed (c.f.Nakamura et al(56]-{57], Little et al{58}-
(59]), but more systematic approaches are lacking. The forms of the singular fields are
known, since these' will coincide with the quasi static results for stationary cracks, but the
extent of the region where the singular solution dominates may be extremely small. In
principle the path area integrals may be used to calculate the strength of the singularity,
but the nurnerical resolution needed to get accurate results may be prohibitive in many
cases.
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For rate independent elastic plastic material models the only difference compared
with the quasi-static situation is the presence of inertia effects which, according to the
preceding discussions, ought not to influence the singular field. Thus assuming a
correctly performed and accurate analysis, observed differences in the critical quantities
are due to rate and history effects in the process region. These are however difficult to
distinguish from other rate dependencies.

For rate dependent materials rate effects influence the states in the tip vicinity.
Assuming the visco plastic constitutive relation (57) the following relations for appropri-
ately normalized intensity factos 0, and 0, can easily be derived.

QOQ,:(]—VZ)
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J 5 v—0, (80)
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2:=Q Eoy (81)

Calculating J(¢) the ifﬁensity factors Qg and Q, can be obtained by solving (80) and (81)
and obviously the time histories of these will in general be different. Intuitively, one
would expect Qg to be larger than for the corresponding rate independent problem, and

Q; to be smaller. If a fracture criterion is based on Q, the critical outer fracture parameter
will decrease with increasing rates and the reverse if the criterion is based on Q.

Little et al [58] have performed small scale yielding calculations assuming a consti-
tutive relation similar, but not equivalent, to the Perzyna model. In the present authors’
opinion their finite element mesh was probably too crude for resolving the singular fields
properly, but still their analysis show the expected behaviour. In [59] it was further
shown that history effects apart from the instantaneous loading rate may be of impor-
tance. The main conclusions from the reasoning presented here and in [58)-{59] seem to
be substantiated by experimental findings. For ductile fracture mechanisms, i.e.
corresponding to a criterion based on Q,, the fracture toughness seems to increase with

increasing loading rate (c.f. Costin and Duffy(60]). For cleavage type fracture, toughness
is generally decreasing with the loading rate ([60], Wilson et al[61]).

In comparison to the relatively scarce analyticaly work on dynamic crack growth ini-
tiation, the problem of dynamic crack growth propagation has attracted many investiga-
tors. However, non linear analyses of properly performed experiments have not been
made except in a few cases. The analytical approaches can presently only be viewed as
giving qualitative indications of the fracture behaviour.

Unlike the situation at initiation, inertia effects influence the state at the tip of a run-
ning crack. The form of the singularity for a dynamically moving mode I crack in a rate
indpendent elastic perfecily plastic material has not yet been completely clarifizd.
Numerical analyses of the complete smali-scale yielding problem for this case, assuming
steady state conditions, have been performed by Lam and Freund [62] for the mode ] case
and by Freund and Douglas [35] for the mode 1lI case. In the latter case the complete
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analytical solution for €35 is known and it remains only to determine a length parameter
Rp. This was done in {35] from finite element calculations. By assuming that a constant
value for £3; or £, should be maintained at a fixed distance in front of the tip, a relation
between the applied stress intensity factor X; and the velocity could be obtained. It was
found that the ratio (K,,;/K);c), where K¢ is the corresponding quasi-static critical
value, increases with the tip velocity, slowly for small velocities and then a rather rapid
increase at velocity levels that depended on €;. Since the asymptotic solution for the
dynamic case is not of the same form as the quasi-static result for a—0, a similar com-
parison based on the singularity parameter is not possible. However, the general trend
that K;;; increases with increasing velocity is preserved also for a growth equation based
on the singularity strength. For the mode I case no analytical solution is known and the
authors of {62} had 10 rely on direct numerical resuits. In {62] the growth law was instead
based on the crack surface displacement at a fixed distance behind the tip. Similar obser-
vations as for the mode 11l case were made. As noted by these authors, the finite element
mesh used was probably 0o crude to resolve the singular field, but judging from the
mode 111 results the general conclusion would most probably remain.

For rapidly moving crack tips rate effects are probably always imporntant. These are
mostly modelled by use of elastic visco-plastic matenals. By an elegant approximate
method Freund and Hutchinson {18] were able to derive a relation between % and the
applied J-value for small scale yielding, steady state, mode 1 growth in visco plastic
materials that admits an elastic singular field (e.g. m<3 in the Perzyna type mode! (57)).
This analysis was subsequently refined with the aid of numerical analyses (Freund et
al{63], Mataga et al [64]).

Adopting the criterion that a constant value of y should be maintained during growth
these authors derived relations between the applied elastic energy release rate J and the
velocity @ for a case corresponding to m=1 in (57). Typically the applied J decreases
with increasing velocity for low speeds, reaches a minimum and increases for high velo-
city. The shape of the curves depends on a dimensionless parameter which in prinicple is
a measure of how the total energy consumption is divided into plastic dissipation and
fracture energy. It is claimed that the suggested criterion is suitable for cleavage crack
propagation.

For ductile crack growth the criterion of a critical plastic strain at a fixed distance
from the tip is preferred in {64]. Results are preserited for the mode IlI case, showing a
monotonically increasing J- with velocity. These curves differ from the rate independent
‘ones in that they increase more rapidly for low velocities, One may question if it is real-
istic to assume the critical distance to remain unaffected by velocity in view of substantial
changes of the fields that occur for high velocities. If, for example, the criterion that the
strains in the singular field (plastic or total) should be maintained constant, the velocify
dependence of J~ would be identical to that of assuming a constant singular stress field,
since both stresses and strains are controlled by the inner stress-intensity factor. For low
velocities the behaviour would then be the same as assuming 7y to be a constant, while a
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more rapid increase would result for high velocities.

The question of deciding the proper fracture criteria for rapidly propagating cracks
certainly needs more study. Even if it appears from the continuum solutions that the
singular elastic field for rapidly moving cracks has a relatively larger extension than the
singular fields for quasi statically moving cracks, it may also be that the process region
effects may be more pronounced because of temperature increase and diminishing wave
velocities. In [64] it is conjectured that ¥ may be an increasing function of the velocities
and this would explain some of the reported experimental results. This may wel} be true
but it should be remembered that the analyses discussed so far are only for the small-scale
yielding case. Wide-spread plasticity is often encountered in crack propagation experi-
ments with simifar results as for the quasi-static case. This is, for example, evident in the
work of Brickstad (39] who performed numerical visco plastic analyses of experiments,
of which some clearly could be classified as large scale yielding. vy was calculated by
nodal relaxation and, in view of the relatively crude mesh used, it is questionable whether
the resolution was good enough to obtain the singular energy flow. Still, Brickstad was
able to show that y calculated in this way correlaled well with the velocity for tests that
had experienced quite different degrees of yielding. The investigation [39] is so far the
only completed one of this kind. but similar work is underway within the HSST-project
[65]. This type of research is extremely valuable in order to obtain a sound basis for
dynamic fracture thoery.

12. Concluding Remarks

In this anticle we have tried to outline the current knowledge of basic problems of fracture
theory and 10 stimulate further research devoted 10 several unresolved issues. The expost-
tion is admittedly far from complete, several imporant subjects such as stability condi-
tions, coupled thermomechanical analysis, statistical aspeets etc. have been left out of the
discussion. Our account of the vast experimental material available in the literature is
almost negligible. This is partly due to our limited knowledge of the experimental work
and partly due to the difficulty in finding experimental results that either verify or
disprove the analytical models conclusively. Experimental research is extremely impor-
tant and it is only through properly conducted combined analytical and experimental
investigations that real progress in fracture theory can be achieved. It is important to
remember that experimental work should not be aimed at developing "the best procedure”
of producing toughness numbers. Indeed, as Jong as one can find reports where such con-
cepls as the specimen dependence of fracture toughness are readily accepted, fracture
mechanics has failed its purpose.

The main emphasis in this article has been conditions under which the singular crack
tip field obtained from continuum solutions can be used to formulated fracture criteria.
Not much in the way of providing conclusive answers have been given, instead it seems
that further research is needed especially for clarifying the interaction of fracture
processes and butk deformation.
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Figured: Integration contour for Y
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