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Fig. 13a. Displacement deviations for the edge crack calculation when compared with
the small scale yielding calculation, both calculations with singular crack tip.

E; = 0.05E; op=0.230y
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The maximum extension of the plastic zone is 0.05a.



Fig. 14a. Displacement deviations for the edge crack calculation when compared with

the small scale yielding calculation, both calculations with singular crack tip.
E,=0.05E; og=0.460y
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The maximum extension of the plastic zone is 0.19a.



Fig. 18a. Displacement deviations for the edge crack calculation when compared with
the small scale yielding calculation, both calculations with cohesive zone: Op/y = 8.
E;=0.01E; op=0.230y
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The maximum extension of the plastic zone is 0.05a; the length of the cohesive zone is
5-10-5a



Fig. 15a. Displacement deviations for the edge crack calculation when compared with
the small scale yielding calculation, both calculations with singular crack tp.
E; =0.01E; 0p=0.230y
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E/E

relative deviations of displacement

Tg/oy 3 IEh*P p rP)‘l 0 rPJIDi]
0.23 1 0.055 0.018 0.0059 0.0022
0.12 0.05 0.041 0.020 0,016 0.0080
0.23 0.05 0.058 0.046 0.031 0.024
0.34 0.05 0.084 0.076 0.058 0.043
0.46 0.05 0.104 0.112 0.091 0.070.
0.12 0.01 0.042 0.023 0.024 0.015
0.23 0.01 0.059 0.061 0.051 0.036
0.34 0.01 0.085 0.099 0.088 0.065
0.46 0.01 0.106 0.124 0.137 0.105



Fig. 22. Dimensionless displacement v {UDE}:’KF as a function of the dimensionless
coordinate x (op/Ky)? for the two different geometries. E; = 0.01E; 6y = 0.340y. The
cohesive stress is Op/0y = 8.
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Fig. 21. Dimensionless displacement v {r.rDE}fKrz as a function of the dimensionless
coordinate x (Op/K1)? for the two different geometries. E, = 0.01E; 0 = 0.230y. The

cohesive stress is Op/0y = 8.
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Fig. 20. Dimensionless displacement v (GpE)/K? as a function of the dimensionless
coordinate x (0p/K)? for the two different geometries. E, = 0.05E; oy = 0.460y. The
cohesive stress is Op/0y = 8.
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Fig. 19. Dimensionless displacement v (opE)/K}? as a function of the dimensionless
coordinate x (op/Kp)? for the two different geometries. Ey = 0.05E; 0g = 0.230y. The

cohesive stress is op/0y = 8.
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Fig. 7a. Stress components O, Gg and trg as functions of @ for a constant radius r,
The distance from mcmckupurpIIMWharurpwmcﬂmdehsm zone in

front of the crack tip. The material is perfectly plastic. The Prandtl slip line field
stresses are shown in grey.
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Fig. 16a. Displacement deviations for the edge crack calculation when compared with
the small scale yielding calculation, both calculations with cohesive zone: Op/Cy = 8.

E, = 0.05E; 0p=0.230y

crack tip

The maximum extension of the plastic zone is 0.05a; the length of the cohesive zone is
2:10-4a



Fig. 17a. Displacement deviations for the edge crack calculation when compared with
the small scale yielding calculation, both calculations with cohesive zone: op/oy = 8.
Et = (.05E; Op= ﬂ'.dﬁﬁy

The maximum extension of the plasic zone is 0.19a; the length of the cohesive zone is
7-104a



Fig. 7b. Stress components G, Gg and 1,9 as functions of 8 for two different constant
radii: r = rp/100 and r = rp/2. rp is the extension of the plastic zone in front of the
crack. The hardening rate in the plastic zone is E = (0.01E. In the the first diagram the
square root singular terms in the Williams ﬂsi{m are shown in grey; in the second
the Prantl slip line field terms. These fields are normalized so that og has the same

value for as the FEM results for 8=0.
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Fig, 8 Dimensionless length d(opy/Ky)? of the cohesive zone for different cohesive
stresses Op/Cy and different hardening rates E(/E
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Fig. 9. Dimensionless displacement v (6pE)/K1” as a function of the dimensionless
coordinate x (0p/Kp)? for different hardening rates in the plastic zone. The cohesive
stress is Op/Oy =4
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Fig. 12. Deviations from the square root singular displacement field for an edgecrack
with plastic zone, E; = 0.01E The load is half the load at the ASTM-limit. The

deviations in front of the crack has a minimum of 7.6%.
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Fig 11. Stress deviations from singular crack tip solution due to a cohesive zone with op/Oy = 8;
E; = 0.05E.
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r/d for relative deviations of stress

a
ol E/E pld 1% 2%
. 1 - 24.7 11.1
4 0.05 10.1 11.0 5.99
8 0.05 72.6 14.6 6.58
4 0.01 42.0 14.8 7.15
8 0.01 290 15.8 7.66
r/d for relative deviations of displacement
/0y E/E 1% 2% 5%
- 1 16.5 7.45 334
4 0.05 8.86 4.07 . 1.38
8 0.05 10.4 4.36 1.50
4 0.01 8.37 3.76 1.29
8 0.01 7.33 3.33 1.0
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