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Layers and laminate properties

Metal foil (fully annealed AA1200 aluminium) Sti↵ and Brittle
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Polymer (PolyEthene LDPE, LD270) Weak and Soft
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The laminate (homogenized, plane stress) Sti↵ and Ductile
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Necking vs fracture

Fracture toughness of aluminium is ⇡ 24 MPam1/2.
Measured toughness of an 9µm aluminium foil is 3.5 MPam1/2 due to
necking.

The stress intensity factor is

K ⇠ sheet thickness1/2

A sheet thickness > 400µm is needed to restore K

Ic

fracture control.

The largest load per unit of length

P ⇠ sheet thickness3/2

A sheet thickness > 32µm is needed to provide the strength of a non
necking 9µm aluminium foil.



The fracture mechanical test

Test specimen geometry:

Crack lengths 2mm to 45mm,
width 95mm and height 230mm

ASTM (D882-91): 2.5kN load cell,
load speed 7 mm/min

15keV Hitachi TM-1000-Tabletop SEM

50µm slices using a Leica mikrotome

Coated in a Cressington 108 auto sputter.



Test results

Stress vs. strain for

tensile tests a) Al-foil

(Majeed &Sharif, 2012),

b) Polymer (Jemal

&Katangoori, 2011)

a) Stress vs. strain for

the laminate. b) Load vs.

extension. Summary of

the aluminium, polymer

and laminate results.

Crack length 45 mm.

(Kao-Walter et al., 2002)



Cross sections of the homogeneous materials
Without crack the polymer thickness decrease from 27µm to 10µm.
(Jin&Wang, 2009). Here with a 45mm central crack.

Micrographs of the fractured cross-sections of freestanding polymer (left)
and freestanding aluminium (right) layers stretched to fracture. Holders are
seen on the sides of the specimen.



Profiles laminates

Micrographs of localised plastic deformation in a double-sided coated alu-
minium. (left) Initiation of necking and (right) complete fracture of the
aluminium layer.



The fracture process

1. Blunting of the crack tip to a su�cient width

2. A band of localised straining develops

3. Load carried decreases with decreasing neck cross-section

(Barenblatt, 1959), (Dugdale, 1960), etc.

4. The polymer delays the necking of the aluminium foil

(Kao-Walter, 2002), (Xue&Hutchinson, 2007), (Li&Suo, 2007), (Jia&Li, 2013)

5. The neck in the aluminium gives local straining in the polymer

6. The polymer does what it can to resist large straining

7. The polymer fails through necking (at a very small average strain)



 

(Hutchinson, 2013) 

 
�B/�A = 0.002 or �A/�B = 0.002

NA = NB = 0.1 and hA/hB = 2

Blunting line 



Work of failure

Strip yield zone ahead a crack tip. a) the crack geometry in the plane

z = 0. b and c) the slip region as seen in a plane x = const.



Localised plastic deformation



Mechanics of the neck
F , per unit of length
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Mechanics of the neck
von Mises e↵ective stress, �
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F , per unit of length
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Strength of the necking region
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Cohesive properties

Force in the y�direction per unit of length in the x�direction versus dis-
placement across the band of localised strain. The force represents the load
carrying capacity of the band of localised strain.



Work of failure, critical stress

Work of failure - J-integral for a path surrounding the cohesive zone:
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Critical stress based on cohesive zone law and an assumed small scale
yielding.
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Material parameters

Comparison of structural and material parameters for the di↵erent
test specimenV.

Al-foil LDPE laminate

h[µm] 9,0 27 36

E [GPa] 71,0 0.126 17.9

�[�] 0.3 0.45 0.3

�
b

[MPa] 73.0 8.0 26.6

J
c

[N/m] 188 82.6 109



Critical stress

Force vs. crack length of LDPE, Al-foil and Laminate.



 
 

(Jia&Li, 2013) 
Neo-Hookean polymer and power-law metal (N=0.1)  
S= EH/Kh = 0.005 



Conclusions

The initiation of necking in an aluminium foil is delayed by a weak
polymer layer.

The polymer is preliminary expected to increase the toughness of the
aluminium by 10% but is found add near a 100%.

A necking model predicts the toughness of the single aluminium foil
and the aluminium-polymer laminate but fails to describe the single
polymer film.

A mechanism for a propagating necking might be arranged with
proper materials selection.


