

Fracture of a Thin Laminated Foil: Lecture at ECF20 Trondheim, Noway. Orationem Meam.

Ståhle, P.

2014

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Ståhle, P. (2014). Fracture of a Thin Laminated Foil: Lecture at ECF20 Trondheim, Noway. Orationem Meam.

Total number of authors:

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Fracture of a Thin Laminated Foil

Per Ståhle, Sharon Kao-Walter, Rickard Hägglund, Eskil Andreasson, Nasir Mehmood

Solid Mechanics, Lund University Mechanical Eng., Blekinge Inst. of Technology Svenska Cellulosa Aktiebolaget, SCA Tetra Pak Packaging Solutions, Sweden

Layers and laminate properties

Metal foil (fully annealed AA1200 aluminium) Stiff and Brittle

$$t_A=9\mu$$
m, $E_A=71$ GPa, $\sigma_{bA}=73$ MPa, $\nu_L=0.33,~F_A=12.5$ N

Polymer (PolyEthene LDPE, LD270) Weak and Soft

$$t_L=27\mu \text{m},~E_L=126 \text{MPa},~\sigma_{bL}=8 \text{MPa},~\nu_L=0.45,~F_L=2 \text{N}$$

The laminate (homogenized, plane stress) Stiff and Ductile

$$t_{lam}=36\mu\mathrm{m},\;E_{lam}=18\mathrm{GPa},\;\sigma_{b\;lam}=27\mathrm{MPa},\;\nu_{lam}=0.3,\;F_{lam}=22.5\mathrm{N}$$

Necking vs fracture

Fracture toughness of aluminium is ≈ 24 MPa m^{1/2}.

Measured toughness of an $9\mu\mathrm{m}$ aluminium foil is 3.5 MPa $\mathrm{m}^{1/2}$ due to necking.

The stress intensity factor is

 $K \sim \text{sheet thickness}^{1/2}$

A sheet thickness $> 400 \mu m$ is needed to restore K_{Ic} fracture control.

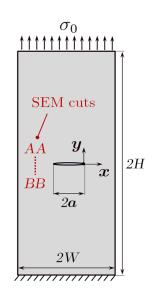
The largest load per unit of length

 $P \sim \text{sheet thickness}^{3/2}$

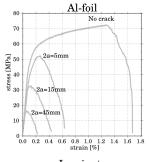
A sheet thickness $> 32 \mu {\rm m}$ is needed to provide the strength of a non necking $9 \mu {\rm m}$ aluminium foil.

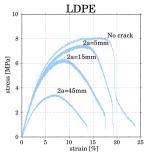
The fracture mechanical test

Test specimen geometry:

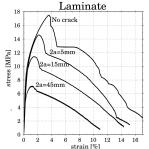

Crack lengths 2mm to 45mm, width 95mm and height 230mm

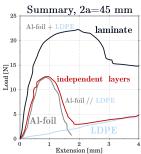
ASTM (D882-91): 2.5kN load cell, load speed 7 mm/min


15keV Hitachi TM-1000-Tabletop SEM

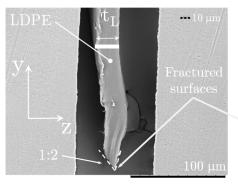

 $50\mu\mathrm{m}$ slices using a Leica mikrotome

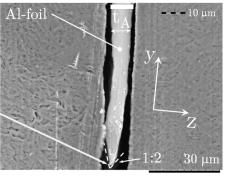
Coated in a Cressington 108 auto sputter.




Test results

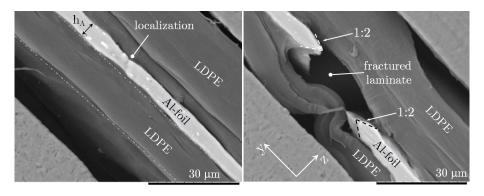
Stress vs. strain for tensile tests a) Al-foil (Majeed &Sharif, 2012), b) Polymer (Jemal &Katangoori, 2011)




a) Stress vs. strain for the laminate. b) Load vs. extension. Summary of the aluminium, polymer and laminate results. Crack length 45 mm.

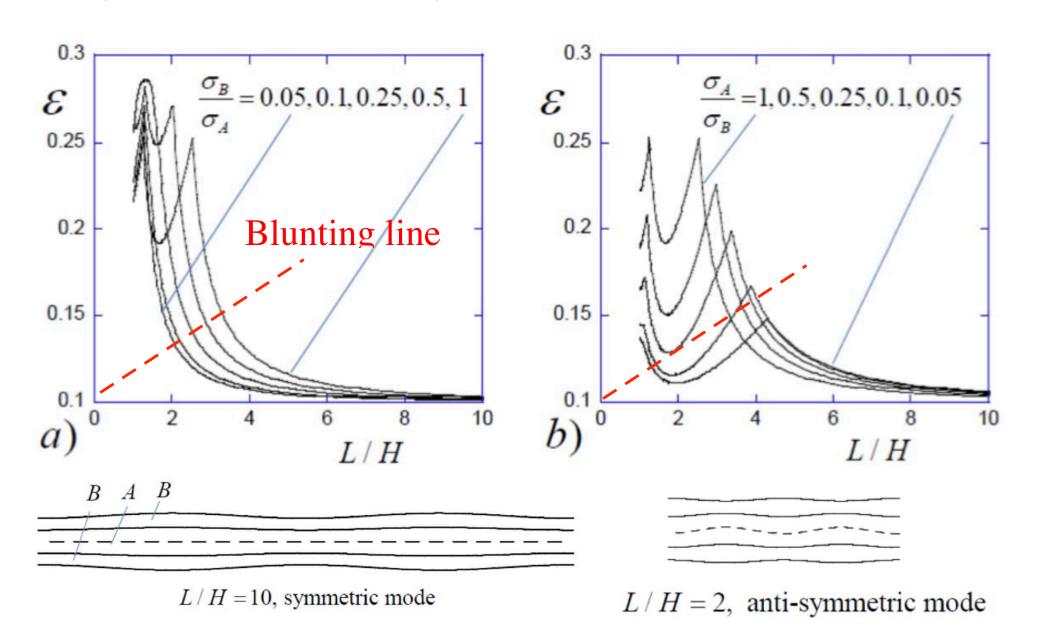
(Kao-Walter et al., 2002)

Cross sections of the homogeneous materials

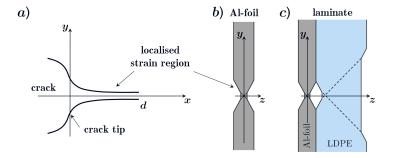

Without crack the polymer thickness decrease from $27\mu m$ to $10\mu m$. (Jin&Wang, 2009). Here with a 45mm central crack.

Micrographs of the fractured cross-sections of freestanding polymer (left) and freestanding aluminium (right) layers stretched to fracture. Holders are seen on the sides of the specimen.

Profiles laminates


Micrographs of localised plastic deformation in a double-sided coated aluminium. (left) Initiation of necking and (right) complete fracture of the aluminium layer.

The fracture process


- 1. Blunting of the crack tip to a sufficient width
- 2. A band of localised straining develops
- 3. Load carried decreases with decreasing neck cross-section (Barenblatt, 1959), (Dugdale, 1960), etc.
- 4. The polymer delays the necking of the aluminium foil (Kao-Walter, 2002), (Xue&Hutchinson, 2007), (Li&Suo, 2007), (Jia&Li, 2013)
- 5. The neck in the aluminium gives local straining in the polymer
- 6. The polymer does what it can to resist large straining
- 7. The polymer fails through necking (at a very small average strain)

 $N_A = N_B = 0.1$ and $h_A/h_B = 2$ $\sigma_B/\sigma_A = 0.002$ or $\sigma_A/\sigma_B = 0.002$

(Hutchinson, 2013)

Work of failure

Strip yield zone ahead a crack tip. a) the crack geometry in the plane z = 0. b and c) the slip region as seen in a plane x = const.

Localised plastic deformation

Mechanics of the neck

F, per unit of length

$$F = \sigma_y t = \frac{2}{\sqrt{3}} \sigma_b t \approx 1.15 \sigma_b t \,, \tag{1}$$

$$F = \frac{2}{\sqrt{3}} (\sigma_{bA} t_A + \sigma_{bL} t_L), \qquad (2)$$

$$V - V_o = (h_A + \delta - t_A)(h_A + t_a)/2 + t_A^2 - h_A^2 = \frac{1}{2}(\delta + t_A - h_A)(t_A + h_A).$$
 (3)

$$t_{\mathcal{A}}(\delta) = h_{\mathcal{A}} - \delta. \tag{4}$$

$$\frac{\mathrm{d}z}{\mathrm{d}y} = \pm \frac{h_A - t_A}{h_A + \delta - t_A} = \pm \frac{1}{2}.$$
 (5)

$$dz/dy = \pm 1$$
. $dz/dy = \pm 1/3$,

Mechanics of the neck

von Mises effective stress, σ_e , and the stress at break, σ_b , becomes

$$\sigma_e = \sqrt{\frac{(\sigma_x - \sigma_y)^2}{2}} = \frac{\sqrt{3}}{2} \sigma_y \approx 0.866 \sigma_y = \sigma_b, \qquad (2)$$

F, per unit of length

$$F = \sigma_y t = \frac{2}{\sqrt{3}} \sigma_b t \approx 1.15 \sigma_b t \,, \tag{3}$$

$$F = \frac{2}{\sqrt{3}} (\sigma_{bA} t_A + \sigma_{bL} t_L), \qquad (4)$$

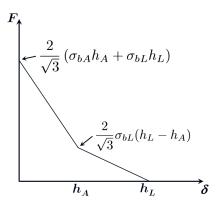
$$V = (h_A + \delta - t_A)(h_A + t_A)/2 + t_A^2$$

$$V - V_o = (h_A + \delta - t_A)(h_A + t_a)/2 + t_A^2 - h_A^2 = \frac{1}{2}(\delta + t_A - h_A)(t_A + h_A).$$
 (5)

$$t_A(\delta) = h_A - \delta$$
 . (6)

Strength of the necking region

$$t_A(\delta) = h_A - \delta$$
 and $t_L(\delta) = h_L - \delta$ for $\delta < h_A$, (8)


$$t_A(\delta) = 0$$
 and $t_L(\delta) = h_L - \delta$ for $h_A \le \delta < h_L$, (9)

$$t_A(\delta) = t_L(\delta) = 0$$
 for $h_L \le \delta$. (10)

Force per unit of length:

$$\begin{cases}
F = \frac{2}{\sqrt{3}} [\sigma_{bA} h_A + \sigma_{bL} h_L - (\sigma_{bA} + \sigma_{bL}) \delta] & \text{for } \delta < h_A, \\
F = \frac{2}{\sqrt{3}} \sigma_{bL} (h_L - \delta) & \text{for } h_A \le \delta < h_L, \\
F = 0 & \text{for } h_L \le \delta.
\end{cases} (11)$$

Cohesive properties

Force in the y-direction per unit of length in the x-direction versus displacement across the band of localised strain. The force represents the load carrying capacity of the band of localised strain.

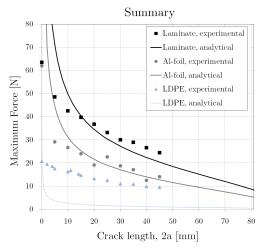
Work of failure, critical stress

Work of failure - J-integral for a path surrounding the cohesive zone:

$$J_c = \frac{1}{h_A + h_L} \int_0^d F(\delta) \frac{\partial \delta}{\partial \nu} d\nu = \frac{1}{h_A + h_L} \int_0^{h_A + h_L} F(\delta) d\delta.$$
 (11)

$$J_c = \frac{1}{\sqrt{3}} \left(\frac{\sigma_{bA} h_A^2 + \sigma_{bL} h_L^2}{h_A + h_L} \right) . \tag{12}$$

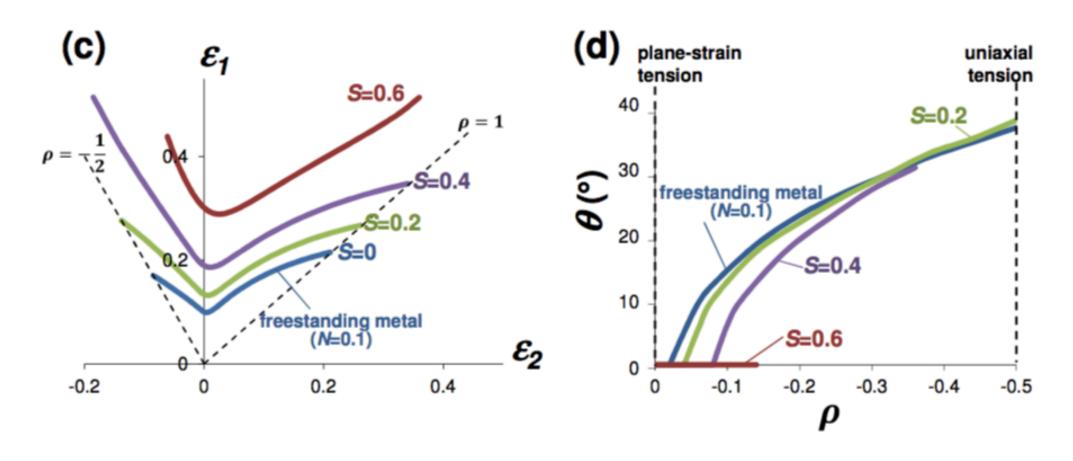
Critical stress based on cohesive zone law and an assumed small scale yielding.


$$\sigma_{c} = \sqrt{J_{c} \frac{E}{\pi a}} \frac{1}{\phi\left(\frac{a}{W}\right)} = \sqrt{\frac{1}{\sqrt{3}} \left(\frac{\sigma_{bA} h_{A}^{2} + \sigma_{bL} h_{L}^{2}}{h_{A} + h_{L}}\right) \frac{E}{\pi a}} \frac{1}{\phi\left(\frac{a}{W}\right)}.$$
 (13)

Material parameters

Comparison of structural and material parameters for the different test specimens.

	Al-foil	LDPE	laminate
$h[\mu m]$	9,0	27	36
E [GPa]	71,0	0.126	17.9
υ[-]	0.3	0.45	0.3
σ_b [MPa]	73.0	8.0	26.6
J_c [N/m]	188	82.6	109


Critical stress

Force vs. crack length of LDPE, Al-foil and Laminate.

Neo-Hookean polymer and power-law metal (N=0.1)

$$S = EH/Kh = 0.005$$

Conclusions

- The initiation of necking in an aluminium foil is delayed by a weak polymer layer.
- The polymer is preliminary expected to increase the toughness of the aluminium by 10% but is found add near a 100%.
- A necking model predicts the toughness of the single aluminium foil and the aluminium-polymer laminate but fails to describe the single polymer film.
- A mechanism for a propagating necking might be arranged with proper materials selection.