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Abstract
This study employs extreme value analysis to estimate 10-, 50-, and 100-year return levels of wave run-
up and annual dune erosion on the basis of 40 years simulated data from Ängelholm Beach, Sweden. 
The offshore wave climate is computed with the SMB-formulations and propagated nearshore with the 
SWAN wave model. The runup is computed with a Hunt-type equation and the erosion with an impact 
formula. The results show that the dune crest elevation is in general higher than the most extreme runup. 
The volume of sediment in the dunes is sufficient to protect the developed hinterland in the short-term 
perspective; however, long-term effects due to sea level rise and gradients in longshore sediment transport 
are not considered and may change this conclusion. 
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Sammanfattning
I den här studien används extremvärdesanalys för att beräkna våguppspolning och årlig dynerosion med 
10, 50, och 100 års återkomsttid. Frekvensanalysen baseras på en 40 år lång tidsserie med simulerad 
dynerosion och våguppspolning från Ängelholms strand i Skälderviken. Med SMB-metoden beräknas 
vågor ute till havs som sedan transformeras till kustnära vågor i vågmodellen SWAN. Våguppspolningen 
beräknas med en formel av Hunt-typ och dynerosionen med en semi-empirisk formel som relaterar  
erosionsvolymen till vågornas kraft mot dynen. Resultatet visar att dynhöjden längs den största delen av 
stranden är högre än den mest extrema beräknade våguppspolningen. Dynerna längs stranden skyddar ett 
bakomliggande bostadsområde mot översvämning och erosion. Beräkningarna visar att dynvolymen idag 
skyddar mot skador som kan uppkomma vid extrema stormar. Emellertid har inga långtidsförändringar 
av dynvolymen till följd av stigande havsnivåer eller gradienter i den kustparallella sedimenttransporten 
beaktats i denna studie.
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Introduction
Nature-based coastal protection, such as dunes, 
has in the recent decades been gaining ground over 
more conventional methods, e.g., grass-covered 
dikes, and rock and concrete structures (Borsje et 
al., 2011; de Vriend et al., 2015; Hanson et al., 
2002). Along vast stretches of sandy coastlines, 
dunes provide a multifunctional protection against 
flooding and erosion (Doody et al., 2004; Louisse 
and Van Der Meulen, 1991; Nordstrom, 2000; 
van Vessem and Stolk, 1990). During storms, 
dunes protect the hinterland through preventing 
or mitigating inundation and wave overtopping, 
while supplying sediment to the berm and bar 
where wave energy is being dissipated (Sallenger, 
2000). From a risk management perspective, the 
dune height in relation to the wave runup level and 
the dune volume to the eroded dune volume are 
of interest. In this study, we explore the extreme 
value distributions of wave runup and annual dune 
erosion at a study site in south Sweden, Ängelholm 
Beach (Figure 1). The aim is to estimate 10-, 50-, 
and 100-year return levels of wave runup and an-
nual dune erosion to assess coastal safety.

Study site
Ängelholm Beach is located in Skälderviken Bay 
between Rönne River and Vege River. The beach is 
micro-tidal, and  the semidiurnal tide has an aver-
age amplitude of about 5 cm and a spring tide am-
plitude of up to 20 cm (SMHI, 2013). The wind 
climate is dominated by winds from SW to W. 
The beach has a sheltered location in the bay but 
is impacted almost yearly by storm surges and large 
waves from the NW, causing beach and dune ero-
sion (Palalane et al., 2016). During onshore winds, 
a significant local wind setup can occur in the bay 
and storm surges typically occur in combination 
with large waves. The dune height and volumes are 
varying alongshore. The dune crest height is de-
creasing from north to south and in the northern 
part of the beach, the dunes protect the developed 
hinterland from flooding and erosion (Almström, 
2010). In this part, the front dune is the primary 
defence against flooding and damage to buildings 
behind the beach.  

Wave runup
Wave runup can be defined as the time-varying 
location of the shoreline water level about the still 

Figure 1. Overview maps with observation stations (left) and longshore distance from Rönne River mouth  
(right) (Hallin et al, 2019).
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water level, where the still water level is the level 
that would have occurred without the presence of 
waves (Holman and Sallenger, 1985). Runup is an 
important parameter when assessing coastal safety 
and the vulnerability of dunes. The impact of waves 
on dunes can be divided into four different types ac-
cording to the storm impact scale (Sallenger, 2000); 
swash, collision, overwash, and inundation. The 
storm impact scale is governed by the wave runup 
level in relation to the beach and dune morphology 
(Figure 2).

In the swash regime, the waves only reach and 
erode the foreshore and do not impact the dune. In 
the collision regime, wave run-up collides with the 
base of the dune; sediment is eroded from the dune 
and deposited on the beach or transported offshore. 
During overwash, the waves reach over the foredunes 
and wash sand landwards at the same time as sed-
iment is eroded from the dune as for the collision 
regime. Inundation means that the entire front dune 
ridge is inundated with water; the dune is then im-
pacted by surf-zone like processes (Sallenger, 2000).

The total runup is a combination of swash and 
wave setup (Hedges and Mase, 2004; Holman and 
Sallenger, 1985; Stockdon et al., 2006). Wave setup 
implies an increase of the water level at the shore-
line and a decrease – set-down – at wave breaking in 
the surf-zone. The theoretical explanation for wave 

setup is that a gradient of excess momentum flux 
associated with wave breaking must be balanced by 
a slope of the sea level (Longuet-Higgins and Stew-
art, 1964). Swash can be described as the motion 
of breaking, non-breaking, or broken waves wash-
ing up on the beach. The setup and swash motions, 
both from infragravity (long waves) and incident 
band waves, are commonly described as a function 
of deep-water wave height, deep-water wave period, 
and a representative slope (Stockdon et al., 2006).

When designing coastal structures, wave run-
up is an important design parameter; therefore, 
large efforts have been put into the development 
of methods to compute runup on structures  
(EurOtop, 2018; Hunt, 1959). Runup equations 
for natural beaches have not been as widely de-
veloped and used (Holman and Sallenger, 1985; 
Stockdon et al., 2006). A problem when working 
in natural systems is the definition of a representa-
tive slope. Much of the data used to develop runup 
equations have been produced in laboratory experi-
ments with uniform bottom slopes, or two uniform 
composite bottom slopes (Hunt, 1959; Mayer and 
Kriebel, 1994; Saville, 1958).

On natural beaches, it is more difficult to define 
a representative slope. Mayer and Kriebel (1994) 
developed a method to calculate wave runup on 
composite-slope and concave beaches, where a rep-

Figure 2. The storm impact scale for barrier islands by Sallenger (2000).



230 VATTEN • 2 • 2019

resentative slope was defined between the incipient 
breakpoint and the runup limit according to the 
definition by Saville (1958). Stockdon et al. (2006) 
defined the representative slope as the average slope 
over a region +/- two times the standard deviation 
of a continuous water level record. However, for 
practical applications, continuous water level re-
cords are not always available and the bathymetry is 
changing, especially during storms. Thus, it is not 
always feasible to compute a representative slope 
for every wave and water level condition. Holman 
and Sallenger (1985) found that the foreshore slope 
was a proper estimate for incident and infragravity 
swash, while the offshore bar system had some in-
fluence on wave setup at low tide.

Dune erosion
Dune erosion is a threat to the coastal safety, and thus, 
many analytical and numerical methods have been 
developed to quantify dune erosion due to the impact 
of waves and water levels (Larson et al., 2004). The 
analytical models are based on the equilibrium profile 
(Kriebel and Dean, 1993; Steetzel, 1993; Vellinga, 
1986) or wave impact approach (Larson et al., 2004; 
Nishi and Kraus, 1996; Overton, Fisher, and Young, 
1988). The equilibrium approach assumes that the 
beach adjusts towards an equilibrium state with the 
wave and water level conditions (Bruun, 1954; Dean, 
1977). The new equilibrium is approached through 
erosion of sediment from the beach and the dune, 
and deposition in the subaqueous part of the profile 
(Vellinga, 1986). In real situations, storm surges and 
wave conditions are time-varying, and the storm du-
rations typically are too short to reach a storm equi-
librium profile (Larson et al., 2004).

The wave impact approach is a more physics- 
based method, assuming that the dune erosion is a 
function of the frequency and intensity of wave im-
pact. The eroded weight – or volume – of sediment 
is assumed to be proportional to the force acting on 
the dune, where the force equals the change of mo-
mentum flux of the bores impacting the dune (Over-
ton, Fisher, and Young, 1988). Based on this concept, 
Larson et al. (2004) derived an analytical model 
where the dune erosion is proportional to the square 
of the runup level above the dune toe. The impact 

equation is combined with a Hunt-type runup equa-
tion so that the dune erosion can be computed from 
deep-water wave conditions in combination with still 
water levels (SWL), which is practical for engineering 
applications. Following a site-specific calibration of 
the empirical coefficient in the formula, the model 
showed good agreement with both field data and lab-
oratory data (Larson et al., 2004).

The advantage of analytical models is that they 
are easy to use and fast to apply with a small amount 
of required input data, making them suitable for 
approximate estimations over large spatial scales. 
In more detailed studies, numerical methods such 
as SBeach (Larson and Kraus, 1989) or XBeach 
(Roelvink et al., 2009) are commonly used.

The numerical models typically require more 
computational effort and user skill than the ana-
lytical models. Following the objectives, and rele-
vant time and spatial scales of this study, a reduced 
complexity analytical model is preferred. The ana-
lytical dune erosion model by Larson et al. (2004) 
was therefore selected. It offers a physics-based, yet 
simple schematization of a complicated process.

Extreme value analysis
Extreme value theory is used to analyse data and to 
predict events with low probability. Typically, ex-
treme value analysis is used to determine the return 
period, Tr, for a specific event, or the return level, 
Xp, corresponding to a specific return period (e.g., 
100 years). The return period is the inverse of the 
probability of exceedance, p, Tr =1/p.

By extrapolation, return levels can be predicted 
for return periods that are longer than the data se-
ries. The theory is based on the assumption that the 
tail of an arbitrary distribution can be approximated 
by an extreme value distribution. Hourly or daily 
measurements of e.g. wave runup are generally nor-
mal or Rayleigh distributed (Hughes, Moseley, and 
Baldock, 2010), whereas the tail with the highest 
values, follows an extreme value distribution.

The highest observations are selected either as 
block maxima (e.g., the highest observations dur-
ing each year) or as exceedances over a high thresh-
old. The modelled observations should be inde-
pendent and identically distributed. Block maxima 
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are assumed to follow a Generalized Extreme Value 
distribution (GEV) and peaks over thresholds to 
follow the Generalized Pareto Distribution (GPD).

When assessing coastal vulnerability, runup and 
coastal erosion are typically computed for a design 
storm. The design storm conditions are a combi-
nation of wave and water level conditions, with a 
specific duration. The design conditions can be de-
termined by multivariate extreme value analysis or 
taken as the most extreme observation.

In this study, instead of calculating a design 
storm, return values of runup and dune erosion are 
determined by extreme value analyses of simulated 
data based on a 40-year long data set of simultane-
ous wind and water levels.

Method
Hourly values of wave characteristics, runup, and 
dune erosion were calculated in 59 points distrib-
uted with approximately 100 m distance along-
shore. The calculations are based on wind and 
water level observations from the measurement 
stations indicated in Figure 1 during the period 
01/07/1976 – 30/06/2016.

Wave climate
Energy-based significant wave height, spectral peak 
period, and wave direction were calculated at the 
outer bay using the SMB formulations for wave 
hindcasting (USACE, 1984). The formulations 
were modified with a memory function, as used 
by Hanson and Larson (2008), so that antecedent 
wave conditions were taken into account, both for 
wave growth and decay. Wind data was collected 
from the SMHI station Hallands Väderö (Figure 1) 
and the bathymetry from EMODnet Bathymetry 
portal (http://www.emodnet-bathymetry.eu).

The waves were transformed nearshore using the 
SWAN model (Booij, Ris, and Holthuijsen, 1999) 
for Skälderviken Bay (Figure 3). A nested model-
ling approach was used to simulate the nearshore 
wave propagation, using a 500-m grid size for the 
bay model and 100 m for the nearshore model 
(<10 m depth). Since no wave measurements from 
the bay were available for calibration, default model 
parameter settings were applied.

Figure 3. Extent of the bay and nearshore wave model 
together with the bathymetry of Skälderviken.

Energy-based significant wave height, Hm0, mean 
wave period, Tm0, and wave direction were extract-
ed from the SWAN model at 5 m depth before 
breaking. Hm0 is approximately equal to the sig-
nificant wave height, HS, at this depth. The mean 
wave period is transformed to significant period, 
TS, following the relation described by Kitano et 
al. (2002), with the peak enhancement parameter 
of the JONSWAP spectrum set to 3.3, which is 
default in SWAN,

The extracted waves were transformed to breaking 
depth using an explicit formula (Larson, Hoan, 
and Hanson, 2010). The explicit formula com-
putes wave height, Hsb, and wave angle towards the 
shore normal, αb, at incipient breaking based on 
a simplified solution of the wave energy flux con-
servation equation combined with Snell’s law. Hsb 
is computed for a depth induced breaking with a 
breaker depth ratio, γb=0.78,

where db is the breaking depth.
The wave transformation using SWAN and 

In this study, instead of calculating a design storm, return values of runup and dune erosion are 
determined by extreme value analyses of simulated data based on a 40-year long data set of 
simultaneous wind and water levels. 
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Hourly values of wave characteristics, runup, and dune erosion were calculated in 59 points distributed 
with approximately 100 m distance alongshore. The calculations are based on wind and water level 
observations from the measurement stations indicated in Figure 1 during the period 01/07/1976 – 
30/06/2016. 

2.1 Wave climate 
Energy-based significant wave height, spectral peak period, and wave direction were calculated at the 
outer bay using the SMB formulations for wave hindcasting (USACE, 1984). The formulations were 
modified with a memory function, as used by Hanson and Larson (2008), so that antecedent wave 
conditions were taken into account, both for wave growth and decay. Wind data was collected from the 
SMHI station Hallands Väderö (Figure 1) and the bathymetry from EMODnet Bathymetry portal 
(http://www.emodnet-bathymetry.eu). 

The waves were transformed nearshore using the SWAN model (Booij, Ris, and Holthuijsen, 1999) for 
Skälderviken Bay (Figure 3). A nested modelling approach was used to simulate the nearshore wave 
propagation, using a 500-m grid size for the bay model and 100 m for the nearshore model (<10 m 
depth). Since no wave measurements from the bay were available for calibration, default model 
parameter settings were applied. 

 

Figure 3 Extent of the bay and nearshore wave model together with the bathymetry of Skälderviken. 

Energy-based significant wave height, Hm0, mean wave period, Tm0, and wave direction were extracted 
from the SWAN model at 5 m depth before breaking. Hm0 is approximately equal to the significant 
wave height, HS, at this depth. The mean wave period is transformed to significant period, Ts, following 
the relation described by Kitano et al. (2002), with the peak enhancement parameter of the JONSWAP 
spectrum set to 3.3, which is default in SWAN, 

01.15s mT T   (1) 

The extracted waves were transformed to breaking depth using an explicit formula (Larson, Hoan, and 
Hanson, 2010). The explicit formula computes wave height, Hsb, and wave angle towards the shore 
normal, αb, at incipient breaking based on a simplified solution of the wave energy flux conservation 
equation combined with Snell’s law. Hsb is computed for a depth induced breaking with a breaker 
depth ratio, γb=0.78, 

sb
b

b

H
d

    (2) 

where db is the breaking depth. 

The wave transformation using SWAN and the explicit formula account for wave refraction and wave 
shoaling. The runup and dune erosion equations employ the equivalent deep-water wave height, H’s0 
and H’rms0, respectively. Only the onshore component of the incoming wave energy is accounted for in 
the run-up and transport equations according to, 

cossby sb bH H   (3) 

where Hsby is the wave height representing the onshore energy flux (Hanson and Larson, 2008). 
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The significant wave height is transformed to root-mean-square wave height by, 
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2.2 Wave runup 
For this study, Stockdon’s runup equation (Stockdon et al., 2006) was first tested but gave 
unrealistically low values. Instead, the maximum runup, R2%, here defined as the runup height of the 2 
% largest waves, is computed following the method described by Hedges and Mase (2004), which 
includes swash and wave setup, 

 '
2% 0 00.34 1.49sR H    (9) 

where ξ0 is the Irribaren number defined as, 
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the explicit formula account for wave refraction 
and wave shoaling. The runup and dune erosion 
equations employ the equivalent deep-water wave 
height, H’s0 and H’rms0, respectively. Only the on-
shore component of the incoming wave energy is 
accounted for in the run-up and transport equa-
tions according to,

where Hsby is the wave height representing the on-
shore energy flux (Hanson and Larson, 2008).

The equivalent deep water significant wave 
height, H’s0, is computed through a reversed shoal-
ing (see e.g. USACE, 1984),

where KS is the shoaling coefficient defined as,

The wave group velocity in deep water,     , and 
the wave group velocity at breaking, Cg, assuming 
shallow water wave theory, is defined as,

where g is the acceleration due to gravity.
The significant wave height is transformed to 

root-mean-square wave height by,
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within the study area. The slope within this depth 
range was fairly uniform across-shore, but has a 
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SMHI-station in Viken, due to local wind setup in 
the bay. Assuming a rectangular shaped bay, neg-
ligible bottom friction and stationary conditions, 
wind setup, Δh, was calculated according to (US-
ACE, 1984),

where            is the water density,        the air density, 
CD the drag coefficient, Wx the onshore wind speed 
component, LB the bay length, and d the average 
depth in the bay. In a previous study (Palalane et 
al., 2016), CD was calibrated to 2.3∙10−3 by fitting 
equation 13 to the observed difference between 
water level in Ängelholm and Viken during on-
shore winds.

Dune erosion
The dune erosion is calculated using the impact 
formula (Larson et al., 2004). The runup equation 
associated with the impact formula does not ac-
count for longshore variation of foreshore slope. A 
foreshore slope factor was introduced in the runup 
equation to account for the foreshore slope varia-
bility within the study area,

where             is the mean foreshore slope with-
in the study area and Lm0 is the mean deep water 
wavelength, calculated according to equation 11, 
but with Tm0 instead of TS.

If the total runup level exceeds the dune foot 
height DF (R+SWL > DF) dune erosion will occur. 
The transport of sediment from the dune face, qD, 
is then computed by (Larson et al., 2004),

where CS is an empirical coefficient. On the basis 
of the observations of storm erosion in 2011 and 
2013 (Fredriksson, 2011; Schönström, 2013) CS 
was calibrated to 7∙10−3, which is in the middle of 
the range 1.7∙10−4 –1.4∙10−3 given in the literature 

(Larson et al., 2004). The total eroded volume dur-
ing each year is obtained through integrating the 
computed hourly transport rates.

Extreme value analysis
The method description is based on extreme value 
theory as presented in Coles (2001). The extreme 
value analysis is performed in the R software (R 
Core Team, 2016) using the packages extRemes 
(Gilleland and Katz, 2011) and in2extRemes.

Generalized Extreme Value distribution
The simulated runup levels are analysed with a 
GEV distribution. A GEV-function describes the 
distribution of block maxima, Mn, which is defined 
as Mn=max(X1,…,Xn) where n is the number of ob-
servation within each block. Here, simulated wave 
runup data are hourly so the year maxima is deter-
mined for n=365×24. Block maxima are selected 
from July to June each year to avoid dependence 
between consecutive observations, as extreme run-
up levels are rarely occurring during the summer 
months.

To the observed data a GEV family distribution 
is fitted, of the form:

where μ is a location parameter,    is a scale pa-
rameter, and    is a shape parameter. The value of 
the shape parameter determines which type of dis-
tribution within the GEV-family that fits the data 
best. If    = 0 the GEV distribution is said to be of 
a Gumbel type, if    > 0 a Fréchet type, and if    < 0 
a Weibull type. The Gumbel equation, also called 
double exponential, has the form:

When the parameters has been estimated by fitting 
the GEV-distribution to the observed values, the 
return level xp can be determined for an associated 
return period 1/p from:
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with tanβF taken as the foreshore slope and Ls0 is the deep-water wavelength. The foreshore slope 
was defined as the average slope between -1 and 0.8 m relative to MSL based on the profile shape 
within the study area. The slope within this depth range was fairly uniform across-shore, but has a 
significant longshore variation (Figure 4). 

 

Figure 4 Longshore variation of foreshore slope, tanβF. 

The deep water wavelength is computed by, 

2

0 2
s

s
gTL


   (11) 

The runup level relative to the mean sea level, MSL, is computed as the sum of the runup height and 
the still water level, SWL, at any given time,  

2%totR R SWL   (12) 

The SWL is collected from the Swedish Meteorological and Hydrological Institute’s (SMHI) 
measurement station Viken located outside the Skälderviken Bay. MSL in 2018 was 7.9 cm relative to 
the Swedish height reference system RH 2000. The SMHI station Ängelholm is closer to the study 
area, but has only been operating between 22/03/2011 and 07/05/2014 with several gaps in the time 
series. During onshore winds, the water level at the study area is higher than at the SMHI-station in 
Viken, due to local wind setup in the bay. Assuming a rectangular shaped bay, negligible bottom 
friction and stationary conditions, wind setup, Δh, was calculated according to (USACE, 1984), 

2
air D x B

water

C W Lh
gd




   (13) 

where ρwater is the water density, ρair the air density, CD the drag coefficient, Wx the onshore wind 
speed component, LB the bay length, and d the average depth in the bay. In a previous study 

0 '
0 0

tan
/

F

s sH L
   (10) 

with tanβF taken as the foreshore slope and Ls0 is the deep-water wavelength. The foreshore slope 
was defined as the average slope between -1 and 0.8 m relative to MSL based on the profile shape 
within the study area. The slope within this depth range was fairly uniform across-shore, but has a 
significant longshore variation (Figure 4). 

 

Figure 4 Longshore variation of foreshore slope, tanβF. 

The deep water wavelength is computed by, 

2

0 2
s

s
gTL


   (11) 

The runup level relative to the mean sea level, MSL, is computed as the sum of the runup height and 
the still water level, SWL, at any given time,  

2%totR R SWL   (12) 

The SWL is collected from the Swedish Meteorological and Hydrological Institute’s (SMHI) 
measurement station Viken located outside the Skälderviken Bay. MSL in 2018 was 7.9 cm relative to 
the Swedish height reference system RH 2000. The SMHI station Ängelholm is closer to the study 
area, but has only been operating between 22/03/2011 and 07/05/2014 with several gaps in the time 
series. During onshore winds, the water level at the study area is higher than at the SMHI-station in 
Viken, due to local wind setup in the bay. Assuming a rectangular shaped bay, negligible bottom 
friction and stationary conditions, wind setup, Δh, was calculated according to (USACE, 1984), 

2
air D x B

water

C W Lh
gd




   (13) 

where ρwater is the water density, ρair the air density, CD the drag coefficient, Wx the onshore wind 
speed component, LB the bay length, and d the average depth in the bay. In a previous study 

0 '
0 0

tan
/

F

s sH L
   (10) 

with tanβF taken as the foreshore slope and Ls0 is the deep-water wavelength. The foreshore slope 
was defined as the average slope between -1 and 0.8 m relative to MSL based on the profile shape 
within the study area. The slope within this depth range was fairly uniform across-shore, but has a 
significant longshore variation (Figure 4). 

 

Figure 4 Longshore variation of foreshore slope, tanβF. 

The deep water wavelength is computed by, 

2

0 2
s

s
gTL


   (11) 

The runup level relative to the mean sea level, MSL, is computed as the sum of the runup height and 
the still water level, SWL, at any given time,  

2%totR R SWL   (12) 

The SWL is collected from the Swedish Meteorological and Hydrological Institute’s (SMHI) 
measurement station Viken located outside the Skälderviken Bay. MSL in 2018 was 7.9 cm relative to 
the Swedish height reference system RH 2000. The SMHI station Ängelholm is closer to the study 
area, but has only been operating between 22/03/2011 and 07/05/2014 with several gaps in the time 
series. During onshore winds, the water level at the study area is higher than at the SMHI-station in 
Viken, due to local wind setup in the bay. Assuming a rectangular shaped bay, negligible bottom 
friction and stationary conditions, wind setup, Δh, was calculated according to (USACE, 1984), 

2
air D x B

water

C W Lh
gd




   (13) 

where ρwater is the water density, ρair the air density, CD the drag coefficient, Wx the onshore wind 
speed component, LB the bay length, and d the average depth in the bay. In a previous study 

(Palalane et al., 2016), CD was calibrated to 2.3∙10−3 by fitting equation 13 to the observed difference 
between water level in Ängelholm and Viken during onshore winds. 

2.3 Dune erosion 
The dune erosion is calculated using the impact formula (Larson et al., 2004). The runup equation 
associated with the impact formula does not account for longshore variation of foreshore slope. A 
foreshore slope factor was introduced in the runup equation to account for the foreshore slope 
variability within the study area, 

'
0 0

tan 0.158
tan

F
rms m

F

R H L


  (14) 

where tan F is the mean foreshore slope within the study area and Lm0 is the mean deep water 

wavelength, calculated according to equation 11, but with Tm0 instead of TS. 
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where CS is an empirical coefficient. On the basis of the observations of storm erosion in 2011 and 
2013 (Fredriksson, 2011; Schönström, 2013) CS was calibrated to 7∙10−3, which is in the middle of the 
range 1.7∙10−4 –1.4∙10−3 given in the literature (Larson et al., 2004). The total eroded volume during 
each year is obtained through integrating the computed hourly transport rates. 
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where CS is an empirical coefficient. On the basis of the observations of storm erosion in 2011 and 
2013 (Fredriksson, 2011; Schönström, 2013) CS was calibrated to 7∙10−3, which is in the middle of the 
range 1.7∙10−4 –1.4∙10−3 given in the literature (Larson et al., 2004). The total eroded volume during 
each year is obtained through integrating the computed hourly transport rates. 

2.4 Extreme value analysis 
The method description is based on extreme value theory as presented in Coles (2001). The extreme 
value analysis is performed in the R software (R Core Team, 2016) using the packages extRemes 
(Gilleland and Katz, 2011) and in2extRemes. 

2.4.1 Generalized Extreme Value distribution 
The simulated runup levels are analysed with a GEV distribution. A GEV-function describes the 
distribution of block maxima, Mn, which is defined as Mn=max(X1,…,Xn) where n is the number of 
observation within each block. Here, simulated wave runup data are hourly so the year maxima is 
determined for n=365×24. Block maxima are selected from July to June each year to avoid 
dependence between consecutive observations, as extreme runup levels are rarely occurring during 
the summer months. 
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where μ is a location parameter, σ is a scale parameter, and ξ is a shape parameter. The value of the 
shape parameter determines which type of distribution within the GEV-family that fits the data best. If ξ 
= 0 the GEV distribution is said to be of a Gumbel type, if ξ > 0 a Fréchet type, and if ξ < 0 a Weibull 
type. The Gumbel equation, also called double exponential, has the form: 
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An important difference between the various types 
of GEV-distributions is that the support of the 
Gumbel distribution is the whole real number 
line, whereas Weibull and Frechet distributions 
have supports with finite end-points on the right 
and left, respectively.

Generalized Pareto Distribution
Dune erosion does not occur every year; instead 
a GPD distribution is used to analyse the return 
levels of the total yearly eroded volume. The GPD 
describes the cumulative distribution of the excess-
es, y=x-u, over a certain threshold, u, under the 
condition that x > u:
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rameter, as for GEV.

In the special case of    = 0, equation 20 reduces 
to:

When parameters have been estimated, a level xm 

that is exceeded on average once every m observa-
tions can be determined:
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as the proportion of values exceeding the threshold 
u in the full data set. If k is the number of exceed-
ances and ntot is the number of measurements, ζu 

= k/ntot.
To estimate the N-year return level, m is chosen 

as the number of observations during N years. For 
example, for a 100-year return level from yearly 
measurements, then m=100. 

The behaviour of the upper and lower limits is 
depending on the shape-parameter in the same way 
as for GEV; for    >= 0, the upper end point is in-
finite, whereas for   < 0, there is a finite upper end 
point.

The threshold is selected based on a mean resid-
ual life plot, where mean of the exceedance above a 
threshold is plotted against threshold level, choos-
ing a point from which the mean excesses show a 
linear increase with increasing threshold value and 
by comparing diagnostic plots for different thresh-
olds. The threshold was selected individually for all 
computation points alongshore.

Conf idence intervals 
For the return levels of runup and yearly eroded 
volume, 95 % confidence intervals were estimated 
using the profile likelihood method. Profile like-
lihood functions are obtained through re-param-
eterization of the GEV and GPD models, so that 
the return level estimates xp and xm, become mod-
el parameters. Then the profile log-likelihood is 
obtained by maximization with respect to the re-
maining parameters. This is a more accurate meth-
od to estimate the limits of a confidence interval 
compared to the commonly used – and simpler 
– normal approximation. For a more detailed de-
scription of the profile likelihood method we refer 
to Coles (2001).
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(Palalane et al., 2016), CD was calibrated to 2.3∙10−3 by fitting equation 13 to the observed difference 
between water level in Ängelholm and Viken during onshore winds. 

2.3 Dune erosion 
The dune erosion is calculated using the impact formula (Larson et al., 2004). The runup equation 
associated with the impact formula does not account for longshore variation of foreshore slope. A 
foreshore slope factor was introduced in the runup equation to account for the foreshore slope 
variability within the study area, 
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where CS is an empirical coefficient. On the basis of the observations of storm erosion in 2011 and 
2013 (Fredriksson, 2011; Schönström, 2013) CS was calibrated to 7∙10−3, which is in the middle of the 
range 1.7∙10−4 –1.4∙10−3 given in the literature (Larson et al., 2004). The total eroded volume during 
each year is obtained through integrating the computed hourly transport rates. 

2.4 Extreme value analysis 
The method description is based on extreme value theory as presented in Coles (2001). The extreme 
value analysis is performed in the R software (R Core Team, 2016) using the packages extRemes 
(Gilleland and Katz, 2011) and in2extRemes. 

2.4.1 Generalized Extreme Value distribution 
The simulated runup levels are analysed with a GEV distribution. A GEV-function describes the 
distribution of block maxima, Mn, which is defined as Mn=max(X1,…,Xn) where n is the number of 
observation within each block. Here, simulated wave runup data are hourly so the year maxima is 
determined for n=365×24. Block maxima are selected from July to June each year to avoid 
dependence between consecutive observations, as extreme runup levels are rarely occurring during 
the summer months. 

To the observed data a GEV family distribution is fitted, of the form: 
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where μ is a location parameter, σ is a scale parameter, and ξ is a shape parameter. The value of the 
shape parameter determines which type of distribution within the GEV-family that fits the data best. If ξ 
= 0 the GEV distribution is said to be of a Gumbel type, if ξ > 0 a Fréchet type, and if ξ < 0 a Weibull 
type. The Gumbel equation, also called double exponential, has the form: 
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side is the dune foot. On the landward side, the 
horizontal limit is the most landward elevation 
contour of the runup level with 100-years return 
period (approximately 2.8 m above MSL). If build-
ings and infrastructure are located within the pro-
tective dune area, their most seaward extent is then 
horizontally limiting the protective dune volume.

Results
Water levels
Wind setup in Skälderviken Bay cause higher 
storm surge levels compared to the SMHI meas-
urement station in Viken (Figure 5). The last dec-
ade has seen several extreme events compared to 
the previous decades, which resulted in erosion of 
large sand volumes from the dunes (Fredriksson, 
2011; Schönström, 2013).

Wave climate
The SMB-model that was used to compute the 
waves at the bay mouth was validated against wave 
data from a buoy in the adjacent Laholm Bay. The 
buoy was operated by SMHI between 19/03/1984 
– 05/10/1985. The wave height was better predict-

ed than the wave period with an R2 value of 0.64 
compared to 0 (Figure 7). The SMB-model under-
estimated the low wave periods and overestimat-
ed the high wave periods, which may impact the 
accuracy of the calculated runup during energetic 
wave conditions.

The simulated waves at the bay mouth were 
used as input on the seaward boundary of the 
SWAN model grid. The SWAN model simulat-
ed the nearshore wave climate from 01/07/1976 
– 30/06/2016. Figure 8 displays the simulation 
results from the time steps during the storms in 
2011 and 2013, when the largest computed ero-
sion occurred. Dune erosion is a function of both 
SWL and waves; thus, the time steps with the larg-
est computed erosion are not necessarily coincid-
ing with the largest waves. The black line indicated 
the MSL contour. In the time steps with the largest 
erosion during the storms in 2011 and 2013, the 
SWL was 185 cm and 139 cm, respectively. The 
higher SWL in 2011 can be seen as a larger blue 
area on the landward side of the MSL-contour. 
During the storm in 2013, the nearshore wave 
heights were on the other hand larger.
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Figure 5. Yearly maximum water levels observed at the SMHI station in Viken (dashed line) and computed for Ängelholm 
Beach (solid line) with addition of wind setup.
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Runup
The computed waves and water levels were used 
to calculate wave runup at every time step. The 
yearly maximum runup levels were analysed with a 
GEV-model to estimate return levels for 10-, 50-, 
and 100-years return periods. In Figure 9 the esti-
mated total runup levels together with the upper 
and lower limits of their 95% profile likelihood 
confidence intervals are presented. The runup 
level and also the upper limits of the confidence 

intervals are well below the dune crest elevation in 
the part of the beach where the dunes protect the 
developed hinterland from flooding (Almström, 
2010).

Dune erosion
The result of the simulated return levels of dune 
erosion indicate higher erosion rates in the north-
ern part of the beach than in the southern part of 
the beach (Figure 10) in accordance with previous 

Figure 6. Simulated and observed significant wave height (HS) and wave period (Tp) at the wave buoy in Laholm Bay.

Figure 7. Scatter plots of simulated and observed data.
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observations (Fredriksson, 2011; Schönström, 
2013). South of x=3700 m, there were too few 
years with observed erosion in the 40-year simu-

lation period to estimate parameter values of the 
GPD model. This is due to wave energy dissipa-
tion over the shallower foreshore in that area, re-
ducing the number of dune erosion events. 

Overall, the dune volume between the sea and 
the buildings and infrastructure is sufficient to pro-
tect against the yearly erosion that can be expect-
ed with a return period of 100 years (Figure 11). 
Also when comparing to a very extreme erosion 
volume of two times the upper limit of the 95 % 
confidence interval for a 100-year return period, 
the dune volume is mostly sufficient. In the most 
northern part, at about x=300, the dune volume is 
smaller than the 100-year erosion volume. Howev-
er, in this part of the beach, the dune is constructed 
with a gabion core and the dune does not func-
tion as flood protection for the hinterland. Further 
south, there are some stretches of the beach where 
the protective dune volume is significantly lower 
than in the surrounding areas, e.g., x=600-700 m, 
x=1000 m, and x=1400-1600 m. In these areas, 
the protective dune volume is limited by houses 
and infrastructure located within the dunes. Then 
the risk of damage from erosion only concerns sin-

Figure 8. Significant wave height and direction for parti-
cular time steps during the 2011 and 2013 storms with the 
largest computed dune erosion.
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gle objects and is not a threat to the entire area as 
would be the case of a dune breach.

Discussion and concluding remarks
The results show that that the simulated runup lev-
els and dune erosion volumes are largest at x=500-
2000 m and decreasing in the southward directions. 
This longshore variability is consistent with obser-
vations (Fredriksson, 2011; Schönström, 2013), 
and explained by a longshore variability in the wave 
climate (Figure 8) and foreshore slope (Figure 4). 
Comparing the computed runup and dune erosion 
to the dune height and the protective dune vol-
ume, respectively, for specific return levels showed 
that there is no immediate risk of breaching and 
overtopping at this beach. However, this analysis 
does not take into account the effects of long-
term changes due to, e.g., sea level rise, gradients 

in longshore sediment transport or repeated years 
of dune erosion without sufficient recovery from 
aeolian transport. Gradients in longshore sediment 
transport are known to cause erosion in the north-
ern part of the beach at about x=0-3000 m (Hallin 
et al., 2019). This process is expected to deplete the 
protective dune volume with time. 

In this study, the computed return levels were 
only compared to the most recent available DEM 
from 2017. From a management perspective, it is 
interesting to see how the protective dune volume 
changes over time. A trend implying decreasing 
protective dune volumes could be a motivation for 
intervention measures based on a chosen manage-
ment strategy.

It is important to emphasize that the confidence 
intervals presented for the estimated return levels 
only account for uncertainties in the statistical 
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derived with profile likelihood method.
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Figure 11. The protective dune volume together with the 100-year erosion volume as well as one and two times the upper 
limit of the 95 % confidence interval.

models and do not take into account measurement 
errors and uncertainty related to the wave models, 
runup calculations, and erosion model. The uncer-
tainty can be decreased by collecting more data. 
Yearly topographic and bathymetric surveys, to-
gether with measurements before and after storms, 
indicate the long-term evolution and improve the 
calibration and validation of the dune erosion 
model. The local SWL has a large impact on runup 
levels and dune erosion rates; a local water level 
gauge would significantly have decreased the un-
certainties in this study.

In conclusion, the applied method provided a 
simple and robust estimate of extreme runup levels 
and eroded dune volume during storms for a coast-
al area with data scarcity.
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