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Abstract

Many cutting processes, such as chopping, slicing, and carving, consist in 2 dif-
ferent stages: an initial stage of indentation, in which the cutting tool is pushed
into the material under the action of an external force, and a second stage, where
the target material undergoes a progressive separation. This second stage is char-
acterised by the formation of a fracture surface followed by the cut propagation
due to the increasing external force, until eventually a steady state might occur.
The purpose of this paper is to analyse the cutting process by means of some
concepts of fracture mechanics and discuss the occurrence of the steady state.
A simple model is used to obtain an analytic expression of the stress intensity
factor at the tip of the cut and investigate the evolution of the fracture process.
It is found that the cut propagation depends on the wedge sharpness. The ana-
lytic results are compared with finite element analyses, where the effect of tip
blunting due to plasticity is taken into account. The influence of the cutting tool
geometry is also discussed.
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1 INTRODUCTION

Separation of materials by means of a cutting tool is a
commonplace process of several disciplines and applica-
tions. In the scientific literature, a great number of stud-
ies are available, most of them focusing on a single field
and exploring the related issues with a specific material
and cutting technique. A comprehensive survey on cutting
applied to different materials can be found, for instance, in
the book by Atkins.1

The mechanics of the cutting process has received a
considerable attention in relation to the applications in

Nomenclature: a, Half length of the cut; a1, Position of the separation point; a2, Position of the point of displacements singularity; b, Plate
thickness; COD, Crack opening displacement; CTOD, Crack tip opening displacement; E, Young elastic modulus; h, Shape of the elliptic wedge; ho,
Length of the ellipse minor semiaxis; KI,a, Stress intensity factor at the tip of the cut; KI,a1

, Stress intensity factor at the point a1; KI,a2
, Stress intensity

factor at the point a2; KIc, Fracture toughness of the material; KR, Stress intensity factor for 𝓁 = a; ry, Irwin's plastic zone length; ryc, Irwin's plastic
zone length, when KI,a = KIc; ry,R, Irwin's plastic zone length, when KI,a = KR; Rc, Tip radius of the cut in critical conditions; Rt, Generic wedge tip
radius; 𝛼, Wedge opening angle; 𝜃, Wedge sharpness; 𝜎o, Uniform external pressure; 𝜎y, Contact normal stresses; 𝜎ys, Yield stress of the material;
𝜏xy, Contact shear stresses; 𝜌, Radius of curvature at the elliptic wedge tip; 𝓁, Insertion length of the cutting tool

metal machining, with several studies investigating the
competing contributions of plasticity and friction.2-4 The
main focus was the process of chip formation occurring in
the so-called orthogonal cutting. Commonly, this term has
been used to describe the process of separation caused by
a cutting tool along a surface parallel to the original sur-
face of the target material (Figure 1A). Only in more recent
research, Atkins5,6 has established that the contribution
from fracture terms must also be included in the analyses,
and showed that the cutting forces depend on the fracture
toughness of the target material. Exploiting the similar-
ity of orthogonal cutting with the splitting of a cantilever
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(A) (B)

FIGURE 1 Schematic of two of the main cutting types. A,
Orthogonal cutting. B, Indentation cutting. F is the cutting force

beam by means of a rigid wedge, Williams7 and Williams
et al8 were able to obtain a complete picture of the contri-
butions of friction, plasticity, and fracture toughness on the
chip formation. An interesting aspect of their model is the
occurrence of crack tip touching, when the force applied
to the wedge is increased beyond a certain limit or the rake
angle is decreased. Further contributions in the ultrapreci-
sion machining have also considered the influence of the
cutting edge radius and the depth of the cut.9,10

Most of the previous concepts are central also in different
cutting techniques, such as chopping, slicing, and carving.
These are often described as examples of the indentation
cutting, defined as a process in which the tool penetrates
perpendicularly into the material, and cutting occurs along
the line of symmetry of the tool11 (Figure 1B). Indenta-
tion comprises an initial stage in which the tool is pushed
through the target material under an applied load, gener-
ating a deformation that may consist of both elastic and
plastic components. The indentation of ductile materials
by means of a sharp rigid wedge was studied several years
ago by Hill et al,12 and more recently, an interesting work
by Ciavarella et al13 has provided an insight in the con-
tact mechanics features of indentation. Specifically, it is
pointed out how the singular state of stress implied by a
sharp wedge does not exist in practice, because of the effect
of edge rounding and plastic flow.

Following the initial indentation, a cut or crack initiates,
and the blade continues to penetrate in the material with
increasing force until steady-state cutting is established.
Here, the behaviour is strongly affected by the sharpness
of the cutting instrument. Sharpness is a key parameter
in all cutting applications, since it has a direct effect on
the cutting forces, the quality of the cut surface, and the
life of the cutting instrument. An exhaustive definition
of the blade sharpness was given by McCarthy et al,14,15

through indentation experiments on elastomeric materi-

als. Different contributions need to be considered if cutting
is applied to soft materials, such as food or biological
tissues, because of the non-linear mechanical behaviour,
viscoelastic effects, and temperature dependence.16,17

The purpose of this paper is to investigate the quasi-static
fracture stage of indentation cutting by means of a simple
model, which can be handled analytically, and is applica-
ble to the indentation cutting of a large class of materials,
within the range of small scale yielding. The initial inden-
tation stage is not considered here; instead, the focus is on
the fracture process that follows, which is mainly influ-
enced by the wedge sharpness. A definition of sharpness
is obtained as the ratio between the wedge tip radius, the
fracture toughness, and the modulus of elasticity of the tar-
get material. We have then used finite element analyses
to account for the effect of local plasticity and explore the
consequences of crack tip blunting on the fracture process.
Different tool geometries have been explored throughout
the analyses. This paper is divided in 2 main parts. In the
first part, Section 2, after introducing the model used to
describe the cutting process, we present the analytic solu-
tion and discuss the implications of the wedge sharpness
on the fracture process. Here, the target material is elas-
tic, and the cutting tool consists of a rigid elliptic wedge.
The second part, Section 3, contains the results of the
finite element analyses. First, we discuss the effect on the
fracture process of the crack tip blunting due to plastic-
ity. Then we present the results of further analyses, which
were performed with the aim of including different blade
geometries in our study.

2 THE ANALYTIC MODEL

2.1 The wedge model
In this section, we present a 2-dimensional analytic model
that describes the cutting process. A blade, consisting
of a rigid elliptic wedge, is inserted in the target mate-
rial, exemplified by a large elastic solid. By considering a
section of the solid normal to the blade axis, we assume
that an initial centred cut of length 2a is present in the
material (Figure 2). During the evolution of the cutting
process, the elliptic wedge is assumed not to move inside
the cut but rather to expand. For instance, this model of the
elliptic wedge could be used to describe the cutting process
of an elliptic conical blade penetrating into a solid along a
direction parallel to the blade axis. The shape of the elliptic
wedge is expressed by

h(x) = ho

𝓁

√
𝓁2 − x2, (1)

where 𝓁 and ho are the major and minor semiaxes, respec-
tively. The radius of curvature at a generic point of the
ellipse is given by
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FIGURE 2 Schematic of the analytic model. An elliptic blade is
inserted in a cut of length 2a. In the enlarged figure, the vertical
displacement v(x) of the cut surfaces, caused by the insertion of the
elliptic blade of length 𝓁 < a, is also shown

𝜌(x, h) = (ho𝓁)2
(

x2

𝓁4 + h2

h4
o

)3∕2

, (2)

which at the wedge tips is equal to

𝜌(x = ±𝓁, h = 0) =
h2

o

𝓁
. (3)

A boundary value problem may now be formulated.
With reference to the Cartesian coordinate system xy of
Figure 2, the cut extends along the region |x| ≤ a, y = 0. Let
v(x) describe the vertical displacement of the cut after sep-
aration. We suppose that the elastic solid is stress-free far
away from the wedge and do not consider the effect of fric-
tion. Because of the double symmetry, only the upper-right
quarter of the solid can be considered.

The wedge is assumed to be shorter or equal to the cut,
ie,𝓁 ≤ a, and partly in contact with its surfaces. As a result,
we have prescribed displacements h(x) over the length x ≤
a1, where unilateral contact conditions are assumed, that
is, normal tractions must be compressive and interpenetra-
tion is not permitted. The following set of equations applies

v(x) = h(x), 𝜎𝑦(x) ≤ 0 for x ≤ a1. (4)

In the adjacent region, the contact between the cut
surfaces is lost, then normal stresses must be null. The
following set of equations here applies

𝜎𝑦(x) = 0, v(x) > h(x) for a1 < x < 𝓁, (5)

𝜎𝑦(x) = 0, v(x) > 0 for 𝓁 ≤ x < a. (6)

Ahead of the cut, continuity and symmetry bring the dis-
placements unconditionally to zero, while no conditions
regarding permissible normal tractions can be established

v(x) = 0 for x ≥ a. (7)

As a result of frictionless interfaces and symmetry condi-
tions, shear stresses are null everywhere along the crack
plane

𝜏x𝑦(x) = 0 for 𝑦 = 0. (8)

2.2 Solution
The problem described by the boundary conditions (4-8) is
decomposed into 2 different cases, which are solved sepa-
rately. A superposition provides the solution of the overall
problem.

Let us first consider the region occupied by the ellip-
tic wedge. A well-known solution of fracture mechanics is
that of a crack in an infinite plate, subjected to a uniform
pressure 𝜎o applied to its surfaces (Figure 3A). Assuming
the crack length equal to 2𝓁, in plane stress conditions, the
vertical displacement is expressed as18

v(x) = 2𝜎o

E

√
𝓁2 − x2 for x ≤ 𝓁, (9)

which is the equation of an ellipse. The equivalence with
the elliptic wedge of Equation 1 is obtained if

𝜎o = Eho

2𝓁
. (10)

(A) (B)

FIGURE 3 Decomposition of the solution. A, The first case
shows the equivalence between the rigid elliptic wedge and a crack
of length 2𝓁 with an applied pressure 𝜎o. B, A crack of length 2s is
considered, with prescribed stresses on its surface, to equilibrate
those obtained from the previous case. Notice the discontinuity in
the displacement derivative at x = a2 ≡ a
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Solving for the stresses, we have

𝜎𝑦(x) = 𝜎o for x ≤ 𝓁, (11a)

𝜎𝑦(x) = 𝜎o

(
x√

x2 − 𝓁2
− 1

)
for x > 𝓁. (11b)

Comparing this solution with the conditions defined in
the boundary value problem (4-8), we may notice that they
are fully satisfied for the part of the wedge where contact is
enforced, ie, for x ≤ a1. On the contrary, the condition on
normal stresses for the open part of the cut, ie, a1 ≤ x < a,
is not satisfied.

To equilibrate the normal stresses in the open part and
obtain the correct solution to the boundary value problem,
we consider a crack of length (a2 − a1) (Figure 3B). The
following tractions need to be applied to its surfaces

𝜎𝑦(x) = 𝜎o for a1 ≤ x < 𝓁, (12a)

𝜎𝑦(x) = 𝜎o (1 − x√
x2 − 𝓁2

) for 𝓁 ≤ x < a2. (12b)

As for the displacements, we prescribe that

v(x) = 0 for x > a2 and for x < a1. (13)

To find the solution to this problem, firstly, we observe
that stress singularities are expected at x = a1 and at x = a2.
We denote the corresponding stress intensity factors KI,a1

and KI,a2 . The unilateral contact conditions of Equation 4
exclude negative and positive stress intensity factors for
the internal point a1. In the absence of any external com-
pressive load, an opening displacement imposed on the
cut surfaces implies a positive stress intensity factor at the
crack tip; therefore, we have a2 ≡ a. The following con-
ditions on the stress intensity factors shall be introduced

KI,a1 = 0, (14a)

KI,a2 ≥ 0. (14b)

The general computation of the mode I stress intensity
factor is performed using a weight function as follows:

KI = − 1√
𝜋s ∫

s

−s
𝜎𝑦(𝜉)

√
s + m𝜉

s − m𝜉
d𝜉, (15)

where s = (a2−a1)∕2 is the half length of the crack, 𝜉 = x−
(a1 +a2)∕2, m = −1 for the crack tip at x = a1, and m = +1
for the crack tip at x = a2. Replacing 𝜎y from Equations 12a
and 12b, the previous integral is conveniently split into 2
parts

K(1)
I,n = − 𝜎o√

𝜋s ∫
t

−s
k(m, 𝜉)d𝜉 = −𝜎o

√
𝜋s , (16a)

K(2)
I,n = 𝜎o√

𝜋s ∫
s

t

𝓁 − t + 𝜉√
(𝜉 − t)(2𝓁 − t + 𝜉)

k(m, 𝜉)d𝜉 , (16b)

KI,n = K(1)
I,n + K(2)

I,n , (16c)

where t = 𝓁 − (a1 + a2)∕2, n is equal to a1 or a2, and
k(m, 𝜉) =

√
s+m𝜉

s−m𝜉
. Introducing the normalised variables

u = 𝜉∕s, t̂ = t∕s, and 𝓁 = 𝓁∕s, we obtain

KI,n = −𝜎o
√
𝜋 + 𝜎o√

𝜋 ∫
1

t̂

𝓁 + u − t̂√
(u − t̂)(2𝓁 + u − t̂)

k(m,u)du.

(17)

Taking n = a1, we can substitute the previous expression
in Equation 14a to determine the position of the separation
point a1

KI,a1 = 0 ⇒ ∫
1

t̂

𝓁 + u − t̂√
(u − t̂)(2𝓁 + u − t̂)

√
1 − u
1 + u

du = 𝜋.

(18)

Equation 18 provides a relation between a1 and a2 for
any given 𝓁, and it can be rewritten with the following
recursion, which yields a single root

di = 1∕𝓁 =

(
1
𝜋 ∫

1

t̂

1 + (u − t̂)di−1

(
√
(u − t̂)(2 + (u − t̂)di−1)

·
√

1 − u
1 + u

du

)2

, with d0 = 0.

(19)

The recursion cycles are assumed to proceed until a con-
verged result is obtained after N cycles. The value dN is
denoted d.

The stress intensity factor KI,a2 is calculated taking n =
a2 ≡ a in Equation 17

KI,a2 = 𝜎o
√
𝜋

⎛⎜⎜⎜⎝
1
𝜋 ∫

1

t̂

𝓁 + (u − t̂)√
(u − t̂)(2𝓁 + u − t̂)

·
√

1 + u
1 − u

du − 1

)
.

(20)

2.3 Results
In Figure 4, we show the results obtained from the solu-
tion of the boundary value problem defined in Section 2.1.
The dashed line is the plot of the position of the separation
point a1, as obtained from Equation 19, and normalised
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FIGURE 4 Analytic results for the elliptic wedge. The dimensionless stress intensity factor KI,a∕KR and the position of the separation point
a1∕a are plotted as a function of the normalised length 𝓁∕a. The difference between a blunt wedge (𝜃 > 1) and a sharp wedge (𝜃 < 1) is
illustrated [Colour figure can be viewed at wileyonlinelibrary.com]

with respect to 𝓁. The continuous line is the plot of the
stress intensity factor at the crack tips KI,a. To normalise
the result, we introduced KR, the stress intensity factor that
would develop if the wedge filled the entire crack, defined
as

KR = 𝜎o
√
𝜋a = Eho

2

√
𝜋

a
. (21)

To investigate the influence of the wedge sharpness on
the fracture process, a sharpness parameter is introduced,
defined as the ratio between the radius of curvature 𝜌

at the tip—see Equation 3 for an elliptic wedge—and a
material-based length parameter Rc

Rc =
(
𝜋

2

)(
KIc

E

)2

. (22)

In Equation 22, Rc represents the tip radius of a crack
experiencing a critical condition, KIc is the material tough-
ness, and E is the Young modulus of the material. Making
use of Equations 10 and 21, the wedge sharpness 𝜃 is equal
to

𝜃 = 𝜌

Rc
= 8

𝜋2

(
KR

KIc

)2

, (23)

with 𝜃 < 1 identifying a sharp and 𝜃 > 1 a blunt wedge.
The graph in Figure 4 can be interpreted in the fol-

lowing way. With the wedge expanding inside the cut,
the dimensionless stress intensity factor increases with
the length 𝓁∕a, up to 1 when the crack is entirely filled.

Different occurrences might happen, depending on the
wedge sharpness. If the wedge is blunt (𝜃 > 1), KI,a
increases until the limit imposed by the material tough-
ness is attained. At this point, the crack propagates in a
steady-state fashion, so that the distance between the cur-
rent crack tip and the wedge tip remains constant and
equal to a − 𝓁. Consequently, the wedge tip cannot reach
the crack tip (point B). On the other hand, if the wedge
is sharp (𝜃 < 1), the stress intensity factor KI,a peaks at a
value that is smaller than the material toughness KI,c (point
C). The situation of crack tip touching is now experienced
by the wedge, and a certain amount of energy is required to
propagate the crack. If we neglect the compressive stresses
caused by the wedge, the driving force to be applied to the
system is obtained as

F =
(

K2
Ic − K2

R
)

E
b, (24)

where b is the plate thickness.

3 NUMERICAL ANALYSES AND
RESULTS

The results that we have described in the previous section
offer an interesting point of view on the fracture process of
cutting. Yet the need to obtain an analytic expression of the
main parameters required us to simplify the geometry and
the mechanical behaviour of the problem. In this section,
we present the results of a series of numerical analyses that

http://wileyonlinelibrary.com
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we have performed on a finite element model. Our purpose
is to validate the analytic model and explore other features
that could not be included analytically. Specifically, the
effect of local plasticity and of different geometries of the
cutting tool.

3.1 Fracture mechanics parameters from
finite element method
The application of the finite element method (FEM) to
fracture mechanics, and in particular to determine the
crack tip stress and displacement fields, is well docu-
mented in the literature (see, for example, the book by
Kuna19).

A careful design of the mesh is required. We meshed the
plate using 2-dimensional elements and applied the neces-
sary constraints to prevent rigid body motion and respect
the symmetry of the problem. Convergence analyses were
performed, to determine the appropriate grade of mesh
refinement around the crack tip. To capture the singulari-
ties, modified elements should be used in the surroundings
of the crack tip, while regular elements are suitable in the
rest of the model. In a polar coordinate system (r, 𝜃), with
the origin at the crack tip, the strain singularity is pro-
portional to r−1/2 for an elastic material. To describe this
singularity, we used 8-node, noncollapsed, isoparametric
elements and shifted the midside nodes, along 2 edges con-
verging on the tip, to 1/4 positions. In the elastic-plastic
analyses, an elastic–perfectly plastic behaviour was consid-
ered. In such a case, the strain singularity is proportional
to r−1, and no modification of the position of the nodes is
required. To model the rigid wedge, we used spring ele-
ments, with a non-linear stress-strain relationship, so that
they provided stiffness only when compressed.

Initially, we performed some analyses on a model that
reproduced the geometry of the analytic one to validate

the results. To compute the mode I stress intensity factor
from numerical analyses, one possible method is to use
the displacement field. The best estimate is obtained if one
uses the displacements of nodes located behind the crack
tip and at a mid-range distance from it. Consequently, a
linear extrapolation towards the crack tip is required. In
plane stress conditions, the expression to be used is the
following:

KI,a = lim
r→0

v(r, 𝜗 = 𝜋)E
4

√
2𝜋
r
. (25)

A good approximation was obtained, both in the stress
intensity factor and in the separation point, as shown in
Figure 5.

3.2 The influence of crack tip plasticity
It is well known that real materials display a certain
amount of plastic deformation in the region around the
crack tips, which prevents the stress singularity as pre-
dicted by elastic fracture mechanics. Moreover, if we turn
our attention to the displacements, crack tip blunting is
experienced, which causes the crack tip opening displace-
ment to be different from zero.20 According to Irwin, when
plasticity occurs, the crack behaves as if it were longer than
its actual size. In a first approximation, the extension of the
plastic zone along the line of the crack is taken equal to

r𝑦 =
1

2𝜋

(
KI,a

𝜎𝑦s

)2

, (26)

where 𝜎ys is the material yield stress. In elastic fracture
mechanics, the crack opening displacement is obtained as

(A) (B)

FIGURE 5 Comparison of the analytic results with finite element method (FEM) simulations. A, Plot of the stress intensity factor at the
crack tip, KI,a. Notice that the result is normalised for KR = 𝜎o

√
𝜋a. B, Plot of the normalised separation point a1∕a [Colour figure can be

viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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COD = 2v(x) = 4𝜎o

E

√
a2 − x2. (27)

This goes to zero at the crack tips, ie, for |x| = a, but
inside the plastic zone, crack tip blunting occurs, and the
crack tip opening displacement is then equal to

CTOD = 2v(x = a) = 4𝜎o

E

√
(a + r𝑦)2 − a2 ≈ 4

𝜋

KI,a
2

E𝜎𝑦s
.

(28)

The CTOD is considered as an indirect measurement of
the plastic deformation occurring at the crack tips and has
been proposed as part of a failure criterion in elastic-plastic
fracture mechanics.21 However, the generalisation of the
CTOD fracture criterion beyond the limits of small-scale
plasticity requires the calculation of a comparable critical
parameter for the material, a task beyond the purpose of
this work.

We performed some analyses on the FEM model, to eval-
uate the effect of local plasticity, and compared the results
with those of the elastic case. For this purpose, we had
to compute the CTOD and apply Equation 28 to get the
equivalent stress intensity factor KI,a. We should mention
here that this method provides reliable results only if the
plastic zone is small with respect to the crack length. To
extract the CTOD, we used the displacements of nodes far
from the crack tip, so that geometric non-linearity can be
neglected,19 and then extrapolated their values according
to the following expression

(A)

(B)

FIGURE 6 Contour plots of the combined von Mises stress 𝜎VM ,
normalised to the yield stress of the material 𝜎ys, with A, 𝓁∕a = 0.6
and B, 𝓁∕a = 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

CTOD = lim
r→0

2v(r, 𝜗 = 𝜋). (29)

Figure 6 presents 2 examples of the results obtained from
the finite element analyses with plasticity. The contour
plots of the combined von Mises stress are displayed, con-
sidering different insertion lengths 𝓁∕a. The effect of the
crack tip plasticity is clearer in case B, which shows the
evidence of crack tip blunting. Figure 7A shows the plot of
the normalised stress intensity factor for different sizes of
plastic zone. The size of the plastic zone ry,R was defined
according to Irwin's approximation, with the subscript R
meaning that we have used the stress intensity factor KR
in Equation 26. A visible decrease in KI,a∕KR is observed
when the elliptic wedge is inserted for half or more of the
crack length. This result was expected. Indeed, KI,a is the
actual stress intensity factor, that is, the one experienced at
the crack tip, when the wedge is inserted for a length equal
to 𝓁 ≤ a. Therefore, the effect of crack tip plasticity is more
pronounced for 𝓁∕a → 1. The same argument explains the
behaviour of the position of a1, which is not significantly
shifted by plasticity, as shown in Figure 7B.

Important deductions on the fracture process are pos-
sible. According to Irwin's approximation, Equation 26,
the size of the plastic zone depends solely on the stress
intensity factor and the yield stress of the material. If we
introduce the fracture toughness KIc, it is possible to obtain
the following expression

r𝑦,R = r𝑦c

(
KR

KIc

)2

, (30)

where ryc is the plastic zone corresponding to KI,a = KIc.
With this device, the graphs in Figure 7 may be used for dif-
ferent materials, once that 3 parameters are set: the wedge
geometry, which provides KR, the yield stress 𝜎ys, and the
fracture toughness KIc.

Let us consider an example, to show how to use the
graph and observe the effect of plasticity on the condi-
tions of crack propagation. We compared the behaviour
of 2 different materials, concrete and aluminium, whose
mechanical properties are summarised in Table 1. Assum-
ing, for example, that the stress intensity factor due to the
wedge geometry is KR = 1.8KIc, we obtained the situation
illustrated in Figure 8. In the elastic material, this situation
corresponds to what we have previously defined as a blunt
wedge (see point B in Figure 4): KIc < KR; hence, we have
stable propagation of the cut when the wedge is inserted
for a length 𝓁 ≈ 0.9a. When we consider the effect of plas-
ticity, the behaviour is different. In the case of concrete,
the plastic zone is rather small, not large enough to deter-
mine a marked difference: the wedge still behaves as blunt,
although the insertion length is longer than in the elas-
tic material. The main difference occurs for aluminium,
where a larger plastic zone determines a radical change. As
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(A) (B)

FIGURE 7 Results of finite element method simulations with plasticity. The curves were obtained considering different sizes of the plastic
zone. A, Plot of the dimensionless stress intensity factor KI,a∕KR. B, Plot of the normalised separation point a1∕a [Colour figure can be viewed
at wileyonlinelibrary.com]

TABLE 1 Mechanical properties of some common materials

Material KIc, MPa
√

m 𝜎ys, MPa ryc, 𝜇m

Concrete 0.8 4 12.7
Steel 20 172 4.3
Aluminium 21 36 108.4
Titanium 55 1480 0.4

0.0
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0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Elastic

ry/a=0.01
ry/a=0.1
ry/a=0.3
ry/a=0.5

l/a

ry,R/a = 0.01
ry,R/a = 0.1
ry,R/a = 0.3
ry,R/a = 0.5

K I
,a
/K

R

KR/KIc=1.8 

Concrete
Aluminium
Elastic

FIGURE 8 The effect of plasticity on the fracture process. Two
different materials are compared with the elastic solution. The
plastic zone extension is ry,R∕a = 0.04 for concrete and ry,R∕a = 0.35
for aluminium [Colour figure can be viewed at
wileyonlinelibrary.com]

it can be noticed, the blue circle in Figure 8 lies on the ver-
tical axis 𝓁∕a = 1, whereas the corresponding curve stays
somewhere below. In this situation, KIc > KR, the wedge is

to be considered sharp, implying that some force needs to
be applied from the outside to propagate the cut.

3.3 The effect of the tool geometry
A new feature we were able to investigate with the FEM
analyses was the effect of different tool geometries. At this
point, we chose to overcome one of the main limitations
inherent to the analytic model, that is, the boundary condi-
tions: namely, a cutting process that does not initiate from

(A) (B)

FIGURE 9 Schematic of the model used to investigate the effect
of the tool geometry. A, An elliptic blade is inserted in an edge cut
of length a in an elastic material. B, Blades with different features,
characterised by an opening angle 𝛼 and a tip radius Rt

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 10 The effect of the tool geometry on the fracture process, from finite element method simulations. An edge crack model was
used. A, Plot of the dimensionless stress intensity factor KI,a∕KR. B, Plot of the normalised separation point a1∕a [Colour figure can be viewed
at wileyonlinelibrary.com]

a free boundary is rather unrealistic. For this reason, we
changed the model constraints to simulate an edge crack,
of length a, and explored the effect of different cutting
tools. An elastic behavior was considered (Figure 9A).

The tool geometry is defined by the wedge opening angle
𝛼 and the wedge tip radius Rt, Figure 9B. We considered 3
different cases: a sharp blade, with an angle 𝛼 = 25◦, and
2 blunt blades, one with a wedge angle 𝛼 = 25◦ and the
other straight (𝛼 = 0◦). Blunt blades are characterised by
a nonzero value of the tip radius Rt. In commercial blades,
this is often in the order of a fraction of micrometres. Our
purpose was to get an insight in the effect of the tool geom-
etry on the fracture process, with no claim of adopting real
blade features. Besides, the grade of mesh refinement of
our finite element model is not sufficient to capture the
effect of a very small tip radius. Being the size of the ele-
ments along the crack equal to 0.002a (with a = 1 mm),
we considered Rt = 0.2mm to be a reasonable value.

The results are gathered in Figure 10. In these plots, we
used the elliptic wedge as a reference. It might be noticed
that the sharpness of the blade has a remarkable influence
on the cutting response, while the effect of the opening
angle seems to be more limited for the cases being consid-
ered. In particular, the limit case of a perfectly sharp blade
implies that a shorter insertion length is enough to cause
the cut propagation, when compared to the blunt blades.
In addition, Figure 10B shows that, for a given insertion
length, the extension of the traction-free zone (a1 − a) is

larger for sharp than for blunt blades. Observing the trends
in Figure 10A for the blunt blades, it should be noted that
the blade shape is fully described by a circular arc dur-
ing the initial penetration stage (𝓁∕a ≲ 0.2), as shown in
the enlarged figures. On the other hand, in the subsequent
stage, the blade profile is composed by a circular arc and a
straight segment. Another point worth to be mentioned is
the fact that blunt blades have a constant radius of curva-
ture Rt, whereas in the elliptic wedge the tip radius linearly
increases with the insertion length 𝓁. This might help to
appreciate the differences between the curves.

4 CONCLUDING REMARKS

The present work focuses on the steady-state conditions
for indentation cutting. In the reference case of elastic
behaviour of the target material, a plane boundary value
problem has been studied analytically using some classical
fracture mechanics parameters, and describing the cutting
tool as an elliptic rigid wedge. A blade sharpness parameter
has been identified as a key factor in the cutting response
of the material.

We have explored the effect of plasticity, as well as of the
tool geometry, by means of finite element models, where
no-traction spring elements were used to simulate the uni-
lateral contact between the material and the cutting tool.
As far as plasticity is concerned, we have shown that the
fracture process tends to differ from the elastic case as a

http://wileyonlinelibrary.com
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function of the relative extension of Irwin's plastic zone
with respect to the crack length. The elastic modulus of
the target material does not influence the response. On the
other hand, the tip radius of the blade chiefly influences
the attainment of a steady state of cutting. Among the cases
that have been considered, it is the limit case of a perfectly
acute blade that seems to yield the most severe effect, ie, a
higher value of the stress intensity factor for a given inser-
tion length. In the present work, we have not considered
the effect of friction between the blade and the material,
which would give rise to some resistance force to the pene-
tration of the blade into the material. Future investigations
are planned to consider such an effect. The aim will be
to effectively model the characteristics of the experimen-
tal force-displacement profiles during the insertion of the
cutting blade into the target material.
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