
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Timely Journey Through the Cloud

Millnert, Victor

2019

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Millnert, V. (2019). A Timely Journey Through the Cloud. [Doctoral Thesis (monograph), Department of
Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/4d3be834-ee73-4ed3-a5f2-b79b240c033b


A Timely Journey  
Through the Cloud
VICTOR MILLNERT 
DEPARTMENT OF AUTOMATIC CONTROL | LUND UNIVERSITY





A Timely Journey Through the Cloud

Victor Millnert

Department of Automatic Control



PhD. Thesis TFRT-1126
ISBN 978-91-7895-235-9 (print)
ISBN 978-91-7895-236-6 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2019 by Victor Millnert. All rights reserved.
Printed in Sweden by MediaTryck.
Lund 2019



To my family.





Abstract

This thesis treats the intersection between two of the largest transformations we are
seeing within our society today; the cloud and the internet-of-things (IoT). The aim
of this thesis is to investigate different ways to model and control a network of cloud
services so that timing-critical IoT applications can make use of them. Examples of
such applications can be autonomous and mobile robots, smart production plants,
or massive multi-player augmented-reality games. The main motivational use-case,
however, comes from the industrial side, and their digitalization, the drive towards
industrial internet-of-things (IIoT). We wish to enable smart robots to offload some
of their computations to the cloud in order to allow for better and smarter control
and collaboration. For instance, using the cloud, it would become possible for them
to collaborate and make use of smarter analytics, artificial intelligence, and machine
learning, in order to improve efficiency and safety.

To address this problem the thesis combines concepts and theory from different
fields, most notably from control theory, real-time systems, and network calculus.
Examples are: modeling of dynamic systems and the use of feedback and feedfor-
ward control from control theory, the goal of ensuring that end-to-end deadlines
are met, from real-time systems, and finally the principles of modeling traffic from
network calculus.

The thesis begins with an introduction to provide some background on cloud,
IIoT, and to set the scope of the thesis. Following this, we begin by treating the
problem of controlling a single cloud service with the goal of ensuring that the
traffic flowing through the node is guaranteed to meet a deadline. Following this,
we study a chain of connected cloud nodes, investigating how to provide end-to-
end deadline guarantees for the traffic flowing through the chain. The chain is finally
generalized to a network of cloud nodes, with multiple flows traversing it. For this
problem we study how to ensure that the end-to-end deadline of every single flow in
the network is guaranteed. We also provide a set of protocols controlling how cloud
nodes and flows are allowed to dynamically join and leave the network, such that
no end-to-end deadline is violated.
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1
Introduction

It is no exaggeration that we today are seeing a technological transformation that
has the potential to change our society at its very foundation. The initial seed of this
transformation began to grow in the digital world of early cloud applications. These
cloud applications was mostly used by other digital entities, leading to this trans-
formation being very much a “digital only” transformation. Examples of successful
applications are e-mail, online search, social media, and media streaming. After a
while, the successful principles of these applications began to take root in other ar-
eas of society as well. They began to touch and interact with the physical world
through a new set of applications. Examples of these are ride-sharing applications,
e-commerce, smart homes/cars/toothbrushes/[insert appliance here]. The ability to
gather data about physical entities, analyze it in the cloud, and make smarter deci-
sions has the ability to transform and disrupt many industries. One example of such
transformation is the ride-hailing industry. There, data of the cars and customers
are constantly analyzed in order to match customers with cars and ride providers.
However, it goes deeper than this, as they can continuously analyze data from their
customers and find patterns, allowing them to suggest the optimal place for cars and
ride-providers to “idle” (or wait for new customers). Through this they are able to
minimize the overhead (meaning the time/distance cars are empty) and thus also
their environmental footprint.

Where we have not yet seen the digitalization-seed take root, but will likely do
so within the near future, is within traditional industries. This is one of the more
challenging transformations, and therefore focus of this thesis, because it involves
timing-critical applications, such as manufacturing with robots. In order to allow
parts of such applications to be controlled from the cloud, the cloud must be pre-
dictable. It must be able to guarantee that a cloud service will respond within a given
deadline. If the cloud service fails to operate within a timely fashion, it might lead to
the application also failing, which in turn can have severe consequences. The goal
of this thesis is therefore to investigate methods to ensure that cloud services can
operate in a predictable and timely way:

“Control the cloud, so we can put control in the cloud.”
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Chapter 1. Introduction

1.1 The cloud

This section introduce a brief background of cloud computing, but is by no means a
comprehensive guide towards the whole of the cloud-industry. Instead, the purpose
of this section is to provide you, the reader, with some basic knowledge of the
history, terminology, and concepts of cloud that will be useful when reading the
rest of the thesis. For an overview of the history, and possible future of the cloud
industry, we refer the reader to [Armbrust et al., 2009; Jonas et al., 2019].

There are many different views of what the cloud is, and how you should define
it, but in 2011, the National Institute of Standards and Technology in the USA,
provided following descriptions of the key characteristics [Liu et al., 2011; Mell,
Grance, et al., 2011]:

• On-demand self-service. A consumer can unilaterally provision computing
capabilities as needed in an automatic way.

• Broad network access. Resources are available over the network and can be
accessed through standard mechanisms.

• Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers.

• Rapid elasticity. The compute capabilities of a customer can elastically be
provisioned and released, in some cases automatically. The resources that
are available to the customer appear unlimited from the perspective of the
customer.

• Measured service. The usage by a customer can be monitored automatically,
and the customer can be billed for only the amount of resources that it uses,
this is often referred to as the pay-as-you-go cost model.

In the pre-cloud era, software services were commonly hosted on an on-premise
datacenter. During that time, whenever the developer would need more resources, he
or she would have to: i) buy/order a new physical server, ii) wait for the new server to
arrive, iii) install the server, iv) set up connectivity and security between the servers,
and v) deploy the software service on the server. Apart from this process taking a
long time, the owners would have to pay all of the up-front cost associated with this.
This led long lead-times for adjusting the computation capacity of the datacenter.
One was therefore left with two options, as shown in Figure 1.1: 1) over-dimension,
or 2) under-dimension the capacity of the datacenter. If they over-dimension the
resources, they ensure that their service will be able to handle the peak user demand,
but at a steep price. Whenever all of the resources are not used, they still pay for
them. On the other hand, if they choose to under-dimension the capacity, so that
they do not waste unnecessary resources, they will not be able to meet the peak
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Figure 1.1 Illustration of the concepts of over-dimensioning, under-dimensioning,
and autoscaling or the capacity of a cloud service. The solid line represents the user
demand for the service, and the dashed line the available capacity. The yellow region
represents the amount of capacity that is wasted, and the red region the amount of
capacity that is lacking.

user demand. This could potentially lead to poor customer experiences and a loss
of revenue.

With great improvements in virtualization techniques, some companies were
able to specialize in providing on-demand compute resources and the cloud-industry
was born. These companies were now able to allow their customers to rent virtual
machines as well as storage capabilities in a dynamic and elastic way. Through
the economy of scale, by pooling their resources together, the cloud provider were
also able to offer these services at competitive prices. Instead of going through
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Chapter 1. Introduction

the hassle of buying, waiting for, and installing new physical servers, it was now
possible for the cloud customer to simply rent the computation capabilities from a
cloud provides. This gave the cloud customer the illusion of near infinite computing
resources. Moreover, it also eliminated the up-front cost, and instead, the cloud
customer would only pay for what they used.

By moving to the cloud a third option for controlling the capacity of the software
service became possible: autoscaling, as shown in Figure 1.1. This means that the
service owner can adjust the capacity dynamically, over time, in order to match
the fluctuating user demand. If done properly, this would eliminate the waste of
resources which comes from over-dimensioning as well as allow the application to
handle the peak user demands.

A network of microservices
The cloud computing industry has undergone an interesting journey from its early
days until today. Along with improvements of virtualization and autoscaling tech-
niques, the way that software services is hosted in the cloud has changed [Cockroft
et al., 2011; Adhikari et al., 2012; Thönes, 2015]. One of these changes gave rise
to a new type engineering practice, called Chaos Engineering [Chang et al., 2015;
Basiri et al., 2016; Beyer et al., 2016], which involves deliberately shutting down
parts of the cloud applications or cloud system, to ensure that the fault-protection
mechanisms work as intended. Another change has been the way cloud application
are hosted and decomposed, and is illustrated in Figure 1.2. The cloud industry has
moved from hosting services in on-premise servers, to hosting them on monolithic
virtual machines in the cloud, to finally hosting them as microservices in the cloud.

The services hosted on the on-premise datacenters were often monolithic, mean-
ing often large, stand-alone, and self-contained applications that we can think of as
silos. The application users would interact with the services, but the services would
not interact amongst themselves.

During the first transition to the cloud, the developers would set up their cloud

servers

service

VM

VM

VMservers

service
VM

Figure 1.2 The transition from hosting a service at an on-premise datacenter, to-
wards hosting it on a network of virtual machines in the cloud, to finally hosting it
on a network of serverless functions in the cloud. From the developers perspective,
this transition allowed them to shift the focus from connecting the physical servers
to instead focus on connecting the services themselves.
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1.1 The cloud

environment by renting and connecting virtual machines, and virtual storage. This
cloud-provisioning model is called Infrastructure-as-a-Service (IaaS). The cloud
customer would typically create a cloud environment that mimicked the one used in
their previous on-premise datacenter, but with virtual machines instead of physical
servers. Therefore, the structure of the software applications would still be similar
to the one used before (i.e., monolithic). While this allowed for cost-savings since
they only paid for what they used, it still forced the software developer to deal with
many of the nitty-gritty details common when hosting software at an on-premise
datacenter.

Eventually, the cloud-provisioning model offered by the cloud providers im-
proved, and so did the practice by which software was hosted on the cloud. One shift
was the development of new techniques and tools used to deploy and manage cloud-
hosted software. These new tools and techniques allowed the cloud consumers to
shift from large monolithic applications to a service mesh. Instead of using the large
virtual machines, there was a drive to decompose them into smaller and smaller ser-
vices, leading to a network of microservices, where each microservice had a single
task and a standardized way of connecting and “talking” to the other microservices.
This made it easier to develop, update, and scale the cloud application, because one
could deploy, update, and scale a single microservice independently of the others.

Virtual Network Functions
Transformation of the cloud industry is rapidly expanding and affecting other indus-
tries and domains as well. One such domain is the processing of network packages,
as for example found in the telecommunication industry. Network functions used
to be packaged as monolithic physical appliances that were connected together us-
ing physical networks. Examples of such appliances include routers, transcoders,
firewalls, switches, etc. With the improvement of the cloud technology, there is an
interest to instead package these services as cloud services, and then host them
in a virtual environment on standardized hardware. An initiative driven by ETSI
(European Telecommunications Standards Institute) addresses the standardization
of such virtual network services under the name Network Functions Virtualization
(NFV) [ETSI, 2012]. The expected benefits from this are, among others, better hard-
ware utilization and more flexibility, which translate into reduced capital and oper-
ating expenses [ETSI, 2013].

In Figure 1.3 a set of virtual network functions (VNFs) are illustrated, as well
as the packet flows traversing the network. Each of the virtual network functions
has a number of virtual resources allocated to them, and this amount can be scaled
up and down independently of the other VNFs. The virtual resources are hosted on
an infrastructure, called network function virtualization infrastructure (NFVI), and
can be comprised of standardized servers. From the perspective of this thesis, it is
especially interesting to note the similarities between the network of VNFs, and the
network of microservices described in the previous section. Both of these are used
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Figure 1.3 Several virtual networking functions (VNF) are connected together to
provide a set of services. Each VNF consists uses of a set of virtual resources, such
as virtual machine instances. In this illustration, VNF1 consist of three virtual ma-
chines. These are mapped onto physical hardware referred to as the network function
virtualization infrastructure (NFVI).

as motivational cases within this thesis, since the problem statement fits well for
both of them. That is, how to control the amount of allocated virtual resources to
the nodes, such that the traffic flowing through them is able to do so within a given
end-to-end deadline. However, this will be discussed more thoroughly later.

1.2 Control in the cloud

Along with the improvements of the cloud computing technology, and by the ease
of which computations could be offloaded to the cloud, we began to see another
transformation emerge—the digitalization and the connection between the physical
world and the cloud. From the perspective of a control theorist this can be described
as connecting sensors and actuators to the cloud. The sensing and actuating is done
in the physical world, but the computation and decisions are made in the cloud—
feedback-loop through the cloud.

An example of one such IoT-application connected to the cloud is depicted in
Figure 1.4. It illustrates an automated watering system. It has a soil sensor which
sends data to the cloud, where it is analyzed. It has a smart sprinkler system (the
actuator) that can be started remotely (for instance by a cloud service). Naturally, if
there was only a soil sensor and a smart sprinkler there would not really be a need
to send things through the cloud, because it would be simple enough to connect
them and design a feedback loop that starts the sprinkler system whenever the soil is
sufficiently dry. The downside, however, would be that the sprinkler might run in the
morning even though the weather-forecast predicts that it will rain in the afternoon.
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SMHI
soil sensor sprinkler

Figure 1.4 Illustration of an automatic watering system. The soil sensor sends data
to the cloud. There, the data is analyzed and combined with weather forecasts from
the local weather station (and the satellites). The cloud service then computes when
the sprinkler system should be initiated, and how long it should run for.

Therefore, to make the system smarter, we connect it to the cloud. This will allow us
to combine the soil sensor-data with other data to make a more informed decision.
As an example, the soil data could be sent to the cloud where it would be processed
and analyzed. Should the soil then be dry, it will call another microservice that
will fetch the weather forecast from the Swedish Meteorological and Hydrological
Institute (SMHI), which does weather forecasting. These two data points can then
be combined with some other cloud service that fetches information about the type
of plants in the garden. Together, they can figure out what the desired moisture-level
of the soil should be. Therefore, if the soil needs watering, and there is not enough
rain predicted, a cloud service will send a signal down to the sprinkler system telling
it to run for a certain amount of time. This is a simple example, yet one that illustrate
the benefit of connecting IoT-applications to the cloud. One of the main benefits is
that we can allow small mobile devices to benefit from the vast computational power
offered by the cloud.
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Deadline

Figure 1.5 Illustration of how smart robots can be connected to the cloud, and
make use of the network of microservices.

Industrial Internet of Things
There is an increasing interest from the traditional industries to also connect some
of their processes to the cloud, to allow them to make use of smarter analytics and
better control. An example of this is illustrated in Figure 1.5 where two industrial
robots are connected to the cloud, and where part of their logic resides there. While
this transformation shares some of the traits with the IoT-example described ear-
lier (i.e., the smart sprinkler system), the industrial use-case puts more demanding
requirements on the system. For instance, when two industrial robots collaborate,
as illustrated in Figure 1.5, it should not take more than a predictable amount of
time for the signals to go from one robot to the other. This requirement is usually
expressed by establishing a deadline, i.e., it cannot take a signal more than D ms
to reach the other robot. Should such a deadline be violated, the robots might, for
example, collide. This makes this transformation towards Industry 4.0, or IIoT non-
trivial, since challenges such as these has to be addressed.

Example from a Swedish manufacturer To give some motivation for the drive
towards smarter manufacturing we will use an example of a Swedish manufacturer
that had some issues with part of its production line [Bengtsson, 2017]. The problem
was that some of their industrial robots missed their schedule some times (i.e., they
would miss their deadline). To address this issue, the company contacted a top-tier
consulting firm. The consulting firm did not use the cloud to attack this problem,
but instead stood next to the robots (physically) and clocked them. This way, they
thought, they would be able to derive a schedule for the different actions of the
robots in order to find where, and why, they missed the schedules. Safe to say,
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1.2 Control in the cloud

their venture was unsuccessful. The consulting-firm failed, so the manufacturing
company consulted a tech-firm instead. The tech-firm had the same idea: draw a
schedule of the robots and figure out where the robots miss their deadlines, but they
had a different angle of attack. They instead sent the program-pointer of the robots
to the cloud, and analyzed it there. This way, they were able to build a system where
it was possible to see exactly where in the program each robot were, in real-time.
This made it easy too see what caused the issues and to address them.

The company was impressed and saw the potential if they could take this one
step further–to put some of the robot-control in the cloud. At that moment, the flow
was only from the robots, to the cloud, to a monitor. But instead, they would like it
to be from a robot, to the cloud, and back to a robot. The only issue was that it would
take too long, and be too unpredictable, to send the signals to the cloud, perform the
analytics and compute the control action, and then send the control-action back to
the robot.

A need for a predictable and low-latency cloud
The previous examples illustrate the need to develop a predictable and low-latency
cloud, where one can guarantee that the end-to-end latency remains below an end-
to-end deadline. To give some flavor of the latency needs for different applications,
we have provided Figure 1.6, based on data from [Fettweis, 2014]. It illustrates that
in order to have proper tactile feedback (which is required to spin a basketball on
your finger), the end-to-end latency can not be more than 1 ms. For visual feedback,
this is increased to 10 ms and for audio feedback (e.g., phone calls) this is further
increased to 100 ms. For coarse-grained motor-functions, the end-to-end latency
can be allowed to be as much as a second. Another work that has also studied
the demands on the end-to-end latency is [Millnert, 2014], where the quality of a
haptic-feedback controlled industrial robot was severely degraded once the round

motor hearing visual tactile

100

10−1

10−2

10−3

la
te
n
cy

(s
)

Figure 1.6 Illustration of the latency requirements for different types of feedback.
When having feedback for a motor-control type system the requirement is typically a
second, while for hearing feedback it is 100 ms, for visual it is 10 ms, and for tactile
feedback it is as low as 1 ms.
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Chapter 1. Introduction

trip-latency was larger than 20 ms.
Part of the problems with the transition towards a low-latency cloud will likely

be solved by the coming 5G wireless communication technology [Simsek et al.,
2016; Aijaz et al., 2016], which will enable a predictable and low-latency wireless
connection to and from the cloud. What then remains is to be able to ensure that the
end-to-end latency within the cloud remains predictable and reliable.

1.3 Controlling the cloud

As mentioned in the previous section, in order to allow industrial applications to
use the cloud, it must be possible to provide a predictable end-to-end latency for the
signals passing through it. The main focus of this thesis is therefore to identify a
few fundamental building-blocks that can be used to ensure this in an efficient way.
The goal is to illustrate how to use and combine such building blocks in different
ways, and to do this we have used two tools:

• control theory, and

• network calculus.

Together they have allowed us to derive a basic model of a cloud node, illustrated in
Figure 1.7, as well as the building blocks used for controlling it. In the illustration,
the network traffic enters the node and is either admitted to the queue of the node,
or discarded. This is controlled by the admission controller. Following this, the load
balancer distributes the packets in the queue to one of the virtual machines. At any
point in time, it is the job of the service controller to control how many virtual ma-
chines should be active, and processing packets. Once a packet has been processed,

STOP +

load 
balancer

queue
service control

admission
control

discarded
packets

dynamic
traffic

outgoing
traffic

virtual 
machine

#1
virtual 

machine
#2
virtual 

machine
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machine
#4
virtual 

machine
#5

deadline

Figure 1.7 Simple illustration of a cloud node used within this thesis. Incoming re-
quests are either admitted into a queue, or discarded–a decision made by the admis-
sion controller. From the queue, the requests are distributed to the virtual machines
by the load balancer. The requests are then processed by the replicas before being
forwarded to the next microservice, or sent back to the user.
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it is forwarded to another cloud node (not depicted in the illustration). The goal is
to ensure that all of this is done within a given deadline.

Service control The service controller is responsible for controlling the number
of replicas the cloud node has active at any point in time. There are many ways
of doing this, but it typically involves using some feedback from measured traffic
load, the CPU-load, or the time it takes a new request to be processed. Designing
an autoscaling policy can be non-trivial because:

• The latency required to add or remove computing resources.

– A new virtual machine has to be scheduled on a physical server, the VM
then needs to be initialized (boot time, mounting of file systems, etc.),
and finally the application has to be initialized (load necessary libraries,
synchronize with others, etc.)

• The performance of a replica is uncertain.

– The performance is subject to what kind of physical machine it is hosted
on, as well as the behavior of other virtual machines running on the same
physical servers.

Admission controller Since it is difficult to exactly match the available process-
ing capacity with the incoming demand, there might be times where there is a short-
age of available processing capacity, just as in Figure 1.1(c) (the red areas). In those
cases, the service might have to prioritize access for certain users and deny access
to others, because it does not have the capacity to serve them all. This decision is
typically made by the admission controller.

Load balancing. The responsibility of the load balancer is to distribute the in-
coming traffic between the replicas of the service. If this is not done in a proper
way, there is a risk that some replicas will become overloaded, leading to longer
response times for requests assigned to those, while other replicas might not have
enough load. There are many interesting challenges and problems in this area, how-
ever, it is considered outside the scope of this thesis.

Orchestration The problem of orchestration, not illustrated in Figure 1.7, is a
non-trivial problem and involves deciding how and where the virtual resources
should be scheduled. For instance, it involves deciding on which physical servers
the virtual machines should be running. Problems within this space are also outside
the scope of this thesis.
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Control theory
Control theory, and the philosophy behind it, is the bedrock of this thesis. The idea
is that the cloud systems considered in this thesis should be modeled in a dynamic
way. This will allow us to design control-mechanisms that will ensure that the cloud
system is automatically driven into a desirable state. A dynamic model may mean
different things, but considering the cloud node illustrated in Figure 1.7, it would
mean that the number of virtual machines are allowed to change dynamically, over
time. Taking a step back, and considering the network of microservices, it would
mean that we allow for new applications and cloud nodes to dynamically join and
leave the network.

The goal is therefore to capture the dynamic behavior of these systems and to
design control-laws and protocols which control them in a desirable way. To do
this, we will use two key concepts from control-theory: i) feedback systems, and ii)
feedforward systems.

Feedback systems One way to ensure that a dynamical system is controlled in a
desirable way is to use feedback. The idea is to measure a signal, and then decide
on a control action such that the measured signal is driven into a desirable state.
For example; in the case of a service controller this could mean that the goal is
to have “just enough” virtual machines so that the latency of the cloud node is
not larger than 10 ms. By introducing feedback control, the system can measure
metrics such as: i) latency, ii) amount of traffic in the queue, and iii) processing
capacity of the virtual machines, and then combine these to make a decision on
how many virtual machines the node should have running. With this approach we
can also allow for uncertainties and imperfect modeling. Uncertainties could be a
virtual machine crashing, a sudden increase in the traffic, or a variation of the time
it takes to process an incoming packet.

Another example where the use of feedback can be very helpful is with the
admission control. Consider an example where the goal of the admission controller
is to ensure that the backlog (number of packets in the queue) never exceeds the
maximum queue-size. By using feedback, it is possible to guarantee this through a
simple if-statement:

{
accept new packet if backlog+new packet < queue size,
reject new packet else.

Feedforward systems While feedback systems allow for some relaxation in how
rigorous the modeling has to be, it can sometimes be too slow to react to changes.
When solely using feedback for controlling a system, there has to be an error before
a control action is taken. If we go back to the problem of autoscaling, having a
purely reactive system might be too slow. The reason is that starting new virtual
machines will take some time. Therefore, if the system sees that the latency of the
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cloud node reaches a critical point, it will already be too late since it will take some
time to add more processing capacity and reduce the latency.

Feedforward control offers a way to allow the system to be proactive. By mea-
suring the incoming traffic, the controller can try to predict how many virtual ma-
chines it will need in the near future, where by the near future we mean the time
it takes to boot up a new VM. If it realizes that it will need some more virtual
machines, it can therefore, proactively, start the extra ones.

Another way feedforward control can be used is to allow for communication
between cloud nodes. For instance, if one node sees an increase in traffic, it can use
feedforward control to inform other cloud nodes, which it sends traffic to, that they
also will see an increase in traffic in a short while, so that they can start acting now.

Network calculus
Much of the modeling and analysis in this thesis borrows inspiration from the field
of Network Calculus, since it offers a very convenient way of modeling the traffic
flowing through the network, as well as simple ways to measure and compute met-
rics such as the backlog and latency. The theory behind network calculus is very
rich, but quite new. The first two papers which lay the foundation were published
by Rene Cruz at UC San Diego in 1991, [Cruz, 1991a; Cruz, 1991b]. Some other
notable works on network calculus include [Le Boudec and Thiran, 2001; Jiang and
Liu, 2008; Bouillard et al., 2018].

While there are many exotic and beautiful parts to network calculus, the main
idea used within this thesis is their way of modeling traffic in a cumulative way. If
we take the cloud node illustrated in Figure 1.7, we can model the rate of the arriving
traffic as r(t) packets per second (pps), and the rate of the departures (processed
packets) as s(t) pps. As illustrated in Figure 1.8, network calculus provides us with
a simple way of computing the backlog B(t) and the latency L(t) for this system. It
does so by analyzing cumulative traffic, R(t) =

∫ t
0 r(x)dx and S(t) =

∫ t
0 s(x)dx. The

backlog is then the vertical distance, and the latency is the horizontal distance, as
illustrated in Figure 1.8. Or mathematically as:

B(t) = R(t)−S(t), L(t) = inf{τ ≥ 0 : R(t − τ)≤ S(t)}. (1.1)

Providing bounds
Another useful property of network calculus is a way to provide deterministic
bounds on the latency and the backlog of communication systems. This is not used
within the thesis, but some ideas of how to extend this in future work is presented
in Chapter 9. Instead the intuition and the ideas of how to express these bounds are
used within this thesis. In network calculus, the bounds for the traffic arriving to a
server is given as arrival curves and the bound for the processing capacity offered
by a server by service curves. Note that within deterministic network calculus, these
bounds are deterministic upper and lower bounds.
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Figure 1.8 Illustration of the backlog and latency using network calculus.

Arrival Curves In network calculus it is common to provide a bound for the
amount of traffic a server might see over a time period. While this is common in
many different fields, what makes it unique for network calculus is that the ability
to provide a bound on the cumulative arrivals, meaning a bound on the total amount
of packets that might flow to a server during this time-period. This bound is usually
denoted as an arrival curve α . Formally, the arrival curve α(t) is a wide-sense
increasing function such that for all s ≤ t it holds that R(t)−R(s)≤ α(t − s), where
R(t) =

∫ t
0 r(x)dx is the total amount of packets that has arrived to the server until

time t. We refer the reader to [Le Boudec and Thiran, 2001] for a more thorough
definition.

One common way to model arrival curves is with a burst-rate model, which
means a quick burst of traffic, followed by a steady-state rate of incoming traffic.
This can easily be expressed as

α(t) = b+ρ · t, (1.2)

where b is the initial burst and ρ is the steady-state rate of the traffic, as illustrated
by the purple line in Figure 1.9.

Service curves Similarly to how arrival curves may be used to provide an upper
bound on the arriving traffic, we can use service curves to provide a lower bound on
the available service provided by a server. A server’s service curve β is also a wide-
sense increasing function such that for any time-interval [τ, t] where the server has
a nonzero queue, it must hold that S(t)−S(τ)≥ β(t−τ). In words, it states that the
output produced by the server during this interval is S(t)−S(τ) which is larger than
the guaranteed service curve β(t − τ). One common service curve used to model a
sever is a rate-latency service curve:

β(t) = [C · (t −L)]+, (1.3)

where C is the processing rate of the server, and L is the latency, as illustrated by
the yellow line in Figure 1.9.
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Figure 1.9 Illustration of how the arrival and service curves in network calculus
can be used to derive an upper bound on the latency and backlog of a server. The
arrival curve is illustrated in purple and the service curve in yellow.

Bounds on latency Together the service-curve and the arrival curve can be used
to provide an upper bound on the backlog, i.e., the amount of traffic in the queue,
and the latency of a node. For the case of a burst-rate arrival curve and a rate-latency
service curve this is given by:

latency bound = L+
b
C
, backlog bound = b+ρ ·L. (1.4)

Bounds on packet loss One can also use the service and arrival curves to derive
deterministic bounds on the latency required for passing through a server, or the
packet loss a server with a fixed queue-size might see. In [Le Boudec and Thiran,
2001], Le-Boudec derives an upper bound for the fraction of incoming packets that
might be dropped if a server with a maximum queue size qmax has a service curve
β and it sees traffic bounded by an arrival curve α . This upper bound is given by:

l̂ =
[
1− inf

0<τ

β(τ)+qmax

α(τ)

]+
. (1.5)

The intuition behind this is that the larger the queue-size, or the more service is
being provided by the server, the less packets will be dropped, given a specific
arrival curve.
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1.4 Related works

Despite the fact that the addressed problem in this thesis comes from very recent
technology advancements (e.g. cloud computing, 5G, and virtual network func-
tions), it is possible to abstract it in a way where related results can be found over
quite a vast spectrum of older contributions. In an abstract way, the problem pre-
sented in this thesis can be decomposed into the following sub-components:

• providing end-to-end deadline guarantees for flows in a network,

• splitting end-to-end deadlines into local deadlines.

In the area of virtual network functions and data center management there are
a number of works considering the problem of controlling virtual resources. How-
ever, many of them focus on orchestration, i.e. how the virtual resources should be
mapped onto the physical hardware. A few works differ, however, in the way that
they instead consider the problem of controlling the NFV graphs with respect to
some end-to-end goals. For instance Lin et al. do a static one-time orchestration of
an amount of resources sufficient to satisfy some end-to-end requests [Lin et al.,
2014]. Sparrow presents an approach for scheduling a large number of parallel jobs
with short deadlines [Ousterhout et al., 2013]. Cohen and similarly Shen address the
issue of placement of VNFs within a physical network [Cohen et al., 2015; Shen et
al., 2014]. A number of other works focusing on orchestration of VNFs, or schedul-
ing of packet flows, can be found in [Moens and De Turck, 2014; Mehraghdam et
al., 2014; Li and Qian, 2015], however, they do not address the issue of elastically
scaling the capacity of the VNFs, nor do they allow for end-to-end constraints over
the forwarding graphs.

Despite the dynamic nature of the traffic that the NFV graphs will encounter,
there is only a few works that consider it and aim at designing an elastic and dy-
namic resource controller to counter the problem. Kuo, Mao et al., and Wang et al.
address this problem by developing a mechanism for auto-scaling VNF resources to
meet a user-specified performance goal, however they do not consider the issue of
end-to-end constraints on the latency [Kuo et al., 2016; Mao et al., 2010; Wang et
al., 2016]. Another work that addresses the problem of meeting performance goals
despite dynamic traffic is [Leivadeas et al., 2016], where they do load-balancing
with an SDN controller between the VNFs. Another work also combining flow
scheduling and resource allocation is [Feng et al., 2016] where they develop a neat
mathematical model used as foundation for their synthesis. Other works focusing
on developing models of VNFs are [Faraci et al., 2017; Ren et al., 2016]. One work
that do consider the constraint of an end-to-end latency requirement is [Li et al.,
2016], where Li et al. present the design and implementation of NFV-RT that aims
at controlling NFVs with soft Real-Time guarantees, allowing packets to have soft
end-to-end deadlines.
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A considerable amount of previous works address the deadline guarantee of a
sequence of jobs that needs to be processed at a given node of a network [Tin-
dell et al., 1994; Tindell and Clark, 1994; Pellizzoni and Lipari, 2007]. Gerber et
al. [Gerber et al., 1995] proposed an alternate method to translate end-to-end dead-
lines over a directed graph of nodes into constraints on the activation periods of the
tasks running at the intermediate nodes.

In the context of compositional analysis, previous works have addressed the
problem of isolating and composing a single flow over a network of nodes. Lorente
et al. [Lorente et al., 2006] extended the holistic analysis to the case with nodes
running at a fraction of computing capacity (abstracted by a bounded-delay time
partition with bandwidth and delay). Jayachandran and Abdelzaher [Jayachandran
and Abdelzaher, 2008] developed several transformations (“delay composition al-
gebra”) to reduce the analysis of a distributed system to the single processor case.
Serreli et al. [Serreli et al., 2009] proposed a component interface for chains of
tasks activated sporadically and an intermediate deadline assignment, which min-
imizes the requested computing capacity. Similarly, Ashjaei et al. [Ashjaei et al.,
2016] proposed resource reservation over each node along the path.

In the context of computation happening at “small” scale, it is worth mentioning
the modular analysis by Hamann, Jersak, Richter, Ernst [Hamann et al., 2006]. Such
a modular analysis, which found an application in the automotive domain, may well
be a source of inspiration to analyze the schedulability within each node and the
interaction between nodes. It is, however, orthogonal to our method which focuses
on the policies to allow new flows of packets (“event streams” in the terminology
of [Hamann et al., 2006]) to be admitted at run time.

There has been many works outside the area of network function virtualization
that have addressed the enforcement of an end-to-end deadline of a sequence of
jobs that is to be executed through a sequence of computing elements. In the holis-
tic analysis [Palencia and Harbour, 2003] the schedulability analysis is performed
locally. At global level the local response times are transformed into jitter or offset
constraints for the subsequent tasks.

The idea of breaking end-to-end deadlines into local deadlines has also been
exploited by several authors. Di Natale and Stankovic [Di Natale and Stankovic,
1994] proposed to split the end-to-end deadline proportionally to the local com-
putation time or to divide equally the slack time. Marinca et al. [Marinca et al.,
2004] proposed two methods to assign local deadlines (“Fair Laxity Distribution”
and “Unfair Laxity Distribution”) to balance the distribution of the slack among
the flows. Later, Jiang [Jiang, 2006] used time slices to decouple the schedulabil-
ity analysis of each node, reducing the complexity of the analysis. More recently,
Hong et al. [Hong et al., 2015] formulated the local deadline assignment problem
as a Mixed-Integer Linear Program (MILP) with the goal of maximizing the slack
time. After local deadlines are assigned, the processor demand criterion was used
to analyze distributed real-time pipelines [Rahni et al., 2008]. The number of local
deadlines, however, is very high and makes the resulting optimization problem hard
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to solve. Jacob et al. [Jacob et al., 2016] proposed to split among local deadlines by
using a deadline ratio ρ ∈ (0,1) configuration parameter chosen at design-time.

In all the mentioned works, jobs have non-negligible execution times. Hence,
their delay is caused by the preemption experienced at each function. In our context,
which is scheduling of virtual network services, jobs are executed non-preemptively
and in FIFO order. Hence, the impact of the local computation onto the E2E de-
lay of a request is minor compared to the queueing delay. This type of delay is
intensively investigated in the networking community in the broad area queuing
systems [Kleinrock, 1975]. In this area, Henriksson et al. [Henriksson et al., 2004]
proposed a feedforward/feedback controller to adjust the processing speed to match
a given delay target.

Most of the works in queuing theory assumes a stochastic (usually Markovian)
model of job arrivals and service times. A solid contribution to the theory of deter-
ministic queuing systems is due to Baccelli et al. [Baccelli et al., 1992], Cruz [Cruz,
1991a; Cruz, 1991b], and Parekh & Gallager [Parekh and Gallager, 1993]. These
results built the foundation for the network calculus [Le Boudec and Thiran, 2001],
later applied to real-time systems in the real-time calculus [Chakraborty and Thiele,
2005]. The advantage of network/real-time calculus is that, together with an anal-
ysis of the E2E delays, the sizes of the queues are also modeled As in the cloud
computing scenario the impact of the queue is very relevant since that is part of the
resource usage which we aim to minimize, hence we follow this type of modeling.
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2
Outline & Contributions

The goal of this thesis is to control a network of cloud nodes such that packet flows
passing nodes within this network are guaranteed to meet their end-to-end dead-
lines. We wish to allow this network to be dynamic over time, meaning that nodes
and flows should be allowed to join and leave the network over time, yet always
guarantee that the end-to-end deadlines of the flows are met.

As hinted by the title of this thesis the process of solving this problem has been
a journey. There has been a few sidetracks, but mainly it has been a steady pro-
gression and generalization towards the main goal. The structure of this thesis has
been chosen to reflect this, with the added benefit of, hopefully, guiding the reader
through this journey in a gentle and progressive way. The technical content of this
thesis, presented over 6 chapters, can therefore be summarized as:

• A single cloud node;

– In Chapter 3 we present AutoSAC combining admission control and
horizontal scaling of VMs to allow dynamic traffic flowing to be pro-
cessed within a deadline.

– In Chapter 4 we combine horizontal and vertical scaling of VMs in order
to control the processing capacity.

• A chain of cloud nodes;

– In Chapter 5 we use horizontal scaling to ensure that a constant packet
flow going through a chain of nodes meets an end-to-end deadline.

– In Chapter 6 we generalize AutoSAC, and thereby allow for dynamic
traffic to flow through the chain and meet an end-to-end deadline.

• A network of cloud nodes.

– In Chapter 7 we generalize the AutoSAC again, and allow for multiple
dynamic packet flows, flowing through a network of nodes.

– Finally, in Chapter 8 we propose a way to manage a network of nodes
and flows allowing for a dynamic network topology.
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Papers Chapters
Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Paper VII

Paper VIII

Chapter 3: “AutoSAC: automatic service and admission control”

Chapter 1: “Introduction”

Chapter 2: “Outline & Contributions”

Chapter 4: “HoloScale — combining horizontal and vertical scaling”

Chapter 5: “A naive approach for controlling a chain of nodes”

Chapter 6: “AutoSAC for a chain of nodes”

Chapter 7: “AutoSAC for a network of nodes”

Chapter 8: “End-to-end deadlines over dynamic network typologies”

Chapter 9: “Conclusions and future work”
Paper IX

Figure 2.1 Illustration of how the papers contribute to the different chapters.

Chapter 3: “AutoSAC: automatic service and admission control” In this chap-
ter we present a way to combine automatic service and admission control (Au-
toSAC) for a node which could be a virtual network function, or a cloud application.
As illustrated in Figure 2.2, we combine admission control with horizontal scaling
of virtual machines in order to provide a deadline guarantee for the traffic flowing
through the node. This traffic is also assumed to be dynamic and change over time.

The role of service-controller is to automatically scale the number of virtual
machines in the node in order to adjust its processing capacity. The goal is to en-
sure that the node has sufficient processing capacity to process the incoming traffic.
The role of the admission-controller is to ensure that the response-time of the node
remains below a specific deadline.

Papers: IV, V,VI, and VII.
The admission and service controller presented in this chapter comes from pa-

pers VI–VII while the original problem formulation comes from papers IV and V.
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Figure 2.2 Illustration of AutoSAC presented in Chapter 3.
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Figure 2.3 Illustration of HoloScale presented in Chapter 4.

Chapter 4: “HoloScale – combining horizontal and vertical scaling” In this
chapter we travel along a tangent of the previous chapter. Here we pose the ques-
tion of how cloud scaling can be improved if we could combine horizontal and
vertical scaling of virtual machines, as illustrated in Figure 2.3. Recall that hori-
zontal scaling is adding more/less of the same and vertical scaling is making the
virtual machines larger/smaller. The main contribution is a way to combine the two
scaling-methods allowing a smoother and quicker control of the processing capacity
of the node. Note that we do not consider any deadlines within this chapter.

Papers: IX.

Chapter 5: “A naive approach to controlling a chain of nodes” In this chapter
we introduce a naive approach for controlling a chain of nodes in order to ensure that
the traffic flowing through the chain meets a specific end-to-end deadline. As illus-
trated in Figure 2.4 each node can horizontally scale the number of virtual machines
in order to adjust its processing capacity. To simplify this problem, this chapter only
considers a constant traffic rate for the packet flow. The main contributions include
deriving an optimal schedule for the horizontal scaling along with a feedback-law
allowing the nodes to handle stochastic variations to the incoming traffic.

Papers: I, II, and III.

node 1 node 2 node n

constant 
traffic

end-to-end deadline

Figure 2.4 Illustration of the system presented in Chapter 5.
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Figure 2.5 Illustration of AutoSAC for a chain, presented in Chapter 6.

Chapter 6: “AutoSAC for a chain of nodes” In this chapter we generalize Au-
toSAC presented in Chapter 3 to control a chain of nodes and allow for dynamic
traffic to flow through the nodes, yet still provide end-to-end deadline guarantees.
Along with this we also model uncertainties in the processing capacities of virtual
machines. The main additions to AutoSAC include adding feedforward between the
nodes, making the system more responsive. An overview of this system is shown in
Figure 2.5.

Papers: IV, V,VI, and VII.
The main part of this chapter comes from papers IV and V. However, it should

be noted that the admission controller and the node deadline assignment problem
have been adjusted to be consistent with papers VI and VII. It should also be noted
that the simulations have been updated to account for these changes.

Chapter 7: “AutoSAC for a network of nodes” On the journey towards allowing
for a dynamic network topology, one of the lasts stops is to control a static network
of nodes and flows. In this chapter we extend the AutoSAC of Chapter 6 to also work
for a network of nodes with multiple flows passing through it. Each flow is allowed
to have its own end-to-end deadline as well as dynamic traffic passing through it, as
illustrated in Figure 2.6.

every flow has
dynamic traffic

every flow has an
end-to-end deadline

Figure 2.6 Illustration of AutoSAC for a network, presented in Chapter 7.
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One of the contributions in this chapter is a way to differentiate between “in-
ternal” and “external” traffic as a way to improve the feedforward control. Another
contribution, is a generalized version of the node-deadline assignment problem pro-
posed in the previous chapter.

Papers: IV, V,VI, and VII.
The main part of this chapter originates from papers VI and VII. However, it

should be noted that the convex utility function originates from papers IV and V.

Chapter 8: “End-to-end deadlines over dynamic network topologies” In this
chapter we take a step back, and consider a high-level management of the nodes
and flows in the network. We present a set of protocols controlling how flows and
nodes are allowed to join and leave the network as well as a protocol for how the
node-deadlines of the nodes in the network should be controlled over time. With
these protocols we are able to formally prove that the end-to-end deadline of every
flow in the network will be guaranteed. Moreover, these protocols allow for this
to also hold while the network transitions between different network topologies,
as illustrated in Figure 2.7. The theory presented in this chapter allows for both
AutoSAC-controlled nodes in the network, as well as other control-strategies within
the nodes.

Papers: VIII.

network topology k network topology k+1

Figure 2.7 Illustration of a dynamic network topology which the methodology pre-
sented in Chapter 8 allows for.

Chapter 9: “Conclusions and future work” In this chapter we provide a sum-
mary and a discussion of the technical chapters in this thesis. Along with this we
will also provide some interesting directions for future work. One interesting direc-
tion is to go towards a “dynamic network calculus”. This involves modeling traffic
flows using the bounds commonly found within network calculus, but to also com-
bine them in a dynamic way. A quite promising direction would be to use this for
dynamic priority-assignment of flows within a node.
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2.1 Publications

In this section I list the publications used in this thesis, as well as my personal
contributions for each of them.

Paper I
Millnert, V., E. Bini, and J. Eker (2016). “Cost Minimization of Network Services

with Buffer and End-to-End Deadline Constraints”. In: REACTION, a Satellite
Workshop at IEEE RTSS. IEEE. Porto, Portugal, pp. 31–37.

This paper was also republished in the ACM SIGBED Review:

Millnert, V., E. Bini, and J. Eker (2018). “Cost minimization of network services
with buffer and end-to-end deadline constraints”. ACM SIGBED Review, ACM,
pp. 39–45.

These papers treat the problem of controlling a chain of connected cloud func-
tion through which a constant stream of packets flow. The packets flowing through
the chain must be processed by each of the cloud function before a specific end-to-
end deadline.

Each cloud function consists of a number of virtual machines, and the goal of
this paper is to study how many virtual machines each cloud functions should have
at any point in time. In essence, we wish to derive an offline schedule for the virtual
machines in the different cloud functions. By following this schedule the packets are
guaranteed to make it through the network on time. Moreover, the derived schedule
ensures that the operational costs for hosting the VMs are minimized.

Authors contribution. Apart from deriving the model for the chain of cloud ser-
vices and stating the problem formulation, V. Millnert was the lead author in writing
the manuscript as well as the lead developer of the solution. Naturally, this was done
with the feedback and comments from both J. Eker and E. Bini.

Paper II
Millnert, V., J. Eker, and E. Bini (2017). “Feedback for increased robustness of for-

warding graphs in the cloud”. Journal of Systems Architecture, Elsevier, pp. 68–
76.

This paper builds on Paper I and extends it by adding a feedback-law. With this
addition it becomes possible to allow the chain of cloud functions to also handle a
stochastic arrival rate as well as disturbances.

Without the new feedback law, the cloud functions would eventually drift away
from the desired schedule, but with the addition of the feedback-law it is possible
to guarantee that the cloud functions will return back to the desired schedule, even
in the presence of disturbances.
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Authors contribution. V. Millnert was the lead author in writing the extended
journal manuscript as well as responsible for developing the new feedback law.
He was also responsible for building and evaluating the simulations. J. Eker and
E. Bini both helped with comments and feedback on the manuscript as well as the
theoretical work.

Paper III
Millnert, V., J. Eker, and E. Bini (2016). “Cost Minimization of Network Services

with Buffer and End-to-End Deadline Constraints”. Lund University, Technical
Reports TFRT-7648.

This paper is the technical report in which we collected things that did not fit
into Paper I and II. Among other things, it contains the proofs and some additional
analysis.

Authors contribution. See the contributions for Papers I and II, since this is the
technical report which contains the material used for both of those papers.

Paper IV
Millnert, V., J. Eker, and E. Bini (2017). “Dynamic Control of NFV Forwarding

Graphs with End-to-End Deadline Constraints”. In: IEEE International Confer-
ence on Communications. Best Paper Award. IEEE. Paris, France, pp. 1–7.

In this work we generalized the model of Papers I–III to also include uncer-
tainties and dynamic behavior. The uncertainties included things such as available
processing capacity of virtual machines or how long it would take to start a new
virtual machine. The dynamic behavior comes from allowing a highly varying traf-
fic (the behavior of which is based on real traffic data gathered from the Swedish
University Network).

Authors contribution. V. Millnert was the lead author and investigator in this
work. He developed the new model and derived the solutions (i.e., the admission
controller and the service controller). He also implemented and evaluated the sim-
ulations. J. Eker and E. Bini assisted with both feedback and comments throughout
the process of this work.

Paper V
Millnert, V., E. Bini, and J. Eker (2017). “AutoSAC: Automatic Scaling and Admis-

sion Control of Forwarding Graphs”. Annals of Telecommunications, Springer,
pp. 15–12.
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Chapter 2. Outline & Contributions

This work is an extension of Paper V, in which we included more analysis and
evaluation, as well as a more general control-law for scaling the virtual machines in
a cloud function.

Authors contribution. V. Millnert was responsible for extending Paper IV into a
journal version. Hence, he was responsible for developing the extra material (i.e.,
generalized control-law) and the added analysis. He was also the lead author.

Paper VI
Millnert, V., J. Eker, and E. Bini (2018). “Achieving Predictable and Low End-to-

End Latency for a Network of Smart Services”. In: IEEE Global Communica-
tions Conference. IEEE. IEEE, Abu Dhabi, UAE, pp. 1–7.

This work builds on Papers IV and V with the addition being a generalization
towards a network of cloud functions. With this, we allow for multiple flows to pass
through the network of cloud functions. Along with this we introduced a concept
of differentiating between “internal” and “external” traffic, which further improved
how the feedforward-information was passed between the cloud functions in the
network.

Other contributions in this work included improvements to the admission con-
troller first proposed in Papers IV and V. With the new admission controller it be-
comes possible to perform the check of whether new packets should be admitted or
not using a simple if-statement, making it simple to implement in a real system.

Authors contribution. V. Millnert was mainly responsible for the generalization
of Papers IV and V into this work. He developed the network system model, the
new control-laws, and the new feedforwad scheme. He was also responsible for
developing the new simulation and evaluation. V. Millnert was the lead author and
wrote the manuscript with feedback and comments from both J. Eker and E. Bini.

Paper VII
Millnert, V., J. Eker, and E. Bini (2018). “Achieving Predictable and Low End-to-

End Latency for a Cloud-Robotics Network”. Lund University, Technical Re-
ports TFRT-7655.

This paper is a technical report in which we published, internally, theory and
analysis that did not fit into Paper VI due to lack of space. Among other things, this
includes more evaluation as well as a proposed way to estimate how the routing of
the traffic between different cloud functions in the network changes over time.

Authors contribution. See the contributions for Paper VI.
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2.1 Publications

Paper VIII
Millnert, V., J. Eker, and E. Bini (2019). “End-to-End Deadlines over Dynamic

Topologies”. In: Euromicro Conference on Real-Time Systems. Stuttgart, Ger-
many, pp. 1–22.

In this work we take a step back from what was done in Papers IV–VII and
instead assume that every cloud function in the network is able to guarantee that it
will meet its local node deadline (as is done in Papers IV–VII). With this assumption
in mind, the focus of this paper is on controlling the local deadlines of the cloud
services. The goal is to do this in a dynamic way so that flows and nodes can be
allowed to join and leave the network.

The contributions in this paper are a main theorem which propose a set of suffi-
cient conditions under which we can guarantee that all the end-to-end deadlines of
all the flows will be met. Moreover, we propose a set of protocols which dictates
how flows and nodes should be join/leave the network. We prove that by following
these protocols, there will be no violation to the main theorem.

Authors contribution. V. Millnert was the lead author and developer. He devel-
oped the problem formulation and derived the solution together with E. Bini. He
was also responsible for developing the simulations and evaluations. V. Millnert
was the lead author of the manuscript assisted by E. Bini and J. Eker.

Paper IX
Millnert, V. and J. Eker (2019). “HoloScale: Combining Horizontal and Vertical

Scaling”. In preparation.

In this work we propose a way to combine horizontal and vertical scaling of
cloud resources in order to allow for a very smooth and fast control of the available
computational power of a cloud function. Finally, we also provide a way to derive a
region of safe control parameters given some characteristics of the cloud function.

Authors contribution. In this work V. Millnert is solely responsible for all work.
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3
AutoSAC: automatic scaling
and admission control

In this chapter we present an idea of how to control a virtual network function, or a
cloud service, in a way that ensures that traffic flowing through it is guaranteed to
meet a specific deadline. As mentioned in Chapter 2, this is the first step towards the
final goal of guaranteeing end-to-end deadlines for flows passing through a dynamic
network of nodes, where by dynamic network we mean that the topology of the
network is allowed to change over time.

The intuition behind the ideas presented in this chapter is to combine admis-
sion control, i.e., deciding whether new traffic should be admitted into the node or
not, with horizontal scaling of virtual machines, or containers, as illustrated in Fig-
ure 3.1. The goal is to do this in a way such that the response time of the node, or the
time it takes an admitted packet to be processed by the node, is below a deadline.

queue
#5

STOP

admission 
control

++

horizontal
scaling

deadline

dynamic
traffic

load 
balancer

Figure 3.1 Illustration of the cloud service (or virtual network function) considered
in this chapter. The goal is to control the traffic being admitted into the node, as well
as to control how many virtual machines it should have active at any given point in
time. The goal is to do this in a way that guarantees that the packets flowing through
the node are processed within a deadline D .

38



3.1 Modeling of a cloud node

3.1 Modeling of a cloud node

Before presenting how we will combine the admission control and the horizontal
scaling, we will present a mathematical model of the system. As illustrated in Fig-
ure 3.1 a node we consider is modeled with some key entities: incoming traffic,
admission controller, a queue, a load balancer, a number of running execution en-
vironments (typically virtual machines or containers), and finally outgoing traffic.

In this thesis we use a fluid approximation of the traffic, meaning that the traffic
flowing as the nodes, and later the networks of nodes, are modeled through in-
finitesimally small packets. One reason for this is because of the simplified analyti-
cal expressions, and another one is that in a benchmarking study it was shown that
a typical virtual machine can process around 0.1–2.8 million packets per second,
[Bonafiglia et al., 2015]. Hence, in this work the number of packets flowing through
the functions is assumed to be in the order of millions of packets per second, sup-
porting the choice of a fluid model.

Traffic flow At time t the node will see traffic arriving to the node at an incoming
traffic rate of r(t) ∈ R+ packets per second. This traffic can either be admitted into
the queue of the node, or be discarded. The rate by which traffic is admitted into the
queue is given by the admission rate a(t) ∈ [0, r(t)]. It is the job of the admission
controller to control this rate, and later in Section 3.2 we will present a policy for
doing so. Finally the rate by which traffic is being processed by the node, and is
leaving it with, is modeled by the service rate s(t) ∈ R+. From these signals we can
also define the integrals

S(t) =
∫ t

0
s(x)dx, A(t) =

∫ t

0
a(x)dx, R(t) =

∫ t

0
r(x)dx. (3.1)

which allows us to model the amount of work in the queue as

q(t) = A(t)−S(t), q(t) ∈ R+. (3.2)

Here is should be noted that this is assumed to model all the packets currently inside
the node. Hence, there is no distinction between packets being in the queue, or being
within the execution environment (or the virtual machines). This is an artifact from
the fluid approximation, and a useful analogy is that all packets are modeled as
being in the queue when they are in the node. The virtual machines then act as a
“throttle”, controlling the rate by which packets leave this queue. The more virtual
machines running in the node, the more processing capacity is available and the
larger this “throttle” is.

Machine model At any time instance, the node will have m(t) ∈ Z+ virtual ma-
chine instances up and running. Each instance (or replica) is assumed to be capable
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Chapter 3. AutoSAC: automatic scaling and admission control

of processing packets and corresponds to a virtual machine, a container, or a pro-
cess running in the OS. It is possible to control the number of running instances by
sending a reference signal mref(t) ∈ Z+ to the service controller. However, as ex-
plained in Chapter 1, it takes some time to start/stop instances since an instantiation
of the service is always needed. We denote this as the time overhead ∆. This time-
overhead is for simplicity considered to be symmetrical (meaning it is assumed to
take the same amount of time to start a new instance as to kill one). In real life
it is usually quicker to kill one than to boot one up. Moreover, it is assumed that
this time-overhead is constant over time. Naturally, this is not always the case in a
real system, but any variations in ∆ can be modeled through the processing uncer-
tainty presented later, in Chapter 6. With this time-delay ∆, the number of instances
running at time t is given by

m(t) = mref(t −∆).

The machine instances in the node are assumed to be homogenous, meaning that
they are replicas of the same virtual machine image, or container. Therefore, by
modeling the nominal service rate of a single machine instance by s̄ packets per
second, we can model the maximum processing capacity scap(t) of the node as

scap(t) = m(t) · s̄. (3.3)

Throughout the thesis we will interchangeably the available processing capacity
and maximum processing capacity to refer to scap(t).

Processing of packets The packets in the queue are stored and processed in a
FIFO manner. As mentioned earlier, the processing capacity of the node can be
seen as a throttle, adjusting at what rate traffic is leaving the node. This rate is given
by the service rate, s(t), which we can now define as

s(t) =

{
scap(t) if q(t)> 0,
min

{
a(t), scap(t)

}
else.

(3.4)

Here one can again see how the maximum processing capacity acts as a “throttle”.
One can also see that the throttle can only ensure that traffic leave the node at a rate
of s(t) if there are packets in the queue, or if the admission rate of the node is larger
than this. If the queue is empty, and the admission rate is lower than the maximum
processing capacity, then the rate s(t) is limited by this, leading to s(t) = a(t).

Deadline and latency The goal of this chapter is to ensure that an admitted packet
never spend a time longer than D time-units within the node. Therefore, if a packet
enters the node at time t, it should exit the node before time t +D .
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3.1 Modeling of a cloud node

The time that a packet which exits the node at time t has spent inside the node
is denoted the response time or node latency L(t) of the node, and is given by:

L(t) = inf{τ ≥ 0 : A(t − τ)≤ S(t)}.

One should note here that this model of the response-time, or the latency, accounts
for all possible delays within the node. This includes processing delays, internal
communication latency, queueing delay, etc. This means that if the latency of the
node is L(t) a packet exiting the node at time t was admitted into the node at time
t −L(t).

The choice of modeling the latency of the node in this way, e.g., as queueing
delay only, can be motivated from a study by Google, where they profiled the latency
in a datacenter [Kapoor et al., 2012]. They showed that less than 1% (≈ 1 µs) of
the latency occurred was due to the propagation in the network fabric. The other
99% (≈ 85 µs) occurred somewhere in the kernel, the switches, the memory, or the
application. Since it is difficult to say exactly which of this 99% is due to processing,
or queuing, we make the abstraction of considering queuing delay and processing
delay together, simply as queuing delay.

If one would wish to account for a specific processing time of the packets, one
could easily do so. For instance, should this processing time be constant, one could
account for this by simply reducing the deadline D by this amount: D̃ = D − c,
where c is the processing time. This would in turn lead us back to the case used
in this thesis, so for increased readability the processing time of packets is omitted
from this work.

Along with the definition of the latency L(t), it is also useful to define the ex-
pected latency of the node as L̄(t). This is commonly referred to as the “virtual
delay” in the field of network calculus [Le Boudec and Thiran, 2001]. It means that
it is the time that a packet entering the node at time t will need in order to pass
through the node, and can be computed as:

L̄(t) = inf
{

τ ≥ 0 : A(t)≤ S(t)+
∫ t+τ

t
m(x) · s̄ dx

}
. (3.5)

packets

time

A(t)A(t)

S(t)S(t)

t + L̄(t)t + L̄(t)

t+τ∫

t

m(x) · s̄dx

t+τ∫

t

m(x) · s̄dx

tt

Figure 3.2 Illustration behind Equation (3.5). L̄(t) is the time τ required until
S(t)+ s̄

∫ t+τ
t m(x)dx is greater then A(t). In the illustration the integral is illustrated

by the blue dashed line, A(t) by the black line, and S(t) by the solid blue line.
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Chapter 3. AutoSAC: automatic scaling and admission control

The intuition behind Equation (3.5) is illustrated in Figure 3.2, and is that we are
looking for the minimum τ ≥ 0 such that S(t+τ) = A(t), or in other words such that
at time t + τ the node will have processed all the packets that has entered the node
up until time t. One should note that L̄(t) is non-causal, and computing it requires
information of m(t) for the future. Since m(t) = mref(t −∆), this information does
however exist for a time-period up until ∆ time-units into the future. Therefore, as
long as L̄(t)≤ ∆ one can compute it.

Problem formulation
The goal of this chapter is to derive a service-controller and an admission-controller
that guarantee that packets that pass through the node meet their deadline D . This
should be done using as few virtual machines as possible while still achieving as
high throughput as possible. In other words, one wish to discard as little traffic
as possible, and use as few virtual machines as possible, yet still ensure that the
response time is less than the deadline.

To evaluate this, we have derived a simple, yet intuitive utility function u(t).
Later in Section 3.2, the utility function is used to derive an automatic service and
admission controller, denoted AutoSAC.

Utility function The goal in this chapter is to derive ways of controlling the num-
ber of active virtual machines in a node. Informally, this goal can be described as
trying to ensure that “the end-to-end deadlines of the different packet-flows are met,
while using as few virtual machines as possible and while discarding as few packets
as possible”. As an aid when evaluating this goal we propose three formal metrics,
defined in (3.6):

a) availability ua(t) – this is meant to capture the ratio of the incoming packets
being admitted to the node. If there is a high ratio, then it means that most of the
incoming traffic is being admitted into the node.

b) efficiency ue(t) – this is meant to capture what fraction of available processing
capacity is being used. A high ratio means that most of the available processing
capacity is being used to process traffic.

c) utility u(t) – this is a combination of ua(t) and ue(t) meant to capture the overall
performance of the node.

The intuition behind the choice of these metrics is that it is typically easy to have
either a high efficiency or a high availability, but not both at the same time. One
can for instance choose to overallocate the number of virtual machines in a node,
resulting in a high availability but a poor efficiency (since it will lead to a poor
utilization of the available processing capacity). Similarly, one can instead choose
to have a high efficiency by not allocating enough virtual machines to the node, thus
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forcing the node to discard many packets. The utility u(t) is defined as

u(t) = ua(t) ·ue(t), (3.6)

with ua(t) and ue(t) given by

ua(t) =

{
s(t)/r(t) if L(t)≤ D

0 if L(t)> D

ue(t) =
s(t)

scap(t)

(3.7)

One should notice that Equation (3.7) assumes that should a packet miss its deadline
it is considered useless, which is why ua(t) is evaluated as zero in such a case. It is
thus favorable to use admission control to drop packets that have a high probability
of missing their deadline in order to make room for subsequent packets.

3.2 Controller design

In this section an automatic service and admission-controller (AutoSAC) is derived.
Figure 3.3 illustrates an overview of the different parts of AutoSAC and the infor-
mation flow it uses. The service controller measures the incoming traffic and the
amount of work in the queue in order to estimate how much processing capacity it
will need in the near future. Due to the time-overhead in starting/stopping virtual
machines, and thereby changing the processing capacity of the node, it might be
difficult to predict and exactly match the necessary processing capacity. Therefore
the admission controller might have to discard packets sometimes. However, in or-
der for the node to not discard unnecessarily many packets, the admission controller
use feedback from the control signal and the current queue size.

The difficulty when deriving AutoSAC lies in the different time-scales for start-
ing/stopping virtual machines, the node deadline, as well as the rate-of-change of
the input. They are all assumed to be of different orders of magnitudes, given by
Table 3.1. However, these timing assumptions will be exploited later.

Property timing assumption
Long-term trend change of the traffic intensity 1 min – 1 h

Time-overhead ∆ for changing the number of VMs 1 s – 1 min
Deadline D for the traffic flowing through the node 1 ms – 1 s

Table 3.1 Timing assumptions for the deadline, the change-of-rate of the input,
and the overhead for changing the service-rate.
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Figure 3.3 Overview of the automatic service and admission-controller highlight-
ing that it uses feedback from the true performance of the nodes to estimate the time
it will take incoming packets to pass through the node.

Admission controller
As mentioned earlier, the traffic flowing through the node has a deadline D . In
order to ensure that the traffic that is admitted into the node is guaranteed to meet
the deadline, we will derive a simple admission controller. The basic idea is straight
forward: compare the deadline D(t) with the expected latency L̄(t). If the expected
latency, L̄(t), is larger than the deadline, D , then the admission controller should
discard the incoming traffic, giving us the following admission control policy:

{
admit traffic if D > L̄(t),
discard traffic if D ≤ L̄(t).

(3.8)

As we will show in Chapter 6, Theorem 6.1, one can ensure that D > L̄(t) by
ensuring that the following inequality hold:

A(t)< S(t)+Scap(t +D)−Scap(t), (3.9)

where Scap(t) is defined by:

Scap(t) =
∫ t

0
m(x) · s̄ dx. (3.10)

The reason for this follows from Equation (3.5), since

A(t)≤ S(t)+Scap(t +D)−Scap(t) ⇒ D ≥ L̄(t),

and because
∫ t+τ

t m(x) · s̄ dx = Scap(t + τ)− Scap(t) and because A(t), S(t), and
Scap(t) are all non-decreasing. Therefore, to enforce the admission policy (3.8), it is
sufficient to instead compute inequality (3.9). This is good because L̄(t) is typically
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expensive to compute as it usually involves at least one linear search, whereas com-
puting (3.9) can be done in constant time (assuming that the integrals are readily
available). Doing this instead, leads to the admission policy:

{
admit traffic if A(t)< S(t)+Scap(t +D)−Scap(t),
discard traffic else.

The remaining question is then how much traffic should be admitted or dis-
carded? Naturally, whenever there is a strict inequality in (3.9), we should admit
as much traffic as possible, i.e., a(t) = r(t). When instead there is equality, some
care must be taken and packets may have to be discarded in order to ensure that the
inequality is not violated. In such a case, the rate by which the admission controller
can admit traffic is governed by the rate by which Scap(t +D) is growing, i.e., by
scap(t +D). Therefore, the final admission policy will be given by:

a(t) =

{
r(t) if A(t)< S(t)+Scap(t +D)−Scap(t),
min

(
r(t), scap(t +D)

)
else.

(3.11)

The reason for the min()-statement is because it cannot admit packets at a rate
higher than r(t), should r(t) < scap(t +D). In Figure 3.4 a block diagram of the
admission controller is illustrated. It shows that by simple integration and time-
delays, the admission policy can be computed continuously and in constant time.

= 0

switch

upper: = 0
lower: > 0

min

r(t)
a(t)

∑
−1∆−D

time delay

scap(t+D)
×

scap(t+∆)
mref(t)

s̄ −1 D

time delay

−scap(t)
s(t)

∫

Figure 3.4 Block-diagram of the admission controller. It uses feedback from both
admission rate a(t), the service rate s(t), as well as the control-signal mref(t).

Service controller
The goal for the service-controller is to find mref(t) such that the utility function is
maximized once the reference signal is realized, i.e. such that u(t+∆) is maximized.
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We begin by expanding the utility function (3.6) giving us the following expression

u(t) = ua(t) ·ue(t) = s2(t)
scap(t) · r(t) .

Along with this, we note that the service rate s(t) can be approximated to be either
the current maximum capacity of the node, scap(t), or the input rate r(t)

s(t)≈ min{scap(t), r(t)}. (3.12)

The intuition behind using the min-statement is that the node cannot process packets
at a faster rate than what they are entering the node for a prolonged period of time.
Likewise, it cannot process packets at a rate higher than the capacity of the node
when the input were to be higher than this. We can thus approximate the utility
function through:

u(t)≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
scap(t)

)2

scap(t) · r(t) =
scap(t)

r(t)
, if scap(t)≤ r(t),

r2(t)
scap(t) · r(t) =

r(t)
scap(t)

, else.

With scap(t) given by (3.3) the utility function can finally be approximated as

u(t)≈

⎧
⎪⎪⎨

⎪⎪⎩

m(t) · s̄
r(t)

, if m(t) · s̄ ≤ r(t),

r(t)
m(t) · s̄ , else.

(3.13)

Since the goal is to find mref(t) in order to maximize u(t +∆) one needs knowl-
edge of r(t +∆) which is not available. However, one can estimate the future input-
rate using a linear extrapolation of the (low-pass filtered) input rate:

r̂(t) = r(t)+∆ · dr(t)
dt

.

Formulating the control-law. With the approximations above, the control-law
for mref(t) can be posed as the following optimization problem:

mref(t) =

⎧
⎪⎨

⎪⎩

arg max
x∈Z+

{x/κ(t)}, if x ≤ κ(t),

arg max
x∈Z+

{κ(t)/x}, else,
(3.14)

where κ(t) ∈ R+ is the real-valued number of instances needed to exactly match
the predicted incoming rate:

κ(t) = r̂(t)
s̄

. (3.15)

46



3.2 Controller design

In (3.14) one can see that the upper case is maximized when x is as large as possible,
but since this case is only valid when x ≤ κ(t) it leads to x = ⌊κ(t)⌋. Similarly, the
lower case is maximized when x is as small as possible, but since this case is valid
for x ≥ κ(t) it leads to x = ⌈κ(t)⌉, leading to the final control-law:

mref(t) =

⎧
⎨

⎩

⌊κ(t)⌋, if ⌊κ(t)⌋⌈κ(t)⌉ ≥ κ2(t),

⌈κ(t)⌉, else.
(3.16)

Approximation of the control-law Sometimes there is a need to have a large
number of virtual machines running in the nodes, and in such a case this control-
law may be simplified. In Theorem 3.1 we show that for such a case the control-law
can be simplified into mref

i (t) = ⌊κi(t)⌉.

THEOREM 3.1
When the node is having a large number of virtual machines running, mref

i (t) can be
approximated to the nearest integer and computed as mref

i (t) = ⌊κi(t)⌉. ✷

Proof Substituting mref
i (t) for y and κi(t) for x we can start from

y =

{
⌊x⌋ , if ⌊x⌋⌈x⌉ ≥ x2

⌈x⌉ else
(3.17)

allowing us to write x as x = ⌊x⌋+ρ, with ρ ∈ [0,1). If ρ = 0 then ⌊x⌋ = ⌈x⌉ = x,
implying that y = x. Otherwise, it follows that

⌊x⌋⌈x⌉ ≥ x2

⌊x⌋ · (⌊x⌋+1)≥ (⌊x⌋+ρ)2

⌊x⌋2 + ⌊x⌋ ≥ ⌊x⌋2 +2ρ⌊x⌋+ρ2

⌊x⌋ ≥ 2ρ⌊x⌋+ρ2

ρ ≤ 1
2
− ρ2

2⌊x⌋ .

Hence, Equation (3.17) can be rewritten as

y =

{
⌊x⌋ , if ρ ≤ 1

2 −
ρ2

2⌊x⌋
⌈x⌉ else

which for large x then becomes
y = ⌊x⌉ . ✷
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Comparison between control-law and the approximation To give some intu-
ition about the difference of using the control-law (3.16) for computing mref(t) and
using the approximation proposed in Theorem 3.1, we will show some evaluation
and analysis here. First, in Figure 3.5 the difference of mref is illustrated for differ-
ent values of κ. There, one can see that when κ grows larger than 4-5 the difference
between the two methods becomes very small.
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Figure 3.5 Figure illustrating the difference between mref when using the control-
law (3.16) and the approximation, presented in Theorem 3.1. One can see when κ> 4
there is almost no difference at all between the two methods.

In Figure 3.6 we illustrate how different values of κ affect the performance
of the node. This evaluation is made using the simulation methodology presented
later, in Section 3.3, but where we controlled the nominal processing capacity of
the virtual machine instance s̄ such that the simulations would have a maximum κ
during the simulations. More specifically, s̄ was chosen such that s̄ =maxt

(
r(t)

)
/κ,

where κ= {1, 2, . . . , 100}. As described in Section 3.3, every simulation had a peak
traffic rate of maxt

(
r(t)

)
= 10 000 000. This means that in Figure 3.6, maximum κ,

means that during the simulations to match the peak traffic, the node had to have κ
machines on.

The results of Figure 3.6 show that the performance of the system reach a
plateau for κ > 30. This is shown in Figure 3.6(a) where one can see how the per-
centage of the traffic being discarded is affected as well as how the amount of over-
allocation is also affected. In Figure 3.6(b) one can see how the number of instances
used to match peak capacity affect efficiency, the availability, and the utility of the
node. Again, one can see that for κ > 30 the performance is reaching a plateau.

The main reason for the increase in performance when κ grows above κ > 30
is because it allows for a finer granular control of the number of virtual machines
allocated to the node. It will become easier for the node to precisely match the
required processing capacity.
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(a) Evaluation of how κ affect the amount of
overallocation in the node, as well as the amount
of traffic being discarded by admission control.
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(b) Evaluation of how κ affect the efficiency ue(t),
the availability ua(t), and the utility u(t) of the
node. Naturally, this correlates to Figure 3.6(a).

Figure 3.6 Figure illustrating how κ affects the performance of the system. The
x-axis shows the maximum κ obtained during the simulation. The peak traffic rate
during the simulations was max

(
r(t)

)
= 10 000 000, so in order to vary maxt

(
κ(t)

)

the nominal service-rate s̄ was between the simulations.

3.3 Evaluation

In this section, the automatic service and admission-controller (AutoSAC) devel-
oped in Section 3.2 is evaluated. First, we will illustrate how we simulated the cloud
node with randomly generated parameters, and then show AutoSAC is compared
with two other “industry” methods for scaling cloud services. The comparison is
done using a Monte Carlo simulation where the parameters of a node were ran-
domly generated and then simulated, using a real traffic trace as the basis for the
incoming traffic intensity. The traffic trace used as input was gathered over 120
hours from a port in the Swedish University NETwork (SUNET) and then scaled to
have a peak of 10000000 packets per second as shown in Figure 3.7.
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Figure 3.7 Traffic data used for the evaluation in this chapter, gathered from the
Swedish University Network (SUNET).
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Figure 3.8 Simulation data showing how the node scales the number of virtual
machine instances over time.

Example node
For this example a single node was simulated, where the parameters were randomly
generated. The deadline D was chosen, randomly, from the interval [0.05, 0.10] sec-
onds. The nominal service-rate s̄ was chosen uniformly at random from the interval
[300000, 600000] packets per second, and the time-overhead ∆ was drawn uni-
formly at random from the interval [15, 60] seconds. The incoming traffic r(t) was
used for this simulation was chosen from a randomly selected 90min-interval of the
SUNET-data shown in Figure 3.7. This was then scaled in order to have a peak of
10000000 packets per second.

In Figure 3.8 one can see how the arrival rate r(t) varies over time, and how
the node adjusts the number of active virtual machines in order to compensate for
this. This can also be seen in Figure 3.9 where the maximum processing capacity
scap(t) of the nodes closely follows the arrival rate. There, one can also see how the
admission rate is adjusted. It is also interesting to note how the utility u(t) changes
over time during the simulation. Although it remains high during most of the sim-
ulation, it does dip a bit around the 50 minute mark. One reason for this is that the
arrival rate is quite low relative to the nominal service rate s̄. This leads to only a
few virtual machine being needed, and thus a relatively larger difference between
r(t) and scap(t).

Comparing AutoSAC with state-of-the-art
In this section compare AutoSAC with two “industry”-methods through a Monte
Carlo simulation where each method is simulated a 1000 times. The two industry-
methods are; dynamic auto-scaling (DAS) and dynamic over-allocation (DOA).
Since neither of these two industry methods use any admission control they are
also augmented with the admission controller presented in Section 3.2. The two
augmented methods are denoted by “DAS AC” and “DOA AC”.
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Figure 3.9 Simulation data showing how the arrival rate r(t), maximum processing
capacity scap(t), admission rate a(t) and the utility u(t) varies over time.

Dynamic auto-scaling (DAS) This method is currently being offered to cus-
tomers using Amazon Web Services. It allows the user to monitor different metrics
(e.g., CPU utilization) of their VMs using CloudWatch. One can then use it together
with their auto-scaling solution to achieve dynamic auto-scaling. This allows the
user to scale the number of VMs as a function of these metrics. One should note
that the CPU utilization can be considered the same as the efficiency metric ue(t)
defined in (3.7). For the Monte Carlo simulation the following rules were used:

{
add a virtual machine if ue(t)≥ 0.9,
remove a virtual machine if ue(t)≤ 0.8.

Dynamic over-allocation (DOA) A downside with DAS is that it reacts slowly to
sudden changes in the input. A natural alternative would therefore be to instead do
dynamic over-allocation, where one measures the input to each node and allocates
virtual machines such that there is an expected over-provisioning of the processing
capacity of 10%.

Monte Carlo Simulation The five methods are compared using a Monte Carlo
simulation with 1000 runs for each method. For every run, 2 hours of the input data
was randomly selected from the total of 120 hours shown in Figure 3.7. Further-
more, in every run a new node was generated using the method described earlier.

Results The mean of the average utility over all the simulation runs is presented
in Figure 3.10 for each of the five methods. One can see that AutoSAC achieves a
utility that is 25–30% better than that of DAS and DOA. The main reason for this is
that they are lacking admission control leading to packets missing their deadlines,
which eventually results in a low utility.
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Figure 3.10 Results from the Monte Carlo simulation. AutoSAC was compared
against dynamic auto-scaling (DAS) and dynamic overallocation (DOA). Neither
DAS nor DOA has admission control so they were augmented with the one devel-
oped in this chapter. In the left figure one can see the result of the average utility,
efficiency, and availability for each of the five methods, and in the right figure the
fraction of the incoming packets that are discarded and the average amount of over-
allocation of the processing capacity.

When augmenting DAS and DOA with the admission controller presented in
Section 3.2 their performance is increased by about 20%, purely as a result of not
having these sudden drops in performance. However, AutoSAC still performs bet-
ter, due to a higher efficiency, the main reason for this is likely because of better
estimation of how many virtual machine are needed to processing the incoming
traffic.

3.4 Summary

In this chapter we have developed a mathematical model for a virtual network func-
tion, or a cloud service. The model captures, among other things, the time needed
to start/stop virtual resources (e.g., virtual machines or containers). The main idea
behind the suggested controllers is to create an abstraction between: i) predicting
future arrival rates, ii) controlling how many virtual machines will be needed, and
iii) computing how much traffic should be admitted into the node.

To evaluate the performance of the suggested method, AutoSAC was compared
against two standard-methods in industry for controlling cloud resources. The eval-
uation highlights the importance of good admission control if one wish to have both
a high efficiency of the utilized resources yet still guarantee that a deadline for the
arriving traffic is met.

The method presented in this chapter will be generalized in Chapter 6 in order
to control a chain of connected nodes.
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4
HoloScale – combining
horizontal and vertical
scaling

In this chapter we go on a tangent compared to the previous chapter. We still con-
sider a single cloud node, but instead of combining admission control and horizontal
scaling to control the response-time of the node, we treat a different problem. We
aim at combining horizontal and vertical scaling, but no admission control, in order
to only control the available processing capacity of a node. The proposed method is
called HoloScale, and we will illustrate how it could be combined with a response-
time controller in order to ensure that the response-time of a node remains below
a given deadline. In Figure 4.1 we illustrate the idea of combining horizontal and
vertical scaling.

queue

#4

++

horizontal scaling

dynamic
traffic

vertical scaling

load 
balancer

Figure 4.1 Illustration of the how horizontal and vertical scaling are combined in
HoloScale. The goal is to ensure that the available processing capacity of the node
matches the desired one.
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4.1 Introduction

Holo originates from the Greek work ολος meaning “whole, entire, complete” as
well as “safe and sound”. As we saw in the previous chapter, this is typically not the
case when using solely horizontal scaling for controlling the processing capacity of
a cloud node. When scaling cloud resources, one typically has to choose between
one of two options: a) horizontal scaling, or b) vertical scaling. Horizontal scaling,
is where one adds processing capacity by adding more instances which are identical.
The benefit of which is that one can scale the processing capacity of a node over
a very large range. The downside, however, is that it is usually very slow and with
a very coarse control. The other option, vertical scaling allows the user to quickly
and continuously scale the existing processing capacity of a node by adding more
resources to an existing, and already running, machine. The downside, however, is
that the operating range is limited.

With HoloScale we use basic principles from control-theory and present a way
to combine both horizontal and vertical scaling in a provably safe way. This allows
us to do both rapid continuous scaling (by leveraging vertical scaling) over a large
spectrum (by leveraging horizontal scaling). We present a model for this system and
solve the control problem by borrowing ideas and concepts from classical mid-range
control. Finally, we evaluate our proposed solution through simulations where the
set-point for the processing capacity is gathered from the SUNET-data presented in
Chapter 3. We show that the system is capable of quickly scaling the computation
resources as well as to react to sudden disturbances, such as virtual machines going
down.

A cascaded control With the advent of cloud computing it has become possible
to autonomously scale the resources allocated to various cloud services. The goal is
to ensure some quality of service (QoS) for the service. For instance, this could for
instance be to ensure a specific response-time when using the service, or that there
is a sufficiently high throughput. Naturally, there is no engineering challenge in
“just” ensuring that this QoS is met, since one option is to always over-dimension
the amount of resources allocated to the service. The challenge therefore, lies in
providing “lagom” (a popular Swedish for “just enough”) amount of resources to
allocate such that the QoS is met, but with the lowest possible cost.

When controlling such a cloud computing system, there is typically a need to
use a feedback-loop, as illustrated in Figure 4.2, (and as we saw in Chapter 3) since
the true computing capacity might be subject to disturbances. Such disturbances
could be virtual machines or containers crashing, or bugs in the software leading to
a lack of performance. This could lead to the fact that the actual processing capacity
of the system differs from the desired one, thereby making it difficult for the QoS-
controller to ensure that the QoS-goals are met.

We believe that it would be simpler to design these QoS-controllers if the
design-engineer could assume that the actual processing capacity of the system
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Figure 4.2 Illustration of the cascaded feedback-loops allowing a separation of
concerns. The HoloScale controller ensures that the true processing capacity matches
the desired processing capacity, thereby allowing the QoS-controller to focus con-
trolling the desired processing capacity such that the QoS-goals are met.

matches the one which is desired from the QoS-controller. If this would be possible,
the engineers would be allowed to solely focus on the dynamics and mechanisms
that affect the QoS, rather than to also handle the situation when there are large
changes of the desired compute capacity, or when machines crash.

One way to address this is to use a cascade-controller, as illustrated in Figure 4.2.
One part of the controller has the focus on ensuring that the system has the desired
amount of processing capacity (the HoloScale-controller), while the other part (the
QoS-controller) has the focus on adjusting the amount of processing capacity such
that the QoS-goal is met.

4.2 System model

In this section we describe some of the underlying assumptions as well as the system
model we used to derive the control structure.

The goal of the system is to ensure that the true processing capacity scap(t)∈R+

matches the desired processing capacity sref(t). We assume that we have one set of
machines capable of vertical scaling as well as one set of machines which we can
scale horizontally. To distinguish between the two we will call the capacity provided
by the vertically scalable machines as the vertical capacity sv(t) ∈ [slbv , subv ], where
slbv ∈ R+ and slbv ≤ subv ∈ R+ are the lower and upper limit of the vertical scaling
capabilities. Similarly, the capacity provided by the horizontally scalable system is
denoted as the horizontal capacity sh(t) = s̄ ·m(t), where m(t) ∈N is the number of
instances that are currently running, and s̄ ∈ R+ is the processing capacity for one
instance. Together, the horizontal and the vertical capacity form the total capacity
for the system, scap(t) = sv(t)+ sh(t).

It is possible to change the vertical capacity through a control signal srefv (t),
but doing so takes some time ∆v, giving us the relationship sv(t) = srefv (t − ∆v).
Similarly, it is possible to control the horizontal capacity by controlling the number
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of instances we wish to have running through mref(t). Performing this action also
takes some time ∆h, leading to the horizontal capacity at time t being given by
sh(t) = s̄ ·m(t) = s̄ ·mref(t −∆h). We assume that changing the horizontal capacity
is much slower than changing the vertical capacity, i.e., ∆v ≪ ∆h.

A chaos monkey In real life the number of instances you have running does not
always match the number of instances you thought you had running. The reason is
that sometimes, machines crash or does not boot up correctly. In order to simulate
this in our set-up we used inspiration from the field of chaos engineering [Basiri
et al., 2016; Chang et al., 2015; Beyer et al., 2016], and added a Chaos Monkey to
our system. The job of it is to sometimes kill some of the instances running, thereby
reducing the horizontal capacity. The number of killed instances is given by ε(t),
leading to the following horizontal capacity: sh(t) = s̄ ·

(
mref(t −∆h)+ ε(t)

)
.

4.3 HoloScale controller

The main idea behind the controller structure comes from the classic mid-range
problem in control theory [Åström and Murray, 2010]. The basic idea is to separate
the concerns for the horizontal and the vertical controller. In doing so we can allow
the vertical controller to focus on ensuring that the current processing capacity of
the system matches the desired processing capacity. However, since the range-of-
operation for this controller is very limited, we must ensure that it remains within
its operating range. This is the purpose of the horizontal controller: to match the
desired processing capacity in a coarse manner, so that the vertical controller can be
able to fill in the void.

The basic controller-structure can be seen in Figure 4.3, which illustrated that
the horizontal controller is a feedforward controller from the desired processing
capacity to the number of virtual machines which should be running. The verti-
cal controller is a feedback-loop aiming to ensure that the true processing capacity
matches the desired processing capacity. They will both be described in more detail
later on.

As mentioned earlier, our approach is similar to that of mid-range control prob-
lems, but it does differ slightly. The main difference is that we do not use feedback
from the vertical controller back to the horizontal controller. The reason for this is
that the horizontal controller operates in a discrete space (choosing the number of
instances that should be running), while the vertical controller operates in a contin-
uous space. Thus, if having feedback from the vertical controller to the horizontal
controller the system will end-up in a state where the horizontal controller tries to
drive its processing capacity so that it matches a continuous signal. This will be
achieved by scaling up/down the number of running instances very rapidly, much
like with pulse-width modulation. Since we assume that there is a cost associated
with starting a virtual machine this behavior is not desirable, hence we skip this
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Figure 4.3 Overview of the controller structure for combining a horizontal and
vertical scaler. As one can see, there is an open-loop structure from the reference
signal, through the horizontal controller and a feedback loop from the total process-
ing capacity back to the vertical autoscaler.

feedback. Another reason for omitting the feedback is because the time-delay for
adding/removing a virtual machine is orders of magnitude slower than the vertical
controller. Hence, from the point-of-view of the vertical controller, the control ac-
tion from the horizontal controller will look a lot like an open-loop feedforward
controller.

The horizontal controller
As mentioned earlier, the job of the horizontal controller, illustrated in Figure 4.4,
is to ensure that the vertical controller is within its working range. To achieve this,
it takes as input the desired maximum processing capacity r(t) and computes how
many instances it needs to have running in order to match the floor of this:

srefh (t) = mref(t) · s̄ =
⌊ r(t)

s̄

⌋
· s̄. (4.1)

As mentioned earlier, some machines might crash during run-time, so it is im-
portant to still be able to ensure that the number of machines that are up-and running
matches the desired number. To achieve this, the horizontal controller has an addi-
tional feedforward-loop, from the disturbance signal ε(t) to the desired horizontal
capacity srefh (t). This is in order to compensate for any crashed machines. With ε(t)
machines being down at time t it has to compensate for a total of s̄ · ε(t). The com-
plete controller structure is illustrated in Figure 4.4.

The vertical controller
The vertical controller, shown in Figure 4.5, is a simple proportional and integral
controller, or PI-controller, which takes as input the error, i.e., the difference be-
tween the desired processing capacity and the true processing capacity of the sys-
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Figure 4.4 Block diagram for the horizontal controller. It consists of two feedfor-
ward controllers, from the desired processing capacity as well as from the measured
disturbance, i.e., the number of crashed machines.

tem, and computes the necessary vertical processing capacity:

srefv (t) = kp · e(t)+ ki

∫ t

0
e(x)dx, (4.2)

where e(t) = sref(t)− scap(t) is the control-error, or the difference between desired
and true processing capacity, and where kp and ki are the control-parameters decid-
ing the “weights” of the proportional and integral part of the controller. The vertical
processing capacity, is then a time-delayed version of this:

sv(t) = srefv (t −∆v).

The question of how to choose these control-parameters kp and ki will depend on
the how the user wishes the final system to behave. For instance, if the user wishes
the system to react quickly to changes in desired processing capacity, or if the user
wishes the system to not have any overshoot, where overshoot means that the system
for a brief moment will add slightly too much processing capacity only to remove
shortly after.

We will discuss this in the next section, where we will also derive necessary
conditions on what kp and ki can be chosen and still guarantee that the system will
remain stable.

4.4 Design principles and stability analysis

Whenever designing a controller it is very important to be sure that the controller
is capable of stabilizing the intended system, even in the presence of disturbances
and modeling errors. In this section we will derive conditions for how to choose the
control-parameters kp and ki so that the system will remain stable.

One of the benefits when combining the horizontal feedforward controller with
the vertical feedback controller is that a feedforward-loop can never destabilize a
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Figure 4.5 Block diagram for the vertical controller. It uses feedback information
from the total processing capacity in order to compute how much “extra” is needed
from the vertical controller.

stable control-loop [Åström and Murray, 2010]. For our purposes, this means that
we only have to consider the vertical controller when deriving the parameters for
which it is stable. From the perspective of the vertical controller, the processing
capacity provided by the horizontal controller can be viewed as an external distur-
bance.

There are many ways to analyze a control-system and derive conditions on its
stability. In this section we will use the Nyquist Criterion [Åström and Murray,
2010; Nyquist, 1932]. Briefly described, it can determine the stability of a feedback
system by analyzing the loop transfer function G(s), where s ∈ C is a complex
number and not be confused with the processing capacity (whenever we refer to the
processing capacity, it will always be written as a function of time: s(t)). Simplified,
the condition states that as long as there are no poles in the closed right half-plane,
the closed-loop system is stable if and only if the closed contour given by Ω =
{G(iω) : −∞ < ω < ∞}⊂C has no net encirclements of the critical point s =−1.

In our case, the Nyquist criterion is fulfilled by ensuring that for the frequency
ωc giving us |G(iωc)|= 1, it hold that arg

(
G(iωc)

)
>−π, and that for the frequency

ω0 giving us arg
(
G(iω0)

)
=−π, it hold that |G

(
iω0

)
< 1. The loop-transfer func-

tion in our case is given by the Laplace transform of the vertical controller combined
with the time-delay. That is, the Laplace transform of g(t) = sv(t) = srefv (t −∆v):

G(s) = L {g(t)}=
skp + ki

s
e−s∆v . (4.3)

We begin our analysis by splitting G(s) in two parts:

G(s) = G0(s) · e−s∆v , G0(s) =
skp + ki

s

We can then find the first condition on kp ≥ 0 and ki ≥ 0 by finding for which values
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of them it holds that |G(iω0)|< 1. This leads to the following condition:

|G(iω0)|= |G0(iω0)|=
|iω0kp + ki|

|iω0|
< 1.

From the above expression we can find the maximum value of kp by setting ki = 0:

ki = 0 ⇒ 0 ≤ kp < 1. (4.4)

The next step is then to check for which values of ki and kp < 1 it hold that
arg

(
G(iωc)

)
>−π. We therefore begin by locating the cross-over frequency ωc:

ωc ∈ R+ : |G0(ωc) · e−ωc∆v |= 1,

and then ensure that
arg(G0(ωc) · e−ωc∆v)>−π.

The cross-over frequency ωc can be located from:

|G0(ωc) · eωc∆v |= |G0(ωc)|=
∣∣∣
iωckp + ki

iωc

∣∣∣=

√
ω2

c k2
p + k2

i

ωc
= 1,

giving us the following condition:
√

ω2
c k2

p + k2
i = ωc ⇒ ωc =

ki√
1− k2

p

. (4.5)

For this frequency, the argument arg
(
G(iωc)

)
is given by

arg
(
G0(ωc) · e−ωc∆v

)
= arg

(
G0(ωc)

)
−ωc∆v

= arg
( iωckp + ki

iωc

)
−ωc∆v

= arg
(

iωckp + ki

)
− π

2
−ωc∆v

= arctan
(ωckp

ki

)
− π

2
−ωc∆v.

This gives us the following condition:

arctan
(ωckp

ki

)
− π

2
−ωc∆v >−π. (4.6)

Finally, by inserting (4.5) into (4.6) we arrive at

arctan
(

kp√
1−k2

p

)
− π

2 − ki√
1−k2

p
∆v >−π

⇒ ki <
√

1−k2
p

∆v
·
(

π
2 + arctan

( kp√
1−k2

p

))
.
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The conditions on the control parameters kp and ki can then be summarized by:
⎧
⎨

⎩
kp ∈ [0, 1),

ki <
√

1−k2
p

∆v
·
(

π
2 + arctan

( kp√
1−k2

p

))
.

(4.7)

Choosing control parameters With the stability conditions for kp and ki given in
Equation (4.7) it becomes possible to compute a region of stable control parameters.
This means that any choice of kp and ki from within this region will lead to a stable
controller. Naturally, the size of this region depends on the time-delay ∆v before the
control action of the vertical controller is realized. Since 0 ≤ kp < 1 it is possible to
fix a value of kp ∈ [0, 1) and then use Equation (4.7) to compute for which 0 ≤ ki
the system will remain stable. One can then continue and repeat this while sweeping
over kp ∈ [0, 1). In Figure 4.6 we have done this and plotted the stable regions of kp
and ki for two different time-delays: ∆v = 0.10 and ∆v = 0.20.
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Figure 4.6 Regions for stable choices of kp and ki given different time-delays for
the vertical controller, i.e., ∆v. The red region represent stable values for ∆v = 0.2 s,
and the blue region for ∆v = 0.10 s.

Anti-windup for the vertical controller Since the vertical controller has a lim-
ited range, and uses an integrator, it is important to ensure that it does not become
subject to integral wind-up. This would for instance occur whenever the vertical
controller tries to achieve a capacity higher than its upper bound: srefv (t) > subv . To
remedy this problem, one can add an anti-windup solution to the controller. One
way to do this is to feed back the difference between the control signal fed into the
system, srefv (t) and the saturated signal subv , as shown in [Åström and Murray, 2010].
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Chapter 4. HoloScale – combining horizontal and vertical scaling

Prediction for the horizontal controller Since the horizontal controller is slow
to react to changes of the desired capacity it might be advantageous to use predic-
tion, just as we did in Chapter 3. This means that it tries to predict what the com-
putation requirement will be in ∆h time-units into the future with a simple linear
extrapolation, such that

ŝref(t) = sref(t)+∆h ·
∂ s̃ref(t)

∂ t
, (4.8)

where s̃ref(t) is a low-pass filtered version of sref(t).

4.5 Evaluation

To evaluate the performance of the HoloScale-controller, we performed many sim-
ulations, again using the SUNET-data presented in Chapter 3 as a reference for the
desired processing capacity of the node. HoloScale was compared with using just a
horizontal controller. For the purely horizontal controller the number of virtual ma-
chine instances used was chosen such that mref(t) =

⌊
sref(t)/s̄

⌉
. The performance

of the two methods was evaluated using the average normalized integrated absolute
error (avg IAE) as performance metric:

avg IAE(t) =
1
t

t∫

0

|sref(x)− scap(x)|
sref(x)

dx. (4.9)

Example simulation For every simulation the time-delay for horizontal scaling
was chosen to be ∆h = 1 s and the time-delay for vertical scaling was chosen to be
∆v = 0.1 s. The peak traffic intensity was again 10000000 packets per second. The
nominal service capacity for a horizontal virtual machine was randomly and uni-
formly chosen from the interval s̄ ∈ [833, 125] in order to ensure that the maximum
number of horizontal instances needed would be less than 8−12. The capacity for
the virtually scalable machine was chosen to be subv = 2.5 · s̄. Finally, the control-
parameters for the HoloScale-controller was chosen to be kp = 0.25 and ki = 7.5.

In Figure 4.7 we illustrate one of the simulations of where we compare
HoloScale and the horizontal controller. One can see that the Chaos Monkey killed
a horizontal virtual machine at times t = {20, 40, 60, 80}. The difference between
the two figures however, is that in HoloScale, the vertical controller immediately
compensated for this. When only having horizontal control, it took ∆h = 1 s before
this shortage of processing capacity compensated for.

In Figure 4.8 we show the horizontal capacity sh(t) and the vertical capacity
sv(t) for the HoloScale controller during the interval t = [0, 50] in order to illustrate
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Figure 4.7 Total processing capacity when combining horizontal and vertical scal-
ing as proposed in the HoloScale controller.
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Figure 4.8 Horizontal and vertical processing capacity in the HoloScale controller
during the simulation. Note that the Chaos Monkey killed a virtual machine image
at times t = {20, 40}, and that the vertical controller quickly compensated for this.

the interaction between the two a bit more clearly. There, one can see that the verti-
cal controller quickly compensates for any lack of processing capacity provided by
the horizontal controller.

Monte Carlo simulation To compare the HoloScale against just horizontal scal-
ing, we performed a small Monte Carlo simulation where each method was simu-
lated 100 times each. For each simulation the set-point for the desired processing
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Chapter 4. HoloScale – combining horizontal and vertical scaling

capacity was chosen to follow the SUNET-data, just as illustrated in Figure 4.7.
We then evaluated the mean avg IAE for both controllers. The result is shown in
Figure 4.9, which illustrates how mean(avg IAE) changes over time. One can es-
pecially see the effects of the Chaos Monkey killing a virtual machine instance at
times t = {20, 40, 60, 80}, and that HoloScale was able to compensate for this dis-
turbance quicker. This in-turn lead to the avg IAE of HoloScale being only 25% of
the value obtained when one is only using a horizontal controller.
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Figure 4.9 Plot showing the results of the Monte Carlo simulation where we com-
pare HoloScale against a pure horizontal controller. The y-axis shows the average
integrated absolute error over all the simulations.

4.6 Summary

In this chapter we have presented an alternative method to control the processing
capacity of a node. The idea is that if one can combine both horizontal scaling and
vertical scaling one can end up with a smoother control of the available processing
capacity. This makes it easier to then control the computation-system in order to
reach a desired quality-of-service of the system.

To combine these two scaling mechanism we have borrowed ideas from the
classical mid-ranging control problem, and showed how one can guarantee that the
proposed controller is stable. Finally we evaluated the performance of the proposed
HoloScale through a number of simulations where it was compared with a purely
horizontally scalable system. It should be noted that this chapter is more of a the-
oretical comment, since it is currently quite difficult to scale down resources using
vertical scaling, due to difficulty of reducing memory during run-time and the need
to adjust applications to automatically scale with more/less resources.
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4.6 Summary

The proposed method in this chapter might allow one to abandon the admission
controller in AutoSAC, and instead use a cascaded QoS-controller, where the outer
loop controls the response-time, or the latency, of the node and the inner loop en-
sures that the processing capacity matches the desired one and is controlled by the
HoloScale controller. This would indeed be an interesting direction for future work.
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5
A naive approach for
controlling a chain of nodes

In this chapter, we are back on the path towards controlling a network of nodes in
order to ensure that the traffic moving through it will meet their end-to-end dead-
lines. The focus in this chapter is to study how to ensure that traffic flowing through
a chain of nodes can be guaranteed to meet their end-to-end deadline. To achieve
this every node in the chain will be able to horizontally scale the number of active
virtual machines, or containers, in order to dynamically adjust their processing ca-
pacity, as illustrated in Figure 5.1. As a first encounter to this problem, will keep the
incoming traffic rate of the chain constant, so as to simplify the problem. Later, in
Chapter 6 we will extend this to also allow for dynamic traffic-rates.

The key contributions of this chapter is that with a constant traffic intensity, we
can set up an optimization problem and derive a schedule for turning the virtual
machines on/off. At the end of the chapter, we will show how adding a feedback-
law will allow the nodes to also handle stochastic variations to either their available
processing capacity, or to the incoming traffic intensities.

node 1 node 2 node n

constant 
traffic

end-to-end deadline

Figure 5.1 Illustration of the chain of cloud services (or virtual network functions)
considered in this chapter. The traffic flowing through the n nodes must be processed
by all of the nodes within a specific end-to-end deadline D . Note that the nodes
considered in this chapter only rely on horizontal scaling, and no vertical scaling nor
the use of any admission control.
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5.1 Modeling a chain of nodes

5.1 Modeling a chain of nodes

We model the chain of nodes as the set V ∈N+, with a total of n= |V | nodes, which
are concatenated as is illustrated in Figure 5.1. This means that the output of node 1
is the input of node 2, and so on. In order to keep track of the different nodes in the
chain we will use the sub-index i to specify the properties of that particular node.
This means that the model presented in Chapter 3 is simply extended, such that for
the i-th node ri(t) is the traffic entering it, mi(t) is the number of virtual machines,
and si(t) is the service rate and the rate by which traffic is leaving the node. This
also means that for nodes i = 2, . . . ,n it follows that ri(t) = si−1(t), implying that
we do not consider any communication latency between the nodes, nor any packet
loss during the communication between the nodes. It should be noted that just as
the case with processing time in Chapter 3, a communication delay between nodes
could be considered by properly adjusting the end-to-end deadline D . For instance,
if the total communication delay between all the nodes in the chain adds up to c,
then the adjusted end-to-end deadline could be given by D̃ = D − c.

Different nodes in the chain are assumed to provide different processing to the
traffic passing through them. For instance, one node might be a firewall, another
one might be a deep packet inspector, a control application or a machine learning
inference application. Therefore it is assumed that the nominal processing rate of
a virtual machine instance might be different depending on which node it belongs
to. Therefore, we will also use a subscript index to capture this leading to s̄i being
the nominal processing rate for a virtual machine instance belonging to node i.
This implies that the maximum processing capacity of node i at time t is given
by scap

i (t) = mi(t) · s̄i(t), (here it should be noted again that we do not assume any
machine uncertainty as presented in Chapter 3).

As presented in Chapter 3 it is useful to define the cumulative traffic flowing
through a node, and for the i-th node, this will be defined as:

Si(t) =
∫ t

0
si(x)dx, Ri(t) =

∫ t

0
ri(x)dx. (5.1)

Moreover, since we do not have any admission control in this chapter, we can model
the amount of work (or traffic) in the queue of the i-th node as:

qi(t) = Ri(t)−Si(t). (5.2)

Response time and latency. In order to properly define the end-to-end response
time or latency experienced by traffic flowing through the chain of nodes, we begin
by defining the latency of the i-th node as Li(t) ∈ R+:

Li(t) = inf{τ ≥ 0 : Ri(t − τ)≤ Si(t)}. (5.3)

It is also possible to define the end-to-end latency in a similar way, but by instead
comparing Sn(t) with R1(t − τ), since there is assumed to be no packet loss be-
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Chapter 5. A naive approach for controlling a chain of nodes

tween the nodes in the chain and no communication delay. Therefore, the latency
experienced by a packet passing through all the nodes from 1 thru i can be given by:

Li(t) = inf{τ ≥ 0 : R1(t − τ)≤ Si(t)}. (5.4)

Finally, the end-to-end latency for passing through the entire chain is given by
L (t) = Ln(t).

Cost model
To be able to provide guarantees about the behavior of the service chain, it is neces-
sary to make hard reservations of the resources needed by each node in the chain.
This means that when a certain resource is reserved, it is guaranteed to be available
for utilization. Reserving this resource results in a cost, and due to the hard reserva-
tion, the cost does not dependent on the actual utilization, but only on the resource
reserved.

Compute cost. The computation cost per time-unit per machine is denoted jci ,
and can be seen as the cost for the CPU-cycles needed by one machine instance in
the i-th node. Naturally, this means that we assume that all the machine instances
with a single node i are identical in cost. This cost will also charged during the time-
overhead ∆i. Without being too conservative, this time-overhead can be assumed to
occur only when a machine is started. The average computing cost per time-unit for
the i-th node is therefore given by

Jci (mi) = lim
t→∞

jci
t

t∫

0

mi(s)+∆i ·
(
∂−mi(s)

)
+ds (5.5)

where (x)+ = max(x, 0), and ∂−mi(t) is the left-limit of mi(t):

∂−mi(t) = lim
x→t−

mi(t)−mi(x)
t − x

,

that is, a sequence of Dirac’s deltas at all points where the number of machines
changes. This means that the value of the left-limit of mi(t) is only adding to the
computation-cost whenever it is positive, i.e. when a machine is switched on.

Buffer cost. The buffer cost per time-unit per space for a request is denoted jqi .
This can be seen as the cost that comes from the fact that physical storage needs to
be reserved such that a queue can be hosted on it. Normally this would correspond
to the RAM of the network-card. Each node is assumed to have a fixed maximum
buffer-capacity qmax

i ∈ R+, representing the largest number of requests that can be
stored in the i-th node. Reserving the capacity of qmax

i would thus result in a cost
per time-unit of

Jqi (q
max
i ) = jqi ·q

max
i . (5.6)
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Problem formulation
The aim in this chapter is to control the number mi(t) of virtual machine instances
running in the i-th node, such that the average cost is minimized. However, possible
solutions are constrained by the fact that the end-to-end latency L (t) can never
exceed the end-to-end deadline D . Moreover, the maximum queue sizes qmax

i cannot
be exceeded either. Together, this can be posed as the following problem:

minimize J = ∑
i∈V

Jci
(
mi
)
+ Jqi (q

max
i )

subject to L (t)≤ D ∀t ≥ 0
qi(t)≤ qmax

i , ∀t ≥ 0, i ∈ V

(5.7)

with Jci and Jqi as in (5.5) and (5.6), respectively. In this chapter the optimization
problem (5.7) will be solved for a service-chain fed with a constant incoming rate
r(t) = r. Later on a feedback-law will be derived allowing the system to remain
stable under a stochastic input.

A valid lower bound Jlb to the cost achieved by any feasible solution of (5.7) is
found by assuming that all nodes are capable of providing exactly a service rate r
equal to the input rate. This is possible by running a fractional number of machines
r/s̄i at the i-th node. In such an ideal case, buffers can be of zero size (∀i, qmax

i = 0),
and there is no queueing delay (∀t ≥ 0, L (t) = 0) since service and the arrival rates
are the same at all nodes. Hence, the lower bound to the cost is

Jlb =
n

∑
i=1

jci
r
s̄i
. (5.8)

Such a lower bound will be used to compare the quality of the solution later on.

5.2 Controlling the virtual machines

The first node in the chain will see traffic arriving to it at a constant rate of r(t) = r.
For any node i in the chain, in order to process this traffic entering at this rate, it will
need to have a number of

m̄i =

⌊
r
s̄i

⌋
, (5.9)

machines to always be active. To match the incoming rate r, in addition to the m̄i
machines always on, an additional machine must be on for some time in order to
process a request rate of s̄iρi where ρi is the normalized residual request rate:

ρi =
r
s̄i
− m̄i, ρi ∈ [0,1). (5.10)

Naturally, every node can decide arbitrarily when, and for how long, its additional
machine is on as long as the average service rate for the nodes matches the incoming
request rate r, and the queue does not remain zero for a prolonged amount of time.
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Chapter 5. A naive approach for controlling a chain of nodes

With the incoming traffic rate being constant, the first node could achieve this
by periodically turning its additional machine on/off. Assuming that this period is
T1, this implies that during every period the additional machine has to process the
residual work of T1 · (r − m̄1s̄1). The necessary on-time T on

1 , needed by the extra
machine, to process this work during the period is T on

1 = T1 · (r− m̄1s̄1)/s̄1 = T1ρ1.
The remaining time of the period the additional machine should be switched off,
denoted by T off

1 , leading to:

T on
1 = T ρ1, T off

1 = T −T on
1 = T · (1−ρ1).

The second node can also ensure that the average processing capacity of the
node matches the incoming traffic rate of r, by periodically turning its additional
machine on/off. However, it is slightly more complicated due to the periodic sched-
ule of the first node. The second node could potentially have the additional machine
on at a time where the first node has its additional machine off, leading to a scenario
where the second node does not utilize all of its available processing capacity.

With the same reasoning, any node i in the chain can ensure that it has an average
processing capacity of r by periodically turning an additional machine on/off with
a period of Ti. However, finding a suitable schedule for a node i becomes more and
more complicated the further down the chain the node is. In fact, finding a suitable
schedule increases exponentially with the number of nodes in the chain.

Therefore, to reduce the complexity and make the analysis tractable the extra
machines are restricted to be turned on/off with a global period T , i.e. the period by
which every node switches on their extra machine is Ti = T , leading to:

T on
i = T ρi, T off

i = T −T on
i = T · (1−ρi). (5.11)

Notice, however, that the actual time the extra machine is consuming power is T on
i +

∆i due to the time-overhead for starting a new machine.
The design variable of the optimization problem (5.7) is now the period T , so

it remains to investigate how it affects the computing-cost, the buffer-cost, and the
end-to-end deadline.

The computing-cost is straightforward to find when the additional machines are
switched on/off with a period T . If m̄i +1 machines are on for a time T on

i , and only
m̄i machines are on for a time T off

i , the cost Jci of (5.5) becomes:

Jci (T ) = jci ·
(

T on
i +∆i

T
+ m̄i

)
= jci ·

(
m̄i +ρi +

∆i

T

)
(5.12)

as long as T off
i ≥ ∆i. If instead T off

i < ∆i, that is if

T < T :=
∆i

1−ρi
, (5.13)

there is no time to switch the additional machine off and then on again before the
new period start. Hence, we keep the last machine on, even if it is not processing
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packets, and the computing cost depends on the period according to:

Jci (T ) = jci ·
(

m̄i +ρi +
T off

i
T

)
= jci · (m̄i +1). (5.14)

It then remains to find the relationship between the period and the maximum
queue-length—which by Equation (5.6) translates to the buffer-cost—of the nodes
as well as to the maximum end-to-end delay. In Lemma 5.1 below, it is shown that
the maximum queue-length is in fact proportional to the period, and similarly, in
Lemma 5.2 it is shown that the maximum end-to-end delay is also proportional to
the period. The intuition behind this fact is that the longer the period T is, the longer
a node will have to wait for the additional machine being off, before turning it on
again. During this interval of time, the node is accumulating work and consequently
the maximum queue-size is growing leading to the delay for passing through that
node growing as well.

LEMMA 5.1
With a constant input rate r(t) = r, along with all nodes switching on/off their addi-
tional machine with a common period T , the maximum queue size qmax

i in the i-th
node is

qmax
i = T ·θi, (5.15)

where

θi = max
{

ρi ·
(
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)

)
,

(1−ρi−1)(s̄i−1ρi−1 − s̄iρi),

ρi−1 ·
(
s̄i−1 · (1−ρi−1)− s̄i · (1−ρi)

)
,

(1−ρi)(s̄iρi − s̄i−1ρi−1)
}
,

with ρi as defined in (5.10), and T being the period of the switching scheme, com-
mon to all nodes. ✷

Proof The queue size over time qi(t) is a continuous, piecewise-linear function,
since both the input and the service rates are piecewise constant, and the queue size
is defined by Equation (5.2). Hence, if at t∗ the function qi(t) takes its maximum
value, it must necessarily happen that ∂qi(t)/∂ t ≥ 0 in a left-neighborhood of t∗
and ∂qi(t)/∂ t ≤ 0 in a right-neighborhood of t∗.

To find the value of ∂qi(t)/∂ t, one needs to distinguish among the four possible
cases, Case (1a), Case (1b), Case (2a), and Case (2b), depending on the nominal
speeds s̄i−1 and s̄i, as is shown in Table 5.1. These cases, in turn, determine the sign
of ∂qi(t)/∂ t, as summarized in Table 5.2. Note that for i = 1, one should consider
the preceding node as (i−1) = 0, with s̄0 = r, leading to m̄0 = 1 and ρ0 = 0, which
would then belong to Case (2b).

Next, the maximum queue-size qmax
i will be derived for each case. We will also

derive the best time for each node to start its additional machine, i.e. toni .
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Chapter 5. A naive approach for controlling a chain of nodes

Case (1a) (m̄i +1)s̄i ≥ (m̄i−1 +1)s̄i−1 m̄is̄i ≥ m̄i−1s̄i−1Case (1b) (m̄i +1)s̄i < (m̄i−1 +1)s̄i−1
Case (2a) (m̄i +1)s̄i ≥ (m̄i−1 +1)s̄i−1 m̄is̄i < m̄i−1s̄i−1Case (2b) (m̄i +1)s̄i < (m̄i−1 +1)s̄i−1

Table 5.1 The four possible cases that one needs to distinguish among. Each case
is a function of the nominal speeds s̄i and s̄i−1.

mi−1(t) m̄i−1 m̄i−1 +1 m̄i−1 +1 m̄i−1
mi(t) m̄i m̄i m̄i +1 m̄i +1

Case (1a) ≤ 0 ≥ 0 ≤ 0 ≤ 0
Case (1b) ≤ 0 ≥ 0 > 0 ≤ 0
Case (2a) > 0 ≥ 0 ≤ 0 ≤ 0
Case (2b) > 0 ≥ 0 > 0 ≤ 0

Table 5.2 Sign of ∂qi(t)/∂ t as function of the number of on-machines within
nodes (i−1) and i.

Case (1a) For this case, illustrated in Figure 5.2, the sign of ∂qi(t)/∂ t shown in
Table 5.2, implies that qi(t) grows only when mi(t) = m̄i and mi−1(t) = m̄i−1 + 1.
From this condition, the i-th queue can start to decrease either when mi(t)→ m̄i +1
or mi−1(t)→ m̄i−1. In the first case, the rate of decrease is

−∂qi(t)/∂ t =
(
(m̄i +1) · s̄i − (m̄i−1 +1) · s̄i−1

)

=
(
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)

)
,

and such a state lasts for T on
i (during the interval of length T on

i in Figure 5.2). This
therefore yields a local maximum of:

qi(toni ) = T ρi ·
(
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)

)
. (5.16)

It is easy to verify that changing the on-time toni to instead be later will yield a
larger local maximum, and changing it to instead be earlier will yield a negative
queue size. The given toni is thus the optimal one, and can be expressed relative to
toni−1 as:

toni = toni−1 +T ρi
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)

s̄i−1(1−ρi−1)+ s̄iρi
(5.17)

On the other hand, the local maximum when mi−1(t)→ m̄i−1 is determined by
the interval of length T off

i−1, as shown in Figure 5.2, that is

T off
i−1 · (m̄is̄i − m̄i−1s̄i−1) = T · (1−ρi−1) · (s̄i−1ρi−1 − s̄iρi).

By taking the maximum of the two local maxima, we find

qmax
i = T ·max

{
ρi ·

(
s̄i ·(1−ρi)− s̄i−1 ·(1−ρi−1)

)
,(1−ρi−1)(s̄i−1ρi−1− s̄iρi)

}
.
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T on
i

T on
i−1T off

i−1

Ti = Ti−1 = T

r

qi(t)

si(t)

si−1(t)

qmax
i

Figure 5.2 Case (1a): service schedule and queue qi(t). In this example: r = 17,
s̄i−1 = 6, s̄i = 8, T = 120, T on

i−1 = 100, T on
i = 15, qmax

i = 90.

Case (1b) As shown in Table 5.2, the queue size qi(t) grows if and only if m̄i−1+1
machines are running within the (i−1)-th node. The maximum queue size, then, is
attained at the instant when such a machine is switched off. To analyze this case, we
distinguish between two cases: T on

i ≥ T on
i−1 (illustrated in Figure 5.3) and T on

i < T on
i−1

(Figure 5.4). In both cases, to minimize qmax
i , the i-th node must start the extra

machine simultaneously as the (i−1)-th node starts its additional machine in order
to reduce the rate of growth of the i-th queue, i.e.

toni = toni−1. (5.18)

Note that the queue size for the i-th node will therefore be zero when it switches on
the additional machine,

qi(toni ) = 0.

To compute qmax
i , we examine both when T on

i ≥ T off
i−1 (illustrated in Figure 5.3),

as well as when T on
i < T off

i−1 (illustrated in Figure 5.4). By considering them both
together, we find

qmax
i = max

{
T on

i−1 ·
(
s̄i−1 · (1−ρi−1)− s̄i · (1−ρi)

)
, T off

i−1 · (s̄i−1ρi−1 − s̄iρi)
}

and, by considering the expressions of T on
i−1 and T off

i−1 of Equation (5.11) it can be
written as:

qmax
i = T ·max

{
ρi−1 ·

(
s̄i−1 ·(1−ρi−1)− s̄i ·(1−ρi)

)
, (1−ρi−1)(s̄i−1ρi−1− s̄iρi)

}
.
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Figure 5.3 Case (1b), T on
i ≥ T on

i−1. In this example: r = 17, s̄i−1 = 10, s̄i = 6,
T = 120, T on

i−1 = 84, T on
i = 100, qmax

i = 168.

T on
i

T on
i−1

Ti = Ti−1 = T

r

qi(t)

si(t)

si−1(t)
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i

Figure 5.4 Case (1b), T on
i < T on

i−1. In this example: r = 17, s̄i−1 = 12, s̄i = 4,
T = 120, T on

i−1 = 50, T on
i = 30, qmax

i = 280.

Case (2a) This case is essentially the same as Case (1b). As shown by Table 5.2,
the only difference is that qi(t) is reduced whenever the i-th node has its extra
machine on, and grows whenever it is off. This then implies that the maximum
queue size is attained when the i-th node switches on the extra machine. To min-
imize qmax

i , the queue size of node i should therefore be empty when it switches
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off the additional machine. Note that this corresponds to both the i-th node and
the (i−1)-th node switching off their additional machine simultaneously (compare
with Case (1b) where the two nodes switches on their additional machine simultane-
ously). The time when node i should switch on its additional machine is therefore:

toni = toni−1 +T on
i−1︸ ︷︷ ︸

toffi−1=toffi

−T on
i = toni−1 +T · (ρi−1 −ρi). (5.19)

Note that for this case have to consider both T on
i ≥ T on

i−1 and T on
i < T on

i−1 when com-
puting qi(toni ):

qi(toni ) =

{
T · (1−ρi)(s̄iρi − s̄i−1ρi−1), T on

i ≥ T on
i−1

T ρi ·
(
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)), T on

i < T on
i−1

(5.20)

The maximum queue size is, as stated earlier, found when Fi switches on its extra
machine. By considering T on

i ≥ T on
i−1 and T on

i < T on
i−1 together, the expression for

qmax
i can be combined into:

qmax
i = T ·max

{
ρi ·

(
s̄i · (1−ρi)− s̄i−1(1−ρi−1)

)
,(1−ρi)(s̄iρi − s̄i−1ρi−1)

}

Case (2b) Table 5.2 shows the similarity between this case and Case (1a), with
the difference being that for this case qi(t) only shrinks when mi(t) = m̄i + 1 and
mi−1(t) = m̄i−1. Therefore, qi(t) will always grow when mi−1(t) = m̄i−1 + 1. To
reduce the rate of this growth the i-th node should therefore have its extra machine
on whenever the (i−1)-th node has its extra machine on. Furthermore, to reduce the
local maximum attained at the end of this growth, the i-th node should also switch
on its additional machine such that qi(t) is empty when it does so, e.g., qi(toni−1) = 0.
Furthermore, since qi(t) grows when both the i-th node and the (i−1)-th node has
its additional machine off, there is also a local maximum of qi(t) attained when
node i switches on its additional machine. To minimize this local maximum, the i-
th node should ensure that qi(t) is empty when it switches off its additional machine,
i.e. qi(toffi ) = 0. The on-switching time should thus be:

toni = toni−1 −
qi(toni )

s̄i · (1−ρi)+ s̄i−1ρi−1
(5.21)

where
qi(toni ) = T off

i · (m̄i−1s̄i−1 − m̄is̄i)
= T · (1−ρi)(s̄iρi − s̄i−1ρi−1).

(5.22)

The other local maximum, occurring when the (i−1)-th node switches off its addi-
tional machine is therefore:

qi(toffi−1) = T on
i−1 ·

(
(m̄i−1 +1) · s̄i−1 − (m̄i +1) · s̄i

)

= T ρi−1 ·
(
s̄i−1 · (1−ρi−1)− s̄i · (1−ρi)

)
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The maximum queue-size for this case thus given by:

qmax
i = T ·max

{
ρi−1 ·

(
s̄i−1 ·(1−ρi−1)− s̄i ·(1−ρi)

)
, (1−ρi)(s̄iρi− s̄i−1ρi−1)

}
.

Conclusion By taking the maximum among all four cases, Equation (5.15) is
found and the Lemma is proved. ✷

The expression for qmax
i in (5.15) suggests that the maximum queue-length is

always bounded with respect to the input rate to the service-chain, as shown in
Corollary 5.1 below. The intuition behind this is that regardless the size of the input
rate, it is possible to find a number m̄i such that s̄i · (m̄i + 1) > r, hence one can
always match the input rate.

COROLLARY 5.1
The maximum queue size qmax

i of any node i is always bounded, regardless of the
rate r of the input.

Proof From the definition of ρi in Equation (5.10), it always holds that ρi ∈ [0,1).
Hence, from the expression of (5.15), it follows that qmax

i is always bounded. ✷

Finally, in order to solve the optimal design problem one has to relate the period
T and the largest end-to-end latency:

LEMMA 5.2
With a constant input rate, r(t) = r, the largest end-to-end latency L (t) for any
request passing through nodes 1 thru n is

∀t ≥ 0, L (t)≤ T ·
n

∑
i=1

γi. (5.23)

where γi depends on r, s̄i, and s̄i−1 given in Table 5.3, with the four different cases
given in Table 5.1. ✷

Proof With a constant input r(t) = r to the service chain, the maximum end-to-end
latency up until node i, i.e., Li(t), is bounded by

∀t ≥ 0, Li(t)≤ max
t≥0

{R0(t)−Si(t)
r

}
= max

t≥0

{
t − Si(t)

r

}
, (5.24)

with Si(t) being the cumulative served request by node i, as in Equation (3.1), and
R0(t) =

∫ t
0 rdx is the cumulative arrived requests to the chain. Since Si(t) is a piece-

wise linear function, growing with rates s̄i · m̄i or s̄i · (m̄i + 1) , it follows that the
maximum end-to-end latency up to the i-th node, Li(t), is attained when the i-th
node switches on the additional machine (denoted by toni ), that is

max
t≥0

Li(t) = max
t

{
t − Si(t)

r

}
= toni − Si(toni )

r
. (5.25)
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Case γi

Case (1a) 1
r s̄iρ2

i
s̄i·(1−ρi)−s̄i−1·(1−ρi−1)

s̄i−1·(1−ρi−1)+s̄iρi

Case (1b) 0

Case (2a)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
r
(
s̄i−1ρi−1 · (ρi−1 −ρi)+

+(1−ρi)(s̄iρi − s̄i−1ρi−1
)
, T on

i ≥T on
i−1

1
r

(
ρi ·

(
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)

)
+

+s̄i−1 · (ρi−1 −1)(ρi−1 −ρi)
)
, T on

i <T on
i−1

Case (2b) 1
r s̄i · (1−ρi)2 s̄iρi−s̄i−1ρi−1

s̄i·(1−ρi)+s̄i−1ρi−1

Table 5.3 The γi given for each of the four cases (presented in Table 5.1).

Adding another node after the i-th node, will thus add L+
i+1 time-units to the max-

imum end-to-end latency. Note that L+
i+1 might be zero. It is therefore possible to

write the maximum end-to-end latency Li(t) as:

max
t≥0

Li(t) = max
t≥0

Li−1(t)+L+
i . (5.26)

Equation (5.25) then implies that

D∗
i = maxt≥0{Li(t)}−maxt≥0{Li−1(t)}

= toni − Si(toni )

r
− toni−1 +

Si−1(toni−1)

r
= toni − toni−1 +

Si−1(toni−1)−Si(toni )

r

= toni − toni−1 +

qi(toni )
︷ ︸︸ ︷
Si−1(toni )−Si(toni )+

∫ toni−1
toni

si−1(x)dx

r
= toni − toni−1 +

qi(toni )

r
+

1
r
∫ toni−1

toni
si−1(x)dx

= toni − toni−1 +
qi(toni )

r
+(toni−1 − toni )

s∗i−1
r

=
qi(toni )

r
+(toni − toni−1)(1−

s∗i−1
r

),

where
∫ toni−1

toni
si−1(x)dx = (toni−1 − toni ) · s∗i−1 since si−1(t) is a piecewise constant func-

tion, changing value only in toni−1. The values of s∗i−1 depend on whether the (i−1)-th
node has its additional machine on or off during this time-interval. It should also be
noted that when toni ≥ toni−1, the (i−1)-th node will start its additional machine before
node i, implying that the (i−1)-th node will have (m̄i−1+1) machines on during the
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time-interval [toni−1, toni ]. On the other hand, if toni < toni−1, it follows that the i-th node
will start its additional machine before the (i−1)-th node does so. In that case the
(i−1)-th node will only have m̄i−1 machines on during the time-interval [toni−1, toni ].
Hence, s∗i−1 can be written as:

s∗i−1 =

{
s̄i−1 · (m̄i−1 +1), toni ≥ toni−1
s̄i−1 · m̄i−1, toni < toni−1

.

It should also be noted that toni and toni−1 are such that the time between them is the
smallest possible. Hence, (toni −toni−1) might be positive or negative, and corresponds
to the expressions derived in Lemma 5.1, Equations (5.17), (5.18), (5.19), and (5.21)
for Case (1a)–Case (2b) respectively.

When toni ≥ toni−1 we can therefore write L+
i as

L+
i = (toni − toni−1)

(
1− s̄i−1(m̄i−1+1)

r

)
+

qi(toni )

r
=

s̄i−1

r
· (toni − toni−1)

( r
s̄i−1

− m̄i

︸ ︷︷ ︸
=ρi−1

−1
)
+

qi(toni )

r

=
s̄i−1

r
· (toni − toni−1)(ρi−1 −1)+

qi(toni )

r
.

(5.27)

In the opposite case, when toni < toni−1 we instead get

L+
i = (toni − toni−1)

(
1− s̄i−1m̄i−1

r

)
+

qi(toni )

r
=

s̄i−1

r
· (toni − toni−1)

( r
s̄i−1

− m̄i

)
+

qi(toni )

r

=
s̄i−1

r
· (toni − toni−1) ·ρi−1 +

qi(toni )

r
.

In Lemma 5.1, both (toni − toni−1) and qi(toni ) were derived for Cases (1a)–(2b) in
Equations (5.16)–(5.22). Therefore, we can derive, L+

i for each of the four cases as:

Case (1a) For this case, it always holds that toni ≥ toni−1. Hence by inserting qi(toni )
of Equation (5.16) and (toni − toni−1) of Equation (5.17) into Equation (5.27) we can
write L+

i as

L+
i = T · 1

r
s̄iρ2

i
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)

s̄i−1 · (1−ρi−1)+ s̄iρi
.

Case (1b) For this case Equation (5.18) imply that toni = toni−1 and that qi(toni ) is
always 0. Hence, L+

i will always be 0, implying that γi = 0.
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Case (2a) Here one must distinguish between two cases: T on
i ≥ T on

i−1 and T on
i <

T on
i−1. When T on

i ≥ T on
i−1 it always hold that toni ≤ toni−1. Hence, by inserting (toni −toni−1)

and qi(toni ) given by Equations (5.19)–(5.20) into Equation (5.28) we can write L+
i

as
L+

i = T
1
r
(
s̄i−1ρi−1 · (ρi−1 −ρi)+(1−ρi)(s̄iρi − s̄i−1ρi−1

)
.

When T on
i < T on

i−1, it instead holds that toni ≥ toni−1. Therefore, by inserting Equa-
tions (5.19)–(5.20) into Equation (5.27) we can write L+

i as

L+
i = T

1
r

(
ρi ·

(
s̄i · (1−ρi)− s̄i−1 · (1−ρi−1)

)
+ s̄i−1 · (ρi−1 −1)(ρi−1 −ρi)

)
.

Case (2b) For this case, it always holds that toni ≤ toni−1. Therefore, by inserting
(toni − toni−1) and qi(toni ) given by Equation (5.21)–(5.22) into Equation (5.28) we can
write L+

i as

L+
i = T

1
r

s̄i · (1−ρi)
2 s̄iρi − s̄i−1ρi−1

s̄i · (1−ρi)+ s̄i−1ρi−1
.

Conclusion It is now possible to conclude that for all four cases it is one can write
L+

i = T γi, with γi depending only on r, s̄i, and s̄i−1. Note that Equations (5.9)–(5.10)
imply that ρi (and ρi−1) depend on r and s̄i (and s̄i−1). We can then conclude the
proof since Equation (5.26) implies that the maximum queueing delay is

∀t ≥ 0, L (t)≤ max
t≥0

L (t) =
n

∑
i=1

L+
i = T ·

n

∑
i=1

γi. ✷

Solution to the optimization problem
With the relationships between the cost, the end-to-end delay, and the period estab-
lished, the optimization problem (5.7) can be written as

J(T ) = T
n

∑
i=1

jqi θi + ∑
i:T<T i

jci · (1−ρi)+ ∑
i:T≥T i

jci
∆i

T
+ Jlb, (5.28)

where θi is given by Lemma 5.1, Jlb is the lower bound given by (5.8) , and T i is
the value of the period, below for which it is not feasible to switch the additional
machine off and then on again, given by (5.13):

T < T i ⇔ T off
i < ∆i.

In fact, ∀i with T < T i we pay the full cost of having m̄i + 1 machines always on.
The deadline constraint in (5.7), can be simply written as

T ≤ c :=
D

∑n
i=1 γi

,
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with γi given in Lemma 5.2, Table 5.3.
The cost J(T ) of (5.28) is a continuous function of one variable T . It has to be

minimized over the closed interval [0, c]. Hence, by the Weierstraß’s extreme-value
theorem, it has a minimum. To find this minimum, we just check all (finite) points
at which the cost is not differentiable and the ones where the derivative is equal to
zero. Let us define all points in [0, c] in which J(T ) is not differentiable:

C = {T i : T i < c}∪{0}∪{c}. (5.29)

We denote by p= |C |≤ n+2 the number of points in C . Also, we denote by ck ∈C
the points in C and we assume they are ordered increasingly c1 < c2 < .. . < cp.
Since the cost J(T ) is differentiable over the open interval (ck, ck+1), the minimum
may also occur at an interior point of (ck, ck+1) with derivative equal to zero. Let
us denote by C ∗ the set of all interior points of (ck, ck+1) with derivative of J(T )
equal to zero, that is

C ∗ = {c∗k : k = 1, . . . , p−1, ck < c∗k < ck+1} (5.30)

with

c∗k =

√
∑i:T i<ck+1

jci ∆i

∑n
i=1 jqi θi

.

Then, the optimal period is given by

T ∗ = arg min
T∈C∪C ∗

{J(T )}. (5.31)

Example – solving the optimization problem
To illustrate how to solve the optimization problem a simple service chain of two
nodes is used as an example. The input rate to the chain is r = 17 · 103 packets
per second. Every request has an end-to-end-deadline of D = 0.02 seconds. The
parameters of the two nodes are reported in Table 5.4.

i s̄i (pps) jci jqi ∆i (s)
1 6 ·103 6 0.5 ·10−3 0.01
2 8 ·103 8 0.5 ·10−3 0.01

Table 5.4 Parameters of the example.

As mentioned earlier, the input r(t) = r can be seen as “dummy node” i = 0
preceding node i = 1, with s̄0 = r, m̄0 = 1, and ρ0 = 0. When deriving the schedule,
it follows from (5.9) and (5.10) that m̄1 = m̄2 = 2, and ρ1 = 5

6 , ρ2 = 1
8 , implying

that both nodes must always keep two machines on, and then periodically switch a
third one on/off. This also implies that the two nodes belong to Case (1a), and that
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T 1 = 60.0 ·10−3 and T 2 = 11.4 ·10−3, where T i is the threshold period for the i-th
node, as defined in Equation (5.13).

From Lemma 5.1 it follows that the expression ∑n
i=1 jqi θi in the cost func-

tion (5.28) is evaluated to ∑n
i=1 jqi θi = 0.792. Moreover from Lemma 5.2 it fol-

lows that γi determining the extra queuing delay introduced by each node, are
γ1 = 49.0 ·10−3 and γ2 = 22.1 ·10−3, which in turn leads to

c =
D

γ1 + γ2
=

0.02
71.1 ·10−3 = 281 ·10−3.

Since T 2 < T 1 < c, the set C of Equation (5.29) containing the boundary is

C = {0,0.00114︸ ︷︷ ︸
T 2

,0.060︸ ︷︷ ︸
T 1

,0.281︸ ︷︷ ︸
c

}.

To compute the set C ∗ of interior points with derivative equal to zero defined in
(5.30), which is needed to compute the period with minimum cost from (5.31),
we must check all intervals with boundaries at two consecutive points in C . In
the interval (0,T 2) the derivative of J is never zero. When checking the interval
(T 2,T 1), the derivative is zero at

c∗1 =

√
jc2∆2

∑n
i=1 jqi θi

= 0.318,

which, however, falls outside the interval. Finally, when checking the interval
(T 1,c) the derivative is zero at

c∗2 =

√
jc1∆1 + jc2∆2

∑n
i=1 jqi θi

= 0.421 > c = 0.281.

Hence, the set of points with derivatives equal to zero is C ∗ = /0. By inspecting the
cost at points in C we find that the minimum occurs at T ∗ = c = 0.281, with cost
J(T ∗) = 34.7.

The period of T ∗ results in a schedule for turning on/off the additional machine
as is illustrated in Figure 5.5. One can see how the first node needs a longer on-time
for the additional machine, compared to the second node. One can also see that
when the additional machine is off for both nodes, the queue of the second node is
reduced. This is very similar to the illustration of Figure 5.2, since indeed the two
nodes of this example belong to Case (1a).

The periodic schedule of these two nodes lead to the queue-size of them growing
and reducing periodically. This is also illustrated in Figure 5.6 where the trajectory
of the queue-sizes is shown in a state-space diagram. One can easily see that this
yields a classic limit-cycle.
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Figure 5.5 Evolution of the queue-size for the two queues in the example, along
with an illustration of when their additional machine is turned on/off. One can see
the similarities with Figure 5.2, since the two nodes in this example also belong to
Case (1a).

0 100 200
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100

200

q1(t)

q 2
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Figure 5.6 Nominal state-space trajectory of the queues for the two nodes in the
example. One can see that the periodic schedule of the two nodes, illustrated in
Figure 5.5, results in a limit-cycle.

Adding feedback for increased robustness
In this section a feedback-law will be derived to increase the robustness and stabil-
ity of the system. The goal is to enable the system to handle impulse disturbances
of mass di occurring at the i-th node, i.e., di packets suddenly appear at the tail of
the i-th queue. Such a disturbance could be used to model for instance a stochas-
tic input signal, small deviations in the processing capacities of the nodes, or if
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the nodes are not perfectly synchronized. The feedback will use information about
deviations from the expected queue-sizes and use this to dynamically change the
on-time of the additional machines in order to drive the system back to the desired
queue-sizes and, as illustrated in Figure 5.7 where the nominal schedule is shown
in green and the adjusted, extra on-time for the i-th node, highlighted in red. By
extending the on-time during the second period the extra work introduced by the
impulse-disturbance is processed and the system is driven back to the desired state.
What is also highlighted in Figure 5.7 is that one can use an impulse disturbance to
model both modeling errors as well as time-varying input. For instance, denoting
the expected queue-size by qi(t) and the true queue-size by q̃i(t), one can model the
difference of them at time t∗ by an impulse disturbance of mass di = q̃i(t∗)−qi(t∗).
One cause for such deviations might be a stochastic input rate.

When an impulse disturbance of mass di appears at the i-th node, the nominal
on-time T on

i will not be sufficient to process both the residual work, i.e. the work
not processed by the m̄i machines, and the impulse disturbance. Hence, at the end
of T on

i there will still be di too many packets in the queue. Moreover, without any
feedback law to adjust T on

i the extra load will never be processed.
The time needed by the additional machine to process the impulse disturbance is

di/s̄i, which should thus be added to the nominal on-time T on
i . Denoting the adjusted

on-time by T̃ on
i it should thus be given by

T̃ on
i = T on

i +
di

s̄i
. (5.32)

T̃ on
ĩT on
i

didi

T on
iT on
i

qi(t)qi(t)
q̃i(t)q̃i(t)

timetime

Figure 5.7 Illustration of the idea to alter the on-time of the additional machine
in order to handle the extra load caused by the impulse disturbance. The blue bars
symbolize the machines that are always on, and the green symbolize when the extra
machine is supposed to be on, and the red bar highlight the additional on-time for
the extra machine needed to process the extra work introduced by the impulse distur-
bance. The solid (–) line show the expected queue-size of the node, and the dashed
(- - -) line show the true queue-size. One can thus use the impulse disturbance as a
tool to model the difference between these when the additional machine starts.
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However, since the on-time can only be extended by converting off-time into on-
time, it might very well be that di/s̄i > T off

i , implying that there is not sufficient
off-time in the next period to convert to on-time in order to process the extra work
caused by the impulse disturbance. In fact, assuming that no additional disturbances
occur during the processing of di, the node will need ⌈ (di/s̄i)

Toff
i

⌉ periods before the
extra work is fully processed. Hence, the total time needed is

T̃ on
i = T ·

⌊
di/s̄i

T off
i

⌋

︸ ︷︷ ︸
number of full periods needed

+T on
i +T off

i ·

fraction of final T off
i needed ∈ [0,1)

︷ ︸︸ ︷
(di/s̄i

T off
i

−
⌊

di/s̄i

T off
i

⌋)
.

Here one should note that T̃ on
i → ∞ as T off

i → 0, therefore, should T̃ on
i grow very

large it might be favorable to switch on yet another machine. If such a thing would
happen it would thus need to switch between using m̄i + 1 and m̄i + 2 machines,
which is the problem studied in this chapter.

To allow for this impulse disturbance to be accepted by the buffer there must be
space in the buffer. Therefore, one would have to increase the maximum queue-size
qmax

i given by Lemma 5.1 to

q̃max
i = qmax

i +di.

Naturally one might wonder if this affects the solution of the optimization prob-
lem (5.7) and the answer is no. In the cost function (5.28), the added queue-size
would add a cost

n

∑
i=1

jqi di

which does not depend on the optimization variable T , hence implying a linear
shift of the cost and thus the same optimal period T still holds. The same holds
for the additional time needed to process the impulse disturbance, implying a larger
computation cost.

Designing the schedule
To implement this in the real system, one would have to know when to start the
extra machines, i.e. to derive a schedule. With the period T by which the additional
machines should be switched on/off, along with the adaptive on-time T̃ on

i to handle
impulse disturbances and variations in the input, the only thing one needs to know
before designing a schedule is when to start the additional machine for the first
time.

With the schedule being periodic with period T , the (k+ 1)-th time the addi-
tional machine in the i-th node starts is given by

toni,k = toni,0 + kT, i = 1,2, . . . , ∀k ≥ 1
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where toni,0 ≥ 0 is the first time the additional machine starts in the node. Similarly,
the (k+1)-th time the additional machine should stop is given by

toffi,k = toni,k + T̃ on
i , i = 1,2, . . . , ∀k ≥ 1

where T̃ on
i is given by the feedback-law (5.32), but with di being the difference

between the expected queue size at this time-instance and the actual queue-size, as
shown later. Hence, it remains to define toni and di.

When proving Lemma 5.1 a by-product was the optimal time to start the addi-
tional machine as well as the expected queue-size at that time. Here it should be
noted that for the first node in the chain, one can regard the input r as the output
of a “dummy node” i = 0, with s̄0 = r, m̄0 = 1, and ρ0 = 0, leading to the node
i = 1 belonging to Case (2b). Node i = 0 is denoted a “dummy node” since it is not
an actual node in the chain, but instead a useful concept as it helps when solving
the optimization problem as well as when designing the schedule. Moreover, for
this “dummy node”, its starting time is assumed to be 0, i.e., ton0 = 0. Finally, the
on-time computed when the additional machine starts every period, is given by

T̃ on
i,k = min

(
T, T on

i +
qi(toni,0)−qi(toni,k )

s̄i

)
,

where the min-statement ensures that if there is a large difference between the ex-
pected actual queue-sizes the additional machine is kept on for a period, and then a
new on-time is computed.

5.3 Evaluation of the feedback

This section will illustrate, what happens in the presence of an impulse disturbance
as well as when the incoming traffic is not static but stochastic. Finally, a more thor-
ough comparison is made between when feedback is used or not. This evaluation is
done by simulating a large number of randomly generated service-chains and then
evaluate the probability of a chain missing a deadline.

Example – impulse disturbance
Should there be an impulse disturbance at node i, i.e. that di packets suddenly appear
at the tail of the queue in the i-th node, the nominal limit-cycle of the queues (shown
in Figure 5.6) will be perturbed. This is illustrated in Figure 5.8 where we gave the
first node an impulse disturbance of mass d1 after 1.5 periods. With no feedback-
law in place, the nominal limit-cycle is never recovered. Instead it will be perturbed
a distance di in the qi-th direction of the state-space diagram.

When extending the system with the feedback-law described in Section 5.2 the
nodes will dynamically change the on-time of the additional machines. This leads
to the nominal limit-cycle being recovered after the initial impulse disturbance, as
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Figure 5.8 When the system is given an impulse disturbance of mass d1 to the first
node, the nominal limit-cycle (black) is perturbed to the right, giving a new limit-
cycle (blue). Without a feedback-law, the nominal limit-cycle is never recovered.

shown in Figure 5.9. One can see that the recovery takes around two periods, ending
when the blue trajectory hits the black one.
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Figure 5.9 Using the feedback-law it successfully recovers the nominal limit-cycle
(black) an impulse disturbance of mass d1. The blue trajectory shows the recovery
of the nominal limit-cycle, which takes about two periods.

Example – stochastic input
A natural question is whether the feedback-law can also handle a stochastic input,
and not just the occasional impulse disturbance. We denote the nominal input rate
r = 17 ·103, and then extend the input to the system to be stochastic, with a uniform
distribution from the interval r(t) ∈ [0.9, 1.1] · r.

Should this input be used for the original system, without feedback, the nominal
limit-cycle would drift every time the input rate is larger than the nominal one, i.e.
when r(t) > r. This can be seen in Figure 5.10 where system was run for 1000
periods. The black trajectory shows the nominal limit-cycle, and the blue shows the
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trajectory of the simulation. One can see that the system does not converge back
to the nominal limit-cycle. This implies that the queue-size would grow with t,
qi(t)→ ∞, as t → ∞, making it impossible to dimension the necessary buffer size.

0 100 200
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100

200

drift

q1(t)

q 2
(t
)

Figure 5.10 State-space trajectory (blue) for a system with a stochastic input but
with no feedback from the queue-size. One can see the trajectory drifts away from
the nominal limit-cycle (black).

With the feedback-law, however, the system will ensure that the nominal limit-
cycle is restored by dynamically changing the on-time for each node every time it is
turned on, hence making it possible to dimension the queue-sized. This is illustrated
in Figure 5.11 showing the state-space trajectory of the system is centered around
the nominal limit-cycle during a simulation length of a 1000 periods.
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Figure 5.11 State-space trajectory (blue) for a system with a stochastic input where
feedback from the queue-size pulls the system back around the nominal limit-cycle.

Monte Carlo Simulation
While the previous subsections were meant to illustrate how to solve the optimiza-
tion problem as well as to highlight how the feedback would work by bringing
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Figure 5.12 A Monte Carlo simulation of 2000 randomly generated service chains,
each with 6 nodes. Half of the simulations used feedback (blue) and half do not (red).
The y-axis show the probability that one of a packet missing the end-to-end deadline.
One can see that the when feedback is used the probability remains below 10% while
for the chains without feedback it grows to 100%.

the queue-states back to their nominal trajectories, this subsection focus on a more
thorough evaluation using a Monte Carlo simulation.

A total of 2000 randomly generated service chains with 6 nodes were simulated.
Half of which used feedback, and the other half did not. Every node was generated
randomly with parameters D = 0.10, ∆ ∈ [ D

10·m ,
D
m ], jq ∈ [0.1, 1.0], jc ∈ [2.0, 20.0],

and s̄∈[5.0, 10.0]. The mean-value for the input was chosen randomly in the interval
r̄ ∈ [20.0, 50.0]. When running the simulation with stochastic input, during each
time-step the input rate to the service chain was uniformly distributed within the
interval r(t) ∈ [0.8r̄, 1.2r̄] leading to an uncertainty of about 40%.

During the simulations the probability of a chain missing a deadline was com-
puted at each time-step. This probability should be thought of as “if all the 1000
randomly generated service chains are running simultaneously, what is the proba-
bility that one of them will miss a deadline at time t?”.

The result is shown in Figure 5.12 and illustrates that if one does not use feed-
back the probability of missing deadlines increases with t and will grow to 100%.
The reason is the same as illustrated in Figure 5.10, the queue-states drift and even-
tually become so large that a large portion of the packets will miss the deadlines. If
instead the nodes use feedback to compensate for the uncertainties of the input the
probability of a service chain missing a deadline remains below 10%, again high-
lighting the increased robustness gained when using feedback. The reason why the
probability is not reduced to zero with the feedback law, is because of the periodic
schedule of the nodes. The nodes can only compensate for an extra amount of traffic
in the queue when the additional machine is on. Furthermore, the decision of how
long the extra on-time should be, is taken when the additional machine is started.
Therefore, should there be more disturbances while the extra machine is on, this
will not be accounted for.
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5.4 Summary

In this chapter we have developed a general mathematical model for a service-chain
residing in a cloud environment. This model includes an input model, a service
model, and a cost model. The input-model defines the input-stream of requests to
each VNF along with end-to-end deadlines for the requests, meaning that they have
to pass through the service-chain before this deadline. In the service-model, we
define an abstract model of a VNF, in which requests are processed by a number
of machines inside the nodes. It is assumed that each node can change the number
of machines that are up and running, but doing so is assumed to take some time.
The cost-model defines the cost for allocating compute and storage capacity, and
naturally leads to the optimization problem of how to allocate the resources.

The optimization problem for controlling the resources of the nodes in the chain
is analyzed and solved under the assumption of a constant input-stream of requests
as well as having every node in the chain switch on/off their extra machine with the
same period, although not necessarily having the them on for the same duration. The
solution derived with these assumptions is then augmented with a feedback-law, al-
lowing the machines to dynamically adjust the necessary on-time for the additional
machine depending on whether the queue-size matches the expected queue-size, or
whether they deviate. This leads to the system being able to handle both impulse
disturbances and stochastic inputs. The difference of using feedback or not is illus-
trated using both an in-depth example as well as a Monte Carlo simulation, showing
that, should the input be stochastic and no feedback is used, the service chain will
eventually miss all the deadlines. However, if feedback is used, the probability of
missing a deadline remains below 10%.
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6
AutoSAC for a chain of
nodes

In this chapter we continue to investigate the problem of providing end-to-end dead-
line guarantees to a chain of nodes. The control strategies presented in this chapter
will build on the automatic service and admission controller (AutoSAC) presented
for the single node, in Chapter 3, as illustrated in Figure 6.1. However, we will ex-
tend it to make better use of the fact that the individual nodes are connected together
to form a chain. Comparing Figure 6.1 to the one opening the previous chapter,
i.e., Figure 5.1, one can observe this through the re-introduction of the admission
controller. Finally, from a high-level perspective, the main difference compared to
Chapter 5, is that we now also allow:

a) dynamic traffic,

b) processing uncertainties,

c) individual node deadlines.

node 1 node 2 node n

end-to-end deadline

dynamic
traffic

Figure 6.1 Illustration of the chain of cloud services (or virtual network functions)
considered in this chapter. The goal is to control how many packets should be ad-
mitted into each node, as well as to control how many virtual machines each node
should have, in order to ensure that the end-to-end deadline D of the packets flowing
through the chain is met. Note that in this chapter every node also has an admission
controller, and that we allow the traffic intensity to vary over time.
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6.1 Modeling a chain of nodes

The model used within this chapter is mostly the same as the one presented in
Chapter 5. There are, however, a couple of key differences. The first one is that
in this chapter we will not consider the cost of allocating computing resources or
buffer resources. Instead, we will venture back to use the notion of utility functions
presented in Chapter 3. Moreover, we will also introduce a concept for processing
uncertainties within the virtual machines.

Concatenation of nodes As illustrated in Figure 6.1 we again have a set of nodes
V with the total number of nodes in the chain given by n = |V |. They are again
concatenated, such that for the nodes i = 2, . . . ,n the input is equal to the output of
the preceding node, i−1:

ri(t) = si−1(t), ∀i = 2,3, . . . ,n.

Here it should be noted again that we assume there is no communication latency
between the nodes. However, it would possible to account for it, and would be
necessary should the different nodes reside in different locations, e.g., different data
centers. However, adding a communication latency is straightforward, and if such
a communication latency (say C) were to be constant between the nodes one could
easily account for it by properly decrementing the end-to-end deadline: D̃ =D−C,
and then use the framework developed in this chapter.

Individual node deadline Just as in the Chapter 5, the traffic flowing through the
chain must be processed by each of the nodes within an end-to-end deadline D .
However, in order to build on what was developed in Chapter 3, we will allow this
end-to-end deadline to be split into individual node deadlines Di. This means that
traffic passing through the i-th node, should always do so within the individual node
deadline.

Naturally, when summing up all of the node deadlines they must remain below
the global end-to-end deadline:

∑
∀i∈V

Di ≤ D . (6.1)

One should note here that the this individual node deadline may be different for
different nodes in the network, such that Di(t) ̸= Di′(t) if i ̸= i′. The problem of
how to assign these node deadlines will be treated later, in Section 6.2

Machine model Similar to the earlier Chapter 3, the number of virtual machines
allocated to a node, mi(t) ∈ Z+, is controlled through a control signal mref

i (t). Since
we now also allow each node to have an individual time-overhead to start and stop
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virtual machines, the actual number of active virtual machine in the i-th node is
given by

mi(t) = mref
i (t −∆i).

Just as in the previous chapters, every machine instance running in a node has an
expected service rate of s̄ packets per second. However, the actual performance of
the virtual machines may deviate from the expected performance and can depend
on where it is deployed as well as on what other processes running on the physical
server that the cloud service is hosted on, as shown in [Leitner and Cito, 2016]. To
model this, the maximum processing capacity of the node at time t is given by:

scap
i (t) = mi(t) ·

(
s̄i + ξ̂i(t)

)
, (6.2)

where ξ̂i(t) is the average machine uncertainty for the i-th node, given by

ξ̂i(t) =
1

mi(t)

mi(t)

∑
k=1

ξi,k(t), (6.3)

where ξi,k(t) is the machine uncertainty for the k-th instance in the i-th node is given
by

ξi,k(t) ∈ [ξ lb
i , ξ ub

i ] pps, − s̄i < ξ lb
i ≤ ξ ub

i < ∞,

where ξ lb
i and ξ ub

i are the lower and upper bounds of the machine uncertainty, as-
sumed to be known, for instance through benchmarking. This machine uncertainty
is assumed to be “fairly constant” during the lifetime of an instance but to change
when new instances are started or stopped. By “fairly constant” we mean that it
could be modeled as a random process with a small amount of drift during the life-
time of a virtual machine. An example of this is shown in Figure 6.5.

Processing of packets The packets flowing through the chain of nodes are always
assumed to be processed in a FIFO manner, and the service rate for the i-th node is
again governed by Equation (3.4), with the addition of subscript, giving us:

si(t) =

{
scap

i (t) if qi(t)> 0,
min

{
ai(t), scap

i (t)
}

else.
(6.4)

where ai(t) is admission rate for node i and where qi(t) is the number of packets in
the buffer, given by

qi(t) = Ai(t)−Si(t), qi(t) ∈ R+, (6.5)

where Ai(t) =
∫ t

0 ai(x)dx is the total amount of packets that has been admitted into
the i-th node, and Si(t) =

∫ t
0 si(x)dx is the total amount of packets that has been

served by the node. Furthermore, it might be useful to also recall that the total
amount of packets that has arrived to the i-th node is given by Ri(t) =

∫ t
0 ri(x)dx.
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Latency and response time. As in the previous chapter, the time that a packet
which exits the i-th node at time t has spent inside that node is denoted the node
latency Li(t):

Li(t) = inf{τ ≥ 0 : Ai(t − τ)≤ Si(t)}, (6.6)

with the difference that here we have to consider the difference between Ai(t − τ)
and Si(t) instead of between Ri(t − τ) and Si(t) as we did in the last chapter. The
reason for this is that in the previous chapter we did not have any admission control,
whereas in this chapter we do.

As in the previous chapters, it is useful to also define the “virtual” latency, or the
expected latency L̄i(t). However, due to the machine processing uncertainty of the
nodes, this has to be modeled a bit differently compared to the previous chapters.
More precisely, in Chapter 3, the expected latency was computed according to

L̄i(t) = inf
{

τ ≥ 0 : Ai(t)≤ Si(t)+
∫ t+τ

t
mi(x) · s̄i dx

}
,

but since we in this chapter also consider the processing uncertainty ξ̂i(t) of the
nodes, it must instead be computed according to:

L̄i(t) = inf
{

τ ≥ 0 : Ai(t)≤ Si(t)+
∫ t+τ

t
mi(x) ·

(
s̄i + ξ̂i(x)

)
dx

}
. (6.7)

One should note that L̄i(t) is non-causal, and computing it requires information
about mi(t) and ξ̂i(t) for the future. However, since mi(t) = mref

i (t −∆i), there ex-
ists information about mi(t) up until ∆i time-units into the future. Moreover, by
replacing ξ̂i(t) with ξ lb

i we can also compute the worst-case latency up until ∆i
time-units into the future, which will be done later, in Equation (6.10).

Utility function. In order to capture the performance of the entire chain, we will
extend the notion of the utility function presented in Chapter 3. We will therefore
define the average utility U(t) as the average utility across the nodes in the chain,
given by

Ua(t) = 1
n ∑

i∈V
uai (t), Ue(t) = 1

n ∑
i∈V

uei (t),

U(t) = 1
n ∑

i∈V
uai (t) ·uei (t),

.

where the individual utility, availability, and efficiency for the i-th node is given by
are given by Equation (3.7), but with the addition of the sub-index:

uai (t) =

{
si(t)/ri(t) if Li(t)≤ Di

0 if Li(t)> Di

uei (t) =
si(t)

scap
i (t)
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Figure 6.2 Overview of the automatic service and admission-controller highlight-
ing that it uses feedback from the true performance of the nodes to estimate the time
it will take incoming packets to pass through the node. It also utilizes feedforward
between the nodes to ensure faster reactions to changes in the incoming traffic load.

6.2 Controller design

In this section we extend the AutoSAC presented for a single node in Chapter 3.
The main idea is to allow the nodes to also utilize feedforward information between
the nodes, as illustrated in Figure 6.2. By also using feedforward and sending infor-
mation to nodes further down the chain it will allow them to react faster to changes
in the incoming traffic. For instance, if the i-th node increases its service rate, it
sends a signal to the (i+1)-th node letting it know that in ∆i time-units, it will get
an increase in incoming traffic rate. It should be noted that the timing assumptions
remain the same as in Chapter 3, and are repeated in Table 6.1.

Property timing assumption
Long-term trend change of the traffic intensity 1 min – 1 h

Time-overhead ∆i for changing the number of VMs 1 s – 1 min
End-to-end deadline D for the packet flow 1 ms – 1 s

Table 6.1 Timing assumptions for the deadline, the change-of-rate of the input,
and the overhead for changing the service-rate.

Admission controller
The admission controller in this chapter is very similar to the one presented earlier,
in Chapter 3. The difference is that the one presented here, in (6.8), also account
for possible machine uncertainty in the nodes. We show in Theorem 6.1 that this
admission policy is optimal, and just as in Chapter 3 we also illustrate it with a
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block diagram, in Figure 6.3. The admission policy is given by:

ai(t) =

{
ri(t) if Ai(t)< Si(t)+Slb

i (t +Di)−Slb
i (t)

min
(
ri(t), slb

i (t +Di)
)

else,
(6.8)

where Slb
i (t) is given by

Slb
i (t) =

t∫

0

mi(x) ·
(
s̄i +ξ lb

i
)
dx. (6.9)

The intuition behind the admission policy (6.8) is similar as before; the incom-
ing traffic is guaranteed to meet the node deadline as long as the upper bound on the
expected latency is smaller than the node deadline, i.e. as long as Lub

i (t)≥ Di, with
Lub

i (t) given by:

Lub
i (t) = inf

{
τ ≥ 0 : Ai(t)≤ Si(t)+

∫ t+τ

t
mi(x)× (s̄i +ξ lb

i ) dx
}
. (6.10)

It then follows from (6.9) and (6.10), that

Si(t)+Slb
i (t +Di)−Slb

i (t)≥ Ai(t) ⇒ Lub
i (t)≥ Di.

Hence as long as this inequality holds, any incoming packet is guaranteed to meet
its deadline, and should thus be admitted, assuming that ri(t)< ∞.

Should there instead be an equality in the expression above, implying that
Lub

i (t) = Di, then care must be taken so that Lub
i (t) does not grow larger than Di.

Should this happen, as shown in Theorem 6.1, the largest possible admission rate is
ai(t)≤ slb

i (t +Di), since this is the limit of how quickly Slb
i (t +Di) grows.

THEOREM 6.1
The admission policy (6.8) will admit as many packets as possible while still ensur-
ing that the admitted packets meet the node deadline. ✷

Proof It follows from the definition of the upper bound of the delay Lub
i (t), i.e.,

by (6.10), that incoming packets will meet their deadlines as long as

Si(t)+Slb
i (t +Di)−Slb

i (t)≥ Ai(t), (6.11)

where Slb
i (t) is given by (6.9). Should there be a strict inequality in (6.11):

Si(t)+Slb
i (t +Di)−Slb

i (t)> Ai(t),

then all of the incoming traffic at that time-instance is guaranteed to meet the node
deadline Di. This follows from the fluid approximation which implies that the packet

95



Chapter 6. AutoSAC for a chain of nodes
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Figure 6.3 Block-diagram of the admission controller when the system has ma-
chine uncertainty. The admission control policy can still be computed continuously,
although is needs a bit more information. As shown in Theorem 6.1 the feedback-
law (or admission policy) derived here is able to admit as many packets as possible,
while still guaranteeing that all the admitted packets will meet the node deadline Di.

size is infinitesimally small. In this case the node should thus admit all the incoming
traffic, leading to ai(t) = ri(t).

In the case of equality in Equation (6.11), the incoming traffic will only be
guaranteed to meet the node deadline as long as the following condition hold:

∂
∂ t

{
Si(t)+Slb

i (t +Di)−Slb
i (t)−Ai(t)

}
≥ 0. (6.12)

Assuming an admission rate of ai(t) the above expression can be re-written as

∂
∂ t

{
Si(t)+Slb

i (t +Di)−Slb
i (t)−Ai(t)

}
=

si(t)︸︷︷︸
≥slb

i (t)

+slb
i (t +Di)− slb

i (t)− ai(t)︸︷︷︸
≤slb

i (t+Di)

≥

slb
i (t)+ slb

i (t +Di)− slb
i (t)− slb

i (t +Di) = 0.

From this, one should note that if ai(t) > slb
i (t +Di) it would lead to a violation

of (6.12) since it would lead to it being strictly less than 0. Therefore it is not pos-
sible to have a higher ai(t) and still guarantee that the node deadline of incoming
traffic will be met (in the case where Si(t)+Slb

i (t +Di)−Slb
i (t) = Ai(t)).

Finally, assuming the system is initiated with empty queues at time t = 0, it
follows from the definition of Si(t), Ai(t), and Slb

i (t) that

∀t ≥ 0, ∀i ∈ V , Si(t)+Slb
i (t +Di)−Slb

i (t)≥ Ai(t)
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since Si(0) = Ai(0) = 0 and they are all non-decreasing. The system will therefore
never end up in a state where Lub

i (t)> Di, thus guaranteeing that

∀t ≥ 0, ∀i ∈ V , Lub
i (t)≤ Di. ✷

Service controller
In this section we will extend the service controller presented Chapter 3 to also use
the feedforward information between the nodes. The intuition is that this will allow
the nodes to make a better prediction of the future arrival rate into the node, i.e., to
better predict r̂i(t).

Before that, however, it may be useful to recall that the goal of the service con-
troller is to find the mref

i (t) such that the utility function ui(t +∆i) is maximized.
In the previous chapter we showed that the utility function could be approximated
with the following expression:

ui(t)≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mi(t) ·
(
s̄i + ξ̂i(t)

)

ri(t)
, if mi(t) ·

(
s̄i + ξ̂i(t)

)
≤ ri(t)

ri(t)
mi(t) ·

(
s̄i + ξ̂i(t)

) , else
(6.13)

As mentioned when deriving the expression Equation (3.13), one need infor-
mation of ξ̂i(t +∆i) and ri(t +∆i) in order to maximize mref

i (t). However, one can
again assume that the machine uncertainty will be fairly constant during ∆i time-
units such that ξ̂i(t +∆i)≈ ξ̂i(t).

What thus remains is to derive an estimation of the future arrival rate of the
nodes. For the first node in the chain, this will be exactly as in Chapter 3 Equa-
tion 6.14:

r̂1(t) = r1(t)+∆1
dr1(t)

dt
.

For the subsequent nodes, i = 2, . . . ,n the input-rate might change in a step-wise
fashion. This might for instance happen to node (i+ 1) if the i-th node starts up a
new virtual machine instance while having a large amount of traffic in its buffer.
In this case, node (i+ 1) will see a sudden step-wise increase in the rate by which
traffic is flowing to it. It is therefore not favorable to use the same estimation for the
nodes i ≥ 2. Instead, we will introduce a feedforward mechanism.

Since ri(t) = si−1(t) and mi−1(x) is known for x ∈ [0, t +∆i−1] (with t being the
current time) one could estimate the future input-rate r̂i(t) for nodes i ≥ 2 with

r̂i(t)≈ min
(
scap

i−1(t +∆i−1), r̂i−1(t)
)
, i = 2, . . . ,n.

Note that scap
i−1(t +∆i−1) is used here, instead of scap

i−1(t +∆i). The reason is that if
∆i > ∆i−1 then one does not have enough information to compute scap

i−1(t +∆i−1).
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However, one can use the assumption that ∆i ≈ ∆i−1. Finally, since

scap
i−1(t +∆i−1)≈ mref

i−1(t) ·
(
s̄i−1 + ξ̂i−1(t)

)

one can summarize the predicted input r̂i(t) as

r̂i(t) =

{
ri(t)+∆i

dri(t)
dt , i = 1,

min
{

mref
i−1(t) ·

(
s̄i−1 + ξ̂i−1(t)

)
, r̂i−1(t)

}
, else.

(6.14)

With Equation (6.14) to predict the incoming traffic of a node, one can again
define κi(t)∈ R+ to be the real-valued number of instances needed to exactly match
the predicted incoming rate, just as in Equation 3.15. The only difference is that we
now also account for the processing uncertainty ξ̂i(t):

κi(t) =
r̂i(t)

s̄i + ξ̂i(t)
. (6.15)

The control-law is then again given by Equation 3.16, however slightly adjusted to
also account for the node-index:

mref
i (t) =

⎧
⎨

⎩

⌊κi(t)⌋, if ⌊κi(t)⌋⌈κi(t)⌉ ≥ κ2
i (t),

⌈κi(t)⌉, else.
(6.16)

Properties of AutoSAC There are several interesting properties captured by the
admission controller and service controller presented in this section. First of all, the
admission controller (6.8) ensures, by design, that every packet that is admitted into
a node, and thus exits the node, meets its deadline. Therefore, no packets that exit
the service-chain will miss their end-to-end deadline.

The service-controller given by equation (6.16) captures both the feedback used
from the true performance of the instances (when computing ξ̂i(t)) as well as feed-
forward information about future input coming from nodes earlier in the service-
chain (when computing r̂i(t)). This makes it robust against machine uncertainties
but also ensures that it reacts fast to sudden changes in the input. For instance, given
a service-chain of 6 nodes, the 5-th node will know that in ∆4 time-units, the 4-th
node will have mref

4 (t) instances running and can thus start as many instances as
needed to process this new load.

Selection of node deadlines
In this subsection we treat the problem of assigning the node deadlines Di to the
different nodes in the network. Naturally, this assignment is constrained by (6.1):

∑
∀i∈V

Di ≤ D .
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However, this constraint still leaves one with plenty of options of how to assign the
node deadlines. In order to do so in a good way, it might be useful to understand
how different choices affect the performance of the system. Naturally, having an un-
necessarily short node-deadline may cause it to be unnecessarily difficult to control
that node.

The downside of assigning individual node deadlines is that it may introducing
some slack into the system. By slack we mean that the sum of the local node dead-
lines for the nodes along the chain might be lower than the end-to-end deadlines.

To gain some understanding in how different node deadlines affect performance
of the system we will investigate how different choices affect both the utility metrics
as well as how many packets are discarded.

Using the service controller (presented earlier) and the admission controller
(presented next) we performed a Monte Carlo simulation with different parameters.
The simulation methodology is according to the one presented later in Section 6.3,
but where we chose ∆i for each node instead of randomly generated it, as we will
describe later. However, it should be noted the other parameters of the nodes are
randomly generated, just as described in Section 6.3. These simulations suggest that
there is an interesting relationship between the number of discarded packets and the
ratio ∆i/Di, as illustrated in Figure 6.4. Note that every data-point in this simulation
correspond to the mean value of that metric achieved over 1,000 simulations (using
the simulation method presented later in Section 6.3).
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Figure 6.4 Figure illustrating how the ratio ∆i/Di affects the performance of a
node. In Figure 6.4(a) one can see how it affects the amount of discarded packets
as well as the amount of overallocation. In Figure 6.4(b) one can see how the ratio
affects the average availability, efficiency, and utility of the chain. The intuition is
that the larger the ratio, the harder it is to have good control of the node since one
has to predict the arrival rates further into the future.
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The ratio of ∆i/Di The intuition gained from Figure 6.4 is that the ratio of ∆i/Di
is a good metric to optimize for when assigning the node deadlines. This ratio gives
insight in how difficult it is to control a node. A small ratio means that it is easy to
quickly react to changes of the arrival rate, or to performance changes of the virtual
machines. In fact, a ratio smaller than 1 implies that there is always time to react
to such changes. As the ratio grows larger, it becomes impossible to react to such
changes. Instead, it becomes necessary to have a proactive approach—to predict the
future arrival rates. The larger the ratio, the longer into the future one must predict,
hence the harder it becomes to control the node.

The optimization problem With the insights about ∆i/Di we can set up an opti-
mization problem that assigns node deadlines Di to every node:

minimize ∑
∀i∈V

∆i/Di

subject to ∑
∀i∈V

Di ≤ D

0 ≤ Di ∀i ∈ V

(6.17)

The optimization problem (6.17) is convex and can thus be solved using standard
methods such as Lagrange multipliers or cone programming [Boyd and Vanden-
berghe, 2004].

We would like to remark here, that other than the time-overhead ∆i, one could
also consider the nominal processing capacity s̄i, or the processing time of packets
(if it would be modeled), when assigning the node deadlines. With a larger nominal
processing capacity, or a larger processing time of a node might benefit from a larger
node deadline. Regarding the larger processing time, the intuition is that with larger
nominal processing rate of a virtual machine, the node has more coarse-grained
granularity when choosing the number of virtual machines it should have up and
running.

6.3 Evaluation

In this section we evaluate how AutoSAC performs when there is a chain of nodes
with traffic flowing through it. The simulation method is the same as the one pre-
sented in Chapter 3 but with a chain instead of a single node. The main difference
compared to Chapter 3 is that we now randomly generated the end-to-end deadline
D as well as the introduction of simulating the machine uncertainty for the nodes.
For each simulation the end-to-end deadline was randomly chosen from the inter-
val [250, 500] ms. The nodes in the chain were then assigned their respective node
deadline according solution of the to optimal deadline splitting problem (6.17). The
machine uncertainty of the nodes was simulated by choosing the bounds randomly
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Figure 6.5 The average machine uncertainty, i.e. the difference between the ex-
pected and true service performance of the virtual machines, illustrated for each
node in the network. It is normalized with respect to the nominal service capacity
of one instance, implying that if ξ̂i(t) = −10% then the i-th node would need 10%
more instances in order to match the incoming traffic load.

from the intervals ξ lb
i ∈ [−0.3 · s̄i, 0] and ξ ub

i ∈ [0, 0.3 · s̄i]. During the simulation
the machine uncertainty would then be chosen randomly from within these bounds:
ξ̂i(t) ∈ [ξ lb

i , ξ ub
i ] every time a new instance was started/stopped in order to simulate

the load disturbance generated from not knowing the performance of the physical
machine that the instance is launched on. This led to the step-wise behavior shown
in Figure 6.5. When the number of instances did not change for a node, the machine
uncertainty was simulated as a stochastic process leading to the small drift shown
in Figure 6.5.

Next we will show some results for a randomly generated chain with three
nodes, and later a comparison with the two “industry”-methods DAS and DOA (as
well as their augmented versions with the proposed admission controller).

Example chain
For this example a service chain with three nodes simulated. The end-to-end dead-
line and the machine uncertainty was simulated as described above, and the rest of
the parameters according to Chapter 3. In Figure 6.6 one can see how the different
nodes scale the number of instances up/down for the in order to react to the input
load. One can also see that they react quickly to each other, which comes from the
feedforward-signals between the nodes.

Comparing AutoSAC with state-of-the-art
In this section we compare AutoSAC dynamic auto-scaling (DAS) and dynamic
over-provisioning (DOP), as well as to when they are augmented with the pro-

101



Chapter 6. AutoSAC for a chain of nodes

0 20 40 60 80
0

10

20

time (minutes)

in
st
an

ce
s

0 20 40 60 80
0

5 000 000

10 000 000

p
ac
ke
ts
/s

input m1 m2 m3

Figure 6.6 Simulation of how the three nodes scale the number of active virtual
machines in order to adjust for the changing incoming traffic.
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Figure 6.7 Simulation of how the admission rate changes over time for the second
node in the chain. It is zoomed in at the interval between 20 min and 70 min in order
to illustrate how it handles the varying arrival rate.

posed admission controller (6.8). Just as in Chapter 3 the five methods are com-
pared using a Monte Carlo simulation with 1000 runs each. For every run, we sim-
ulated a chain of 4 nodes, where all the parameters were randomly generated (as
described earlier). The input data was again randomly selected from the SUNET
data. The evaluation of the Monte Carlo simulation is based on the average utility
mean(U) = 1

t
∫ t

0 ∑n
i=1 ui(x)dx.

Results The mean of the average utility U(t) for all the simulation runs is pre-
sented in Figure 6.8 for each of the five methods. One can see that AutoSAC
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6.4 Summary

achieves a utility that is 30–40% better than that of DAS and DOP. The main reason
for this is that they are lacking admission control leading to packets missing their
deadlines, which eventually results in a low utility.
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Figure 6.8 Results from the Monte Carlo simulation.

6.4 Summary

In this chapter we have extended mathematical model for a chain of nodes in
the cloud. The extended model captures, among other things, the time needed to
start/stop virtual resources (e.g., virtual machines or containers), and the uncertainty
of the performance of the virtual resources which can deviate from the expected
performance due to other tenants running loads on the physical infrastructure. The
packets that flow through the forwarding graph must be processed by each of the
virtual network functions (VNFs) within some end-to-end deadline.

We have also extended the previously presented AutoSAC (of Chapter 3 to also
be cable of handling a chain of nodes. One of the extensions is the added feedfor-
ward between the nodes, allowing them to quickly react to changes in the incoming
traffic. Furthermore, it also uses feedback from the true performance of the nodes,
in order to compensate for any processing uncertainties of the virtual machines in
the nodes.

One can note that the AutoSAC presented in Chapter 3 is a special case of the
one presented in this chapter, since it is for a single node, and without any machine
uncertainty. In the next chapter, 7, it will be further generalized to be able to handle
a network of nodes.
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7
AutoSAC for a network of
nodes

In Chapter 3 we presented AutoSAC for a single-node system. Recall that AutoSAC
is a way of combining automatic service and admission control to ensure that traffic
flowing through the node met a specific deadline. This approach was then extended
to a chain of nodes, in Chapter 6. In this chapter we extend again, in order to allow it
to handle a network of nodes with multiple packet flows going through it. A network
such as this is illustrated in Figure 7.1, which has five nodes and 4 packet flows
traversing the network. Each flow sees a dynamic traffic traversing the network
along a specific path. The traffic belonging to a flow must be processed by all nodes
along its path within a given end-to-end deadline.

With the introduction of multiple flows, and multiple end-to-end deadlines, the
problem of guaranteeing these end-to-end deadlines requires more care than one
treating a single flow, as in Chapter 6. The focus of this chapter is therefore on how
to account for this when controlling the nodes in the network. Again, the goal is
to combine admission control and horizontal scaling of the nodes such that all the
flows meet their end-to-end deadlines, all while using as few virtual machines as
possible and while discarding as few packets as possible.

The main extensions compared to Chapter 6 are:

a) Input prediction: An improvement of the feedforward scheme to allow it to dif-
ferentiate between “internal” and “external” traffic.

b) Assignment of node deadlines: The optimization problem that assigns the node
deadlines is generalized to be able to handle multiple flows, and multiple end-
to-end deadlines.

c) Convex utility function: We present an alternative, convex version, of the utility
function.
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every flow has
dynamic traffic

every flow has an
end-to-end deadline

Figure 7.1 Illustration of a network of nodes with 4 packet flows passing through
it. Each flow has a dynamic traffic as well as an end-to-end deadline.

7.1 Modeling a network of nodes

In this section we extend the mathematical model presented in the previous chapters,
and in particular Chapter 6, to allow us to model a network of nodes with multiple
packet flows passing through it along distinct paths.

Network and packet flows To model the network of nodes we start by describing
the connectivity among them as a time-invariant directed graph G = {V , E , F},
where

• V is the set of n = |V | nodes. For convenience, we label the nodes with the
integers from 1 to n, that is V = {1, . . . ,n};

• E ⊆ V × V is the set of directed edges between these nodes. If (i, i′)∈ E then
a directed edge from node i ∈ V to node i′ ∈ V exists;

• F is the set of packet flows traversing the network along specific paths. The
path of the j-th flow is modeled by the sequence p j : {1, . . . ,ℓ j}→ V , with
ℓ j ≥ 1 being the length of the path, such that

∀k = 1, . . . ,ℓ j −1,
(

p j(k), p j(k+1)
)
∈ E . (7.1)

It should be noted that the function p j is a mapping from the integers 1, . . . ,ℓ j to
the set of nodes in V . Hence, p j(k) is the k-th node of the j-th path. Naturally,
Equation (7.1) enforces the existence of an edge between two consecutive nodes in
the path of a flow. Since this model is general and allow for flows to traverse a node
more than once, it is useful to also define δ j,i as the number of times that flow j
pass through node i. Allowing a flow to traverse the same node multiple times in
this way, allow us to capture typical control-applications with feedback-loops.
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Figure 7.2 A simple network with three sources, three destinations, three cloud
functions, and three packet flows p1 = {1,2,3,4,1} (in blue), p2 = {1,3,5} (in red),
and p3 = {5,4,2} (in orange).

Example network An example of a network that we can model now is illustrated
in Figure 7.2. Using our framework, it can be modeled by a graph G = {V , E , F}
with V = {1, 2, 3, 4, 5} and E = {(1, 2),(1, 3),(2, 3),(3, 4),(3, 5),(4, 1),(4, 2),(5, 4)}.
The paths of three flows are modeled by p1 = {1,2,3,4,1}, p2 = {1, 3, 5}, and
p3 = {5, 4, 2}, with end-to-end deadlines given by D1, D2, and D3 respectively.
Since the first flow is traversing the first node twice, it means that δ1,1 = 2.

Assigning node deadlines Just as in the previous chapter, the goal is to control
the admission rate and the service rate of each node in the network such that the
number of allocated virtual machines is minimized. To leverage what was previ-
ously developed, we will again assign an individual node deadline assigned to each
of the nodes in the network. This means that a packet that arrives to the i-th node
will only be admitted into the node if it is possible to guarantee that the packet will
be processed and exit the function within Di seconds. This must hold, regardless
of which flow the packet belongs to. In other words, every packet arriving to the
i-th node will have the same node deadline Di, even though they might belong to
different flows with different end-to-end deadlines. Naturally, when assigning these
node deadlines, one is constrained by the following:

∑
∀i∈p j

δ j,i ·Di ≤ D j, ∀ j ∈ F , (7.2)

which states that the sum of all the node deadlines over a path j must be less than the
end-to-end deadline of that path. Later, in Section 7.2 we will adapt the optimization
problem presented in Chapter 6 to ensure it also works for a network of nodes.
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7.2 AutoSAC for a network of cloud functions

In this section we extend the previous AutoSAC from Chapters 3 and 6. The main
extension can be hinted in the illustration of Figure 7.3 and is a way to distinguish
between “external” and “internal” traffic. Along with this we also present a slightly
different way to split the end-to-end deadlines of the flows into individual node
deadlines. Along with this we will present an alternative control law for a convex
utility function.

The intuition behind the new input prediction is that the nodes within the net-
work will share their knowledge of future traffic predictions to their neighbors
(which they are sending traffic to). This way, they will use different ways to pre-
dict the future traffic depending on whether the traffic is coming from a different
node within the network, or if it comes directly from an external source outside the
network of nodes. Finally, the timing assumptions for this chapter still remain the
same as for in Chapter 6, and is repeated below:

Property timing assumption
Long-term trend change of the traffic intensity 1 min – 1 h

Time-overhead ∆i for changing the number of VMs 1 s – 1 min
End-to-end deadlines D j for a packet flow 1 ms – 1 s

Table 7.1 Timing assumptions for the deadline, the change-of-rate of the input,
and the overhead for changing the service-rate.
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Figure 7.3 Illustration of AutoSAC for a network of nodes. One can in particular
see the new addition of distinguishing between external traffic and internal traffic. To
predict future internal traffic it uses feedforward information from preceding nodes.
To predict external traffic it uses the linear extrapolation used in Chapter 3.
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Input prediction
The importance of having a good prediction of arriving traffic comes from the fact
that it takes ∆i seconds for the i-th node to start/stop a virtual machine instance
in a node. Recall that the number of instances deployed and running is controlled
through mref

i (t) and also that mi(t) = mref
i (t −∆i). Hence it takes ∆i seconds for any

changes of mref
i (t) to take effect. This means that at time t the node has to make a

decision about how many virtual machines will be needed at time t +∆i. For this
decision to be good, i.e., to yield the highest possible utility, a good prediction of
the arrival rate at time t +∆i is necessary.

In order to improve this prediction, we will present a way to differentiate be-
tween external and internal traffic, and use different prediction schemes for each
case. The main idea is that some of the traffic that pass through the i-th node might
have passed through many other nodes within the network before reaching it. On
the contrary, some of the traffic might come directly from an external source out-
side the network, and arrive at the i-th node without passing through another node in
the network. For this reason, introduce the notion of internal traffic rI

i(t) and exter-
nal traffic rE

i (t). By internal traffic we mean traffic that arrives to the node directly
from another node within the network, and by external we mean traffic that arrive
directly without passing through another node in the network, i.e, directly from an
external source. Together, they form the total arrival rate for the node:

ri(t) = rI
i(t)+ rE

i (t). (7.3)

The distinction between internal and external traffic is useful because it allows
us to use different methods when predicting their future arrival rates. We can thus
denote the predicted arrival rate to the node as r̂i(t):

r̂i(t) = r̂I
i(t)+ r̂E

i (t), (7.4)

where r̂I
i(t) and r̂E

i (t) are the predictions of the internal and the external traffic re-
spectively. Next, the strategies for predicting these two will be described in more
detail.

Predicting external traffic When predicting the traffic arriving to the node di-
rectly from an external source, the timing assumptions of Table 7.1 imply that it is
sufficient to use a linearization-method. The reason is that the rate-of-change of the
external traffic is assumed to be on a different time-scale than the time-delay ∆i.
Using linear extrapolation, the prediction of the external traffic can be computed as

r̂E
i (t +∆i) = ri(t)+∆i ·

dri(t +∆i)

dt
. (7.5)

This is the same estimation used for the node in Chapter 3, or for the first node of
the chain in Chapter 6.
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Prediction of internal traffic The idea behind the prediction of the internal traffic
is to have it as similar to the way traffic was predicted for the nodes i = 2, . . . ,n
in Chapter 6. However, since we no longer have a single chain of traffic, doing
this prediction becomes more involved, and we thus have to consider this for every
node-pair that is sending traffic to one another.

Let us begin by denoting the prediction of traffic from node i′ to node i as
r̂I
(i′,i)(t). The prediction of the total internal traffic arriving to node i can then be

estimated through
r̂I

i(t) = ∑
i′∈V

r̂I
(i′,i)(t). (7.6)

The intuition is that the information about r̂I
(i′,i)(t) is sent to node i from node i′.

Node i can then simply sum these predictions up to form an estimation about the
internal traffic that will arrive in the future.

Computing r̂I
(i′,i)(t), which should be done within the i′-th node, can be decom-

posed into the following two steps:

1. predict the future service-rate ŝi′(t) of node i′, and

2. predict the fraction of traffic routed to from node i′ to i.

Predicting the future service rate of the i′-th node can be done the same way as
was done in Chapter 6 for nodes i = 2, . . . ,n, i.e., by assuming that it will be the
minimum of the maximum service capacity and the incoming traffic of that node:

ŝi′(t +∆i) = min
(
scap

i′ (t +∆i), r̂i′(t +∆i)
)
.

Along with this the i′-th node also needs to predict what fraction of this future
service rate will be routed to the i-th node. By denoting the fraction of traffic which
is currently routed from node i′ to node i by w(i′,i)(t), this can be predicted using a
similar linear extrapolation as before:

ŵ(i′,i)(t +∆i) = wi′,i(t)+∆i ·
dw(i′,i)(t)

dt
.

Finally, by combining the prediction of the future service rate with the fraction
of this which will be routed to the i-th node, we arrive at the final expression:

r̂I
(i′,i)(t +∆i) = ŵi′,i(t +∆i) · ŝi′(t +∆i). (7.7)

Service control
One of the nice things about the improved predictions presented in Equation (7.6),
is that one can still use the service controller presented in Chapter 6 with it. The
reason is that this only changes one of the inputs to κi(t) given in Equation (6.15):

κi(t) =
r̂i(t)

s̄i + ξ̂i(t)
.
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The control-law can thus still be computed according to Equation (6.16):

mref
i (t) =

⎧
⎨

⎩

⌊κi(t)⌋, if ⌊κi(t)⌋⌈κi(t)⌉ ≥ κ2
i (t),

⌈κi(t)⌉, else.

Alternative utility function In the previous chapters the utility function ui(t) con-
sider the efficiency and the availability to be equally important, ui(t) = uai (t) ·uei (t).
Sometimes this might not be desirable, because one might favor efficiency over
availability. Therefore, we will here present an alternative utility function, which
combine them in a convex way:

ũi(t) = λi ·uai (t)+(1−λi) ·uei (t). (7.8)

It might be interesting how this choice of utility function might affect the
control-law of (6.16). To do this, we will derive it again, using the same method-
ology as in Chapter 3 and 6. By using the approximation methodology as before,
one finds that the number of machine instances that maximizes the alternative utility
function is given by the following:

mref
i (t) =

⎧
⎪⎨

⎪⎩

arg max
x∈Z+

{
λi

x
κi(t)

+(1−λi)
}
, if x ≤ κi(t),

arg max
x∈Z+

{
λi +(1−λi) ·

κi(t)
x

}
, else.

(7.9)

This follows since

ũi(t) = λi ·uai (t)+(1−λi) ·uei (t) = λi ·
si(t)
ri(t)

+(1−λi) ·
si(t)

scap
i (t)

.

By then approximating si(t) by si(t)≈ min
(
scap

i (t), ri(t)
)

and ri(t)≈ r̂i(t) one get

ũi(t)≈

⎧
⎪⎪⎨

⎪⎪⎩

λi ·
scap

i (t)
r̂i(t)

+(1−λi) ·
scap

i (t)
scap

i (t)
if scap

i (t)≤ ri(t)

λi ·
r̂i(t)
r̂i(t)

+(1−λi) ·
r̂i(t)

scap
i (t)

else .

And finally, since

r̂i(t)
scap

i (t)
=

r̂i(t)
mi(t) ·

(
s̄i + ξ̂i(t)

) =
κi(t)
mi(t)

,

we finally arrive at Equation (7.9). One can see that the upper case of Equation (7.9)
is maximized when x is as large as possible within that case, i.e. with x = ⌊κi(t)⌋,
while the lower case is maximized when x is as small as possible, i.e. with x =
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⌈κi(t)⌉. The remaining question is therefore which of the two cases that yield the
largest utility. One can verify that this indeed evaluates to the following expression:

mref
i (t) =

⎧
⎨

⎩

⌊κi(t)⌋, if λi⌊κi(t)⌋⌈κi(t)⌉+(1−2λi)κi(t)⌈κi(t)⌉ ≥ (1−λi)κ2
i (t),

⌈κi(t)⌉, else.
(7.10)

where again κi(t) = r̂i(t)/
(
s̄i + ξ̂i(t)

)
. Comparing the two control-laws (3.16) and

(7.10) one can see that the alternative control-law (7.10) is equivalent to (3.16) when
the efficiency and availability are considered equally important, i.e. when λi = 1/2.

To give some intuition about how different choices of λ affect the system, we
have run some simulations, according to the simulation methodology described
later, in Section 7.3. The result of these is shown below, in Figure 7.4. One can
clearly see that a low lambda favors a high efficiency, but leads to more packets
being discarded. Vice verse, a high lambda favors a high availability, but leads to
larger overallocation of processing capacity. Interestingly enough, the most difficult
choice of lambda, with respect to attaining a high utility, is when λ = 0.5.
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Figure 7.4 Figure illustrating how the choice of lambda affect the performance
when the alternative utility function is used to derive the alternative control-law,
presented in (7.10).

Assignment of node deadlines
In order to adapt AutoSAC to handle a network of nodes, we must also adapt how
the node deadlines are assigned. Therefore, the optimization problem (6.17) for the
node deadline assignment, presented in Chapter 6, will be generalized here. The
main difference is that the set of feasible node deadlines is now constrained by
multiple end-to-end deadlines, instead of just the one.
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Chapter 7. AutoSAC for a network of nodes

Having more end-to-end deadlines to consider, will likely lead to more slack
being introduced in the system. Recall that by slack, we meant the sum of the node
deadlines for the nodes along a path might be lower than the end-to-end deadlines
of that path:

slack = D j − ∑
∀i∈p j

δ j,i ·Di.

The optimization problem When considering the constraints added by the mul-
tiple end-to-end deadlines, the optimization problem (6.17), then becomes:

minimize ∑
∀i∈V

∆i/Di

subject to ∑
∀i∈p j

δ j,iDi ≤ D j ∀ j ∈ F

Di ≥ 0 ∀i ∈ V

(7.11)

where δ j,i indicates how many times path j goes through node i and ∆i indicates
the time-overhead necessary to change the number of instances running in the i-th
node. One should note that the optimization problem (7.11) is still convex and can
thus still be solved using standard methods such as Lagrange multipliers [Boyd and
Vandenberghe, 2004].

Solving it with Lagrange multipliers As mentioned in earlier one can solve the
optimization problem (7.11) using Lagrange multipliers. Disregarding the final con-
straint of (7.11), which is possible due to the convex nature of the problem, one
arrives at the following Lagrangian:

Ω = ∑
∀i∈V

∆i

Di
+

f

∑
j=1

µ j ·
(

∑
∀i∈p j

δ j,iDi −D j

)
(7.12)

where Di and µ j are the primal and dual optimization variables. The Karush-Kuhn-
Tucker conditions for (7.12) are:

∂Ω
∂Di

=− ∆i

D2
i
+

f

∑
j=1

µ jδ j,i = 0 ∀i ∈ V

µ j ·
(

∑
∀i∈p j

δ j,iDi −D j

)
= 0 ∀ j ∈ F

µ j ≥ 0 ∀ j ∈ F

(7.13)

It should be noted that when solving (7.13) one will likely end up with many pos-
sible cases for µ j and Di, however, only a single set of parameters will yield an
optimal value for (7.12), which can be denoted as (D∗

i ,µ∗
j ).
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7.2 AutoSAC for a network of cloud functions

Perturbation analysis Out of curiosity it might be interesting to investigate what
interval of parameters that will still preserve the solution in the same set. Or in other
words, how can one change Di or D j without changing the set of paths where the
end-to-end deadline constraints are active?

To do this we start by denoting the set of paths where the end-to-end deadlines
constraints are active as the set of J:

J ⊆ F : ∀ j : ∑
∀i∈p j

δ j,iDi = D j (7.14)

With this set, one will end up with the following set of equations:

− ∆i

D2
i
+ ∑

∀ j∈J
µ jδ j,i = 0 ∀i ∈ V (n eqs.)

∑
∀i∈p j

δ j,iDi = D j ∀ j ∈ J (|J| eqs.)

µ j = 0 ∀ j /∈ J (|F |− |J| eqs.)

(7.15)

Doing some small perturbation analysis around this we wish to investigate what
intervals of parameters still preserve the solution within the same set of J. We thus
assume that the perturbations will not change which µ j’s are active. The perturba-
tions we introduce into the equations of (7.15) are ∆Di, ∆D j, and ∆µ j. Here it should
be noted that the perturbation ∆ should not be confused with the time-overhead to
start a new instance, i.e., with ∆i. When referring to the time-overhead within this
chapter we will always use a subscript index, and when referring to the perturbation
we will not use a subscript index. With these perturbations we arrive at the following
set of equations:

− ∆i

(Di +∆Di)2 + ∑
∀ j∈J

δ j,i · (µ j +∆µ j) = 0 ∀i ∈ V

∑
∀i∈p j

δ j,i(Di +∆Di) = D j +∆D j ∀ j ∈ J

µ j +∆µ j = 0 ∀ j /∈ J

(7.16)

Assuming small ∆Di we can then neglect higher order terms of ∆Di and thus ap-
proximate the first equation of (7.16) according to

− ∆i

(Di +∆Di)2 ≈− ∆i

D2
i +2Di∆i

≈ ∆i

D2
i · (1+2 1

Di
∆Di)

≈− ∆i

D2
i
·
(

1−2
1
Di

∆Di

)

If we then continue by inserting this into the equations of (7.16) we arrive at the
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following set of equations

!
!!❅
❅❅

− ∆i

D2
i
+2

∆i

D3
i

∆Di +
✟✟✟✟✟❍❍❍❍❍
∑
∀ j∈J

µ jδ j,i + ∑
∀ j∈J

δ j,i∆µ j = 0 ∀i ∈ V

✟✟✟✟✟❍❍❍❍❍
∑

∀i∈V

δ j,iDi + ∑
∀i∈V

δ j,i∆Di =!!❅❅D j +∆D j ∀ j ∈ J

where some of the terms cancel out due to the solutions of (7.15) along with the
assumptions that the perturbations are small enough to not change the set J of the
solution. This finally leads to the following linear relationship for the perturbations:

[
D PT

J
PJ 0

]
·
[

∆D
∆µ

]
=

[
0

∆D

]
(7.17)

where D is a diagonal matrix D = 2 · diag(∆i/D3
i ) ∈ R n×n, ∆D correspond to the

vector ∆D = [∆D1, ∆D2, . . . , ∆Dn]T , and finally where PJ ∈ N|J|×n is the incidence
matrix where the rows correspond to the flows j ∈ J, and the columns to the nodes
i ∈ V , such that Pj,i = δ j,i.

The equation (7.17) gives us insight about how changing µ or D causes changes
in D , or vice verse. One should note that the relationship between ∆D and D is lin-
ear, with the constant given by PJ . Should one instead be interested in how changes
of D affect µ one has to solve for it in the equation system above. Due to the block-
wise structure of (7.17) one will arrive at:

D∆D+PT
J ∆µ = 0 ⇔ ∆D =−D−1PT

J ∆µ.

The other block-equality in (7.17) can then be expanded as follows:

PJ∆D = ∆D

⇒−PJD−1PT
J ∆µ = ∆D

⇒∆µ =−
(
PJD−1PT

J
)−1 ·∆D

where the final step assumes that (PJPT
J ) is invertible.

7.3 Evaluation

To evaluate the performance of the generalized AutoSAC we perform a similar
Monte Carlo simulation as in Chapters 3 and 6. The main difference here is that
we now simulate a network of nodes, but still where the parameters are randomly
generated. The network used as a basis for the evaluation is the one depicted in
Figure 7.2, i.e., with five nodes and three paths.

For each simulation the input rate for each flow in the network was generated
just as in Chapters 3 and 6, i.e., by randomly selecting a 100 minute interval of
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the SUNET-data, and then scaling it such that it had a peak of 10000000 packets
per second. The nominal service rates s̄i of the nodes in the network were to be
randomly chosen from the interval of [1000000, 2000000] packets per second.
The reason for the larger nominal service-rate is to allow the nodes to have roughly
the same number of virtual machines as in the simulations in Chapters 3 and 6. The
end-to-end deadlines D j for the flows in the network was randomly chosen from
the interval of [250, 500] ms. The individual node deadlines were then assigned
according to the solution of the optimization problem (7.11).

Example simulation In Figures 7.5–7.6 we show some results from one of the
many simulations performed during the Monte Carlo simulations. In Figure 7.5 one
can see how the arrival rate for the three paths in network varies over time, and in
Figure 7.6 one can see how the nodes adjust their maximum processing capacity as
well as how the admission rate adjusts. This Figure is zoomed in during the interval
between t = 20 min and t = 60 min, in order to illustrate this a bit clearer.
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Figure 7.5 The arrival rate for the three paths during one of the simulations.

Comparison with state-of-the-art Just as in the previous chapters, AutoSAC is
compared against the industry methods DAS and DOA, along with the versions of
when they are augmented with the admission controller of AutoSAC. Each method
was again simulated 1000 times. The network used during these simulations are
again the one illustrated in Figure 7.2.

Results The result of the Monte Carlo simulation is shown in Figure 7.7. The left
part shows the comparison of the average utility, efficiency, and availability. The
right part illustrates the same result, but by instead showing the fraction of packets
that are discarded as well as how much overallocation each method cause. One
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Figure 7.6 Simulation of how the admission rate changes over time for the three
nodes in the network. It is zoomed in at the interval between t = 20 min and t =
60 min in order to illustrate how it handles the varying arrival rate.
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Figure 7.7 Through a large number of simulations of the network depicted in Fig-
ure 7.2 the performance of AutoSAC developed in this chapter was compared with
what is currently used in industry. The methods AutoSAC was compared against
were dynamic auto-scaling (DAS) and dynamic overallocation (DOA). Neither DAS
nor DOA has admission control so they were augmented with the one developed in
this chapter. In the left figure one can see the result of the average utility, efficiency,
and availability for each of the five methods, and in the right figure the fraction of
the incoming packets that are discarded and the average amount of overallocation of
processing capacity.

can see that AutoSAC is again close to optimal in the average utility, availability,
and efficiency. As expected, DAS has an efficiency in the range of 0.8–0.9, since
those are the thresholds by which it bases its auto-scaling on. It should be noted
that increasing this band of thresholds did not improve the efficiency (the current
range yielded the best performance). DOA achieves an efficiency of around 0.75.
The reason for the poor average utility for these two methods, however, is the lack
of an admission controller. Without one, a queue will build up every time there is
a lack of processing capacity. This in turn increases the latency, causing packets to
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miss their deadlines resulting in a low availability. By augmenting DAS and DOA
with the admission controller of AutoSAC, the availability is significantly increased
by allowing it to drop some of the packets in a strategic way. By looking at the right
part of Figure 7.7 one realizes that it is only a very small fraction of the packets that
are actually discarded, so it is a sacrifice well worth making.

7.4 Summary

In this chapter we have derived a general mathematical model for networks of nodes.
Looking back at AutoSAC in Chapter 3 and 6 one can realize that they are both
special cases of the AutoSAC proposed within this chapter. The main generalization
is that now every node in the network can use both feedforward information from
other nodes in the network, as well as to predict future external network.

Along with the generalization of AutoSAC in this chapter, was also a gener-
alization of the deadline assignment problem. This was also analyzed to see how
changes to the different end-to-end deadlines of the flows passing through the net-
work would affect the assignments.

Finally, we presented a generalization of the utility function, allowing the user
to favor either efficiency or availability by using a convex combination of the two.
We derived a control-law for this alternative utility function, and showed that when
efficiency and availability are considered equally important, then this new control-
law is exactly the same as the previous control-law.

In the next chapter we will show how AutoSAC provides the foundation to allow
a network to dynamically change the assigned node deadlines over time, which in
turn allow new flows to join the network, as well as existing nodes to leave the
network. In essence, this allows for a dynamic network topology.

117



8
End-to-end deadlines over
dynamic network topologies

In the chapters leading up to this we have treated the problem of how to control
individual nodes in order to give global guarantees. We have hinted slightly about
taking a step back and perform global control when we introduced the optimization
problem of how to assign individual node deadlines in Chapters 6 and 7. In this
chapter we will take the final step on the journey of this thesis, and propose a way
which allows us to guarantee that the end-to-end deadlines of flows passing through
the network will always be met, even when the network topology is changing over
time, as illustrated in Figure 8.1.

This approach of this chapter differs a bit from the previous chapters, because
now the focus is on how to control the node deadlines over time, as well as how
the nodes and the flows of the network are allowed to join and leave. To ensure
that the end-to-end deadlines are met, we also propose a set of protocols for how to
dynamically control the node deadlines, as well as to control how nodes and flows
are allowed to join and leave the network over time. We formally prove that these
protocols work as intended in Theorem 8.1 and Corollary 8.1.

network topology k network topology k+1

Figure 8.1 Illustration of how the network topology is allowed to change over
time. In this chapter we propose a way to allow for this, yet still guarantee that the
end-to-end deadlines of the flows traversing the network are met.
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8.1 The system model

The focus of this chapter is to develop a framework where applications are imple-
mented as flows of packets through a network of nodes. Each node offers a service
to the incoming packets. The goal is then to manage the on-line arrival/departure
of flows and the on-line arrival/departure of nodes of the network in a way such
that end-to-end deadlines of flows are honored, while still allowing for topology
changes.

Section 8.1 presents definitions and assumptions with respect to the services of-
fered by nodes. Applications are then defined as a set of interconnected services and
referred to as flows. Definitions and assumptions on flows are given in Section 8.1.
Finally, in Section 8.1, we present some assumptions on how these flows and nodes
interact with the resource manager.

Model of the nodes
A node represents an entity that offers a service to the incoming packets. The time
taken by a node to provide the service to an incoming packet is given in Defini-
tion 8.1 below. The nodes in the system are denoted by V (t)⊂N, which is the set
of indexes of the nodes present at time t. The terms “node” and “vertex” are used
interchangeably1.

DEFINITION 8.1—RESPONSE TIME
We define the response time Li(t), as the time taken by a packet entering node i at

time t to be processed. ✷

It should be noted that the new definition of Li(t) is a generalization of the definition
given in Chapters 3–7, since from Definition 8.1 we can remark the following facts:

• The response time Li(t) accounts for all sources of delay possibly occurring
within node i (queuing, interference, processing, etc.).

• All incoming packets are treated in the same way regardless of the flow they
belong to. Differentiating packets depending on the application they belong
to is feasible. This would require us to attach the flow index j to the response
time, Li, j(t). However, this choice poses only a notational challenge with no
conceptual added value. For this reason we believe that letting the packet
response-time depend only on the node (and time) does not significantly im-
pact the applicability of the results. We leave the case of per-flow response
time to future works.

• Moreover, in contrast to a large body of the research on real-time systems,
this chapter does not address how the response time may be computed based

1 We may use the term “node” when we refer to its capacity to process packets, while the term “vertex”
is more often used when referring to the topological structure of the network.

119



Chapter 8. End-to-end deadlines over dynamic network topologies

on the amount of incoming workload (due to the arrival of packets) and the
amount of processing capacity of a node, etc. The interested reader can refer
to a vast relate literature addressing this aspect [Klein et al., 2014; Nylander et
al., 2018; Henriksson et al., 2004; Millnert et al., 2017; Millnert et al., 2018;
Padala et al., 2007; Voigt and Gunningberg, 2002; Gandhi et al., 2002].

Instead, we assume that the information of Li(t) is available, and the focus is
instead on the interactions between nodes aimed at guaranteeing end-to-end
deadlines in the context of a dynamic network.

Naturally, the service provided to packets by a node might include some mini-
mum requirements, which determines a lower bound Li to the response time of the
service time of a node. The node is unable to process packets in less time than this
value. Hence, to model the minimum time needed by a node to process a packet, we
introduce the following definition.

DEFINITION 8.2—RESPONSE TIME LOWER BOUND
We define the response time lower bound Li, as the minimum a packet may take to
be processed by node i.

In practice, Li may represent the pure processing time of a packet, without any
interference or delay of any kind.

Finally, we assume that the node is capable of controlling its response-time, as
stated below in Assumption 8.1. This assumption is exactly what was treated in
Chapters 3–7, but is also backed by the vast body of research for different ways of
controlling the response-time of cloud services. For instance, in [Nylander et al.,
2018] they use the concept of “brownout control” to ensure that the response-time
of a server is within a desired limit. In [Henriksson et al., 2004] control theory
is used to modify the processing capacity of the web servers to control response
times. More interesting work addressing this is found in [Padala et al., 2007; Voigt
and Gunningberg, 2002; Gandhi et al., 2002].

ASSUMPTION 8.1 (RESPONSE-TIME CONTROL) We assume that a node i is capa-
ble of controlling its response-time Li(t) such that it is always below a deadline
Di(t):

∀t ≥ 0, ∀i ∈ V (t), Li ≤ Li(t)≤ Di(t). (8.1)
✷

It should be noted that Assumption 8.1 gives the implicit requirement that the node
deadlines always have to be larger than the lower-bound of the response-time:

∀t ≥ 0,∀i ∈ V , Li ≤ Di(t). (8.2)
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Model of the flows
An application in the system is modeled as a flow indexed by some j ∈ F (t) and
characterized by a path and an end-to-end deadline, properly defined next.

DEFINITION 8.3—PATH
The path of a flow j ∈ F (t) is defined by the sequence p j : {1, . . . ,ℓ j} → V (t),

with ℓ j ≥ 1 being the length of the path, such that

∀i = 1, . . . ,ℓ j −1, (p j(i), p j(i+1)) ∈ E (t), (8.3)

where E (t)∈V (t)× V (t) are the current edges between the nodes of the network.✷

Note that this definition is similar to the one presented in Chapter 7, but also allows
for the set of flows in the network to change over time.

By Definition 8.3, it follows that p j(i) is the i-th node on the path of flow j. It
should be noted that Equation (8.3) enforces the existence of an edge of the graph
between two consecutive nodes in a path. It should be noted that this path may
traverse a node more than once, which allows us to capture typical client-server
sessions. With a slight abuse of notation, we may denote the image of the map p j,
which is the set of nodes touched by path j, by p j only, rather than p j({1, . . . ,ℓ j}).

We remark that given the type of applications considered in this thesis (e.g.,
cloud microservices or virtual network functions), each node is considered to pro-
vide a unique service to the packets. Hence, the route of packets belonging to a flow
is assumed to be known and does not have to be decided at run time.

As in the Chapters 5–7, every flow is assumed to have an end-to-end deadline,
however, with Definition 8.4 we again allow the set of flows to change dynamically
over time.

DEFINITION 8.4—END-TO-END DEADLINE
We define the end-to-end deadline D j of the flow j ∈ F (t) as the maximum time

a packet may take to be processed by all nodes along the path p j. ✷

Finally, a flow j is also characterized by an end-to-end response-time L j(t),
which is the time taken by a packet entering the first node p j(1) of the j-th flow
at time t to be processed by all nodes along its path p j. However, before properly
defining L j(t), we need to introduce the mid-path response-time L j,i(t), that is the
time needed by a packet that entered flow j at time t to pass through the first i nodes
of the path p j. Formally, this quantity is defined recursively by

L j,i(t) =

{
Lp j(1)(t) if i = 1
L j,i−1(t)+Lp j(i)

(
t +L j,i−1(t)

)
otherwise.

(8.4)

The intuition of (8.4) is quite straightforward: the time it takes a packet to tra-
verse the first i nodes is equal to the time required to traverse the first i− 1 nodes
plus the response-time of the i-th node. The end-to-end response-time of a flow j is
therefore given by L j,ℓ j(t), which we compactly denote by L j(t).
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Nodes
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Figure 8.2 Scheme of interactions between the resource manager (which manages
the network), the flows, and the nodes.

Model of the dynamic network
With the model of the flows F and the nodes V presented earlier, both nodes and
flows are allowed to join and leave the network at run-time. Hence, we can finally
define the network as follows:

DEFINITION 8.5—NETWORK
We define the network G (t) of the system at time t as the set of nodes, directed

edges, and flows present at that time: G (t) = {V (t), E (t), F (t)}. ✷

Since we aim at guaranteeing end-to-end deadlines of the flows, the requests to
join or leave the network must be properly handled by a resource manager, which
manages the network (as illustrated in Figure 8.2). If not properly handled, the risk
is that newly admitted flows may cause deadline-misses or that the uncontrolled de-
parture of nodes may disconnect the network. The interactions between the resource
manager and the flows are as follows:

• A flow j ̸∈ F (t) may request to join the network. Such an instant is denoted
by f rq+j . When a new flow issues such a request, it also communicates to the
resource manager the following information:

1. its path p j,

2. its end-to-end deadline D j.

• After the request by a flow to join, the resource manager:

1. accepts the flow j to the network at an instant f ok+j (≥ f rq+j ), if feasible,
or

2. rejects the flow j immediately, if not feasible.

Details on the admission of a new flow based on its characteristics and the
current state of the network are given in Section 8.3.
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• A flow j ∈F (t) may notify and leave the network at any time, and we denote
this denote by f −j . In fact, it is only advantageous to let a flow (and its end-
to-end deadline constraint) leave.

• The resource manager may notify a flow j ∈ F (t) that it has to leave the
network. This might, for instance, happen if a node along the path p j requests
to leave the network. In such a case, the resource manager is no longer able
to provide the requested services of the flow j.

The interactions between the resource manager and the nodes (which are the
vertices of the graph) are as follows:

• A node i ̸∈ V (t) may notify and join the network at any time. We denote such
an instant by v+

i . Since a node is bringing a new service to the network, there
is no admission control to its request to join.

• A node i ∈ V (t) may request to leave the network to the resource manager.
The instant of such a request is denoted by vrq−i .

• The resource manager allows a node to leave only at time vok−i (≥ vrq−i ). The
time between vrq−i and vok−i is needed by the resource manager to allow flows
going through node i to leave the network in a graceful way.

Problem formulation The problem formulation in this chapter can now formally
be summarized as follows;

• control the node deadlines D(t) = [Di(t)]∀i∈V (t),

• control when/how flows are allowed to join the network, and finally

• control when/how nodes are allowed to leave the network,

such that the end-to-end response times of all the flows in the network are always
less than their end-to-end deadlines:

∀t ≥ 0, ∀ j ∈ F (t), L j(t)≤ D j. (8.5)

8.2 Static networks

In this section, we introduce a protocol which allows for dynamic node deadlines
in static networks. By a static network we mean one where the network topology is
constant, i.e., where no nodes or flows are allowed to join or leave the network, that
is ∀t ≥ 0, G (t) = G . Note that this still allow for the traffic rates and response times
of nodes to change dynamically. This allows us to drop the time-dependency of the
set of edges E (t) = E , the set of nodes V (t) = V , and the set of flows F (t) = F .
However, we stress again that the node deadlines may change dynamically.
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Figure 8.3 Example of a network. Nodes are represented by light yellow boxes.
Flows are represented by: a source of packets (a colored circle labeled by the flow
index), a path (a sequence of arrows from the source, through the nodes), and a
destination of the packets (a colored circle with dashed boundary labeled by the flow
index). This example of network is used to illustrate an issue with dynamic deadlines
in Section 8.2.

To give some intuition of the challenges of guaranteeing end-to-end deadlines
in a system with dynamic node deadlines (even for a static network), we begin by
presenting a simple example. We then propose a solution, which allows for dynamic
node deadlines and still provides guarantees on the end-to-end deadlines (which is
formally proved in Theorem 8.1). Finally, we close this section by adapting the
opening example and show that it is then able to guarantee that all the end-to-end
deadlines are met for all times.

Example — issues with dynamic deadlines
If node deadlines were constant then a static assignment of node deadlines, equal to
any vector of node deadlines D = {Di}∀i∈V satisfying

D ∈ D(G ) =
{

Di ∈ R+ : ∀i ∈ V , Di ≥ Li, ∀ j ∈ F ,
ℓ j

∑
i=1

Dp j(i) ≤ D j

}
, (8.6)

would guarantee that no end-to-end deadlines would be missed. Equation (8.6) is
very similar to the constraints presented in Chapter 7, Equation (7.2), but with the
addition of the lower bound Li. The intuition behind Equation (8.6) is simple: the
sum of the node deadlines along the path p j of a flow j cannot exceed the end-to-end
deadline D j of the path j.

We remark that the set D(G ) is convex, since it is the polytope built from the
intersection among linear half-spaces. This also implies that every line between any
two points in D(G ) also belongs to D(G ).

Let us now consider the issues of performing a transition from some deadline
assignment D(t1)∈D(G ) to another assignment D(t2)∈D(G ), hence with both the
starting and ending node deadlines belonging to D(G ). Since D(G ) is convex then
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Figure 8.4 Example of how dynamic node deadlines may lead to end-to-end dead-
line violations. The node deadlines D1(t) (in blue) and D2(t) (in red) are changed
from D(t1) = [5,1, . . .] to D(t2) = [1,5, . . .]. This may cause a packet in flow 1 (with
path p1 = {1,2}, as shown in Figure 8.3) to miss its end-to-end deadline D1 = 6.

the linear transition of node deadlines

D(t) = D(t1)×
t2 − t
t2 − t1

+D(t2)×
t − t1
t2 − t1

always belongs to D(G ) for all t ∈ [t1, t2].
However, even if ∀t ∈ [t1, t2] the linear combination D(t) always belongs to

D(G ), the end-to-end deadline may be missed anyway. Suppose we have the net-
work G , illustrated in Figure 8.3 and focus on flow 1 (the blue flow), with path
p1 = {1,2}. Assume that the end-to-end deadline for this flow is D1 = 6 ms. Sup-
pose also that in response to an increase of the incoming packets rate, node 2 must
change its deadline from D2(t1) = 1 to D2(t2) = 5. The node deadlines of the system
are therefore changing from D(t1) = [5, 1, . . .] to D(t2) = [1, 5, . . .]. Please, note that
for the purpose of this example the particular choice of deadlines for nodes 3, 4, and
5 does not matter.

Figure 8.4 shows the deadlines of node 1 and node 2 over time. At time τ1 = 1
a packet enters node 1, which has D1(τ1) = 5. In the worst case, node 1 will have
a response-time of R1(t) = D1(t), which means it will finish processing that packet
at time τ1 +D1(τ1) = 6ms.

Suppose now, that at time t1 = 2ms, while this packet is still at node 1, the re-
source manager begins changing the node deadlines from D(t1) = [5,1, . . .] towards
D(t2) = [1,5, . . .]. When the packet exits node 1 at time τ1 +D1(τ1) = t2 = 6, then
it enters node 2. Due to the change of node deadlines, now the value of D2(6) = 6.
This means that, in the worst case (if R2(t) = D2(t)), the response time of node 2 is
also 5 ms.

The packet that entered flow 1 at time τ1 = 1 would therefore, in the worst case,
take 10 ms to traverse its path p1, hence, violating its end-to-end deadline D1 = 6.
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Chapter 8. End-to-end deadlines over dynamic network topologies

The reason for this is that with dynamic node deadlines:

R1(τ1) ̸= D1(τ1)+D2(τ1),

but instead

R1(τ1) = D1(τ1)+D2
(
τ1 +D1(τ1)

)
= D1(τ1)+D2(τ1)+

τ1+D1(τ1)∫

τ1

Ḋ2(x)dx.

This simple example shows that when the network is allowed to change the node
deadlines dynamically, D(t) ∈ D(G ) is not a sufficient condition to guarantee end-
to-end deadlines to be met. The node deadlines D(t) thus need to satisfy a stricter
constraint, which is discussed next.

Guaranteeing end-to-end deadlines
In this section, we provide the conditions that allow the network to dynamically
change the node deadlines without incurring any end-to-end violations, as illustrated
in the previous example. In Protocol 1 we present a solution to this problem. The
intuition is that by limiting the rate-of-change of the node deadlines, it is possible to
compute how the sum of the node deadlines along a path p j will change over time.
This in turn, allows us to upper-bound the end-to-end response-time of the flow. By
then choosing the node deadlines in a clever way, we can guarantee that the upper-
bound of the end-to-end response-time never exceeds the end-to-end deadline. This
is formally proved in Theorem 8.1.

Protocol 1 Management of dynamic node deadlines in static networks

• The node deadlines Di(t) can never change with a rate larger than some fixed
constant α ∈ [0,1]:

∀t ≥ 0, ∀i ∈ V , |Ḋi(t)|≤ α.

• The node deadlines must always remain within the safe space D(G ):

D(t)∈D(G )=
{

Di ∈R+ : i∈V , Li ≤Di, ∀ j ∈F ,
ℓ j

∑
i=1

(1+α)ℓ j−iDp j(i) ≤D j

}
.

THEOREM 8.1—DYNAMIC DEADLINES IN STATIC NETWORKS
No end-to-end deadline of any flow is violated, that is

∀t ≥ 0, ∀ j ∈ F , L j(t)≤ D j, (8.7)
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as long as the node deadlines D(t) never change with a rate faster than some fixed,
given bound α ∈ [0,1]:

∀t ≥ 0, ∀i ∈ V , |Ḋi(t)|≤ α, (8.8)

and as long as the node deadlines remain within the safe space:

∀t ≥ 0, D(t) ∈ D(G ), (8.9)

with D(G ) given by

D(G ) =
{

Di ∈ R+ : ∀i ∈ V , Li ≤ Di, ∀ j ∈ F ,
ℓ j

∑
i=1

(1+α)ℓ j−iDp j(i) ≤ D j

}
.

(8.10)
✷

Proof We begin by recalling Assumption 8.1: the nodes in the network have a
response-time controller which ensures that Equation (8.1) always holds, that is
∀t ≥ 0, Li ≤ Li(t) ≤ Di(t). It therefore follows that for the first node p j(1) of any
path j ∈ F , it is always true that:

∀t ≥ 0, ∀ j ∈ F , L j,1(t) = Lp j(1)(t)≤ Dp j(1)(t). (8.11)

It then follows from Equation (8.4), that for all subsequent nodes on the path p j
with index i = 2, . . . ,ℓ j it holds that:

∀t ≥ 0, ∀ j ∈ F , L j,i(t) = L j,i−1(t)+Lp j(i)
(
t +L j,i−1(t)

)

≤ L j,i−1(t)+Dp j(i)
(
t +L j,i−1(t)

)

≤ L j,i−1(t)+Dp j(i)(t)+α L j,i−1(t)

= (1+α)L j,i−1(t)+Dp j(i)(t) (8.12)

where each step follows:

1. from the definition of end-to-end response-time (8.4),

2. from Equation (8.1),

3. from Equation (8.8), which implies Lipschitz-continuity of Di(t) with
Lipschitz-constant α ,

4. from basic math.
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In the next step, we show that

∀t ≥ 0, ∀ j ∈ F , ∀x = 1, . . . ,ℓ j, L j,x(t)≤
x

∑
i=1

(1+α)x−iDp j(i)(t), (8.13)

holds by proving by induction on the index x of nodes over the path j. When x = 1,
Equation (8.13) follows directly from (8.11). For any other x > 1, we have that

L j,x(t)≤ (1+α)L j,x−1(t)+Dp j(x)(t)

≤ (1+α)
x−1

∑
i=1

(1+α)x−1−iDp j(i)(t)+Dp j(x)(t)

=
x−1

∑
i=1

(1+α)x−iDp j(i)(t)+Dp j(x)(t)

=
x

∑
i=1

(1+α)x−iDp j(i)(t)

where the different steps follow:

1. because the inequality is the same as Equation (8.12)

2. because we exploit the inductive hypothesis of (8.13) for x−1,

3. from basic math.

Hence, Equation (8.13) is proved for all x = 1, . . . ,ℓ j.
Finally, we can conclude the proof by showing that

∀t ≥ 0, ∀ j ∈ F L j(t) = L j,ℓ j(t)≤
ℓ j

∑
i=1

(1+α)ℓ j−iDp j(i)(t)≤ D j

which implies that as long as the node deadlines are chosen such that D(t) ∈ D(G )
no end-to-end deadlines of any flow j ∈F is violated, and the theorem is proved.✷

Example — fixed by applying Theorem 8.1
This section illustrates that if the node deadlines are changed in accordance to Pro-
tocol 1, then the issue of end-to-end deadline misses shown in the previous example
cannot happen. To do so, we modify the previous example but still consider the
flow 1 of Figure 8.3, which has path p1 = {1,2} and end-to-end deadline D1 = 6.
We also assume that the resource manager must change D2(t) from D2(t1) = 1 to
D2(t2) = 5.

Recalling the previous example we can now verify that if the node deadlines
begin in a state of D1(t1) = 5 and D2(t1) = 1 the resource manager is not able to
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change them at all. In fact, by writing explicitly the constraint of Equation (8.10)
for the path j = 1, we have

(1+α)D1(t1)+D2(t1)≤ D1

(1+α)1+5 ≤ 6 ⇒ α ≤ 0

which means that node deadlines are not allowed to change at all. If some change is
needed (for example, to handle a burst of incoming traffic), then the node deadlines
must be more constrained. In fact, given the change of D2(t), the choice of D1(t)
must satisfy the following constraint:

∀t ≥ 0, (1+α)D1(t)+D2(t)≤ D1 = 6. (8.14)

Next, we compare two cases of different values of α to see how it affects how
quickly one can change the node deadlines, but also how constrained the possible
choices of D1(t) becomes. The results of these examples can be seen in Figure 8.5.
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(a) Maximum rate-of-change α = 1
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(b) Maximum rate-of-change α = 0.5

Figure 8.5 Modified version of the previous example. We illustrate how the sys-
tem dynamically changes node deadlines over time, with different rates of change.
In 8.5(a) and 8.5(b) the nodes deadlines are allowed to change with a rate of α = 1
and α = 0.5, respectively. Given the change of D2(t) (red line) from 1 to 5, the re-
source manager is only allowed to change D1(t) (blue line) ensuring that it remains
within the safe space D1(t) (shaded blue area). Finally, as illustrated by the dashed
black line, by ensuring that D1(t) remains within the blue region, the longest time it
will take a packet to traverse flow 1 will be less than its end-to-end deadline.

Maximum rate-of-change α = 1 To allow the network to transition as quickly
as possible from D2(t1) = 1 to D2(t2) = 5 we choose α = 1. This means that the
choices of D1 are constrained by the following condition:

∀t ≥ 0, (1+1)D1(t)+D2(t)≤ D1 = 6.

This condition gives the resource manager the safe space for D1(t) illustrated by
the shaded blue region in Figure 8.5(a). The largest possible choice for D1(t) is
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Chapter 8. End-to-end deadlines over dynamic network topologies

therefore to change it from D1(t1) = 2.5 to D1(t2) = 0.5, as illustrated by the blue
line in Figure 8.5(a).

Maximum rate-of-change α = 0.5 The stringency of the constraint on the node
deadlines when α = 1 may be relaxed by requiring a slower transition between the
node deadlines, for example α = 0.5. By doing so, we get the following conditions
on D1(t)

D1(t1)≤
10
3

≈ 3.333, D1(t2)≤
2
3
≈ 0.666,

in order to ensure that Equation (8.14) holds, and assuming that D2(t) is again
changed from D2(t1) = 1 to D2(t2) = 5. Not surprisingly, by requiring a smoother
transition, the safe space D1(t) (shaded blue area in Figure 8.5(b)) becomes larger.
Choosing D1(t) to be as large as possible, thus means changing D1(t) from D1(t1) =
10/3 to D1(t2) = 2/3, as illustrated in the figure.

Trade-offs with alpha These two examples illustrate some fundamental trade-
offs that come by adopting Protocol 1. While it allows the system to change the node
deadlines dynamically with a rate of α , it imposes some constraints on the possible
choices of node deadlines. The quicker one wishes to change the node deadlines,
the more restricted the choice of feasible node deadlines becomes, and vice verse
The design-parameter α should be chosen appropriately for a given application.

8.3 Dynamic networks

In this section, we generalize the methodology presented in Section 8.2 to the case
of a dynamic network G (t) = {V (t), E (t), F (t)}, where nodes and flows may join
and leave the network at run-time. We begin by showing, in Corollary 8.1, that the
result of Theorem 8.1 transfers directly to a dynamic network. This means that the
end-to-end deadline of any flow in the network will be met as long as the hypothesis
of Theorem 8.1 hold for all states of the network G (t) and at all times, and as long
as the conditions stated in Corollary 8.1 are fulfilled. By comparing Theorem 8.1
and Corollary 8.1, one can see that the only difference is that we now allow for a
dynamic network, i.e., G (t) instead of a static network G .

COROLLARY 8.1—DYNAMIC DEADLINES IN DYNAMIC NETWORKS
The end-to-end deadline of all flows are always met, at all times, that is:

∀t ≥ 0, ∀ j ∈ F (t) L j(t)≤ D j, (8.15)

as long as the node deadlines D(t) never change with a rate faster than some fixed
bound α ∈ [0,1]:

∀t ≥ 0, ∀i ∈ V (t), |Ḋi(t)|≤ α, (8.16)
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and as long as the node deadlines always remain within the safe space D
(
G (t)

)
:

∀t ≥ 0, D(t) ∈ D
(
G (t)

)
, (8.17)

with D(G (t)) given by

D
(
G (t)

)
=
{

Di ∈R+ : ∀i∈V (t), Li ≤Di, ∀ j ∈F (t),
ℓ j

∑
i=1

(1+α)ℓ j−iDp j(i)≤D j

}
.

(8.18)
✷

Proof We begin the proof by observing that from Equation (8.16), it follows di-
rectly from Theorem 8.1 that for a fixed time-instance τ it holds that

∀ j ∈ F (τ), L j(τ)≤ D j, (8.19)

as long as
D(τ) ∈ D

(
G (τ)

)
, (8.20)

with D
(
G (τ)

)
given by Equation (8.18). In fact, this is precisely what was stated

and proved in Theorem 8.1, but with a fixed network topology G , instead of an
instantaneous “snapshot” G (τ) of a dynamic topology.

The hypothesis of Equation (8.17) then ensures that Equation (8.20) holds
∀t ≥ 0. Therefore, it follows that Equation (8.19) holds ∀t ≥ 0, and in turn that
Equation (8.15) also holds ∀t ≥ 0, as required. ✷

As demonstrated by the short proof, Corollary 8.1 does not pose any deeper
conceptual challenges compared to Theorem 8.1. However, the two hypotheses
of (8.16) and (8.17) may be hard to enforce simultaneously, if no special care is
taken. We illustrate this through the next example.

Example — issues in acceptance of a new flow The blind admission of new
flows as soon as they request to join, may cause the violation of one of the two
hypothesis of the corollary (Equations (8.16) and (8.17)) making Corollary 8.1 in-
capable of guaranteeing the end-to-end deadlines. At the time when any new flow
j′ is admitted to the network, the set of flows F (t) includes the new flow j′ which
was not previously in the set. As a consequence of the acceptance of the new flow
j′ into F (t), the safe space D

(
G (t)

)
may suddenly shrink due to the newly added

constraint. As illustrated in the next example, this might in turn cause the node
deadlines to be in an infeasible state, such that the end-to-end deadline of the newly
accepted flow will be violated. Notice that node deadlines cannot instantaneously
adapt to the new constraint, otherwise the hypothesis of “bounded rate of change”
of Equation (8.16) is violated.
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In Figure 8.6, we illustrate a system where a new flow j′ registers to join the
network at time f rq+j′ = 3. As soon as this flow is accepted into the network, at time
f ok+j′ = 4.5, the set of feasible node deadlines (illustrated by the shaded green area)
make a discrete jump. This means that the node deadlines D(t) (black thick line in
Figure 8.6) will no longer remain within D

(
G (t)

)
. In other words this means that

D( f ok+j′ ) ̸∈D
(
G ( f ok+j′ )

)
, which is a clear violation of the conditions of Corollary 8.1.

The illustrated issue suggests that special care must be taken when the network
G (t) is modified, since the discrete variation of the network may not be compatible
with the need of smooth node deadlines. Therefore, we present two new protocols.

Protocol allowing dynamic networks
Next, we present two new protocols:

• Protocol 2 explains how the requests of flows are managed, while

• Protocol 3 illustrates the management of nodes of the network.

We show that by following these protocol, the hypothesis of Corollary 8.1 always
holds, making the corollary applicable.

Management of flows The intuition behind Protocol 2, which manages the flows,
comes from the fact that as soon as a new flow j′ is accepted into the network, at
time f ok+j′ , the network changes from G = G (t) = {V (t), E (t), F (t)} into G+ =

G ( f ok+j′ ) =
{
V (t), E (t), F (t)∪ { j′}

}
. The constraint corresponding to the new

flow j′ is thus added to D(G ) leading to the new set of feasible node deadlines
D(G+) ⊆ D(G ). Therefore, in order to ensure that the node deadlines remain within
the safe space once j′ is accepted, i.e., that D( f ok+j′ ) ∈ D

(
G ( f ok+j′ )

)
, Protocol 2 will
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Figure 8.6 Illustration of why it might be difficult to ensure that ∀t ≥ 0, D(t) ∈
D
(
G (t)

)
and |Ḋi(t)|≤ α . In this scenario, the safe space for the first node, D1

(
G (t)

)

(shaded green area), makes a discrete jump as soon as the new flow j′ is accepted into
the network. The reason is that the inclusion of the new flow adds a new end-to-end
deadline constraints. This, in turn, may cause the node deadlines to instantaneously
become infeasible, “leaving” the safe space (illustrated by the dashed line).
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only accept j′ as long as D(t) ∈ D(G+). One should node that, if this is already the
case when request of flow j′ is made (at time t = f rq+j′ ), it will be allowed to join
immediately:

if D( f rq+j′ ) ∈ D(G+) then f ok+j′ = f rq+j′ .

If on the other hand, D( f rq+j′ ) ̸∈ D(G+), it is not possible to accept j′ imme-
diately. Therefore, in order to accept it, the resource manager changes the node
deadlines towards a goal point within the new safe space D∗ ∈ D(G+). It will then
accept the new flow j′, once D(t) = D∗, which will occur at time f ok+j′ , given by
Equation (8.21).

Protocol 2 Management of flows

• At time f rq+j′ , the new flow j′ requests to join

• If D( f rq+j′ ) ∈ D(G+), then the flow j′ is admitted immediately, that is f ok+j′ =

f rq+j′ .

• If D( f rq+j′ ) /∈ D(G+), then the admission of flow j′ is delayed until the node
deadlines have completed a linear transition to a goal point D∗ ∈D(G+), that
is

f ok+j′ = f rq+j′ +
maxi∈V (t)

∣∣∣D∗
i −Di( f rq+j′ )

∣∣∣
α

. (8.21)

with α being the maximum feasible rate of change of node deadlines.

• If D
(
G+)

)
=∅, then the request of flow j′ to join the network is rejected.

• A flow j ∈ F (t) may notify the resource manager and leave the network at
any time. The time when it leaves is denoted by f −j .

Let us comment on the choice of the “goal point” D∗. In general, any choice of
D∗ ∈ D(G+) is valid. However, if the target is to minimize the transition-time from
the time of the request to join to the time of acceptance, then it should be chosen as

D∗ = argmin
D∈G+

max
i∈V (t)

∣∣∣Di −Di( f rq+j′ )
∣∣∣ .

We would like to point out three observations from Protocol 2. The first one is
that during the transition to accept the new flow j′ the node deadlines are changed
according to the following linear function:

∀i∈V ( f rq+j′ ), ∀t ∈ [ f rq+j′ , f ok+j′ ], Di(t) =
Di( f rq+j′ )× (t − f rq+j′ )

f ok+j′ − f rq+j′
+

D∗
i × ( f ok+j′ − t)

f ok+j′ − f rq+j′
.

(8.22)
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This means that the node deadlines are changed along a line from D( f rq+j′ ) to
D( f ok+j′ ). Since D(G ) is a convex space, it follows that D(t) ∈ D(G ) during the
transition. Hence, it also follows that the hypothesis of Equation (8.17) in Corol-
lary 8.1 holds during the transition.

The second observation is that by changing the node deadlines according to
Equation (8.22) we acquire the property that Di( f ok+j′ ) = D∗

i . This means that at the
end of the transition, at time t = f ok+j′ , we have D(t) ∈ D(G+). This implies that
once the new flow j′ is accepted, condition (8.17) of Corollary 8.1 continues to
hold.

The final observation is that by exploiting the value of f ok+j′ of Equation (8.21),
we have

|Ḋi(t)|=
|Di( f rq+j′ )−D∗

i |
f ok+j′ − f rq+j′

= α
|Di( f rq+j′ )−D∗

i |

maxi∈V (t)

∣∣∣D∗
i −Di( f rq+j′ )

∣∣∣
≤ α (8.23)

This implies that Protocol 2 fulfills condition (8.16) of Corollary 8.1, since the max-
imum rate-of-change of any node is α during the transition.

By combining all three observations, we can conclude that Protocol 2 ensures
that the hypotheses of Corollary 8.1 are never violated while accepting new flows,
and therefore that no end-to-end deadlines will be guaranteed.

Finally, we remark that if there is no possible choice of a goal point, i.e., if
D(G+) =∅, then the request of j′ to join is clearly rejected because the admission
of the new flow j′ may cause the violation of end-to-end deadline of some flow
already admitted to the network.

Management of nodes The basic idea behind Protocol 3 is that when a node
i ∈ V (t) leaves the network, it affects all the flows having a path that is passing
through it. Therefore, at time vrq−i , that is when node i requests to leave the network,
the resource manager notifies all the affected flows j ∈ { j : ∀ j ∈F (t), i ∈ p j} that
it will be pushed out from the network after a time T leave

i . The rationale for this is
simply that the resource manager will no longer be able to provide any guarantees
for the end-to-end deadlines of the affected flows once node i has left the network.

However, should the affected flows still wish to use some of the services in the
network, they may request to re-join the network as a new flow. In order to allow
the affected flows adequate time to do this, and to also ensure that there is enough
time for the packets currently in the affected flows, we require T leave

i to be greater
than the largest end-to-end deadline of the affected flows.

Moreover, it can be noticed that there is no condition on the nodes willing to
join the network, thus any node wanting to join the network can do so immediately.
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Protocol 3 Management of nodes

• A node i ̸∈ V (t) may notify the resource manager and join the network at any
time v+

i .

• When a node i ∈ V (t) requests to leave the network (the time of which is
denoted by vrq−i ), it is allowed to do so at time vok−i :

vok−i ≥ vrq−i +T leave
i

with T leave
i ≥ max{D j : ∀ j ∈ F (t), i ∈ p j}

• The resource manager will notify all the affected flows

j ∈ { j : ∀ j ∈ F (t), i ∈ p j}

that they will be pushed out at time t = vok−i if they have not left the network
by then.

Comments on handling multiple flows It should be noted that while Protocol 2
only treats the case where a single flow j′ requests to join, it is possible to allow
multiple flows to request. The management of this scenario can be achieved by
introducing a request queue, and then applying Protocol 2 for the request at the
head of the queue. Once the request is served, the resource manager can then repeat
for the new head-of-the-queue request until there are no more pending requests.
This methodology would only incur in a heavier notation which we prefer not to
add to lighten the presentation.

Another option would be to batch many requests together, and then apply Pro-
tocol 2 on the new batch of flows. This approach could naturally also be combined
with the request queue for new requests.

Later, in Section 8.4 we illustrate through simulations that new flows can be
accepted in matter of milliseconds, or even micro seconds. Therefore, given the
application of cloud robotics, it is fair to assume that there will not be multiple
flows requesting to join simultaneously. And should there be, introducing a request
queue will not incur any significant delay for accepting new flow.

Example — dynamic network topology
In this subsection, by using some examples, we illustrate how the two new protocols
work. The scenario is illustrated in Figure 8.7 and consists of the two transitions.
In the first transition, from t1 to t2, flow 4 (green) requests to join the network.
The second transition, from t2 to t3 illustrates how node 6 requests to leave the
network. By doing so, it will affect flow 3, which has a path passing through node
i = 6. The affected flow must therefore leave the network, and re-join as a new flow
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j = 6, illustrated by the gray flow in Figure 8.7. The schedule and time-line for both
transitions are illustrated in Figure 8.8.

Request of a flow to join When the new flow 4 requests to join the network, at
time f rq+4 = 3, the node deadlines of the system are in a state such that it cannot be
accepted immediately, i.e., D( f rq+4 ) ̸∈D(G+). According to Protocol 2, this requires
the resource manager to change the node deadlines to a goal point D∗ ∈ D(G+).
The node deadlines will therefore be changed linearly from D( f rq+4 ) to D∗. At time
f ok+4 , we have that D(t) = D∗, and then flow 4 is admitted into the network. This
is illustrated in Figure 8.7 with the safe space for the current network D(G ) shown
as the shaded green region, and the safe space for the new network D(G+) as the
shaded blue region, and finally the goal point D∗ as the ∗ symbol.

Request of a node to leave At time vrq−6 = 9, node 6 requests to leave the network,
as illustrated in Figure 8.8. Since node 6 belongs to the path p3 of flow 3 (see the
yellow flow in Figure 8.7), the departure of node 6 would affect flow 3, with end-to-
end deadline D3 = 5. By following Protocol 3, the resource manager will therefore
notify flow 3 that it will no longer provide any end-to-end deadline guarantees after
time

vok−6 = vrq−6 +T leave
6 = 9+5 = 14.

The node will then be allowed to leave the network at this time vok−6 , as illustrated
in Figure 8.8. In the figure, it can also be noticed that the safe space increases when
node 6 leaves. The reason is that constraint of the end-to-end deadline D3 of flow 3
is removed as soon as this flow leaves the network.

In this example, we assume that flow 3 still wants to remain in the network.
Therefore, it will request to re-join the network as a new flow 5 at time f rq+5 . At
this time, the node deadlines already allow the requesting flow 5 to join, i.e., that

1

1

2

4

2

3 5

6

3

7

timet1t1 t2t2 t3t3

1

1

2

4

2

3 5

6

3

7

4 1

1

2

4

2

3 5

7

4 51 2 3 1 2 3 4 1 2 54

Figure 8.7 Illustration of how the network changes in the example of Section 8.3.
In the first transition, from time t1 to t2, flow, 4 (green), joins the network, which
already has flows 1, 2, and 3. Then in the second transition, from time t2 to t3, node
6 leaves the network. When node 6 leaves the network, it affects flow 3 (yellow),
which then leaves, and re-joins the network as a new flow 5 (gray).
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Figure 8.8 Illustration of how the space of feasible node deadlines changes when
new flows are accepted into the network, as well as when nodes leave. It shows a
request from flow j′ = 4 to join the network at time f rq+4 = 3 as well as a request from
node i = 6 to leave the network at time vrq−6 = 9. It also illustrates how the resource
manager changes the node deadlines towards D∗ (given by ∗) before accepting the
new flow j′ = 4.

D( f rq+5 )∈D(G+), and then flow 5 is admitted immediately ( f ok+5 = f rq+5 ), as shown
in Figure 8.8.

8.4 Evaluation: trade-offs with alpha

In this section we evaluate some of the effects introducing Protocols 1, 2, and 3
might have on a system. We are particularly concerned with the trade-offs of the
design-parameter α . The intuition is that by choosing a value for α we choose how
quickly the resource manager is able to change the node deadlines in the network.
A higher value of α will therefore allow for quicker changes. This will allow the
resource manager to accept new flows faster. However, as illustrated in Section 8.2,
a higher value of α will also require lower node deadlines. This means that the
response-times of the nodes in the network have to be lower. Should the response-
time controller be using the AutoSAC-methodology, then this might lead to more
packets being discarded, as was investigated in Chapter 6 when the ratio between
∆i/Di and its affect on performance was treated.

System used for evaluation To evaluate the trade-offs of α , we will use the sys-
tem presented in Chapter 7. The network topology used for the evaluation is given
by Figure 8.9 and is given by 5 nodes and 3 flows. The difference from the system of
the previous chapter, however, is that we will now augment the optimization prob-
lem for assigning node deadlines (7.11), with the added constraints of (8.17). More-
over, we also assumed that every node in the network has the same time-overhead
for changing the number of virtual machines running in the node, ∀i∈V (t), ∆i = ∆.
This means that the optimization problem for assigning the node deadlines is given
by (8.24). Naturally, the node deadlines will deviate from this whenever there is a
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transition towards a new goal point D∗. However, the new goal point will be chosen
according to the optimization problem (but obviously with the added constraint of
the new flow).

minimize ∑
i∈V (t)

1/Di

subject to
ℓ j

∑
i=1

(1+α)ℓ j−iDp j(i) ≤ D j ∀ j ∈ F (t)

Di ≥ 0 ∀i ∈ V (t)

(8.24)

Evaluation methodology To evaluate how the choice of α affects the time re-
quired to accept a new flow, we will evaluate how long it takes the system presented
earlier to transition between consecutive goal points D∗ ∈ D(G+). To do this, we
used the following methodology:

1. Choose the order-of-magnitude for the end-to-end deadlines in the network
D ∈ {0.1, 1, 10} ms.

2. Choose a value for α ∈ [10−3, 100].

3. Assign a randomly generated end-to-end deadline to each flow drawn from a
uniform distribution, D j ∈ U (0.7 ·D , 1.3 ·D).

4. Chose a new goal point D∗ as the solution to the optimization problem (8.24).

5. Simulate how long it takes the network to reach the desired goal point D∗.

6. Repeated steps 3 thru 4 for 100 simulations.
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Figure 8.9 Illustration of the network used to evaluate the trade-offs with α and
the time taken to reach the goal point D∗.
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7. From the 100 simulations, compute the average time to reach a goal point D∗.

8. Repeat steps 1 thru 7 for a different choices of D and α .

Results The result of the evaluation is shown in Figure 8.10. As expected, it shows
a clear relationship between α and the time needed to reach D∗. It is interesting to
note that even when having end-to-end deadlines in the order of 10ms, and a very
small α the resource manager is still able to reach D∗ within a second. By allowing
a higher α , it is possible to reach D∗ in less than a microsecond.
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Figure 8.10 Simulation result of how long it takes a system (with the network
depicted in Figure 8.9) to reach a goal-point D∗. It shows how this time depends on
both the choice of α but also on how large the end-to-end deadlines of the flows are.

8.5 Summary

In this chapter, we presented a framework, which allows applications and cloud-
services to dynamically join and leave a system over time. The intuition is that by
assigning and controlling how quickly local deadlines of the node may change, it
is possible to guarantee the end-to-end deadlines of the applications in presence of
flows and nodes dynamically leaving and joining the network. Finally, with exten-
sive simulations we are able to show that with the suggested protocols it is possible
to accept new applications in a matter of milliseconds.

Regarding the choice of bounding how quickly the individual node deadlines
are allowed to change over time, i.e., bounding |Ḋi(t)|≤ α , one should note that it
is sufficient to only bound the positive derivative. Theoretically, the theorems pre-
sented in this chapter still hold. This means that one could theoretically lower the
node deadlines in a step-wise fashion, something that would allow the system to ac-
cept new flows immediately. The problem with this, however, is that the nodes might
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not be able to lower their response-time in a step-wise fashion. But if one would al-
low the nodes to state a bound on how quickly they could lower their response-time,
it could theoretically allow the system accept new flows faster. Since the rate-of-
change for lowering the node deadlines would be bounded by that bound, rather
than by alpha.

Finally, this work opens up for a variety of directions for future work. For in-
stance different ways to do response-time control, as well as how the proposed
methodology scales with the number of nodes and flows in a network.
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9
Conclusions and future
work

In this thesis we have progressively ventured towards the next-generation of cloud
systems. The goal has been to be able to guarantee that traffic passing through a set
of cloud services, or virtual network functions, can do so within a specific end-to-
end deadline. The purpose of this thesis was to present one way to model a real-
time cloud in order to achieve this goal. The focus was on the holistic analysis and
to illustrate how one can combine ideas from control theory, real-time systems, and
network calculus to connect, what we believe to be, the fundamental building blocks
needed to achieve this goal. We believe these building blocks to be:

• Deadlines for traffic passing through the network;

– This includes both local node deadlines as well as end-to-end deadlines
for flows passing through multiple nodes.

• Scaling of processing capacity;

– Controlling the processing capacity of a node by scaling the number of
virtual machines (horizontal scaling) or the size of a virtual machine
(vertical scaling) to ensure that the traffic passing through the node
meets a specific deadline.

• Admission control;

– Controlling the rate by which traffic is admitted into a node, such that
the response-time of a node is kept below a specific deadline.

• Control of the local deadlines of the nodes;

– Controlling the local deadlines of the nodes in the network in a dynamic
way so that we can ensure that the end-to-end deadlines for the traffic
flows in the networks are met.
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Stimulate future research The goal when illustrating ways to combine these fun-
damental building blocks is to stimulate further research within this area, so that the
policies and methods proposed in this thesis can be replaced with improved and
better versions. For instance, in a real system, the behavior of the incoming traffic
could be more complicated, such that using linear extrapolation to predict the fu-
ture arrival rate will no longer be sufficient. Instead, one might need to use machine
learning in order to do such predictions. However, with the proposed abstraction of
AutoSAC, one can still feed this prediction into the proposed scaling-policy.

In a similar way, in a real system it might be necessary to use more advanced
ways to predict the future performance of the virtual machines running in a node.
The method proposed in this thesis might no longer be sufficient. For instance,
the processing capacity of a virtual network function could depend on a myriad
of things, such as the type of traffic, the size of the incoming packets, the size of
the routing tables within the node, how many internal queues are in the node, etc.
However, if one uses more advanced ways to predict the future processing capacity
of the node, one can still feed this into the admission controller and the service
controller proposed in this thesis.

Controlling a single node
In the first two technical chapters of this thesis, i.e., Chapters 3 and 4, we present
two different ways to control a cloud node. The problem of controlling a single
cloud node might not be very interesting in itself, but the purpose of these two chap-
ters was to introduce the reader to the fundamental problems and building blocks
studied in this thesis. One of these problems is that it becomes difficult to provide
deadline-guarantees when the time needed to change the processing capacity of a
node is larger than this deadline. Should the time-overhead to change the process-
ing capacity be less than the deadline, then the problem becomes much simpler,
and would allow the system to use a more reactive approach. Another problem is
that with horizontal scaling, one has only coarse-grained control over the process-
ing capacity of the node. It therefore becomes difficult to exactly match the required
processing capacity. Recall that using processing capacity was assumed to incur a
cost, so one wish to guarantee the deadline while using as few resources as possible.
In a perfect world, one would have smooth control over the processing capacity, and
no time-overhead to change it. In such a world, the problems of guaranteeing that
the response-time of the node was below a deadline would be almost trivial.

To address these problems, we propose a way to combine admission control with
horizontal scaling, in Chapter 3. This allows us to ensure that the response-time of
a node remains below a specific deadline. A downside of this approach, however, is
that to ensure that the response-time is below the deadline, the node sometimes have
to discard some of the incoming packets. This is not ideal, but one can view it as the
job of the service controller to ensure that there is sufficient processing capacity in
the node, so that the admission controller does not have to discard any packets.
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This methodology used in AutoSAC is not mutually exclusive with HoloScale,
the one presented in Chapter 4. In fact, the cascaded control-structure proposed in
HoloScale, can be combined with AutoSAC. The idea is that the admission con-
troller in AutoSAC should act as the quality-of-service-controller in HoloScale, and
that the HoloScale-controller can be used as the inner controller. Unfortunately, the
combination of these two methodologies was never explored in this thesis, but is
something that would be interesting to explore in future work.

A matter of time-scales It might seem that the time-scales used to model the
cloud systems in this thesis are quite conservative. What would happen if there was
a reduction in the time-overhead needed to start a new virtual machine? In such
a scenario, one could argue that the system would be able to handle even smaller
deadlines, and more volatile traffic. By changing the time-overhead from 1 s to 1 ms,
we could change the deadlines from 1 ms to 1 µs, and still preserve the difference of
the time-scales exploited when deriving AutoSAC. Therefore, it is possible that the
theory developed in this thesis remains valid even after technological breakthroughs
in virtualization techniques.

Controlling a chain of nodes
In the middle-two technical chapters of the thesis we studied the problem of con-
trolling a chain of nodes. The goal was to ensure that the end-to-end response time
for the chain remained below a given end-to-end deadline. This meant that packets
should not spend more than the given end-to-end deadline to pass through all the
nodes in the chain. Along with the problems of controlling a single node, this added
a new problem: the interaction between nodes. For instance, if one node needed
more time to process packets, it would leave less time for subsequent nodes to pro-
cess packets.

In Chapter 5 we proposed a way for the nodes to do horizontal scaling in order
to achieve these goals. This resulted in every node following a specific schedule for
turning on and off a virtual machine. Notably, every node in the chain followed a
schedule with the same period, which is a quite restrictive constraint. Note however,
that different nodes could still have their extra virtual machine on for different length
of time. The main benefit of this approach however, was that it did not discard any
packets.

To get away from the approach of forcing every node to follow the same period,
we proposed to control the nodes using the AutoSAC-methodology. This allowed
the system to handle more dynamic traffic, but with the downside of assigning a
local node deadline to every node in the chain. This meant, for example, that a
packet could be processed by the first three nodes and then be dropped by the fourth
one. It would be interesting to compare the use of an admission controller in every
node with having a single admission controller for the entire chain. It is not obvious
which of the two approaches would be best.
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Controlling a network of nodes
In the final two technical chapters, Chapters 7 and 8 we added another fundamental
problem: the interaction between multiple flows. In essence, this means that multi-
ple flows pass through the networks, and they might affect each other. In Chapter 7
we extended AutoSAC and proposed one way to address this. The main idea is to
use more communication between the nodes in order to achieve a better prediction
of the traffic flowing through the network. We also proposed a way to assign the
local node deadlines such that the end-to-end deadlines of the flows traversing the
network would not be violated.

Why not an admission controller in the beginning of each path? Going back
to the question of having a single admission controller per flow, one can again ask
this question for a network of nodes. This is interesting, because in this case it is not
possible without an upper bound on the arriving traffic of the flows. For instance, let
us consider a chain of nodes, but where each node is also affected by a cross-flow.
To be able to ensure that the packets admitted into the flow are guaranteed to meet
the end-to-end deadline, we would need an upper bound on the traffic flow for all the
cross-flows passing through the nodes. The reason for this is because knowing the
states of the system when admitting the packets to the first node, is not sufficient to
provide an upper bound on the end-to-end latency of the entire chain. For instance,
the node could traverse five nodes, and then while being in the sixth node, the cross-
flow of node seven has a burst of traffic, rapidly increasing the response-time of this
node. In such a scenario, the response-time of the seventh node might be too large
to ensure that the packet belonging to the flow will meet its end-to-end deadline.

Dynamically changing the node deadlines One artifact from AutoSAC is that
its admission controller allows the nodes to dynamically change the node deadline
in a continuous and smooth way and still guarantee that the response-time remains
below this deadline. This is what sparked the idea behind Chapter 8. One could for
instance imagine that something happens in the system, and that one node would
like to increase its node deadline in order to handle a sudden burst of incoming
traffic. However, doing so could affect the end-to-end response times of the flows,
and might require us to change the local deadlines of the other nodes in the network.
One way to address this is to use the methodology presented in Chapter 8.

Scalability of the network Both methods proposed in the network-chapters of
this thesis beg the question of how they scale with an increase of the number of
nodes and flows in the network. This has not been explored within the thesis. It
would therefore be interesting to investigate how one can combine graph-based deep
learning and network calculus in order to dynamically dimension the processing
capacity of the nodes in a very large network. This idea is inspired by similar work
that was explored by Geyer [Geyer and Bondorf, 2019].
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9.1 Future work – a dynamic network calculus

As hinted in the discussion around whether one should use a single admission con-
troller for each flow, or one admission controller for every node, it would be very
interesting to study what one can do if one has a model of the upper bound on the
traffic flowing through the nodes. This is something quite common in the field of
network calculus, and it would be very interesting to study what kind of perfor-
mance and guarantees one can achieve when using the network calculus theory in a
more dynamic way.

Recall from Chapter 1 that a common way to model an upper bound on the
arriving traffic is with arrival curves. One example is the burst-rate model, which is
modeled by a quick burst of traffic, followed by a steady-state rate:

α(t) = b+ r · t,

where b is the initial burst-size and r is the steady-state rate of the traffic.
Similar to the arrival curves, the lower bound of the available processing capac-

ity of a node can be modeled using a service curve. One example of a service curve
is the latency-rate model:

β(t) = [C · (t −L)]+,

where C is the processing rate of the server, and L is the latency,

Dynamically arrival and service curves
One idea for future work would be to allow the service curves and arrival curves to
dynamically change over time. One would then use them to control the processing
capacity over time, or the admission control. For instance, one could use the service
and arrival curves to scale the processing capacity of a node such that the number
of packets being discarded in a node is bounded.

Scaling a node with fixed buffer size Assuming that every machine-instance in
the node has a fixed queue-size of qmax

k , one can use the service and arrival curves
to find the minimum amount of instances needed in order to guarantee that the
node never drops more than a fraction ε of the incoming packets. The assumption
is that if the queue is full, and the node has incoming traffic, it will have to drop
any incoming traffic until there is room in its queue. To ensure that no more than
a fraction ε of the incoming traffic is dropped, the node can scale the number of
horizontal machine according to Equation (9.1):

m(t) = max
(
⌈(1− ε) ·b/qmax

k ⌉, ⌈(1− ε) · r/s̄⌉
)

(9.1)

where s̄ is the maximum packet-processing rate of a single machine instance, where
qmax

k is the maximum queue-size of a single virtual machine instance, and finally
where b and r are the burstiness and the intensity of the arriving traffic, respectively.
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Scaling a node with fixed deadline Similar to before, it is possible to derive
a scaling policy to ensure that a node never drops more than a fraction ε of the
incoming traffic when the node has a fixed deadline. Again, the underlying assump-
tion is that the node has an admission controller that will drop any incoming traffic
whenever the response-time of the node is larger than this deadline, just like the one
found in AutoSAC.

In this case, one can ensure that the no more than a fraction ε of the incoming
traffic will be dropped, as long as the horizontal scaling is performed according to
Equation (9.2):

m(t) = max
(⌈

(1− ε) · b
s̄ ·D

⌉
,
⌈
(1− ε) · r

s̄

⌉)
, (9.2)

where D is the deadline for the packets passing through the node. The intuition
behind this policy, which can be seen in Figure 9.1, is that we have to choose the
number of virtual machines such that the dashed blue line is above the end of the
red line, which is indicated the given deadline.

time

bits

rr

m = 1m = 1

m = 2m = 2

m = 3m = 3

deadline
b

Figure 9.1 Illustration behind the scaling policy of Equation (9.2). The idea is to
choose the number of instances such that the dashed blue line is above the end of the
red line, which indicated the deadline.

Dynamic priority assignment to flows of a node Another interesting direction
for future work is to use network calculus models to dynamically assign priorities
to the flows passing through a node. In Chapters 5 and 6 we did not distinguish
between flows. However, it might be useful to prioritize the traffic belonging to
different flows based on their laxity, which is the time left before the deadline is up.
The laxity for a packet entering node i and belonging to flow j is given by

laxi, j(t) = D j −Li, j(t),
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where D j is the end-to-end deadline of flow j and Li, j(t) is the time it took the
packet entering node i to get there. Therefore, laxi, j(t) is the time the packet has
left, before its end-to-end deadline is met. The idea is then to assign priorities to the
flows passing through a node i according to the least-laxity-first principle, meaning
that the flow with the least laxity gets the highest priority of a flow, and the flow
with the largest laxity gets the lowest priority.

One can also combine this priority-assignment policy with the scaling policy
presented in Equation (9.2), but where one uses the laxity instead of the deadline.
This might allow us to have a completely decentralized scaling policy, and priority
policy yet still guarantee that the end-to-end deadline of every flow in the network
is always met.

Summary
There are many interesting directions in which one can combine network calculus
and use it in more dynamic ways, as illustrated above. A downside, however, is that
when dynamically scaling the number of virtual machines, for instance as proposed
in Equation (9.2), or when doing the dynamic priority assignment, it might be dif-
ficult to provide hard guarantees. However, this might be an acceptable trade-off
since it will allow the system to adapt and react to changes during run-time.

Another caveat to consider when using network calculus is how good it actually
is for modeling the performance of virtual network functions, or cloud services.
Their behavior can be quite complicated and change depending on a myriad of
things, such as the type of incoming traffic, the size of the packets, or the size of the
routing table inside the nodes.
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