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Doktorn meddelar sig åter med professorn som nu inte inlåter sig på teorier utan kort ordinerar:
– Gå på djupet!
Och på djupet går man under en förväntansfull halvtimma. Till sist stöter man på ett hårt
föremål, spänningen blir olidlig. Föremålet blottas med all försiktighet, och pang: det är ett
cementrör!

Utdrag ur novellen Arkeologi i samlingen Vänner emellan (Fritiof Nilsson Piraten, 1955)





Populärvetenskaplig sammanfattning

Att studera fysik är ett sätt att försöka förklara och förstå universum. Inom partikelfysik
undersöks mikrokosmos, d.v.s. universum på minsta möjliga längdskalor, och de partiklar
som finns där. I dagens partikelfysikexperiment är det möjligt att nå 10−19 meter, alltså tio
miljarder gånger mindre än en nanometer, vilket i sin tur är en en miljard gånger mindre
än längden av en människa. Naturen fungerar helt annorlunda på dessa längdskalor, bland
annat på grund av de kvantmekaniska effekter som blir viktiga någonstans runt atomära
och molekylära storlekar på någon nanometer.

De krafter som styr partiklarna i mikrokosmos är den starka, den svaga och den elektromag-
netiska kraften. Det är utifrån dessa som partikelfysikens mycket framgångsrika Standard-
modell är formulerad. Denna teoretiska modell både beskriver och förutsäger många av de
fenomen som kan observeras i experiment, men det finns ett antal exempel där den inte
verkar fungera riktigt lika bra. Nyckelordet här är verkar, detta eftersom både mätningar
och beräkningar har en begränsad noggrannhet. Genom att minska dessa ofrånkomliga
fel i så stor utsträckning som möjligt går det alltså att säga huruvida teori och experiment
överensstämmer eller inte.

Ett av de i skrivande stund mest intressanta problemen är hur en så kallad myon påverkas
av ett magnetiskt fält. Denna partikelegenskap påverkas av de andra partiklarna inom Stan-
dardmodellen och att räkna ut hur kräver speciella tekniker vid låga energier. Detta beror på
att den starka kraften får Standardmodellens kvarkar att bilda bundna tillstånd som kallas
hadroner. De kanske mest kända hadronerna är protonen och neutronen som tillsammans
bildar atomkärnor.

En av de vanligaste metoderna för att göra beräkningar vid låga energier är att använda
effektiva modeller som bara inkluderar hadroner. Man kan likna det vid hur en rullande
boll beskrivs som just ett objekt med en viss friktion mot underlaget snarare än en mängd
molekyler vars individuella rörelser och interaktioner med underlaget måste bokföras. Nog-
grannheten i en precisionsberäkning kvantifieras av dess ordning i något bestämt mått, och
ju högre ordning desto mindre är felet.

Det är precis sådana högre ordningars beräkningar som denna doktorsavhandling berör.
I de första två av avhandlingens artiklar introduceras en ny ordning för en av de mest
framgångsrika effektiva lågenergiteorierna, så kallad kiral störningsräkning. I de sista två
görs beräkningar som är viktiga för att minska de teoretiska felen i Standardmodellens förut-
sägelse av just myonens ovannämnda magnetiska egenskap. Även om Standardmodellen
visar sig inte kunna förklara vissa fenomen, så är precisionsberäkningar i regel aldrig gjorda
förgäves. De kan användas för att leda vägen till en ny, förbättrad teoretisk partikelfysik-
modell som förhoppningsvis ger fler insikter och ytterligare intressanta förutsägelser.
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Higher Order Calculations for Low Energy Precision Physics

During the past century tremendous effort has been put into the understanding of Nature
at smaller and smaller scales. The underlying idea behind this is to see what the most fun-
damental building blocks of the Universe are, and to obtain a predictive theory describing
their interactions and properties. The building blocks in question are called fundamental
particles and the best theoretical model that is currently known is the StandardModel (SM)
of particle physics. The length scale of elementary particle physics today is 10−19 m, and to
get a sense of how small this really is, one may compare to some more well-known length
scales. Macroscopic life exists on scales on the order of 1 m and the biological cells in any
organism typically have a radius of 10−5 m. These cells in turn consist of molecules that are
ten thousand times smaller, i.e. roughly 10−9 m, but a molecule is itself built up of atoms
with radii on the order of 10−10 m. The size of the atomic nucleus consisting of protons
and neutrons is roughly 10−14−10−15 m. The protons and neutrons are not fundamental
either, since they consist of quarks bound together by the so-called strong force of Nature.
Quarks are examples of the particles in the SM and are at present thought to be pointlike, a
conception in agreement with existing experimental data. Experiments continue to probe
deeper and deeper into the microscopic world, but in order to reach deeper into nuclear
matter an increasing amount of energy is required. In other words, there is an inverse re-
lation between distance and energy. Particle physics is therefore also commonly known as
high energy physics.

The physics on these scales is fundamentally different from the classical physics govern-
ing the macroscopic world, primarily for two reasons. First of all, quantum mechanics
(QM) becomes important around atomic and molecular length scales. In QM energies are
quantised and wavefunctions introduced, whose squared amplitude represents a probabil-
ity density, and quantum mechanical states can be put in superposition. One consequence



of this is that in calculations of a process such as the propagation of a quantum mechanical
particle between two points in spacetime one has to consider all possible ways it can do so,
where each possible way is associated to a probability. A fundamental constant appearing
in QM is Planck’s reduced constant ℏ ≈ 1.06 · 10−34 Js.

In addition to QM, also special relativity (SR) is required when describing quantum me-
chanical particles moving at high velocities. The main postulates of SR are that physical
laws are the same for all observers and that the speed of light c ≈ 3 · 108m/s is the same in
all frames of reference. A fundamental relation is the equivalence between mass and energy,

E = mc2 , (1.1)

which implies that particles can be created from energy alone. It can thus be expected that
annihilation of particles in collider experiments, the main tools to experimentally probe the
microcosmos, will produce a plethora of particles. This is indeed true, and the most ad-
vanced accelerator where this is done today is the Large Hadron Collider (LHC) in Switzer-
land.

Particle physics thus joins together two of the cornerstones in physics that were both dis-
covered in the twentieth century. However, it is not possible to simply merge the two into a
theory of quantised relativistic particles since that leads to a violation of causality. One way
to cure this is to instead introduce a quantum field theory (QFT) where the particles arise as
excitations in the fields. An additional argument to introduce QFT, which is perfectly valid
albeit perhaps not so theoretically satisfying, is that it works. It gives excellent predictions
of observables such as cross sections that can be measured in collider experiments.

This thesis contains four papers, henceforth referred to as Papers I–IV, for which the fun-
damental ideas and topics are introduced and explained in sections 1–8 below. First of all,
an introductory overview of the SM is given in section 1 together with the main ideas moti-
vating the work in the papers and this thesis. After that section the discussion will be more
technical and it is assumed that the reader is familiar with at least some QFT. The techni-
cal discussion in section 2 starts with the most important concepts in QFT needed for an
understanding of the papers as well as some generalities about loop integral calculations.
Then focus is put on the QFT of the strong force (quantum chromodynamics, or, QCD in
short) in section 3. This is followed by an introduction to effective field theory in section 4.
Papers I and II concern chiral perturbation theory (ChPT). This low energy effective field
theory is introduced in section 5. Following that, lattice gauge theory is discussed in sec-
tion 6. This section is particularly important for Paper III which concerns one of the two
kinds of hadronic contributions to the anomalous magnetic moment of the muon, and this
latter quantity is presented in section 7. In section 8, the operator product expansion used
in Paper IV for the second kind of hadronic contribution is introduced.
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1 An Overview of the Standard Model

The StandardModel of particle physics describes the elementary particles that are known at
present and how they interact via three of the four fundamental forces in Nature, namely
the electromagnetic, the weak and the strong forces. It makes no attempt at explaining
gravity, but the effective field theory (EFT) techniques presented in section 4 can be used
to write down an effective theory of quantum gravity. On the mathematical level, the SM
is governed by its Lagrangian, LSM, which is written in terms of the fields of the respective
particles. The mathematical structure will be further elaborated in section 2 below. In this
section, a brief and elementary overview of the SM is given. Focus is put on the quantum
numbers such as spin and colour charge that serve to distinguish particle properties.

1.1 The particle content

Each of the fundamental forces is mediated through the exhange of bosonic particles,
i.e. with integer spin, known as gauge bosons. These are the photon for the electomag-
netic force, the W ± and Z bosons for the weak force and the gluon for the strong force.
In addition to these bosons there is also the Higgs boson, a scalar particle whose perhaps
most renowned effect is that it allows for a mechanism through which particles can obtain
masses. The remaining particles all have half-integer spin and are known as fermions. The
fermionic content of the SM is divided into the two classes quarks and leptons. There are
six quarks, namely up (u), down (d ), charm (c), strange (s), top (t) and bottom (b), as
well as six leptons, i.e. the electron (e), muon (µ) and tau (τ ), each with its corresponding
neutrino. The masses of the SM particles range from zero for the massless particles up to
roughly 170 GeV for the top quark, and it is not known why e.g. the top quark is so much
heavier than an up quark with a mass on the order of 2 MeV.

In addition to spin, each particle has other specific properties which are defined in terms
quantum numbers. For this thesis, the electric charge and colour charge are of importance.
The number of colours is three and they are respectively labelled red, green and blue. It
is due to the fact that quarks carry colour and electrons do not that the former take part
in the strong interaction whereas the latter cannot. It should further be noted that for
every particle there is an antiparticle of the same mass as the particle but with opposite
quantum numbers, e.g. with an electric charge of flipped sign, and some particles are their
own antiparticles such as the photon.
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1.2 The low energy region

Quarks are never observed freely in Nature since the strong force binds them together
into composite colour neutral objects known as hadrons. Therefore, in experiments one
always detects hadrons or decay products thereof. There are two kinds of hadrons. These
are known as baryons and mesons, respectively. The baryons consist of three quarks and
the most obvious examples of such are the proton and neutron with the quark contents
uud and udd, respectively. The mesons contain one quark and one antiquark. The lightest
pseudoscalar mesons are π0, π±, K 0, K 0 and η. These latter particles are very important
for this thesis as they are used as effective degrees of freedom in Papers I, II and III, and such
effective models also motivate the short-distance constraints derived in Paper IV, as will be
explained in sections 7 and 8. The connection between the chiral symmetry breaking and
the lightest pseudoscalar mesons will be further elaborated in sections 3 and 5.

Both the strong and electromagnetic coupling constants, αs(Q) and α(Q), respectively,
depend on energy Q, a concept commonly referred to as running, but behave very differ-
ently. At high energies α(Q) increases whereas αs(Q) decreases, something which leads to
the notion of asymptotic freedom for strongly interacting particles. On the other hand, the
converse is true for low energies and αs(Q) increases to such an extent that below energies
of roughly 1 GeV it is not possible to use perturbation theory where an expansion is made in
αs(Q) under the assumption that it is small. Therefore, the regionQ ≲ 1 GeV is known as
the non-perturbative region, or low energy region, of the strong force and to study particle
physics there requires the use of special tools such as EFT techniques, see sections 4 and 5,
or lattice gauge theory, see section 6. Another approach is the use of QCD sum rules which
is related to the operator product expansion (OPE) defined in section 8.

1.3 The validity of the Standard Model

A natural question to ask now, is how well the SM actually works. It turns out that it works
remarkably well. One thing that it is not able to explain is the abundance of matter over
antimatter. This has been a known problem for a long time, and for any model to explain
such an asymmetry three conditions have to be fulfilled [1]. The SM fails with respect to
the amount of CP violation [2], and many extensions of the SM have been proposed to
explain this. These extensions contain a varying number of new particles, and although
much experimental effort has been made to observe such particles none have been directly
detected so far.

In the absence of experimental evidence for such particles, one may test the SM by doing
high precision calculations which later can be compared with experiments. Given the suc-
cess of the SM, any new physics model must naturally reproduce all that the SM describes
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well. Therefore, with more precision tests it is possible to pinpoint precisely where the SM
fails, which in turn hopefully aids in the construction of new models.

An observable that has received much attention is the anomalous magnetic moment of the
muon, see section 7, whose SM value is in tension with the Brookhaven National Labo-
ratory experimental value at approximately 3.5σ [3–5]. As a consequence, there is much
effort to improve both the theoretical and the experimental precision. On the experimental
side there is the E989 experiment at Fermilab [6] and also E34 at J-PARC [7]. The Fermi-
lab experiment is already running and results are expected in the coming year, whereas the
J-PARC experiment expects to start running in the early 2020s. The biggest theoretical
uncertainty at the moment comes from hadronic contributions, i.e. the low energy degrees
of freedom, and in order to reduce this uncertainty higher order calculations are needed.
This issue motivates the calculations in Papers III and IV herein. There are of course many
other observables that can be considered, e.g. using the very successful low energy effective
field theory ChPT. In Papers I and II, ChPT is considered at higher orders in the chiral
expansion, which in principle can lead to improved precision calculations in the future
as long as the unknown low energy constants showing up are estimated in some way (see
section 5 for further details about this issue).

Finally, it should be mentioned that a review of the current status of high energy physics
can be found in Ref. [8]. For lattice specific results, as well as some from ChPT, there is also
Ref. [9]. Having explained the basic and underlying notions and goals of particle physics in
the low energy region, attention must be turned to the more mathematical aspects of field
theory and how to do computations. In the remainder of this thesis, natural units where
c = ℏ = 1 will be used.

2 Quantum Field Theory

Quantum field theory is the foundation on which theoretical particle physics relies. The
modern approach to QFT is the path integral formulation and it is assumed that the reader
has seen this formulation before. However, those aspects of the path integral andQFTmost
needed for introducing the papers are still reviewed in this section. In addition, certain
technicalities regarding loop integrals are discussed in detail as well.

2.1 Path integral approach

In order to motivate the path integral formulation of QFT it is important to discuss briefly
what the goals of any calculation are. In general, the interesting quantities to calculate
are transition probabilities from some given initial state, |i⟩, say, to some final state | f ⟩.
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The labels refer to initial and final, respectively, and contain all the information about the
quantum numbers, momenta and so on. The transition between these two states is given
via an object called the S matrix, such that the transition amplitude is

⟨ f | S | i ⟩ . (1.2)

An important property of the S matrix is its unitarity, i.e. SS † = S †S = 1, which leads
to the optical theorem relating the imaginary part of the scattering amplitude to the total
cross section. The theorem in question is particularly important for the dispersive approach
to the theoretical calculations of the muon anomalous magnetic moment, this as it offers a
way to use experimentally measured cross sections in derived dispersion relations. This will
be further elaborated on in section 7.

Consider now a scalar theory with fieldϕ and the intital and final states |i⟩ = |k1, . . . , km ⟩
and | f ⟩ = |p1, . . . , pn ⟩, i.e. an m → n process. Define further the n-point function as
the Fourier transformed correlation function with n fields, i.e.

n∏
i=1

∫
d 4xi e ipi·x⟨0|T

{
n∏

i=1

ϕ(xi)

}
|0⟩ , (1.3)

where T denotes time ordering. The transition amplitude in (1.2) is then related to these
correlation functions via(

n∏
i=1

∫
d 4xi e ipi·x

) m∏
j=1

∫
d 4yj e−ikj·yj

 ⟨0|T


n∏
i=1

ϕ(xi)
m∏
j=1

ϕ(yj)

 |0⟩
∼

(
n∏

i=1

i
√
Z

p2i − m2 + iε

) m∏
j=1

i
√
Z

k 2j − m2 + iε

 ⟨p1, . . . , pn| S |k1, . . . , km ⟩ , (1.4)

where Z is the field-strength renormalisation. By looking at the Källén-Lehmann spectral
representation of the 2-point function it can be shown that Z is the residue of the single-
particle pole. The relation in (1.4) is known as the LSZ theorem and gives a prescription
for how to calculate S matrix elements in terms of correlation functions.

Having related the transition amplitudes to n-point functions, these latter functions need
to be defined such that they can be calculated. The basic object needed is the path integral,
and the relation between the two is

⟨0|T

{
n∏

i=1

ϕ(xi)

}
|0⟩ =

∫
Dϕ e iS

∏n
i=1 ϕ(xi)∫

Dϕ e iS
, (1.5)

where S =
∫
d 4xL is the action defined in terms of the Lagrangian L which satisfies

all imposed symmetries and depends on the fields of the theory as well as their respective
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derivatives. The integration over the measure Dϕ is understood simply as the sum over
all possible field configurations, i.e. all possible field configurations have to be taken into
account when calculating an amplitude in QFT. This is completely analogous to Young’s
double slit experiment where a given particle is emitted from a source and in order to reach a
detector can go through one of two slits. In calculating the probability, i.e. the square of the
amplitude, of where it will end up in the detector, one has to sum over all possible paths. Of
course, for field theories with more field content than a single field ϕ generalisations of the
n-point functions can be defined. These are called Green’s functions or simply correlation
functions.

There are two main ways to calculate the right-hand side of (1.5). The first is the perturba-
tive approach where one assumes that all interaction strengths are small such that a Taylor
expansion can be made. This gives the diagrammatic expansion in terms of Feyman graphs.
These diagrams can be calculated using derived Feynman rules. A discussion on perturba-
tion theory can be found in any QFT textbook, and it is assumed that the reader already
knows the fundamentals behind this. So, focus will instead be put on how to handle the
loop integrals arising in perturbative calculations such as those in Papers I, III and IV. The
second way to calculate the n-point function is by discretising space-time on a Euclidean
lattice and Monte Carlo sampling field configurations [10]. This is the non-perturbative
approach referred to as lattice calculations and is discussed further in section 6.

2.2 Symmetry considerations

Before going on to loop integral techniques, some remarks about the Lagrangian and sym-
metry considerations must be made. The Lagrangian is built from the fields of interest in
such a way that the theory remains invariant under certain transformations of the fields. For
instance, the Lagrangian of quantum electrodynamics has a U(1) gauge symmetry, i.e. it
remains invariant under transformations ψ(x)→ exp {iα(x)}ψ(x) for some local param-
eter α(x) and a charged fermionic field ψ(x). Gauge invariance is realised by introducing
a covariant derivative, Dµ, containing both the ordinary partial derivative ∂µ as well as a
number of gauge fields. These gauge fields correspond to the gauge bosons.

Symmetries have important consequences as they put constraints on the Green’s functions
of the theory. The first step toward realising this is to consider the expectation value of
some operator O[ϕ], here depending on only one field ϕ for simplicity. The expectation
value is in the path integral approach given by

⟨O⟩ = 1
Z

∫
Dϕ e iS[ϕ]O[ϕ] , (1.6)

where the normalisation factor Z =
∫
Dϕ e iS was introduced. The expectation value must

be invariant under under a change of variables ϕ→ ϕ+δϕ. Assuming that the integration
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(a) (b) (c) (d)

Figure 1.1: The one-particle-irreducible (1PI) diagrams that contribute to the 2-point function up
to O(λ2) in ϕ4-theory.

measure remains invariant and expanding to first order in δϕ one finds that

i⟨δSO⟩ = −⟨δO⟩ . (1.7)

This is the general non-anomalous Ward identity from which both conserved currents as
well as relations between the Green’s functions can be obtained. In scalar quantum electro-
dynamics (sQED), which will be defined later, it is easy to derive the Ward identity from
the symmetry δS = 0, namely

kµΓµ(p, k) = Δ−1(p+ k)− Δ−1(p) , (1.8)

where Γµ(p, k) is the interaction vertex between a charged scalar of incoming momentum
p and a photon of incoming momentum k, and Δ−1(p) is the full scalar inverse propagator
with momentum p.

2.3 Loops, regularisation and renormalisation

In an interacting field theory there is an infinite series of diagrams that in principle need
to be calculated for a given time ordered correlation function. However, this is usually not
possible and calculations are performed at fixed order in the perturbative expansion. As an
example consider ϕ4-theory where the interaction term in the Lagrangian is Lint = − λ

4!ϕ
4

and λ is a small coupling. The 2-point function receives contributions from the diagrams
in Fig. 1.1 up to second order in λ. The first diagram is the tree level contribution, and the
rest are loop diagrams. Using the ϕ4-theory Feynman rules easily obtained from the path
integral method, the loop integral of the tadpole diagram in Fig. 1.1(b) is given by

Itadpole ∼ (−iλ)
∫

d 4k
(2π)4

i
k 2 − m 2 + iε

, (1.9)

where k is the loop momentum. The divergence in the large k limit is an ultraviolet (UV)
divergence and needs to be handled in some way. Had the loop integral had an infrared (IR)
divergence, i.e. in the limit of soft k, this would also have required some consideration. IR
divergences can be found in e.g. sQEDdue to themassless photon whose propagator goes as
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k−2. UV and IR divergences are handled by means of regularisation and there are several
methods for doing so, some methods more common than others. For the UV case, the
basic idea is to isolate divergent pieces and then renormalising the theory by realising that
the parameters of the Lagrangian not necessarily are physical. Going between the physical
and unphysical, so-called bare, parameters yields diagrammatic contributions containing
so-called counterterms cancelling the infinities exactly. For IR divergences in sQED as an
example, one possibility is to introduce a photon mass everywhere in the calculation and
whose contribution in the end should vanish.

Regularisation

One of the most common regularisation techniques for divergences such as that in (1.9)
is dimensional regularisation, where the fact that the degree of divergence of the diagram
depends on the dimension of the integration measure is exploited. By thus letting the
number of dimensions be d = 4− 2ε in a calculation and in the end making an expansion
in the small parameter ε, the divergences should appear as poles in ε in the limit ε→ 0.

In order to reach such an isolation of the poles, it is instructive to start from the Feynman
parameter technique. This builds on the observation that for a general loop diagram with
n different propagators Pi,

1∏n
i=1 P

mi
i

=

∫ 1

0
dx1 · · · dxn δ

(
1−

∑
i

xi

) ∏
i x

mi−1
i(∑

i xiPi
)∑

i mi

Γ
(∑

imi
)∏

i Γ(mi)
. (1.10)

Any loop integral can thus be written on the form

I ∼
∫

dx1 · · · dxn µ2ε
∫

d dk
(2π)d

f (k)
(k 2 − Δ)n

, (1.11)

where the renormalisation scale µ2ε, to be discussed later, was introduced on dimensional
grounds and Δ is a function of external momentum scales, mass scales and x1, . . . , xn. The
function f (k) can in general have any kind of indices such as e.g. Lorentz indices. Common
examples of f are f (k) = k µ, f (k) = k µk ν and f (k) = k µk νkαkβ . The first observation to
make regarding these functions is that any function with an odd number of loop momenta
vanishes under integration by symmetry. Furthermore, products of momenta with free
Lorentz indices can be expressed in terms of the metric. For the examples above it follows
that

k µk ν ←→ 1
d
k 2g µν ,

k µk νkαkβ ←→ 1
d (d+ 2)

k 2
(
g µνgαβ + g µαg νβ + g µβg να

)
. (1.12)
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Thus, the tensorial structure can be projected out and one is left with scalar integrals.

After a Wick rotation in momentum space so that k 0 → ik 0E , where E denotes Euclidean,
the integration measure can be written in terms of d dimensional spherical coordinates
according to ∫

d dkE
(2π)d

=

∫
dΩd

(2π)d

∫ ∞

0
dkE k d−1

E . (1.13)

Here, dΩd is the solid angle element of the unit sphere in d dimensions. Using the definition
of the Γ function the following two formulae can be derived,∫

d dkE
(2π)d

1(
k 2E + Δ

)n =
1

(4π)d/2
Γ
(
n− d

2
)

Γ(n)

(
1
Δ

)n− d
2

,

∫
d dkE
(2π)d

k 2E(
k 2E + Δ

)n =
1

(4π)d/2
d
2
Γ
(
n− d

2 − 1
)

Γ(n)

(
1
Δ

)n− d
2−1

. (1.14)

Note that Itadpole in (1.9) is given by the first equation for Δ = m 2 and n = 1. Having
found expressions for the loop integrals in terms of Γ, the right-hand sides may then be
expanded in ε. For instance,∫

d dkE
(2π)d

1(
k 2E + Δ

)2 −→ 1
16π2

(
1
ε
+ log

4π
Δ
− γE

)
+O(ε) , (1.15)

where γE is the Euler-Mascheroni constant. The divergence in terms of a pole in ε is now
clearly visible and the calculation has been regularised. All that remains is to renormalise the
theory, i.e. to get rid of the divergence all together. Before discussing that, there is reason
to stop and think about how to do higher order loop computations using dimensional
regularisation.

Dimensional regularisation for higher order loop diagrams

For the 1–loop case discussed in the previous section, dimensional regularisation boiled
down to the two equations in (1.14), which could then be expanded in ε. In going beyond
1–loop order, additional complications appear. As a first example, one can get overlapping
divergences, i.e. divergences from both the large and small momentum limits multiplied.
Such divergences are called non-local divergences and in general have the structure

1
ε
log q2 , (1.16)
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where q2 is some external momentum scale. This is a non-polynomial divergencemultiplied
by the usual pole in ε. However, in the renormalisation procedure described below, such
divergences always cancel as well.

Secondly, and perhaps more severely restricting, one has to be able to take the set of loop
integrals from the diagrams calculated and reduce them to a set of known integrals com-
monly referred to as master integrals. The major limitation here is to actually have a set
of master integrals that can be expanded in ε. Very often such integrals are only known
when the masses in the propagators are degenerate, and since these calculations are very
involved they are not discussed further here. The interested reader is advised to have a look
at e.g. Refs. [11–14].

Another limitation is how to be able to reduce the integrals in question to the basis of
master integrals, if such a basis even exists. There is software available such as Reduze [15],
which employs a Laporta algorithm and uses integration-by-parts (IBP) as well as Lorentz
invariance to solve a system of linear equations of the loop integrals. The output is a linear
combination of master integrals that have to be known.

In Papers I and III the calculations contain 3- and 2-loop integrals which are handled in
precisely the above way. The master integrals showing up have been known for some time
and can be found in Refs. [13, 14].

Renormalisation

Once a field theory has a regularisation prescription, the separated infinities can be elim-
inated by means of renormalisation. The fundamental observation to make is that when
writing down a Lagrangian, the parameters such as masses or coupling constants need not
be the ones physically measurable. The same is true for the fields in the Lagrangian. By in-
troducing field strength renormalisations (recall the appearance of these in the LSZ formula
in (1.4)), one can rewrite the Lagrangian in terms of the physical parameters and countert-
erms containing the divergent pieces. In dimensional regularisation these are the poles in
ε. The additional terms yield additional Feynman rules, and once these counterterms are
known and included in a calculation, i.e. by adding all diagrams of a given order where the
counterterms can be inserted, the result will be finite [16–18].

The counterterms can be determined via a set of conditions related to the n-point functions
of the theory. These conditions are imposed at the renormalisation scale µ2 and are known
as renormalisation conditions. One should further note that only the poles are needed to
get rid of the divergences. As a consequence, there is a choice of renormalisation scheme,
i.e. whether or not to include also finite pieces in the counterterms (these always cancel
in the end either way). A particularly common renormalisation scheme is the modified
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minimal subtraction scheme MS where only the combination

1
ε
− γE + log 4π (1.17)

is kept. Renormalisation in ChPT will be discussed further in section 5. For explicit exam-
ples of renormalisation in QED and QCD, see e.g. Ref. [19] for a nice review.

Before proceeding to introduce QCD, the renowned quantum field theory of the strong
interaction, some remarks will be made on the ambiguity of choosing a renormalisation
scale and its consequences.

The renormalisation scale

The renormalisation conditions can be imposed at any scale µ2. This ambiguity implies that
for a physical observable the scale dependence must cancel at any given order in perturba-
tion theory and the renormalised parameters of the theory change. For a generic theory
with a coupling parameter λ, this can be summarised in the so-called β function

dλ
d log µ

= β(λ) . (1.18)

One of themain implications of the above equation is that depending onwhatβ(λ) actually
is (particularly its sign), the field theory in question can be e.g. confining at low or high
energies. It is precisely this that makesQED andQCD fundamentally different – the strong
coupling constant αs increases at low energies so that perturbation theory breaks down
below energies on the order of 1 GeV and for high energies there is asymptotic freedom,
whereas QED behaves in the opposite way. The phenomenological implications are many,
and as has been remarked upon earlier the main subject of this thesis is how to deal with
the strong force at low energies. In the next section, QCD, its symmetries and β function
are introduced in more detail.

3 Quantum Chromodynamics

The strong force governs the interactions between the colour charged quarks and gluons.
It turns out that quarks naturally fall into two categories, light and heavy quarks such that
mq ≪ 1 GeV and mq ≥ 1 GeV, respectively. This can be seen in table 1.1 where the
masses as well as quantum numbers of the quarks are shown. This distinction is interesting
from symmetry considerations and forms the basis for chiral perturbation theory discussed
further in section 5. In order to see this, the quantum field theory describing the strong
force, i.e. quantum chromodynamics, is introduced from a mathematical point of view
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Table 1.1: The quarks in the Standard Model. The masses are defined in MS, and no uncertainties
have been included here. Isospin here refers to the third component, i.e. I3. For further
information see for instance Ref. [8].

Light quarks Heavy quarks
u d s c b t

Mass 2.2 MeV 4.7 MeV 93 MeV 1.3 GeV 4.2 GeV 160 GeV
Charge 2/3 −1/3 −1/3 2/3 −1/3 2/3
Isospin 1/2 −1/2 0 0 0 0

Strangeness 0 0 −1 0 0 0

below. Special emphasis is put on the symmetries of the Lagrangian and the discussion is
limited to properties relevant for the low energy sector and papers herein.

3.1 Construction and symmetries

Quantum chromodynamics is a non-Abelian gauge theory constructed from an SU(Nc)
symmetry where Nc is the number of colours. The actual number of colours is Nc = 3 and
the QCD Lagrangian must therefore be invariant under local SU(3)c rotations in colour
space. As will be seen below, also other SU(3) symmetries can be found in the QCD
Lagrangian. The underlying mathematics is the same for all of them so first consider a
general SU(3) symmetry. The eight generators t a of SU(3) are given in terms of the Gell-
Mann matrices λa according to

t a =
1
2
λa , a ∈ {1, . . . , 8} . (1.19)

The Gell-Mann matrices are traceless and in addition satisfy

Tr
[
λaλb

]
= 2δab ,[

1
2
λa,

1
2
λb
]
= i f abc

1
2
λc , (1.20)

where the structure constants f abc are given by 4i f abc = Tr
([
λa, λb

]
λc
)
. From this one

sees that the structure constants are completely antisymmetric. There is also an additional
matrix λ0 =

√
2/3 I, where I is the identity, that can be added to the set of λa without

changing the properties in (1.20). As this matrix is not traceless the generators t a for a =
0, . . . , 8 instead correspond to SU(3) × U(1). Note finally that any object with SU(3)
indices transforms with the group elements

U = e−i
∑

a t
aαa ∈ SU(3) , (1.21)

where αa are parameters that are local for gauge symmetries.
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Denoting the quark field of flavour f and mass mf by qf , the QCD Lagrangian is given by

LQCD =
∑
f

q̄f
(
i /D− mf

)
qf −

1
4
F a
µνF

µν
a , (1.22)

where Dµ is the covariant derivative containing the strong coupling g =
√
αs/(4π) and

the gauge fields Aa
µ, i.e.

Dµ = ∂µ − ig t ac A
a
µ . (1.23)

A subscript c was included on the generators t ac to indicate that they correspond to SU(3)c.
The field strength tensor is given by

F a
µν = ∂µAa

ν − ∂νAa
µ + g f abcAb

µA
c
ν . (1.24)

Note that the non-vanishing of f abc for a non-Abelian gauge theory such as SU(3) implies
self-interactions among the gauge bosons of the theory. For the abelian gauge theory QED
there can be no such interactions and unlike gluons it thus follows that photons do not
interact with each other.

Before proceeding to the other symmetries of the QCD Lagrangian, consider first the run-
ning of αs in terms of the β function of QCD. This differential equation can be written
(cf. (1.18))

β(αs(µ)) =
dαs(µ)
d log µ

. (1.25)

Perturbatively calculating β(αs(µ)) to one-loop order then yields the differential equation

−2β0
α2
s (µ)
4π

=
dαs(µ)
d log µ

, (1.26)

where β0 = 11
3 CA− 4

3TF nq is defined in terms of the colour factors CA = 3 and TF = 1/2,
and the number of quarks with masses below the scale µ is nq. First of all note that nq
changes with µ, and a discontinuous jump will occur whenever a newmass scale is passed in
the evolution. This requires matching in the running, but this will not be discussed further
here. Next note that β0 > 0 in QCD. If one now solves the one-loop renormalisation
group equation above, the result is

αs(µ) =
4παs(Q)

4π + αs(Q)β0 log µ2/Q2 , (1.27)

where Q is the boundary value, or reference scale, used in the solution of the differential
equation. It is now trivial to see thatαs(µ) grows at low energies so that perturbation theory
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fails below some characteristic scale ΛQCD ∼ 340 MeV [8]. This behaviour arises due to
a positive β0. In QED the corresponding constant is negative, and thus has the opposite
behaviour, i.e. it diverges at high energies instead.

In order to study the low energy region of QCD, one may thus restrict the discussion to
degrees of freedom relevant on scales lighter or on the order of ΛQCD. We therefore restrict
to an upper scale of 1 GeV and note that only the light quarks with masses much smaller
than 1 GeV need to be included. There is now a choice of whether or not to include the
strange quark as it is much heavier than the up and down quarks. In the following, we
therefore considerNf light quarks which phenomenologically corresponds to either two or
three. A first step in finding additional symmetries in the QCD Lagrangian is to exclude
the quark mass terms, so that the Lagrangian is given by

LQCD = q̄i /Dq− 1
4
F a
µνF

µν
a . (1.28)

The flavour sum has now been replaced by scalar product in flavour space for the vector
q containing the Nf lightest quark flavours. Clearly, this has a global SU(Nf)F symme-
try, where the subscript now stands for flavour, and in addition to this also has a global
U(1) symmetry. The generators of SU(Nf) are defined analogously to those in SU(3). For
instance, in SU(2) the generators are defined via the Pauli matrices τi rather than the Gell-
Mann matrices. It can further be checked that LQCD remains invariant under the discrete
transformations parity, charge conjugation, time reversal and hermitian conjugation.

In the chiral basis obtained from the projection operators PL = (1 − γ5)/2 and PR =
(1+ γ5)/2 the Lagrangian can be written

LQCD = q̄L i /DqL + q̄R i /DqR −
1
4
F a
µνF

µν
a . (1.29)

This is symmetric under SU(Nf)L× SU(Nf)R×U(1)L×U(1)R. The excluded quark mass
terms in the chiral basis are of the form

Lmass = −q̄LMqR − q̄RMqL , (1.30)

whereM is the quark mass matrix for theNf lightest quarks. Clearly, these terms break the
above symmetries, but since the quark masses are light we can still consider the symmetries
to be approximately preserved. In the following, the goal is to reach chiral perturbation
theory, so focus is put on the chiral symmetry group SU(Nf)L × SU(Nf)R.

3.2 Conserved currents

Now that the classical symmetries of the Lagrangian have been found, it is possible to look
at the conserved currents. From Noether’s theorem one knows that for every continuous
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symmetry there is a conserved current. Thus, one expects 2(N 2
f − 1) conserved currents

for the chiral symmetry group, and this is indeed true. By doing a chiral transformation

qL,R → gL,R qL,R , (1.31)

it can be shown that the currents

J µ,a
L,R = q̄L,R γµ t aL,R qL,R , (1.32)

are conserved [20]. Here the t aL,R are generators of SU(Nf)L,R. When quark masses are
included, the current divergences have the form

∂µ J
µ,a
L,R = −i

[
q̄L,R t aL,RMqR,L − q̄R,LMt aL,R qL,R

]
, (1.33)

which clearly vanish in the massless limit. It is also conventional to use the linear combi-
nations J µ,a

V = J µ,a
R + J µ,a

L and J µ,a
A = J µ,a

R − J µ,a
L known as the vector and axial currents,

respectively. In an analogous way, the U(1)L × U(1)R symmetry found before also corre-
sponds to conserved currents (singlets under the chiral symmetry group, however). Again,
one has currents of the form

J µ
L,R = q̄L,R γµ qL,R , (1.34)

with corresponding singlet vector and axial currents J µ
V and J µ

A . It is interesting to note that
the singlet axial current has an anomaly in the quantum theory, but this is not discussed
further here.

It has so far been shown that massless QCD is invariant under the chiral symmetry group,
but that this symmetry is explicitly broken by non-vanishing quark masses. In addition, it
turns out that the chiral symmetry group can be spontaneously broken by a non-vanishing
quark vacuum expectation value, i.e. for ⟨q̄q⟩ ̸= 0. The spontaneous breakdown is of the
form

SU(Nf)L × SU(Nf)R → SU(Nf)V , (1.35)

where the subscript Vmeans vectorial and corresponds to gL = gR where gL,R ∈ SU(Nf)L,R.
This will be discussed in more detail in the next section, as well as the identification of the
N 2

f − 1 Goldstone bosons with the equally many lightest pseudoscalar mesons in terms of
the CCWZ formalism [21].

3.3 The spontaneously broken chiral symmetry

Before simply accepting that the chiral symmetry of QCD is broken, one may of course ask
what the consequences would be if it were not. The hadronic spectrum would have addi-
tional states due to a parity doubling, but this is not observed in experiments and so chiral
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symmetry must be broken. The quark masses do break the chiral symmetry explicitly, but
since it is realised approximately for small quark masses it should still be of relevance. In
particular, Goldstone’s theorem states that for every broken generator there is an associ-
ated massless Goldstone boson. An interesting idea to explore is thus whether or not an
approximately realised symmetry can have light Goldstone bosons, or, pseudo-Goldstone
bosons. For the chiral symmetry which is exact in the massless limit, it can be guessed
that the corresponding pseudo-Goldstone bosons should have masses related to the light
quark masses. This is precisely the case for the chiral symmetry breaking and the N 2

f − 1
lightest pseudoscalar mesons as will be shown below. An interesting consequence is that
it implies a mass gap between the pseudo-Goldstone modes and the baryons such as the
proton. The proton consists of uud and has a mass of roughly 1 GeV. However, the neutral
pion, which is the lightest mesonic state and consists of ūu and d̄d, has a mass∼ 140 MeV,
i.e. much smaller than the proton mass even though the quark content is very similar. The
spontaneous breakdown of the chiral symmetry thus offers both theoretically as well as
phenomenologically satisfying explanations of the low energy spectrum of QCD.

The CCWZ formalism

In order to reach this spontaneous symmetry breaking, consider a non-zero scalar quark-
antiquark vacuum expectation value

0 ̸= ⟨q̄q⟩ , (1.36)

where q is a vector in flavour space. Now, if this is rewritten in the chiral basis one has

0 ̸= ⟨q̄L qR + q̄R qL⟩ . (1.37)

Performing a chiral rotation (gL, gR) ∈ G, where the chiral symmetry groupG = SU(Nf)L×
SU(Nf)R, then gives

0 ̸= ⟨q̄L qR + q̄R qL⟩ −→ ⟨q̄L g†L gR qR + q̄R g
†
R gL qL⟩ . (1.38)

From this it is obvious that only for the special rotations gL = gR will the vacuum expec-
tation value ⟨q̄q⟩ remain invariant. In other words, only the group H = SU(Nf)V ⊂ G,
where V means precisely L = R, leaves the vacuum invariant and so we have the sponta-
neous symmetry breaking

SU(Nf)L × SU(Nf)R → SU(Nf)V . (1.39)

Denote the corresponding N 2
f − 1 Goldstone bosons associated to this symmetry breaking

as ϕ(x) and the vacuum configuration as ϕV. First of all note that ϕV is invariant under H,
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i.e. ϕV
H−→ ϕV. The field configuration ϕ(x) is an excitation around the vacuum and can

be obtained from the vacuum via

ϕ(x) = Ξg(x)ϕV , (1.40)

where Ξg is a mapping for g ∈ G. Due to the invariance of the vacuum under H, one also
has

ϕ(x) = Ξgh(x)ϕV , (1.41)

for any h ∈ H. It should be noted that for each g this defines a mapping between a field con-
figuration ϕ(x) and the coset gH = {gh | h ∈ H}. The consequence is that the Goldstone
bosons are associated with the elements of the set of cosets G/H = {gH}. By choosing
a g ′ ∈ G one obtains a coset representative of ϕ(x). Denote this coset representative by
Ξ(x) = Ξg ′(x). The CCWZ choice [21] (in the notation of Ref. [22]) is to parametrise
Ξ(x) in terms of the broken generators X a so that

Ξ(x) = e iX
a πa(x) , (1.42)

where πa(x) is a basis of the Goldstone bosons. Now, since ϕ(x) → gϕ(x) for any g ∈ G
it follows that

Ξ(x)→ gΞ(x) . (1.43)

Note that g in general includes also the unbroken generators so that gΞ(x) does not have
the CCWZ form in (1.42). However, one may use a compensating field h ∈ H such that
another representative of ϕ(x), Ξ′(x), say, is related to Ξ(x) via

Ξ′(x) = gΞ(x) h−1 . (1.44)

It thus follows that Ξ(x) transforms as

Ξ(x) −→ gΞ(x) h−1 . (1.45)

The above analysis was completely general and did not rely on the specific groups being
G = SU(Nf)L × SU(Nf)R and H = SU(Nf)V. With the goal of reaching a low energy
theory described in terms of the Goldstone bosons of the chiral symmetry breaking, i.e. the
N 2

f −1 lightest pseudoscalar mesons, we must now consider the specific groups in question.
With the generators of G denoted as t aL,R and the broken generators X a = t aL − t aR one has

Ξ(x) = e i(t
a
L−t aR ) π

a(x) . (1.46)
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By writing any element g ∈ G as a block diagonal matrix, i.e. g = diag (gL, gR) where
gL,R ∈ SU(Nf)L,R, it follows that Ξ(x) can be written as

Ξ(x) =
(
ξ(x) 0
0 ξ†(x)

)
, (1.47)

for

ξ(x) = e iT
aπ a(x) . (1.48)

With h = diag (gV, gV) ∈ H for some gV, it follows that ξ transforms as

ξ −→ gV ξ g
†
R = gL ξ g

†
V . (1.49)

In a similar fashion, one could have chosen another set of broken generators X a and ob-
tained objects equivalent to ξ(x). The second most common choice of broken generators
is X a = T a

L , and from that choice Σ(x) = ξ2(x) can be defined. This transforms as

Σ −→ gLΣ g†R = gR ξ g
†
L . (1.50)

The objects ξ and Σ serve as building blocks when constructing a Lagrangian containing
the Goldstone bosons, and in section 5 these building blocks will be discussed further. In
that setting one usually denotes ξ = u and Σ = U. For some more details and examples
regarding the chiral symmetry breaking, see e.g. Refs. [22, 23].

3.4 QCD with external fields

As a final remark on QCD let us consider the so-called external field method. This is one
of the cornerstones of ChPT and was introduced in Refs. [24, 25]. The idea is to add the
external fields v, a, s and p (vector, axial vector, scalar and pseudoscalar, respectively) to the
massless QCD Lagrangian LQCD, i.e.

L = LQCD + Lext = LQCD + q̄ γµ(vµ + γ5 aµ)q− q̄ (s− i γ5 p)q . (1.51)

The external fields are hermitian and colour neutral flavour matrices. The motivation be-
hind doing this is the possibility of including interactions with particles other than those
already included in QCD. Green’s functions can be obtained via functional differentiation
of the generating functional

e iZ [v,a,s,p] = ⟨0|T e i
∫
d 4xLext |0⟩ . (1.52)

In the chiral basis the Lagrangian of the external fields is

Lext = q̄LγµℓµqL + q̄R γµrµqR − q̄R(s+ i p)qL − q̄L(s− i p)qR , (1.53)
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where the left and right handed external fields ℓµ = vµ − aµ and rµ = vµ + aµ were
defined. Note that the full Lagrangian L is invariant under the local SU(Nf)L × SU(Nf)R
transformation qL,R(x)→ gL,R(x) qL,R(x) if the external fields transform according to

ℓµ −→ gLℓµ g
†
L + igL∂µ g

†
L ,

rµ −→ gR rµ g
†
R + igR ∂µ g

†
R ,

s+ i p −→ gR(s+ i p)g†L . (1.54)

Some remarks are in place. As was mentioned earlier, the external field method allows for
inclusion of particles beyond QCD such as the photon. Quark masses can be included by
setting s = M, where again M is the quark mass matrix. Furthermore, if one imposes the
local gauge invariance obtained in the external field method for QCD at high energies it
must also be true in any low energy theory of QCD. Building such a theory in terms of the
Goldstone bosons of the chiral symmetry breaking and the external fields above results in
chiral perturbation theory, a low energy effective field theory of QCD. In the next section
the most fundamental aspects of effective field theories are discussed. Once this has been
done, all the tools needed for the construction of chiral perturbation theory have been
introduced.

4 Effective Field Theory

Effective field theory is a powerful tool that is used to make predictions valid only below
some certain energy scale Λ, above which the theory becomes invalid. The concept of an
effective theory is perhaps the most natural way to do physics, and it has certainly been
the historical way to do it as well. Consider for instance Newtonian gravity which breaks
down in sufficiently strong gravitational fields due to effects neglected from the more fun-
damental theory general relativity. Another example is the quantum mechanical system of
the hydrogen atom, for which the Schrödinger equation can be used to find energy levels
to a reasonable accuracy even though effects of the quarks interacting inside the proton and
so on are disregarded. However, the numerical parameters of an effective theory of course
depend on whatever is left out. The proton mass depends on the quark masses, so changing
the quark masses would give a different numerical value of the proton mass to use in the
Schrödinger equation, but the functional form is the same. It is precisely this idea that
comes into the construction of effective field theories in particle physics.

The most important question to ask when constructing an EFT is what the relevant degrees
of freedom are. For QCD, at low energies below some scale Λχ ∼ 1GeV these are the
lightest pseudoscalar mesons instead of the quarks and gluons. From this realisation one
can build chiral perturbation theory. On the other hand, at energies well below the W
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mass scale mW, the W boson may be integrated out of the electroweak theory to yield
Fermi theory. This is done by writing down the amplitude for the process us→ du, which
from the electroweak SM Lagrangian is(

− ig√
2

)2

VusV ∗
ud

[
u γµPL s

] [
d γµPL u

] −i
p2 − m2

W
, (1.55)

where Vij are CKM matrix elements. Note that for p2/m2
W ≪ 1, the propagator may be

expanded to yield(
− ig√

2

)2

VusV ∗
ud

[
u γµPL s

] [
d γµPL u

] i
m2
W

+O
(
m−4
W

)
. (1.56)

This could in principle have been obtained from the effective Fermi theory Lagrangian

LFermi = −
4GF√
2
VusV ∗

ud

[
u γµPL s

] [
d γµPL u

]
, (1.57)

where the Fermi constant GF = g 2/(4
√
2m2

W) was introduced. This explicitly shows
that the non-relevant degrees of freedom, here the W boson, have direct impact on the
parameters of the effective theory. For this straightforward example, one can directly relate
the parameters with parameters from the full theory, so-called matching, but this is not
possible in general. For such theories, one can only obtain values for the parameters by
e.g. fitting to experimental data.

The higher orders in 1/m2
W that were left out in the expansion of the W boson propaga-

tor put a restriction on the precision of predictions made from the effective theory. For
increased precision also higher order terms must be considered. For any EFT the effective
Lagrangian may in principle contain an infinite number of terms and for a given precision
it must be truncated at some certain order. A general Lagrangian can be written

LEFT = LD≤4 +
∞∑
d=1

1
Λd

∑
id

cidOid , (1.58)

where Λ is the scale at which the EFT breaks down, the cid are dimensionless parameters
known as Wilson coefficients containing the information of the physics above Λ, and the
Oid are dimension d + D operators built from the relevant degrees of freedom. That it
is possible to build an EFT in this way is asserted by Weinberg’s “theorem” in Ref. [26].
This theorem states that by using the most general Lagrangian, i.e. by including all possible
operators in terms of the relevant degrees of freedom, such that the imposed symmetries
of the EFT are satisfied, the most general S matrix consistent with the assumptions of
quantum field theory is automatically obtained.
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Note that having an infinite number of terms in the effective Lagrangian prohibits any
practical application. This is true for two reasons. Of course, it is impossible to calculate
an infinite number of diagrams. Moreover, with an infinite number of terms the in general
divergent and infinitely many Wilson coefficients need to be renormalised with infinitely
many counterterms, i.e. the theory is non-renormalizable. However, if one in some way
characterises how important the different contributions are in terms of some counting (cf.
an expansion in the coupling constant in ordinary perturbation theory within the Standard
Model), then to each order in this counting only a finite number of diagrams and coun-
terterms are needed. The characterisation of importance is known as power counting, and
is essential in any EFT. The conclusion is that by writing down the most general effective
Lagrangian to a certain order in the power counting and renormalising the Wilson coeffi-
cients a finite result is obtained. The renormalisation is done order by order, and a scheme
has to be chosen for this. A common choice is dimensional regularisation and MS, and the
procedure of renormalisation in an EFT is essentially a generalisation of that discussed in
section 2.3. For further details about renormalisation in EFTs see Ref. [19].

It is interesting to note that the StandardModel is expected to work only up to some certain
energy scale as well, and can therefore be thought of as an effective field theory with only
the dimension 4 operators included, i.e. it is renormalisable. Over the years there has been a
lot of work on Standard Moedel EFT (or SMEFT, in short), where also higher dimensional
operators are taken into account. See Ref. [27] for a review.

5 Chiral Perturbation Theory

Chiral perturbation theory is an EFT of QCD at low energies. It is built from the sponta-
neous symmetry breaking of the chiral symmetry

SU(Nf)L × SU(Nf)R → SU(Nf)V . (1.59)

The construction relies on writing down an effective chirally invariant Lagrangian Lχ satis-
fying also Lorentz invariance and the discrete symmetries of the QCD Lagrangian. This is
built in terms of the N 2

f − 1 lightest pseudoscalar mesons, which for Nf = 2 are the pions
and for Nf = 3 are the pions, the kaons and the eta meson. The quark contents, masses
and quantum numbers of these states are given in table 1.2. As was discussed in section 3.4,
the external fields ℓµ, rµ, s and p are also included. Such a Lagrangian can then be used for
perturbative calculations, where each order is defined by a power counting in terms of the
momentum p2. The Lagrangian is expanded order by order according to

Lχ =

∞∑
n=1

L2n = L2 + L4 + L6 + L8 + . . . , (1.60)
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Table 1.2: The masses and quantum numbers of the lightest pseudoscalar mesons composed of u, d
and s quarks. Isospin here refers to the third component, i.e. I3. For further information
see for instance Ref. [8].

π0 π+
(
π−) K 0

(
K 0

)
K+

(
K−) η

Quark content
(
u u− d d

)
/2 u d (d u) d s

(
s d
)

u s (s u)
(
u u+ d d− 2 s s

)
/
√
6

Mass 135 MeV 140 MeV 498 MeV 494 MeV 548 MeV
Charge 0 +1(−1) 0 +1(−1) 0
Isospin 0 +1(−1) −1/2(+1/2) +1/2(−1/2) 0

Strangeness 0 0 +1(−1) +1(−1) 0

The four displayed terms are referred to as leading order (LO), next-to leading order (NLO),
next-to-next-to leading order (NNLO) and next-to-next-to-next-to leading order (NNNLO)
respectively. These are the only known Lagrangians of ChPT. The LO piece is easily
obtained but the higher order ones require some more work. NLO was introduced in
Refs. [24, 25], NNLO in Ref. [28] and NNNLO in Ref. [29], i.e. Paper II here. This is a
non-renormalisable EFT, but calculating to a given order in the expansion always gives a
finite result if all contributions to that order are taken into account. This will be discussed
in section 5.3 in more detail. It should furthermore be noted that the expansion really is an
expansion in p2/Λ2

χ, where Λχ ∼ 4πF ∼ 1GeV is the scale at which the EFT is expected
to break down, where F ≈ 93 MeV is the pion decay constant. However, the σ and ρ have
masses below 1 GeV and should set the real limit of the applicability of ChPT. The pion
decay constant F naturally arises in ChPT from the LO Lagrangian, as illustrated later.

Each of the Lagrangians in Lχ has the form

L2n =
∑
i

c(2n)i O(2n)
i , (1.61)

where the operatorsO(2n)
i are local operators containing the meson fields, and the c(2n)i are

low energy constants (LECs) whose renormalised numerical values determine the predic-
tivity of the EFT. In the following, the foundations of ChPT will be discussed in more
detail.

5.1 Construction of the Lagrangian

In order to construct ChPT, recall the CCWZ formalism and the external field method
in sections 3.3 and 3.4. As was mentioned there, it is conventional to redefine the two
Goldstone boson bases denoted by ξ and Σ = ξ2 as u and U = u2, respectively. For an
arbitrary chiral transformation (gL, gR) ∈ SU(Nf)L × SU(Nf)R and a compensator field
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h ∈ SU(Nf)V these objects transform as

u −→ gR u h = h u gL ,

U −→ gRUg
†
L . (1.62)

We will here consider the U basis as that is the canonical choice. The external fields, which
are Nf × Nf matrices in flavour space, transform according to

χ ≡ 2B (s+ i p) −→ gR χ g†L ,

ℓµ ≡ vµ − aµ −→ gLℓµ g
†
L − i ∂µ gL g

†
L ,

rµ ≡ vµ + aµ −→ gR rµ g
†
R − i ∂µ gR g

†
R , (1.63)

where the field χwas introduced and a constant B included in its definition. The parameter
B is related to the vacuum expectation value ⟨q̄q⟩, as well as the leading order pion decay
constant, F, viaB = −⟨q̄q⟩/N 2

f F. The definition ofU(x) in terms of the SU(Nf) generators
T a and a parametrisation of the meson fields πa(x) is (cf. the CCWZ choice in (1.46))

U(x) = exp iT aπa(x)/F , (1.64)

where the pion decay constant has been introduced into the exponential on dimensional
grounds as will be seen shortly. For Nf = 2, i.e. when only up and down quarks are
taken into account, the matrix π = T aπa (with suppressed spacetime dependence) in the
exponent takes the form

Nf = 2 : π =

(
π0

√
2 π+√

2 π− −π0
)
. (1.65)

In the SU(3) theory where also the strange quark is included one has

Nf = 3 : π =

 π0 + 1√
3η

√
2 π+

√
2K+

√
2 π− −π0 + 1√

3η
√
2K 0

√
2K− √

2K 0 − 2√
3η

 . (1.66)

The matrix U(x) is therefore completely defined in terms of meson fields and the pion
decay constant. Before being able to write down a Lagrangian, we also need to consider
the symmetries of the theory.

In the external field method the chiral symmetry was promoted to a local one and in order
that the theory be gauge invariant, the external traceless fields ℓµ and rµ must be included in
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Table 1.3: Discrete transformation properties of the chiral building blocks. Here, ε(0) = −ε(i =
1, 2, 3) = 1.

P C h.c.
U U † UT U †

χ χ† χT χ†

F µν
L ε(µ)ε(ν)F µν

R −
(
F µν
R

)T F µν
L

F µν
R ε(µ)ε(ν)F µν

L −
(
F µν
L

)T F µν
R

a covariant derivative Dµ transforming as the operator O it acts on. One therefore defines

DµO =



∂µO− irµO+ iOℓµ, O −→ gROg†L ,

∂µO− iℓµO+ iOrµ, O −→ gLOg†R ,

∂µO− irµO+ iOrµ, O −→ gROg†R ,

∂µO− iℓµO+ iOℓµ, O −→ gLOg†L .

(1.67)

From a Lagrangian builder’s perspective, this transformation property is cumbersome to
keep track of at higher orders in the chiral counting. The u basis such that u2 = U on the
other hand allows for a much simpler covariant derivative, and is the one used in Paper II.
However, this basis is not considered further here. Now, the inclusion of ℓµ and rµ in the
covariant derivative introduces the field strength tensors

F µν
L ≡ ∂

µℓν − ∂νℓµ − i [ℓµ, ℓν ] −→ gLF
µν
L g†L ,

F µν
R ≡ ∂

µr ν − ∂νr µ − i [r µ, r ν ] −→ gRF
µν
R g†R . (1.68)

All the needed building blocks for the chiral Lagrangians have thus been defined. For a
Lagrangian at order p2n, the building blocks must now be combined into Lorentz invariant
operators of order p2n satisfying chiral symmetry as well as the discrete symmetries of QCD.
The chiral orders of the building blocks and the covariant derivative are given by

U ∼ O(1) , Dµ ∼ O(p) , χ ∼ O
(
p2
)
, F µν

L,R ∼ O
(
p2
)
. (1.69)

The discrete symmetry transformations of the building blocks are given in table 1.3.

There can be no non-trivial Lagrangian at O(p0). The only possibility would be ⟨U †U ⟩,
but sinceU is an SU(Nf)matrix such a term would just give an overall constant. There is no
Lorentz invariant term to write down at O(p). For the Lagrangian at order p2, i.e. at LO,
it is easy to see that no non-vanishing Lorentz invariant combinations can be written down
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with the field strength tensors. Therefore only U, Dµ and χ can be used. Note further
that U and χ are SU(Nf) matrices, and so again the respective unitary properties limit the
possible structures even more. Bearing in mind the discrete symmetries, we are left with
the possible combinations⟨ (

DµU
)†DµU

⟩
,
⟨
U †D 2U+ U

(
D 2U

)† ⟩
,
⟨
χ†U+ χU †

⟩
. (1.70)

However, since the action is invariant under the addition of a total derivative it is possible
to do partial integration. Then it follows that the structure with D 2 can be rewritten as the
first one, and the most general chiral mesonic Lagrangian of order p2 is

L =
F 2

4

⟨ (
DµU

)†DµU
⟩
+

F 2

4

⟨
χ†U+ χU †

⟩
. (1.71)

Note that by including F 2 as an overall factor, the mass dimension of the Lagrangian is 4.
Also, the inclusion of F inU gives the kinetic terms of the meson fields the canoncial form.
This Lagrangian contains two LECs, first of all F but also B in the definition of χ.

Some further remarks about the above derivation are in place. The symmetries imposed
important constraints to minimise the number of terms in the Lagrangian. Then, partial
integration was used to reduce the number of a priori possible terms even further. At higher
orders in ChPT, several additional identities come into play, where examples are Bianchi
identities, identities following from the Cayley-Hamilton theorem (for a fixedNf ) and field
redefinitions. In fact, field redefinitions are equivalent to using the LO equation of motion.
The mentioned identities are further elaborated on in Paper II and with the exception of
those from the Cayley-Hamilton theorem will not be discussed here. What is interesting
to point out, however, is the computational problem of how to derive the linear relations
from the identities and minimise the basis. For this purpose, consider an arbitrary Nf×Nf
matrix A. The characteristic polynomial A is given by

0 = p(λ) = det (λ I− A) = λNf det
(
I− A

λ

)
, (1.72)

where λ is an eigenvalue of A and I is the unit matrix. This is equivalent to

p(λ) = λNf exp

⟨
ln

(
I− A

λ

)⟩
. (1.73)

Expanding this in 1/λ gives the polynomial coefficients in p(λ). The Cayley-Hamilton
theorem states that A must satisfy its own characteristic equation, i.e. the matrix equation
p(A) = 0. For Nf = 2 and Nf = 3 one obtains

Nf = 2 : A2 − A ⟨A⟩ − 1
2
⟨A2⟩+ 1

2
⟨A⟩2 = 0 ,
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Nf = 3 : A3 − A2⟨A⟩ − 1
2
A ⟨A2⟩+ 1

2
A ⟨A⟩2 − 1

3
⟨A3⟩+ 1

2
⟨A⟩⟨A2⟩ − 1

6
⟨A⟩3 = 0 .

(1.74)

Taking the two-flavour case as an example and letting A = B + C for the 2 × 2 matrices
B and C then yields

Nf = 2 : {B,C } − B ⟨C ⟩ − C ⟨B ⟩ − ⟨BC ⟩+ ⟨B ⟩⟨C ⟩ = 0 . (1.75)

This can now be traced with some 2× 2 matrix D to yield

Nf = 2 : ⟨{B,C }D ⟩ − ⟨BD ⟩⟨C ⟩ − ⟨CD ⟩⟨B ⟩ − ⟨D ⟩⟨BC ⟩+ ⟨D ⟩⟨B ⟩⟨C ⟩ = 0 ,
(1.76)

which in turn can be used to find relations. To achieve this, suppose that all N 0
2n possible

operators of order p2n allowed by symmetry have been constructed from the chiral building
blocks. These are (products of ) traces of products of the building blocks. Assuming that
one of them can be written

Oi = ⟨A1A2A3A4⟩ , (1.77)

for some 2× 2 matrices A1,2,3,4, then (1.76) can be used to give relations for this operator.
The way to do this is by partitioning the product A1A2A3A4 as BCD in every way possi-
ble, and for every such choice a relation will be obtained from (1.76). Terms of the form
⟨A1A2⟩⟨A3A4⟩ will correspond to some other operator in the list of N 0

2n operators allowed
by symmetry. Proceeding in a similar fashion for all the different identities yields a set of
Nrel linear relations which can be written as

RkjOj = 0 . (1.78)

Here, Rkj is an Nrel × N 0
2n matrix. The rank of the matrix Rkj gives the number of linearly

independent relations, and the minimal number of operators in the Lagrangian is thus
N 0

2n − rank (R). Knowing this, one can construct a minimal operator basis from the set of
linear relations. This is precisely what is done in Paper II.

Note further the possibility, starting at NLO, of having operators depend on only external
fields. Such terms are called contact terms and are unphysical but important for renormali-
sation purposes. Secondly, the minimal number of operators and thus the number of LECs
increase with the chiral order, as can be seen in table 1.4. Therefore also the predictivity of
the theory decreases unless the values of the LECs can be fixed. In section 5.3 some of these
issues will be addressed.

Before proceeding, an important point should bemade. The connection betweenQCDand
ChPT is provided via the equality of the generating functionals of the respective theories,
i.e.

e i Z [ℓ,r,s,p] =
1
Zext

∫
fields

e i
∫
d 4xLext =

1
Zχ

∫
fields

e i
∫
d 4xLχ , (1.79)
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Table 1.4: The minimal number of terms in the Lagrangians at the indicated orders and numbers
of flavour. Also the number of contact terms is listed for the respective orders.

Nf Nf = 3 Nf = 2
Total Contact Total Contact Total Contact

p2      
p4      
p6      
p8      

where the integral operators with subscript are over all field configurations possible and
Zext/χ are given by the integrals in the respective numerators with the external fields put to
zero [23]. It is from this correspondence that one can show that the constant F in the L2
really is the pion decay constant, and that B is related to ⟨q̄q⟩.

5.2 Some remarks on the meson masses

From the LO Lagrangian one can obtain first estimates of the meson masses. These are
obtained by setting s = M, where again M is the quark mass matrix in the Nf theory.
Choosing Nf = 3 the results are [22, 23]

M 2
π± = B(mu + md) , M 2

π0 = B(mu + md)− ΔM 2 ,

M 2
K± = B(mu + ms) , M 2

K 0 = (md + ms)B ,

M 2
η =

2
3

(
1
2
(mu + md) + 2ms

)
B+ ΔM 2 , (1.80)

where ΔM 2 is a measure of isospin breaking and is to first order given by

ΔM 2 =
B
4

(mu − md)
2

ms − 1
2(mu + md)

. (1.81)

This leads to estimates of the quark mass ratios,

mu

md
=

M 2
K± −M 2

K 0 + 2M 2
π0 −M 2

π±

M 2
K 0 −M 2

K± +M 2
π±

,

ms

md
=

M 2
K 0 +M 2

K± −M 2
π±

M 2
K0 −M 2

K± +M 2
π±

. (1.82)

The prediction is a mass ratio

mu : md : ms = 0.55 : 1 : 20.3 . (1.83)
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= + +Σ

+ + · · ·Σ Σ

Figure 1.2: The full propagator as a series of propagators with Σ insertions.

The isospin breaking effects which are on the order of (md−mu)/ms ∼ 0.025 are therefore
very small. There is yet another well-known relation to be obtained from (1.80), namely
the Gell-Mann-Okubo relation [30, 31]

M 2
π0 + 3M 2

η = 4M 2
K 0 , (1.84)

which holds for the isospin limit.

The formulae above were obtained from the LO Lagrangian. However, these masses are
shifted at higher orders and this is considered in isospin symmetric two-flavour ChPT at
NNNLO in Paper I.Themass shift is obtained from higher order corrections to the 2–point
function which serve to move the pole of the propagator, as will be seen below.

In order to be completely general, consider a propagating meson with LO mass M and
external momentum p. The full propagator is equal to the scalar 2-point function as it is
the sum of all possible diagrams with two external scalar legs, both external legs being the
meson in question. This correlation function can be constructed from repeated insertions
of the scalar self energy Σ as in Fig. 1.2. The full propagator can thus be resummed as a
geometric series according to

i
p2 −M 2 + iε

∞∑
n=0

(
− iΣ

(
p2
) i
p2 −M 2 + iε

)n

=
i

p 2 −M 2 − Σ(p2) + iε
. (1.85)

Defining the physical mass as the pole of this full propagator shows that

M 2
ϕ = M 2

0 +Σ
(
M 2
ϕ

)
. (1.86)

Moreover, expanding around the physical mass and combining this with the LSZ theorem
in (1.4) shows that the field strength renormalisation is

Zϕ =

(
1− ∂Σ

∂p2

)−1
∣∣∣∣∣
p2=M 2

ϕ

. (1.87)
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In order to do the calculation of M 2
ϕ at fixed order, one has to consider the contributions

to Σ
(
p2
)
to that very order. The self energy thus has the form

Σ
(
p2
)
= Σ4

(
p2
)
+Σ6

(
p2
)
+Σ8

(
p2
)
+ . . . , (1.88)

where the subscripts refer to orders in the chiral expansion. This allows the mass in (1.86)
to be written as an expansion according to

M 2
ϕ = M 2 (1+M 2

4 +M 2
6 +M 2

8 + . . .
)
. (1.89)

The NLO and NNLO contributions for the pion mass in the two-flavour theory have been
known for some time, see Ref. [24] for the NLO result and Refs. [32,33] for that at NNLO.
In Paper I the NNNLO is calculated for the first time. Note that at every order new LECs
appear. The pion decay constant Fπ defined through

⟨0|Aµ(0)|π(p)⟩ = i
√
2 pµ Fπ , (1.90)

where Aµ(0) is the axial current, can be calculated at a given order in the chiral expansion
as well. Then the outgoing pion is replaced by the axial current. The NLO and NNLO
results can be found in the same references as for the mass, and the NNNLO contribution
is calculated in Paper I for the first time as well.

5.3 Renormalisability and low energy constants

As was shown in the previous section, a number of LECs show up at every order in the chiral
expansion. These must in general be renormalised, and in calculations of processes such
as e.g. pion-pion scattering to a fixed order, all contributions must be taken into account
for the final result to be finite. The power counting of a diagram is formalised in terms of
Weinberg’s power counting formula, where the dimensionality D is given by [26]

D = 2+ 2L+
∑
n

(2n− 2)N2n . (1.91)

The number of loops in the diagram is here given by L and N2n is the number of vertices
from L2n. So, when calculating at, say, order p6, one must find all values of L and N2n
such that D = 6. The above formula is easily motivated using a naive scaling of a generic
diagram. Since each term in Weinberg’s power counting formula is positive, no calculation
at order p2n will receive contributions from L>2n. If this were not true, the EFT approach
would be useless and non-renormalisability something to be avoided.

As an example of renormalisation of the LECs, consider the NLO Lagrangian in the three-
flavour case. It contains ten parameters commonly denoted as Li as well as two contact
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terms Hi. The renormalised versions of the physical LECs are below denoted Lri . The
renormalisation is done in MS, but the convention in ChPT is to include an extra term
according to

Li = Lri(µ)−

{
1
ε
+ log 4π − γE + 1

}
Γi µ−2ε

32π2
, (1.92)

where µ is the renormalisation scale, ε is defined in terms of d = 4 − 2ε and Γi are
constants (whose values will not be repeated here). Similar expressions exist for the contact
terms, and once all coefficients have been determined any process is rendered finite by
re-expressing all LECs in terms of their renormalised counterparts. As a final remark on
the renormalisation, the results for the NNLO LECs can be found in Ref. [34], and the
renormalisation at NNNLO of the specific combinations of LECs showing up for the pion
mass and decay constant can be found in Paper I.

The renormalised values of the LECs that show up at every order in the chiral expansion
must have known numerical values in order to have a predictive EFT.The values in question
can be obtained in several ways. One natural way is to fit to experimental data. As an
example, for pion-pion and pion-kaon scattering one can obtain the parameters Lr1, L

r
2

and Lr3. Another valuable tool to use is the assumption that the lowest lying states beyond
those included in ChPT should saturate the values of the LECs, and an example is so-called
vector meson dominance which is discussed further in e.g. Refs. [33, 35, 36]. Also large Nc
arguments can be used [23]. A final and very important way to estimate LECs is to use
lattice data. On the lattice the quark masses are parameters that can be varied, and the
same is true in ChPT. By fitting ChPT results to lattice data for varying quark masses thus
allows for unique extractions of LECs that cannot be made in experiments. For further
details, see e.g. Ref. [9].

6 Lattice Gauge Theory

Lattice gauge theory, first proposed in Ref. [37], allows one to non-perturbatively calculate
quantities using Monte Carlo simulations on discretised spacetimes of finite size. This is
particularly important for QCD which is non-perturbative for energies below 1 GeV. Also
other gauge theories can be formulated on the lattice, but due to the relevance of QCD in
Nature this is what will be focused on below.

In Minkowski space, QCD is defined in terms of the partition function

ZQCD =

∫
DUDψDψ̄ e iSQCD[ψ,ψ̄,U ] , (1.93)
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where U now corresponds to the gluons and ψ is the quark field. Performing a Wick
rotation to Euclidean space through x0 → ix E0 changes SQCD[ψ, ψ̄,U ]→ iSEQCD[ψ, ψ̄,U ]
and

ZQCD →
∫
DUDψDψ̄ e−SEQCD[ψ,ψ̄,U ] . (1.94)

The expectation value of an operator O ≡ O[ψ, ψ̄,U ] is then

⟨O⟩ = 1
ZQCD

∫
DUDψDψ̄O e−SEQCD[ψ,ψ̄,U ] . (1.95)

However, one may further integrate out the quark fields from the path integral by using
that the QCD action can be written

SEQCD[ψ, ψ̄,U ] = SEg [U ] + SED[ψ, ψ̄,U ] , (1.96)

where SEg [U ] is the pure gauge action and SED[ψ, ψ̄,U ] =
∑

f q̄f
(
D+ mf

)
qf is the Dirac

action for the Dirac operator D and a sum over flavours f. This yields, if O only depends
on the gauge fields,

⟨O⟩ = 1
ZQCD

∫
DU O e−SEg [U ]

∏
f

det
(
D+ mf

)
. (1.97)

This looks just like a classical statistical system with Boltzmann weights, i.e. with a proba-
bility density function

1
ZQCD

e−SEg [U ]
∏
f

det
(
D+ mf

)
. (1.98)

By thus generatingN field configurations according to this distribution through importance
sampling the expectation value can then be estimated as

⟨O⟩ ≈ 1
N

N∑
i=1

O[Ui] . (1.99)

Lattice gauge theory therefore builds uponMarkov ChainMonte Carlo methods and intro-
duces statistical uncertainty. Also, due to the complexity of the systems involved a consid-
erable amount of computing power is required. It should further be noted that to do this on
a computer, spacetime has to be put on a discretised lattice of finite size V = L0L1L2L3 and
lattice spacing a. This naturally has several effects, which will be discussed later. Regarding
the computational costs, the use of supercomputers and parallel programming is essential
in most calculations, so there is important use of concepts such as domain decomposition
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methods to solve large systems of linear equations. These linear systems arise for various
reasons. For instance, if the operator O would have depended on the quark and antiquark
fields, then the process of integrating out the fields in question would have given rise to
factors of (

D+ mf

)−1
. (1.100)

This is a complicated object to compute due to its size, and inverting it means solving a set
of linear equations. From the computational perspective, it is important to keep in mind
that the condition number of doing this is given by the ratio of the largest to the smallest
eigenvalue. The smallest eigenvalue is related to the quark masses, so the condition number
κ ∼ m−1

f . This means that the physically relevant case where the light quark masses are
very small requires much more computational power. It has therefore been customary
to simulate at several unphysical quark masses and later extrapolate to the physical point
using e.g. chiral perturbation theory, but in recent years physical point calculations have
been possible for some processes. Also the determinant present in the path integral requires
consideration. A common approach to simplify the computation of this part is to let the sea
quarks, i.e. quarks not occuring in the operator O, have different masses from the valence
quarks present in O. This is the so-called quenched approach. For more details on the
computational tools needed in modern simulations, see e.g. Ref. [10].

6.1 Consequences of formulating quantum field theory on the lattice

A natural question to ask is what effect the discretisation as well as finite size of the lattice
has. The discretisation acts as a regulator since it defines a finite resolution of the lattice
and short-distance effects are thus ignored. In momentum space this means that lattice
momenta are constrained in magnitude by a−1. As will be seen in the next section, this has
consequences for the construction of the action. Since the continuum is given by the limit
a → 0, calculations are often made at several lattice spacings from which a continuum
extrapolation then can be made.

The finite size of the box also has effects. One way to reduce these is to use periodic bound-
ary conditions, but the finite size effects must still be calculated and subtracted from any
quantity calculated on the lattice. For a lattice with Li = L and L0 = T it follows that for
any lattice site xµ = a nµ, where nµ is a vector of integers, a field ϕ(xµ + Lµ) = ϕ(xµ) for
any direction µ with periodic bondary conditions. If one assumes that all dimensions have
periodicity, then it is easy to see that the momentum is discretised according to

pµ =
2π
Lµ

nµ . (1.101)
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Using this fact allows one to access the finite volume effects, which can be seen by consid-
ering the relation (in one dimension)

∞∑
n=−∞

δ(x− n) =
∞∑

n=−∞
e i 2πnx , (1.102)

for any variable x. Choosing x = pL/2π then gives

2π
L

∞∑
n=−∞

δ(p− 2πn/L) =
∞∑

n=−∞
e inpL . (1.103)

Multiplying by a function f (p2) and integrating over p results in

1
L

∞∑
n=−∞

f
(
p2n
)
=

∫
dp
2π

f
(
p2
)
+
∑
n̸=0

∫
dp
2π

f
(
p2
)
e inpL , (1.104)

which is the so-called Poisson summation formula relating the sum over allowed momenta
to integrals. This is used heavily together with effective field theory techniques in Paper
III to derive finite volume effects. There is choice in what effective field theory to use
when calculating such effects, where chiral perturbation theory is one that has been used
extensively (see for instance Ref. [38] and references therein). Also non-relativistic effective
field theories can be used as in Ref. [39].

The Poisson summation formula shows the difference between the finite size effects from
massive and massless particles. To see this, consider for the moment a continuous 4-
dimensional Euclidean space. Then, a typical calculation including a particle of mass m
will involve the sum∑

n

1
p2n + m2 =

∫
dp
2π

1
p2 + m2 +

∑
n ̸=0

∫
dp
2π

1
p2 + m2 e

inpL , (1.105)

where the Poisson summation formula was used. For any n in the second integral on the
right the residue theorem can be used to yield∫

dp
2π

1
p2 + m2 e

inpL =
1
2m

e−nmL , (1.106)

that is, the sum over allowed momenta in (1.105) is equal to the infinite volume integral
up to exponentially suppressed effects for a massive particle. It turns out that for massless
particles such as the photon, the finite volume effects scale as powers of the inverse lattice
size instead. This is shown explicitly in Paper III. Thus, QED will potentially have much
larger finite size effects than QCD which is problematic for precision calculations on the
lattice. This is relevant for the muon anomalous magnetic moment (see section 7). In
addition, there is also the problem of infrared divergences from zero modes. Regularisation
techniques for handling such modes will be discussed in section 6.3.
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6.2 Formulation of the lattice action

For any simulation the relevant action has to be defined. The choice of action is ambiguous
in the sense that any term vanishing in the continuum limit can be added as long as it
satisfies the symmetries of the theory. It is therefore the symmetries of the theory that are
the guiding principle in its construction. For instance, inQCD the SU(3)c gauge symmetry
requires that S→ S when ψ(x)→ V(x)ψ(x) and ψ̄(x)→ V †(x)ψ̄(x) for V(x) ∈ SU(3)c.
In QCD the gluons enter through the covariant derivative which on a discretised lattice
is a non-local object. The gluons are thus defined to live on the links between sites and
represented by the link variable Uµ(x) = exp ia Aµ(x) for the gauge field Aµ(x). This has
to transform as Uµ(x)→ V(x)Uµ(x)V †(x+ aµ̂) for the action to be gauge invariant. The
off-set in x in the gauge transformation of Uµ(x) indicates that gluons are link variables,
i.e. fields connecting lattice points. For instance, this means that combinations such as

W 1×1
µν =

{
Uµ(x)Uν(x+ aµ̂)U †

µ (x+ aµ̂)U †
ν (x)

}
, (1.107)

are gauge invariant. From the definition of Uµ as a link variable, W 1×1
µν is a loop of size

1×1 on the lattice and is known as a Wilson loop or plaquette. The pure gauge action can
then be written as

Sg[U ] = βa4
∑
x

∑
µ<ν

(
1− 1

3
Re TrW 1×1

µν

)
, (1.108)

where β = 6/g 2lat is the bare lattice coupling and the trace is in colour space. Note that in
the continuum limit the link variable may be expanded as

Uµ(x) =
∞∑
n=0

1
n!
(
ia Aµ(x)

)n
, (1.109)

which when inserted in the plaquette action yields

Sg[U ] −→
∫

d 4x
1

4 g 2lat
Tr
{
F 2
µν(x)

}
+ . . . . (1.110)

This is the continuum pure gauge action of QCD where the field strength tensor is Fµν =
∂µAν − ∂νAµ + g lat

[
Aµ,Aν

]
. The omitted terms above depend on higher orders of the

lattice spacing a. Thus, for faster convergence to the continuum limit one may add appro-
priate terms to the action cancelling a certain number of the higher order terms. This is the
so-called Symanzik improvement [40, 41]. For the fermionic part of the action, one has to
generalise the derivative present in the regular continuum theory. This can again be done
with the help of the link variable, and the simplest choice is

Sg[U ] = −a4
∑
x

∑
µ

1
2a

{
ψ̄(x)(r− γµ)Uµ(x)ψ(x+ aµ̂)
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+ ψ̄(x+ aµ̂)(r+ γµ)U †
µ (x)ψ(x)

+ ψ̄(x)

(
m+

4r
a

)
ψ(x)

}
, (1.111)

where r is a parameter between 0 and 1. From this action one can derive the propagator
which is of the form

1
a−1 sin apµ

. (1.112)

Unlike the propagator in usual field theory this has 2d poles in d dimensions. This is known
as the fermion doubling problem and there are several ways to attempt to solve it. However,
these remedies usually break chiral symmetry which in itself causes new problems. No
further details will be provided on this as it is not of much relevance to the papers herein.
As a final remark, it is convenient to define the lattice momentum

p̂µ =
2
a
sin

a
2
pµ . (1.113)

6.3 Isospin breaking corrections

Up and down quarks have until recently been treated as mass degenerate electrically neutral
particles in most lattice calculations. This is known as the isospin symmetric limit and is
easily motivated due to the sought precision. First of all, the very small mass difference on
the order of mu − md ∼ 2 MeV determined at 2 GeV in MS [42], has effects starting at
O
(
(mu − md)/ΛQCD

)
∼ 10−3 − 10−2. Moreover, the first electromagnetic corrections

occur at O(α) ∼ 10−2. Thus, as precision is improved on the lattice also isospin breaking
corrections need to be taken into account. The different isospin breaking corrections are
separated into two categories, namely those coming from the strong and electromagnetic
sectors. The strong isospin breaking corrections can be included by using mu ̸= md, ei-
ther in a quenched or non-quenched scenario. The electromagnetic corrections, however,
require inclusion of the electromagnetic Maxwell action. As will be shown below, this in-
volves some new considerations that lead to certain difficulties. In order to solve these,
various lattice formulations of QED have been introduced. The strong isospin breaking
effects are omitted from the discussions below.

The total action for studying isospin breaking effects from both QED and QCD is given
by

SQED+QCD
[
ψ, ψ̄,U,A

]
= Sf

[
ψ, ψ̄,U,A

]
+ SA [A] + SG [U ] , (1.114)
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where A is the photon field,U the gluon field andψ the quark fields. The three terms on the
RHS are the fermionic action, the Maxwell gauge action and the pure gluon gauge action,
respectively. The Maxwell gauge action corresponds to a U(1) symmetry, i.e. an Abelian
symmetry. The full path integral, or, partition function, for QCD and QED combined, is
thus

Z =

∫
DUDADψDψ̄ e−SQED+QCD[ψ,ψ̄,U,A] . (1.115)

Any expectation value of an operator can now be taken with respect to this partition func-
tion, either by means of stochastically generating the gauge fields [43, 44] or perturbatively
as an expansion in the small electric charge [44–46].

QED on the lattice

Although it may seem trivial to introduce QED on the lattice, subtleties arise due to the
zero modes of photons. One possible solution to this is to subtract the zero modes in
some way, but this results in non-local theories. Two different non-local formulations with
zero mode subtractions are QEDL and QEDTL. Other approaches are to introduce charge
conjugation boundary conditions (QEDC) or a ficticious photon mass (QEDM). In Paper
III, QEDL is used and this framework is therefore discussed below. It was first introduced
in Ref. [47], but another, more recent, definition can be found in Ref. [48].

In infinite volume the Maxwell gauge action is written

SA[A] =
∫

d 4x
[
1
4

(
Fµν(x)

)2
+

1
2

(
∂µAµ(x)

)2]
. (1.116)

Appropriate summation over indices has been left out for simplicity. Using the definition
of the field strength tensor in terms of the gauge field and partially integrating yields

SA[A] = −
1
2

∫
d 4x Aµ(x)∂2Aµ(x) . (1.117)

The propagator obtained from this is

Dµν(x− y) =
∫

d 4k
(2π)4

δµν

k 2
e ik·(x−y) . (1.118)

The finite volume equivalent can be obtained by introducing the Fourier transform

Aµ(x) =
1
V

∑
k

Ãµ(k)e ik·x ,
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Ãµ(k) =
∫

d 4x Aµ(x)e−ik·x , (1.119)

where kµ =
(
2πnµ
Lµ

)
. The Maxwell action is then given by

SA
[
Ã
]
=

1
2V

∑
k

k 2 Ãµ(k) . (1.120)

The propagator is therefore

Dµν(x− y) =
∑
k

δµν

k 2
e ik·(x−y) , (1.121)

where the problematic zero modes k 2 = 0 corresponding to IR divergences can be seen.
One solution to this problem is to simply disregard the k = 0 modes altogether. This is the
approach in QEDTL. In QEDL, on the other hand, one throws away modes with k = 0
on every time slice. The advantage of QEDL is that it is reflection positive [49], and it is the
QED formulation used in Paper III. As a final remark on QEDL, the photon propagator
can be written

DQEDL
µν (x− y) =

∑
k

′ δµν

k 2
e ik·(x−y) , (1.122)

where the primed sum indicates that k = 0 is excluded. Further note that in the definition
of QEDL only the gauge part was considered. This means that it can be applied both to
regular QED as well as sQED.

6.4 Lattice perturbation theory

The lattice is a regulator in the sense that it provides a momentum cut-off in terms of the
lattice spacing a through ∫ ∞

−∞

d 4p
(2π)4

−→
∫ π/a

−π/a

d 4p
(2π)4

. (1.123)

Moreover, momentum is discretised when the lattice has a finite volume and momentum
integrals become sums over the allowed momenta instead. Lattice perturbation theory
(LPT) is a tool that allows for perturbative calculations on a discretised spacetime that
can be either infinite or of finite size. In a weak coupling regime, LPT can be used as
a check of numerical lattice calculations, just like in Paper III herein. In that case the
weak coupling is the electric charge occurring in the sQED Lagrangian. However, LPT
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can also be used for renormalisation of operators on the lattice, especially in going to the
continuum limit to compare lattice results to physical results. An example is the opera-
tor product expansion introduced in section 8, where the matrix element of two operators
A(x) and B(0) approaching each other can be written as a sum over matrix elements of
some operators Oi(0) weighted with perturbative coefficients ci (see (1.150)). The pertur-
bative coefficients are often calculated in a scheme such as MS, whereas the long distance
matrix elements are calculated in some non-perturbative renormalisation scheme such as
RI/MOM or RI/SMOM (introduced and discussed in e.g. Refs. [50–52]).

For a good review on LPT, see Ref. [53]. Below, the Euclidean discretised action of sQED
is introduced as well as the associated Feynman rules obtained in LPT.

Scalar QED on the lattice

Scalar QED is used in Paper III to calculate the hadronic vacuum polarisation function
introduced in section 7. This field theory is here introduced in order to illustrate how LPT
is used and the aim is to highlight some of the aspects left out in Paper III.

First of all, the action can be decomposed into one part containing the scalar field ϕ and
gauge field A as well as a pure gauge part containing only A according to

S[ϕ,A] = Sϕ[ϕ,A] + SA[A] . (1.124)

In the following the pure gauge term SA[A] is neglected. The scalar part Sϕ[ϕ,A] is given
by

Sϕ[ϕ,A] =
a4

2

∑
x

ϕ∗(x)Δϕ(x) , (1.125)

where Δ = m2 −
∑

µ D
∗
µDµ and the covariant derivative is defined in terms of the electric

charge e and gauge link Uµ(x) = exp iea Aµ(x) as

Dµϕ(x) =
1
a

[
Uµ(x)ϕ(x+ aµ̂)− ϕ(x)

]
,

D∗
µϕ(x) =

1
a

[
ϕ(x)− U †

µ (x− aµ̂)ϕ(x− aµ̂)
]
. (1.126)

Note that by defining a translation operator τµ such that τµ f (x) = f (x + aµ̂) one finds
that

Δ =
1
a2
∑
µ

(
2− e ieaAµτµ − τ−µ e−ieaAµ

)
+ m2 . (1.127)
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In the weak coupling regime this can be expanded in powers of the electric charge according
to

Δ =
∞∑
i=0

Δi ei , (1.128)

where the Δi are functions. The first four terms are given by

Δ0 = m2 − 1
a2
∑
µ

(
τµ + τ−µ − 2

)
,

Δ1 = −
i
a

∑
µ

(
Aµτµ − τ−µ Aµ

)
,

Δ2 =
1
2

∑
µ

(
A2
µτµ + τ−µ A2

µ

)
,

Δ3 =
ia
3!

∑
µ

(
A3
µτµ − τ−µ A3

µ

)
. (1.129)

Several things can be noted here. The gauge link was introduced from the requirement
of gauge invariance under U(1) rotations on the lattice. The effect of this, as can be seen
above, is an infinite number of terms in the action, i.e. there are infinitely many interaction
vertices. However, these are ordered in e so only a finite number of them contribute at a
fixed order and, as expected, the unphysical ones vanish in the continuum limit a → 0.
From this expansion one can derive momentum space Feynman rules, and as an example
consider Δ1. First define the Fourier transforms

Aµ(x) =
∫

d 4k
(2π)4

e ik·(x+aµ̂/2) Ãµ(k) ,

ϕ(x) =
∫

d 4k
(2π)4

e ik·x ϕ̃(k) ,

ϕ∗(x) =
∫

d 4k
(2π)4

e−ik·x ϕ̃∗(k) . (1.130)

From the scalar action one then obtains

− ia4

a

∑
x,µ

(
ϕ∗(x)Aµ(x)ϕ(x+ aµ̂)− ϕ∗(x)Aµ(x− aµ̂)ϕ(x− aµ̂)

)
= − ia4

a

∑
x,µ

∫
d 4p
(2π)4

d 4q
(2π)4

d 4p′

(2π)4
ϕ̃∗(p) Ãµ(q) ϕ̃

(
p′
)
e i(q−p+p′)·xe iaq·µ̂/2

×
(
e iap

′·µ̂ − e−ia(q+p′)·µ̂
)
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= −2ea−1 sin
(

ap1+p2

2

)

µ
,

p1
−→

p2
−→

p1 − p2↑

(a)

= −2e2 cos
(

ap1+p2

2

)

µ
,

p1
−→

p2
−→

q1

q2

↑

↓

(b)

= 2e3a sin
(

ap1+p2

2

)

µ
,

p1
−→

p2
−→

q1 q3

q2

↑↑

↓

(c)

= δµν p̂−2 ,
p

µ ν

−→

(d)

=

(

p̂2 +m2
0

)

−1

,
p

−→

(e)

= −2ea−1δV sin
(

ap1+p2

2

)

µ
,p2

−→
p1
−→

p1 − p2↑

(f)

= −m2δm − p̂2δZ .
p

−→

(g)

Figure 1.3: The LPT sQED Feynman rules relevant for Paper III. The crossed vertices correspond
to counterterm insertions.

=
∑
µ

∫
d 4p
(2π)4

d 4q
(2π)4

ϕ̃∗(p) Ãµ(q) ϕ̃(p− q)
2
a
sin
( a
2
(
p+ p′

)
µ

)
, (1.131)

where the momentum conservation p′ = p − q was used. This yields the scalar-scalar-
photon interaction vertex as −2 a−1e sin

(
a
2 (p+ p′)µ

)
, or, if recognising the lattice mo-

mentum,−e p̂+ p′µ. The other Feynman rules can be obtained in a similar fashion and in
Fig. 1.3 the ones relevant to the calculation in Paper III are given. The counterterm rules
for δm, δV and δZ are also included (their definitions are given in Paper III and will not be
repeated here).

Having found LPT Feynman rules with no continuum analogues it is easy to see that the
main consequence of these extra terms for a non-vanishing lattice spacing is the existence of
pure lattice diagrams. One of the simplest examples that can be encountered is an additional
diagram to the electromagnetic vertex function at 1-loop order. The 1-loop contributions
are shown in Fig. 1.4, and the pure lattice diagram is the tadpole diagram in (d).

7 The Muon Anomalous Magnetic Moment

The charged leptonic sector of the Standard Model allows for important precision tests that
can help constrain new physics. The muon has since its discovery in 1936 [54, 55] attracted
much attention, in particular with respect to its magnetic properties. Being a lepton, it has
spin 1/2 and thus, in classical quantum mechanics, a magnetic moment

M = gµ
e

2mµ
S , (1.132)

41



(a) Vertex 1-loop (b) Right sail (c) Left sail (d) Tadpole

Figure 1.4: The 1-loop corrections to the electromagnetic vertex function.

where M is its magnetic moment, S its spin, mµ ≈ 105.7 MeV its mass and gµ the so-
called gyromagnetic ratio. The gyromagnetic ratio is in the classical theory exactly equal to
2, which is known as the Dirac value. However, in quantum field theory the interaction
with an external electromagnetic field is given by the complete electromagnetic vertex func-
tion, i.e. it includes the sum of all virtual corrections to the electromagnetic vertex. This in
practice means that gµ will deviate from the Dirac prediction, i.e. it is a direct probe of par-
ticle physics beyond classical quantum mechanics. It is therefore conventional to measure
the deviation from the Dirac prediction, i.e. the so-called anomalous magnetic moment

aµ =
gµ − 2

2
. (1.133)

This is one of the most precisely measured quantities in particle physics today. The reason it
has attracted so much attention is due to the current discrepancy of roughly 3.5σ between
the experimentally measured value at Brookhaven National Laboratory (BNL) [56] and the
theoretical value calculated from the Standard Model [57]. Clearly, there is much need for
high precision calculations as well as measurments to clarify whether or not there really is
a discrepancy.

7.1 On the experimental side

The BNL value is

aµ = 116 592 091(54)stat(33)sys × 10−11 [0.54 ppm] . (1.134)

At Fermilab an experiment with the aim of decreasing the total relative error to 0.1 ppm is
currently running. An updated value is expected within the coming year. Complementary
to this, an experiment at J-PARC is right now being constructed. The latter relies on a
new technique compared to BNL and Fermilab, namely using ultracold muons, which will
offer an additional test of the measured value. The main idea behind the measurments at
BNL and Fermilab is to exploit the Larmor precession of the muon spin due to aµ as the
particle goes in a circular orbit. The anomalous magnetic moment can thus be accessed via
the angular frequency ωa = ωs − ωc, which is the difference between the spin precession
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angular frequency ωs and the angular frequency of the muon momentum ωc. The relation
between aµ and the vectorial quantity ω⃗a is

ω⃗a =
e
mµ

(
aµB⃗−

[
aµ − (γ2 − 1)−1

]⃗
v× E⃗

)
, (1.135)

where B⃗, E⃗ and v⃗ are the magnetic field, electric field and velocity respectively. From this
relation one sees that for a cleverly chosen Lorentz factor γ, the term proportional to the
electric field vanishes and

ωa = aµ
eB
mµ

. (1.136)

By thus having good control of both the magnetic field andmuonmass as well as measuring
ωa one can obtain a value of aµ.

7.2 On the theoretical side

In order to understand the theoretical challenges in obtaining an improved value, one has
to first consider the various contributions to the electromagnetic vertex function that exist.
The anomalous magnetic moment can be decomposed according to

aµ = aQED
µ + aEWµ + aHadronic

µ , (1.137)

where aQED
µ contains the contributions from the QED sector, aEWµ those from the elec-

troweak sector and aHadronic
µ contributions from the hadronic sector. The at present most

problematic quantity here is the hadronic one, which in turn can be divided into two classes
of diagrams according to

aHadronic
µ = aHVP

µ + aHLbL
µ . (1.138)

Here, HVP and HLbL are short for hadronic vacuum polarisation and hadronic light-by-
light, respectively. The general structures of these two contributions are shown in Fig. 1.5.
The shaded blobs contain all possible hadrons, and together with the connecting photons
they are respectively referred to as the HVP and HLbL. There are both leading order (LO)
and higher order (HO) hadronic contributions to aHVP

µ , but in the following only the LO
contribution will be considered. Since the hadronic contributions are relevant for Papers
III and IV, they will be properly defined below. However, as a concluding remark before
that, it is of importance to quantify the actual discrepancy between theory and experiment.
In table 1.5 a summary of the current status of the experimental and theoretical values is
given. As can be seen, with an absolute discrepancy of only 3 · 10−9, which corresponds to
a relative discrepancy on the order of 2 · 10−6, the agreement is very impressive.
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(a) Hadronic vacuum polarisation (b) Hadronic light-by-light

Figure 1.5: The two hadronic classes of contributions to the muon anomalous magnetic moment.

The hadronic contributions

The vacuum polarisation tensor, or, vector 2-point function, is in Minkowski space given
by

Πµν(q) = i
∫

d 4x e iq·x ⟨0|T
{
jµ(x) j†ν(0)

}
|0⟩ , (1.139)

for the vector current jµ. The above equation with hadronic vector currents is the definition
of the HVP. From the Ward-Takahashi identities

qµ Πµν(q) = 0 , qν Πµν(q) = 0 , (1.140)

it follows that

Πµν(q) =
(
qµqν − q2gµν

)
Π
(
q2
)
, (1.141)

where Π
(
q2
)
is a scalar function. This function is UV divergent so it is conventional to

calculate

Π̂
(
q2
)
= Π

(
q2
)
−Π(0) . (1.142)

In perturbation theory this may be expanded order by order, as in Paper III where O(α)
corrections are included on the LO pion loop. The calculation in Paper III is thus a 2-loop
calculation, as can be seen from the contributing diagrams in Fig. 1.6.

The HLbL function is defined in an analogous way, this according to

Πµνλσ(q1, q2, q3) = −i
∫

d 4x d 4y d 4z e−iq1·x−iq2·y−iq3·z ⟨0|T
{
jµ(x) jν(y) jλ(z) jσ(0)

}
|0⟩ .

(1.143)
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Table 1.5: The current experimental and SM values of the g − 2, all taken from Ref. [8]. The dif-
ference Δaµ = aExpµ − aSMµ is also quoted. The SM contributions are presented separately
in the lower half of the table. The errors are of various kinds, and the interested reader is
encouraged to look at Ref. [8] for further details.

Value (×10−11) Error (×10−11)

aExpµ 116 592 091 (54)stat(33)sys
aSMµ 116 591 823 (1)EW(34)Had, LO(26)Had, HO

Δaµ 268 (63)Exp(43)Theory

aQED
µ 116 584 718.95 (0.08)Theory

aEWµ 153.6 (1.0)Theory

aHVP, LO
µ 6 931 (33)Exp(7)Theory

aHVP, HO
µ −86.3 (0.9)Theory

aHLbL
µ 105 (26)Theory

In the quark picture, the above currents are of the form jµ = qQ qγµq for the quark
vector q and Q q being the corresponding quark charge matrix. For three flavours, Q q =
diag (2/3,−1/3,−1/3). The momenta are defined so that q1, q2 and q3 are incoming and
correspond to the virtual momenta to be integrated over in aHLbL

µ . The external photon
therefore has momentum q4, which is defined as outgoing so that q1+q2+q3 = q4. Note
that the g− 2 kinematics is given by the static limit q4 = 0. This tensor satisfies the Ward
identities {

qµ1 , q
ν
2 , q

λ
3 , q

σ
4

}
Πµνλσ(q1, q2, q3) = 0 . (1.144)

The HLbL tensor can be decomposed into 138 Lorentz structures [58–60], but from the
Ward identities above it can be shown that only 43 structures are independent. However,
only 19 structures contribute to the loop integral in aHLbL

µ in the end, but due to crossing
symmetries one can write the final integral as a sum of only twelve terms [61].

There are various ways to calculate the two quantities above. In the dispersive approach one
relies on analyticity and unitarity to derive dispersion relations. Such dispersion relations
can thus give a connection to experimental data, and an important example for the HVP
is its connection to the cross section of the process e+e− → hadrons. This is the reason the
theoretical value aHVP, LO

µ has experimental error in table 1.5. For a discussion on dispersion
relations for the HLbL, see e.g. Refs. [61, 62]. Complementary to this, one can use lattice
gauge theory. For instance, in state of the art calculations of the HVP electromagnetic
corrections are included in order to reach per cent level accuracy, so it is important to have
the systematic effects such as those from the finite volume approximation under control.
This is the starting point for Paper III and will be discussed below. Yet another option is
to use low energy models, an approach extensively used for the HLbL. However, there are
several complications arising due to the kinematic structure in the integral of aHLbL

µ . In
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(A) (B) (E1) (E2)

(C1) (C2) (C3) (C4)

(T1) (T2) (S) (X)

Figure 1.6: The O(α) corrected pion loop contributions to the HVP from Paper III.

particular, the momentum integrals over q1, q2 and q3 in (1.143) have several regions where
the models cease to be valid. An example is the mixed region known as the Melnikov–
Vainshtein limit [63], where two momenta are large and one small (Q2

1 ≈ Q2
2 ≫ Q2

3
where Q2

i = −q2i ). In such a limit perturbative QCD can clearly not be used either. An
alternative approach is to use the OPE (see section 8). Some models might even have the
wrong short-distance behaviour, so it is important to have constraints fromQCD as a check
of how good the models really are. Such short-distance constraints are derived in Paper IV
for the HLbL. For further details, see Ref. [64] for an excellent review.

Finite volume effects to the HVP at O(α)

The 2-loop diagrams in Paper III (see Fig. 1.6) contain two loop momenta. Denoting the
pion loop momentum as ℓ and that of the photon as k, the contribution from a diagram
U, Π̂U, in infinite volume has the form

Π̂U(q20) =
∫

d k0
2π

d ℓ0
2π

∫
d 3k

(2π)3
d 3ℓ

(2π)3
π̂U(k, ℓ, q0) , (1.145)

where q = (q0, 0) is the external photonmomentum and π̂U is the loop integrand obtained
from sQED Feynman rules. Performing the k0 and ℓ0 integrals then yields

Π̂U(q20) =
∫

d 3k

(2π)3
d 3ℓ

(2π)3
ρ̂U(k, ℓ, q0) , (1.146)

where ρ̂U is the resulting integrand. The finite volume counterpart is obtained by exchang-
ing each integral by a sum over the corresponding discretised momentum components
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multiplied by a factor of L. The finite volume effects are thus given by

ΔΠ̂U(q20) =

(
1
L6
∑
k

′∑
ℓ

−
∫

d 3k

(2π)3
d 3ℓ

(2π)3

)
ρ̂U(k, ℓ, q0) . (1.147)

The primed sum indicates the choice of QEDL. Using the Poisson summation formula it
is possible to exhange the pion sum for an integral up to exponentially suppressed effects
so that

ΔΠ̂U(q20) =

(
1
L3
∑
k

′

−
∫

d 3k

(2π)3

)∫
d 3ℓ

(2π)3
ρ̂U(k, ℓ, q0) + . . . . (1.148)

The omitted terms are the exponentially suppressed terms from the pion loop. Next, know-
ing that the finite volume effects are dominated by the soft photon modes one may use that
k = 2π n/L and expand the integrand above in powers of 1/L. This is the approach taken
in Paper III. The first possible term that can show up is a 1/(MπL)2 term, but it is shown
that this vanishes identically. Such a cancellation can be understood from the underlying
physics, since a soft photon is not able to resolve the charged pions corresponding to the
neutral current, i.e. the term of order 1/(MπL)2 has to vanish. The implication for lattice
calculations is that for moderately sized MπL, given the currently sought precision, these
electromagnetic effects are in principle negligible.

8 Operator Product Expansion

The operator product expansion is a very useful tool when looking at products of operators
in two different spacetime points x and y that approach each other, i.e. when x → y, and
singularities appear. This was studied in e.g. Refs. [65, 66], and when used together with
dispersion relations provides so-called sum rules. These will not be further elaborated upon
here.

Now, when y = 0 the OPE can be formulated as∫
d 4k e−ikxT {A(x)B(0)} =

∑
i

ci(k)Oi(0) , (1.149)

for some operators A, B and Oi with respective dimensions dA, dB and dOi , and the diver-
gent Wilson coefficients ci. The degree of divergence of the Wilson coefficients decreases
with the dimensionality of the operatorOi, and is given by ci ∼ k dA+dB−dOi , a result which
makes the OPE particularly useful in the sense that the terms in the series become less and
less important. The ci can be computed perturbatively, and since the relation in (1.149) is
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true on the operator level, one obtains the following relation for the matrix element∫
d 4k e−ik·x ⟨0|T {A(x)B(0)} |0⟩ =

∑
i

ci(k) ⟨0| Oi(0) |0⟩ . (1.150)

The matrix elements ⟨0| Oi(0) |0⟩ contain the low energy dynamics and can sometimes be
evaluated on the lattice. This is one of the ways that the lattice and perturbative calculations
can be used together, as mentioned earlier, and highlights the need for connecting the lattice
renormalisation schemes and continuum schemes such as MS. Another example of when
the OPE can be used is for the calculation in Paper IV. There it is used for the HLbL
contribution to the muon anomalous magnetic moment, as discussed below.

8.1 An OPE for the HLbL

There are many difficulties in calculating the HLbL contribution to the g − 2. These
arise from the various regions in the loop integration of the three momenta q1, q2 and
q3 in (1.143). In addition to this, the external photon with momentum q4 is soft for the
g− 2 kinematics. Particular problems arise already for the strictly hard, i.e. short-distance,
limit when the (Euclidean) loop momenta are all hard. This corresponds to

−q2i = Q2
i ≫ ΛQCD . (1.151)

The low energy models with hadronic degrees of freedom commonly used are in this limit
not valid anymore, but for matching purposes such short-distance constraints obtained
from the fundamental theory are very useful.

In the above kinematic setting, the perturbative quark loop is the leading contribution to
the HLbL tensor. If one tries to do an OPE in (1.143) by leaving fields uncontracted in the
expansion of the time ordered product, one obtains condensates with the same quantum
numbers as the vacuum which do not vanish, such as e.g. ⟨qq⟩. This can be diagramatically
represented as in Fig. 1.7, but the problem then is that a quark propagator i S(q4) appears
at next-to leading order which is badly divergent for the g − 2 kinematics. It is therefore
not possible to do such an OPE for the HLbL tensor.

Although the situation might appear hopeless, one can consider exchanging the external
soft photon leg for an external electromagnetic field in the static limit. The idea behind
this stems from Ref. [67]. In this approach one must trade Πµνλσ for the 3-point function

Πµνλ(q1, q2) = −i
∫

d 4x d 4y e−i(q1·x+q2·y) ⟨0|T
{
j µ(x)j ν(y)jλ(0)

}
|0⟩F , (1.152)

where the subscript F indicates that there is an external field. The first contribution in an
OPE here is a quark loop with three external hard photons. At higher orders there are now
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= + +
. . .

Figure 1.7: A diagrammatic representation of the short-distance OPE of Πµνλσ . The black vertices
on the quark lines in the last diagram represent the insertion of a vacuum condensate.

additional condensates that survive, with the same quantum numbers as the external field,
where an example is ⟨qσαβq⟩ ≡ Q qFαβ Xq. The first two contributions are diagrammat-
ically represented in Fig. IV.3. The quantity Xq is related to the magnetic susceptibility of
the QCD vacuum and has been estimated using lattice QCD in e.g. Ref. [68]. At higher
orders many other condensates appear, and hopefully these can be estimated in some way.

In Paper IV it is shown that the leading contribution in the OPE in an external electromag-
netic field gives the same prediction as the quark loop does in the usual approach starting
from Πµνλσ. The next-to leading term proportional to ⟨qσαβq⟩ is also calculated and
shown to be suppressed due to the small overall factors mq Xq. Although these corrections
are negligible, higher order condensates are not necessarily suppressed in that fashion and
are therefore of interest to know in the future.

9 Some Concluding Remarks and an Outlook

In the absence of direct experimental evidence of new physics particles, it is very interesting
to do precision tests of the Standard Model. The low energy sector of the Standard Model
is particularly complicated and thus requires special attention. The phenomenology and
high precision physics in this low energy regime motivate this thesis and Papers I–IV.

The discussion in this introduction started from some general properties of quantum field
theories, but then specialised to QCD and in particular its low energy regime. It was shown
that effective field theory techniques and lattice gauge theory are valuable tools to use in
calculations for low energy precision physics. A very timely example of an observable in
need of high precision is the anomalous magnetic moment of the muon and the Standard
Model prediction of it. This constituted the final part of the introduction. From these
considerations the reader should hopefully now have sufficient knowledge to understand
Papers I–IV, and the underlying reasons behind what is done therein. However, it would
be unnatural to simply stop here without some discussion of the implications of the results
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⊗
“F”

(a) Quark loop

⊗
“F”

(b) 〈q σαβq〉

Figure 1.8: The two leading terms in the external field short-distance OPE for Πµνλ. The presence
of the external field F is here depicted with a crossed vertex.

in the papers as well as what lies in the future of high precision physics at low energies.

In Papers I and II chiral perturbation theory was studied atNNNLO.The pionmass and de-
cay constant were calculated at 3-loop order within the two-flavour theory and the mesonic
chiral Lagrangian L8 derived. In order to do precision calculations at this order one would
need to know the low energy constants from L8. This can, in principle, be done, but
seeing that not even the NNLO low energy constants are well-known some 20 years after
the derivation of L6 it is unclear how long it will take to obtain values for the NNNLO
constants. One should keep in mind, though, that the analytic expressions of the pion
mass and decay constant and the knowledge of the number of low energy constants in
L8 have intrinsic interest as well. Moreover, the techniques used for the derivation of the
Lagrangian are general and can be applied also to other effective field theories needed for
precision physics.

In Papers III and IV higher order calculations needed for reducing the theoretical uncer-
tainty on the Standard Model prediction of the anomalous magnetic moment of the muon
were presented. In Paper III it was shown that for the currently sought precision the poten-
tially dangerous finite volume effects from adding QED on the lattice in principle can be
neglected. This allows for a lattice gauge theory prediction of the hadronic vacuum polari-
sation contribution to the muon g−2 including the isospin breaking effects required for per
cent level accuracy. Note that the method used to derive finite volume effects in Paper III
also can be applied for other isospin breaking precision calculations. A notable example is
the lattice determination of CKMmatrix elements from leptonic and semi-leptonic decays.
In Paper IV short-distance constraints relevant for the hadronic light-by-light contribution
were derived. It was shown that there is an equivalence between using an external soft pho-
ton and doing the calculation in an external electromagnetic field, in particular by showing
that the first term in the external field operator product expansion, namely, the 3-point
quark loop, agrees with its 4-point vacuum counterpart. In the external field approach, it
was shown further that the next-to leading contributions coming from a condensate related
to the magnetic susceptibility of the QCD vacuum are negligible as they are suppressed by
the smallness of the quark masses and the condensates themselves. However, the higher
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order condensates are not necessarily suppressed in such a way and for the future it is of
interest to derive just how many condensates show up. One would also need to come up
with some way of numerically estimating them in order to make predictions.

To conclude, in this era of high precision physics there is still a lot of work to be done
in the low energy sector of the Standard Model. The interplay between the effective field
theory and lattice gauge theory communities will undoubtedly lead to many interesting
findings, in particular in combination with future experimental measurements. What the
conclusions will be from these results is impossible to say, except that there will be a better
understanding of the most fundamental building blocks of the Universe.
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