
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Network Lifetime Maximization in Wireless Mesh Networks for Machine-to-Machine
Communication

Fitzgerald, Emma; Pióro, Michał; Tomaszewski, Artur

Published in:
Ad Hoc Networks

DOI:
10.1016/j.adhoc.2019.101987

2019

Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):
Fitzgerald, E., Pióro, M., & Tomaszewski, A. (2019). Network Lifetime Maximization in Wireless Mesh Networks
for Machine-to-Machine Communication. Ad Hoc Networks, Article 101987.
https://doi.org/10.1016/j.adhoc.2019.101987

Total number of authors:
3

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.adhoc.2019.101987
https://portal.research.lu.se/en/publications/6815a1ca-ab08-4603-89cc-a9f5352701e9
https://doi.org/10.1016/j.adhoc.2019.101987


Network Lifetime Maximization in Wireless Mesh Networks for

Machine-to-Machine Communication

Emma Fitzgeralda,b,∗, Micha l Piórob, Artur Tomaszewskib

aDepartment of Electrical and Information Technology, Lund University, Lund, Sweden
bInstitute of Telecommunications, Warsaw University of Technology, Warsaw, Poland

Abstract

In this paper we present new optimization formulations for maximizing the network lifetime

in wireless mesh networks performing data aggregation and dissemination for machine-to-

machine communication in the Internet of Things. We focus on heterogeneous networks

in which multiple applications co-exist and nodes may take on different roles for different

applications. Moreover, we address network reconfiguration as a means to increase the

network lifetime, in keeping with the current trend towards software defined networks and

network function virtualization. To test our optimization formulations, we conducted a

numerical study using randomly-generated mesh networks from 10 to 30 nodes, and showed

that the network lifetime can be increased using network reconfiguration by up to 75% over

a single, minimal-energy configuration. Further, our solutions are feasible to implement in

practical scenarios: only few configurations are needed, thus requiring little storage for a

standalone network, and the synchronization and signalling needed to switch configurations

is low relative to each configuration’s operating time.

Keywords: network lifetime; machine-to-machine communication; aggregation; integer

programming

1. Introduction

In an increasingly wireless world, and in particular with the rise of the Internet of Things,

energy efficiency for end devices is a critical component in enabling new applications. Taking
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an application-centric view, it is not the energy consumption of individual nodes in the

network that is the most important consideration, but rather how long the network as

a whole can fulfill its intended purpose, that is, serve the demands of the application(s)

running on it. This time is called the lifetime of the network.

To achieve maximum network lifetime, reconfiguration of the network, in the form of

changing routing and/or which tasks are assigned to which nodes, may be necessary. For

example, with a given set of paths taken by the various application data flows, some nodes

may be more heavily loaded than others and become bottlenecks, needing to transmit often

and draining their batteries more quickly. Once these critical nodes are out of power, the

path(s) on which they lie will fail, causing a disruption in service. However, in many cases,

especially for mesh networks, it is possible to find other feasible paths consisting only of

nodes that still have some power remaining. In fact, to achieve the longest possible lifetime,

reconfiguration of routing of traffic demands may need to be performed multiple times.

In future, especially as 5G comes into effect, such reconfiguration will become more fea-

sible. There is currently a trend towards software-defined networking and network function

virtualization, making telecommunications networks more flexible and reconfigurable. More-

over, it is typical that end devices will have a connection to cloud or edge servers, possibly

through multiple different gateways, and therefore do not need to themselves have sufficient

computation power to determine the optimal configuration or reconfiguration. Instead, this

may be done in the cloud or the fog, and then communicated to the end devices.

In our previous work [1], we studied the problem of routing in a wireless mesh network

together with data aggregation and dissemination for machine-to-machine communication,

optimizing for minimal total energy usage (which can equivalently be understood as the

minimal average power consumption by the network nodes). In the current paper, we now

present complementary, novel optimization formulations for maximum network lifetime (i.e.,

the time until the network ceases to be fully operational), in which the network is able to

be reconfigured both in terms of routing of traffic streams, and which nodes are selected to

aggregate and/or disseminate (via multicast transmission) individual sensor measurements.

We examine practical implementation issues and describe how our approach can be deployed

in real networks. We also conducted a numerical study solving our optimization problems for
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randomly generated mesh networks with 10 to 30 nodes. Our results show that the network

lifetime can be increased by up to 75% compared with configuring the network for minimum

total energy usage, and that relatively few (around 10) different configurations are needed

to achieve the maximum lifetime. This means that the optimal solutions we find here are

feasible to implement in practice, as the overhead for reconfiguration will be low compared

to the total network lifetime.

The contributions of this paper are the following.

1. We provide novel optimization formulations for maximizing network lifetime that allow

for reconfiguration of routing and node tasks.

2. We develop a general solution approach to these optimization problems, based on

column generation. This allows our approach to be applied to arbitrary network tasks.

3. We examine the specific case of machine-to-machine communication, in which sen-

sor measurements can be aggregated within the network, and must be disseminated

via multicast transmission to multiple destinations. We give an appropriate pricing

problem formulation for this application.

4. Our solution approach is feasible to implement in practice, since only few configurations

are used for maximal lifetime, and the requirements for signalling and synchronization

needed to perform reconfiguration are low.

5. We present results from a numerical study investigating the performance of our opti-

mization approach, and showing that it can provide large improvements in network life-

time for the considered application. We compare performance for maximum network

lifetime with that for total energy minimization, and discuss the trade-offs between

these two approaches.

6. We provide tight upper and lower bounds for the optimal solutions to our formula-

tions, as well as a heuristic that closely tracks the optimal performance, and present a

numerical performance evaluation for the bounds and heuristic.

The rest of this paper is organized as follows. In Section 2 we survey the related work

on network lifetime. In Section 3, we describe our system model and give optimization

formulations to solve for the maximum network lifetime. Section 4 details our numerical

study and results for varying network sizes. Finally, Section 5 concludes this paper.
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2. Related Work

In [1], we considered the problem of data aggregation and dissemination in IoT networks

serving, for example, monitoring, sensing, or machine control applications. A key aspect of

the IoT that differentiates it from classical wireless sensor networks (WSNs) is its hetero-

geneity. We therefore considered cases where nodes may take on different roles (for example,

sensors, destinations, or transit nodes) for different applications, and where multiple appli-

cations with different demands may be present in the network simultaneously. Moreover,

these demands can be more general than only collecting data and forwarding it to a single

sink, as is usually the case for WSNs. Rather, data may be processed within the network

(we take the specific case of aggregation), and may be disseminated to multiple sinks via

multicast transmissions.

However, in that work, we focused on minimizing the total energy usage. We now seek

to extend this to consider the network lifetime. While total energy usage may be important

in, for example, green networking, in which we wish to reduce the environmental impact and

thus the overall energy usage, network lifetime is a critical performance measure both for

traditional WSNs and for emerging IoT networks. Network lifetime gives a measure of how

long the network can operate without intervention and, in cases where it is impractical to

charge nodes or change their batteries, it gives the total operating time for the network.

Network lifetime has been studied extensively in the context of WSNs since the early

2000’s. A full review of the literature in this area is therefore beyond the scope of this paper;

a recent survey can be found in [2]. We will instead focus on the recent work that is most

relevant to the current paper.

There are numerous different definitions of network lifetime adopted in the literature [2].

Some of these include that the network lifetime expires at the time instant a certain number

(possibly as low as one) or proportion of nodes deplete their batteries, when the first data

collection failure occurs, or when the specific node with the highest consumption rate runs

out of energy. In [2], these definitions are classified into four categories depending on whether

they are based on node lifetime, coverage and connectivity, transmission, or a combination

of parameters.

However, a problem with many of these definitions is that they are not application-centric.
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In practice, whether or not a network is functional depends on the specific application or

applications which it serves. Some applications may require all nodes in the network to

have remaining energy, while others may continue to operate correctly with only a few nodes

working. The lifetime also depends on the capabilities of the network. For example, if the

network can be reconfigured, the lifetime may be extended by switching configurations. This

can be facilitated by the use of software defined networking [3], as well as support from cloud

services that are capable of performing even demanding calculations to determine the best

network configuration at any given time, without incurring an energy cost in the end devices.

This is the approach we adopt in this paper, and we define valid configurations based

on the demands of the applications present in the network along with the roles the various

nodes play in these demands. As such, we will adopt a general definition of the network

lifetime as the total time in which the network is operational. Since we consider a class of

applications with data streams as their demands, this is most similar to the definition used

in [4], where the network lifetime was defined as the number of sensory information task

cycles achieved until the network ceases to be fully operational.

There have been numerous techniques developed to improve the network lifetime in spe-

cific use cases, mostly for WSNs consisting of homogeneous sensor nodes and a single sink.

In [5], the schedule and charge amounts of a mobile vehicle that charges nodes were opti-

mized, while in [6] nodes may regain energy through energy harvesting, and routing is then

optimized to maximize the lifetime. Routing is also the focus of [7], however here an energy-

balancing routing protocol is developed, rather than determining optimal routes. Multilayer

optimization approaches are adopted in [8] and [9], covering multiple different aspects of

WSN design. In [8], the design of the physical, medium access control, and network layers

was jointly optimized, including flow routing, link scheduling, transmission rate selection,

and node power allocation. This resulted in a non-convex optimization problem that was

difficult to solve, even for the simple string topology considered. Meanwhile, in [9], sensor

location, activity scheduling, sink mobility, and data routing were jointly optimized. All

of the above criteria were included directly in the mixed-integer programming formulation,

meaning that it is quite specific to the particular use case considered. Sink placement for

network lifetime maximization is investigated in [10] using k-nearest neighbour optimization
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with the whale meta-heuristic.

In all of the above work, the nodes in the network are homogeneous, all performing both

sensing and data forwarding. No data processing is performed in the network, and only a

single configuration is used, rather than reconfiguring the network in order to assist with

energy balancing and thus extend the network lifetime. Moreover, only a single application

demand, consisting of collecting data from all nodes to a single sink, can be accommodated.

In this paper, we instead optimize the network lifetime for a network that may host a general

class of heterogeneous application demands, and in which nodes may play different roles and

perform different operations for different applications.

Some work has been performed regarding network lifetime for networks with heteroge-

neous nodes, but only in a quite limited sense. For example, there is work based on the

LEACH clustering protocol [11, 12], where each node may be either an ordinary sensor node

or a cluster head at different times. Examples of variations on LEACH that improve the

network lifetime include [13], [14] and [15], while [16] presents a clustering routing protocol

that considers both network lifetime and coverage. In [17], the nodes are also heterogeneous,

however they may only be of two types: sensor nodes and relay nodes. This is also the case

in [18], where network lifetime is defined as the time until the first node depletes its battery,

and (unicast) routing is then optimised for each traffic flow to reach the sink.

Some work in the literature also considers in-network processing. In [19], data aggregation

trees are constructed and scheduled, and the network can be reconfigured, in that different

trees can be used in different time periods. This work again uses the traditional WSN model

of many homogeneous sensor nodes all sending measurements to a single sink. The scenario

considered in [20] focuses on a machine-to-machine communication application similar to

the one we consider, including the presence of edge nodes in the network. However, there,

the problem addressed is that of data placement on these edge nodes in order to maximize

the network lifetime under latency constraints. Routing is performed by selecting the paths

that yield the maximum lifetime, defined as the time until any node runs out of energy;

reconfiguration of the network as we propose in this paper is not considered.

A few general frameworks for maximizing network lifetime have also been developed. In

[21], the focus is on network deployment, specifically the initial energy allocated to each
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node. Once again nodes are homogeneous, with all nodes collecting data and transmitting

it to their neighbors, and the definition of network lifetime is the time until the first sensor

depletes its battery. A more general definition of network lifetime is used in [22], which

applies a framework based on channel states aimed at developing medium access protocols

for improved lifetime. However, nodes have fixed roles and only a single application is

considered.

The most similar approach to our work can be found in [23], where nodes may take on

multiple different roles at different times. Indeed, there, a similar solution method to the

one we employ, based on column generation, is used. However, in [23], the pricing problem

for column generation requires enumeration of connected components in the network graph

and so is solved with the help of cut generation, whereas we explicitly list constraints for

valid routing trees in our pricing problem and solve it directly. Further, there are a number

of key differences in the problem considered that differentiates our work here from that in

[23]. Firstly, only a single, specific monitoring application is considered, and as such the

network lifetime definition adopted is based on coverage of the target area, rather than

the more general definition we take. The aim is then only to cover the targets and the

interdependencies between nodes required to establish valid routing trees are not considered.

In fact, cases where the traffic through the nodes has a significant impact on nodes’ power

consumption is identified in [23] as a direction for future work. This is exactly the case we

address here, where applications consist of data streams and as such transmission represents

a major energy-consuming operation for the nodes in the network.

3. System Model

We take as our starting point the scenario described in [1], that is a wireless multihop

network carrying out machine-to-machine communication. Within the network, some nodes

are able to act as sensors, collecting information about their environment, and some nodes

are actuators, able to use the collected sensor information and carry out tasks. Nodes that

are neither sensors nor actuators may transit data through the network, possibly aggregating

it along the way, and we refer to these nodes as aggregators. As in [1], a stream is defined as

data that is able to be aggregated. In this paper, we use the term (wireless) mesh network
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to refer to the network topology of multiple wireless hops in a non-hierarchical mesh, and

machine-to-machine communication to refer to the application performed by the network:

communication between machines, which may have sensors, actuators, or both.

In [1], we considered two different data collection models, however in this work we will

focus on the second and more difficult of these — referred to as the nK case — in which

n different actuator nodes must each collect sensor measurements from K different sensor

nodes. This use case requires that data is both aggregated as it is collected from the sensor

nodes, and disseminated via multicast transmissions to multiple actuator nodes.

We then seek to maximize the network lifetime. We define network lifetime as the time

until the network is no longer able to carry out the above task, that is, the time until n

different actuators are no longer able to each collect K different sensor measurements. Here,

n may in general be smaller than the total number of actuators, and K may in general be

smaller than the total number of sensors. Moreover, the above definition does not specify how

the measurements should be aggregated, routed, and disseminated throughout the network.

In fact, we will allow the choice of sensor, actuator and aggregator nodes, as well as the

routing, to be varied during the network’s operation in order to extend its lifetime as some

nodes deplete their batteries.

To this end, we define a network configuration as a set of chosen sensor, aggregator,

and actuator nodes, as well as appropriate routing to take measurements from the sensor

nodes, aggregate and transit them through the network via the aggregator nodes, and then

disseminate them to the actuator nodes. In order to be valid, each network configuration

must fulfill the nK-condition of n different actuator nodes each collecting K different mea-

surements. Note that while each actuator node requires K different measurements, these

may be common to multiple actuator nodes.

A simple example network is shown in Figure 1, with two different configurations. The

destination node, shown in the figure in blue and labelled as d, must collect three different

sensor measurements, that is one each from origin nodes o1, o2, and o3. The measurements

from o1 and o3 must be routed through aggregator nodes n1 and n2, respectively, since

these are the only available nodes in range. However, the measurement from o2 may be

aggregated and transited through either n1 or n2, since both are in range of o2. One network
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Figure 1: Two different network configurations to collect three different measurements at a single destination.

Links used by each configuration are shown in red.

configuration is then defined for each of these options.

Since aggregating two measurements takes additional energy compared with only transit-

ing a single measurement, in the configuration in Figure 1a, node n1 will have a higher energy

cost, while in the configuration in Figure 1b, node n2 will use more energy. As there are an

odd number of measurements to be collected, in this case it is not possible to evenly share

the energy cost between the two aggregator nodes within a single configuration. Using two

configurations, however, allows us to do so, so that if we use each configuration for an equal

amount of time, nodes n1 and n2 will deplete their batteries at the same rate. Assuming their

initial battery capacities are equal, using two configurations thus allows us to increase the

network lifetime when compared with using only one of the two configurations. In the latter

case, one of the aggregators would deplete its battery faster, leaving some unused energy in

the battery of the other aggregator. When using both configurations, all of the energy is

used.

In our system model, data collection occurs in measurement periods of equal duration.

During each measurement period, the nodes in the network perform their required tasks

(sensing, aggregating, receiving, and transmitting) to fulfill the nK-condition. After a node

has performed all its allocated tasks, it may sleep until the next measurement period. We thus

consider that nodes only consume energy to perform their tasks, while the energy consumed

during sleep is negligible. The duration of each measurement period must of course be long

enough to carry out the entire data collection and dissemination task. In many applications,
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it is in fact considerably longer, with measurements being collected perhaps every hour or

day. While in some cases, such as factory automation, the network may operate on a tight

control loop requiring low delay and thus short measurement periods, such applications are

not typically energy constrained and so are not the focus of this work.

The network lifetime is then expressed in measurement periods, that is, the lifetime

is equivalent to the number of times the network can collect and disseminate the required

sensor values before it is no longer able to meet the nK-condition. To achieve a given lifetime,

each network configuration operates for a designated timeshare: a number of measurement

periods. We may use the lifetime and timeshares in one of two ways. The first of these is

that, in the case of an existing network, and given a set of tasks the network must perform,

we can determine the longest possible operating time, together with the configurations and

their timeshares needed to achieve it.

We may also consider the case of network deployment, where there is again a given set of

tasks, along with a target lifetime that the network must achieve. The lifetime will in general

be limited by the battery capacities of the nodes: if the nodes start with more energy, they

can operate for longer. The problem for network deployment is them to correctly dimension

the nodes’ battery capacities such that the target network lifetime will be achieved. In

this case, it is beneficial to allow the configuration timeshares to be fractional. Of course, in

reality, the network would not be operated for a fraction of a measurement period, since doing

so does not provide a fraction of the utility of that measurement period. Indeed, in such a

case it may be that no measurements reach their destinations in time at all. Nonetheless,

allowing fractional timeshares allows us to determine the maximum possible network lifetime

for given battery capacities of the nodes, and then scale this solution to the desired lifetime

by adjusting the battery capacities accordingly. For example, we may double the battery

capacity of all nodes, and consequently double all configuration timeshares, giving double

the network lifetime.

Scaling fractional timeshares in this way will provide the optimal lifetime for the larger

battery capacities, whereas, as we will see in our numerical results in Section 4, this is not

the case if the original solution was only allowed to include integer timeshares. Of course, it

may not be possible to achieve fractional timeshares exactly, but as the battery capacities
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increase, we can achieve greater precision when rounding the timeshares. We thus have a

trade-off between the generality of the solution and its exactness. A fractional solution can

be applied at any scale to achieve a desired lifetime, but an integer solution can be applied

with no quantization error.

3.1. Notation and definitions

We represent the wireless network as a directed graph G = (V ,A), where links (i.e.,

directed arcs) are established between nodes if they are able to communicate with a satisfac-

tory SNR in the absence of any interference. We denote the set of arcs incoming to a node

v ∈ V by δ−(v), and the set of arcs outgoing from v by δ+(v). The set of nodes V is composed

of three mutually disjoint subsets: the set of sensor (origin) nodes O, the set of aggregator

nodes N , and the set of actuator (destination) nodes D. Thus V = O∪N ∪D. Origin nodes

generate, transit, and aggregate packets; aggregator nodes transit and aggregate packets,

but do not generate them; and destination nodes can aggregate packets but do not transit

them, and therefore δ+(d) = ∅, d ∈ D.

We define a network configuration as a set of tasks performed by the nodes in the network.

A configuration is valid if it is able to deliver K unique measurements to each of n unique

destination nodes. Each configuration therefore includes a subgraph G ′ ⊆ G, G ′ = (V ′,A′),

with V ′ ⊆ V and A′ ⊆ A, describing which nodes participate in the configuration, and the

links along which measurements can traverse. Each node in the configuration is assigned to

perform operations that may consist of transmission, reception, aggregation, and/or sensing

(for origin nodes). The set of all possible valid network configurations is denoted C.

All packets arriving at a sensor or aggregator node are aggregated and then broadcast.

Since we assume that a measurement period is significantly longer than the time required to

collect and disseminate all sensor measurements, each transmitting node only needs to make

a single transmission — if need be, all transmissions can be conducted in series to avoid

interference and the measurements will still be delivered within the measurement period.

This simplifies the energy calculations, since we only need to count one transmission per

node, and we do not need to consider transmission power adjustment to compensate for

interference.
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Moreover, we do not need to explicitly account for the energy required to receive packets.

If a node receives a single packet, it must always then re-transmit it (unless it is a destination

node), and so the energy required for reception can simply be included in the transmission

energy cost. If a node receives multiple packets, it always aggregates them, and so the extra

energy required to receive them can be included in the aggregation energy cost, which in our

formulations is proportional to the number of received packets minus one.

It is assumed that only the origin and aggregator nodes have limited battery capacity

and this limitation does not apply to destination nodes v ∈ D. This is because these nodes

are either gateways collecting data, or actuator nodes that perform other, most likely highly

energy-demanding, tasks, and so the energy required for data reception and aggregation is

not significant for these nodes.1 Hence, each node v ∈ O∪N has a specified (limited) battery

capacity B(v), expressed in Joules (J), and in each network configuration c ∈ C, node v uses

P (v, c) J of energy per measurement period. P (v, c) is thus the energy cost for node v to

deliver one entire set of measurements fulfilling the nK-condition when configuration c is

active. For each configuration c ∈ C, we define the timeshare tc of c to be the number of

measurement periods in which c is scheduled to be active.

A summary of notation used is shown in Table 1. Observe that in our notation indices

of a given parameter (if any) are put in brackets (like in P (v, c)), while indices of variables

are placed as subscripts and/or superscripts (like in zoda ). This convention, used for example

in [24], helps to make problem formulations readable.

3.2. Master problem

The network lifetime problem can be formulated as the following integer programming

problem, called the master problem:

max
∑
c∈C

tc (1a)

∑
c∈C

tcP (v, c) ≤ B(v), v ∈ O ∪N (1b)

1It would however not be difficult to modify our formulations to consider limited energy at destination

nodes, if desired, by changing the indexing sets for the energy constraints in the pricing problem.
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V set of nodes (vertices) in the network

A set of arcs (v, w), v, w ∈ V indicating node w is within transmission range of node v

(barring any interference)

O set of origin (sensor) nodes

N set of aggregator nodes

D set of destination (actuator) nodes

C set of network configurations

δ−(v) set of incoming arcs to node v

δ+(v) set of outgoing arcs from node v

tc timeshare of network configuration c ∈ C

xod whether or not the measurement from origin o ∈ O is received by destination d ∈ D

zoda flow of the measurement from origin o ∈ O to destination d ∈ D on arc a ∈ A

yoa whether or not arc a ∈ A carries the measurement from origin o ∈ O

Ya whether or not arc a ∈ A carries an (aggregated) measurement

Xoo′
v whether or not the measurements from origins o, o′ ∈ O are aggregated at node v ∈

N ∪ D

Gv energy required to broadcast from node v ∈ O ∪N

gv number of (aggregated) measurements aggregated at node v ∈ O ∪ N minus 1 (and 0

if there is no aggregation at v)

uo whether or not the measurement from origin o ∈ O is received by any destination

O|2| set of all 2-element subsets of O

T (a) transmission energy required on arc a

S(v) processing energy required for aggregation by node v

B(v) battery capacity of node v (in J)

P (v, c) energy used per measurement period by node v in configuration c (in J)

E(v, c) battery depletion fraction per measurement period of node v in configuration c

B set of binary numbers {0, 1}

R set of real numbers

R+ set of non-negative real numbers

Z+ set of non-negative integers

Table 1: Summary of notation.
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tc ∈ Z+, c ∈ C. (1c)

The objective (1a) maximizes the sum of the times, expressed in measurement periods, in

which each network configuration is active, giving the total operating time for the network.

Constraint (1b) requires that the energy used by node v ∈ O ∪ N across all configurations

does not exceed v’s battery capacity. Constraint (1c) specifies that the timeshare allocated

to each network configuration must consist of an integer number of measurement periods.

We thus find an exact optimal solution for the given battery capacities.

For a solution that is scalable with the battery capacities, but that may introduce quan-

tization error in realizing the timeshares, we can instead take the linear relaxation of for-

mulation (1), that is, changing constraint (1c) to tc ∈ R+, so that integrality of variables

tc, c ∈ C, is relaxed. This linear relaxation is an important element in our optimization

approach to network lifetime maximization, and is formulated as follows.

max
∑
c∈C

tc (2a)

∑
c∈C

tcE(v, c) ≤ 1, v ∈ O ∪N (2b)

tc ∈ R+, c ∈ C, (2c)

where E(v, c) = P (v,c)
B(v)

, v ∈ O∪N , c ∈ C, defines the (dimensionless) depletion fraction of the

battery of node v, that is, the proportion of node v’s total battery capacity that is used up

during one measurement period when configuration c is applied. Formulation (2) is obtained

from (1) by dividing both sides of inequalities (1b) by B(v) (which is assumed to be greater

than 0). Observe that if the values t∗c , c ∈ C, form an optimal solution of the linear relaxation

(2) then bt∗cc, c ∈ C, constitute a feasible solution of the master problem (1). Moreover, such

a solution tends to be close to optimal when the lifetime of the network consists of a large

number of measurement periods, that is, when nodes’ depletion fractions are low.

It is important to observe that the master problem formulated here is non-compact, which

means that it has an exponential number of variables tc, c ∈ C, since in general the number

of valid network configurations (i.e., |C|) grows exponentially with the size of the network.

We will come back to this issue in Section 3.4.
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3.3. Dual problem

In order to solve the master problem above, we first solve its linear relaxation (2) by

column generation [25]. We start with an initial set of network configurations C ′ (where

C ′ ⊂ C) and then iteratively generate new configurations that can improve the objective

(2a). To do this, we first need to take the dual [25] of the linear programming problem

represented by (2) with C substituted with C ′ (called the primal problem in this context).

The dual problem is as follows:

min
∑

v∈O∪N

πv (3a)

∑
v∈O∪N

πvE(v, c) ≥ 1, c ∈ C ′ (3b)

πv ∈ R+, v ∈ O ∪N , (3c)

where πv, v ∈ O ∪N , are dual variables corresponding to the primal constraints (2b). Note

the nice symmetry exhibited by the primal and dual problems, with the role of network

configurations and timeshares interchanged.

3.4. Pricing problem

To generate new improving configuration (if any) we need a pricing problem, and this is

where the main complexity lies. The master problem itself is very general and could apply to

any type of energy-draining task in which the nodes deplete their batteries at different rates

in different configurations. However, it is the pricing problem that finds a proper improving

configuration c′ (among all valid configurations in C \C ′) and delivers the resulting depletion

fractions E(v, c′) implied by c′ to be used in formulation (3) with C ′ augmented with c′.

Such a pricing problem for the nK use case is shown in formulation (4), and is based on

the nK formulation in [1]2. Note that the pricing problem makes use of an optimal solution

2We show here the formulation for a single application data stream. However, this can be adapted to

multiple data streams in a straightforward way by adding indices s, for s in the set of data streams, to both

the variables and node sets. This allows the set of available origin, aggregator, and destination nodes to be

specific to each stream. See [1] for more details.
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π∗v , v ∈ O ∪N , of the dual.

min
∑

v∈O∪N

π∗vEv (4a)

∑
o∈O

xod ≥ K, d ∈ D (4b)

∑
a∈δ+(v)

zoda =
∑

a∈δ−(v)

zoda , o ∈ O, d ∈ D, v ∈ V \ {o, d} (4c)

∑
a∈δ−(d)

zoda = xod, o ∈ O, d ∈ D (4d)

zoda ≤ Ya, o ∈ O, d ∈ D, a ∈ A (4e)

Ya ≤
∑
o∈O

∑
d∈D

zoda , a ∈ A (4f)

zoda ≤ yoa, o ∈ O, d ∈ D, a ∈ A (4g)

yoa ≤
∑
d∈D

zoda , o ∈ O, a ∈ A (4h)

∑
a∈δ−(v)

yoa ≤ 1, o ∈ O, v ∈ V (4i)

Xoo′

v ≥ yoa +
( ∑
a′∈δ−(v)\{a}

yo
′

a′

)
− 1, v ∈ V , a ∈ δ−(v), {o, o′} ∈ O|2| (4j)

∑
v∈V

Xoo′

v ≤ 1, {o, o′} ∈ O|2| (4k)

gv ≥
∑

a∈δ−(v)

Ya − 1, v ∈ N (4l)

go ≥
∑

a∈δ−(v)

Ya + uo − 1, o ∈ O (4m)

uo ≥ xod, o ∈ O, d ∈ D (4n)

Gv ≥ T (a)Ya, v ∈ O ∪N , a ∈ δ+(v) (4o)

Ev =
Gv + S(v)gv

B(v)
, v ∈ O ∪N (4p)

xod ∈ B, o ∈ O, d ∈ D (4q)

zoda ∈ B, o ∈ O, d ∈ D, a ∈ A (4r)

yoa ∈ R+, o ∈ O, a ∈ A (4s)

Ya ∈ R+, a ∈ A (4t)
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Xoo′

v ∈ R+, v ∈ N ∪ D, {o, o′} ∈ O|2| (4u)

uo ∈ B, o ∈ O (4v)

gv ∈ R+, v ∈ V (4w)

Gv, Ev ∈ R+, v ∈ O ∪N . (4x)

The pricing problem generates a network configuration that performs the task of deliv-

ering K unique measurements to each of n destinations. It must therefore ensure that the

routing used for the measurements is correct — that is, each measurement follows a non-

cyclic path to each destination to which it is delivered. Further, it makes sure that whenever

a node receives more than one measurement, it aggregates them, transmitting only a single,

aggregated packet further along the route. Since the goal of our pricing problem is not only

to find a valid configuration, but to find a configuration that improves the network lifetime

as much as possible, it must also consider the energy used by the nodes in performing their

tasks in the configuration. To this end, the pricing problem calculates the energy needed by

each node for both transmission and aggregation.

The first decision variable in the pricing problem, xod, will be set to 1 if the measurement

collected by origin node o ∈ O is delivered to destination node d ∈ D. Constraint (4b) then

guarantees the nK-condition, that is, that each selected destination node receives at least

K measurements. The next set of variables and constraints concern routing. Variables zoda

describe flows from origin node o ∈ O towards destination node d ∈ D along arc a ∈ A.

Constraints (4c) and (4d) then provide flow conservation, subject to destination d being

selected to collect a measurement from origin o (xod = 1). The variable Ya, a ∈ A, will be 1

if arc a is used to carry any flow, and 0 otherwise. This is ensured by constraints (4e)–(4h).

Although variables Ya are formally continuous, in the optimal solution they will only take the

values 1 or 0, since they are forced to 1 by binary variables zode on arcs used for transmission

(constraint (4e)), while on arcs with no transmissions they are forced to 1 (constraint (4f)).

Variables yoa describe whether or not arc a ∈ A is used to carry the measurement from origin

node o ∈ O, and have the same property of being set to only 1 or 0 in the optimal solution,

since they are either forced to 1 by constraint (4g), or to zero by constraint (4h).

The next part of the pricing problem concerns aggregation. Firstly, constraint (4i) pre-
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vents a node from receiving a given measurement on more than one arc. Variable Xoo′
v

records where aggregation occurs for each pair of measurements; it will be 1 if and only if

the measurements from origin nodes o and o′, o, o′ ∈ O, are aggregated at node v ∈ V . If a

node receives measurements from two different origins on different arcs, constraint (4j) then

forces the node to aggregate the measurements. Lastly, constraints (4k) make sure that two

packets from different origin nodes can be aggregated at most once.

The remaining constraints and variables are used to calculate the energy costs. Any

node that receives at least two packets aggregates them, and will incur a processing cost

proportional to the number of packets aggregated less one. Constraints (4l)–(4n) calculate

the number of aggregation operations for each node v ∈ V , and record this in variable gv.

Here, a special case occurs for origin nodes selected to provide measurements, as each such

node aggregates an extra packet (its own measurement). This is indicated by variable uo. If a

node transmits a packet, this also carries an energy cost, placed in variable Gv by constraint

(4o). Each node’s transmission energy cost is given by the highest transmission cost T (a),

a ∈ A, for any arc on which it transmits.

Finally, the depletion fraction for each node v ∈ V is computed in constraint (4p) and

placed in variable Ev. Here, the total aggregation cost is given by the term S(v)gv, where

S(v) is the energy cost for each aggregation operation and, as previously mentioned, gv gives

the number of aggregation operations performed by node v. This is added to v’s transmission

energy cost Gv and divided by its battery capacity B(v) to give the depletion fraction. Aside

from the energy calculation in constraint (4p), which is modified to represent each node’s

depletion fraction instead of its absolute energy usage, the constraints for the pricing problem

are the same as for the total energy minimization problem for the nK use case as defined in

[1]. Otherwise, it is only the objective that needs to be changed to reflect the dual constraint

(3b).

The pricing problem generates a network configuration c′ with E(v, c′) = E∗v , where

E∗v , v ∈ O∪N , is an optimal solution of (4). The generated configuration c′ is an improving

configuration (that is added to the current set of configurations C ′) only when the result-

ing optimal objective (4a) is strictly less than 1. This is because adding constraint (3b)

corresponding to c′ to the dual formulation (3) will make the current optimal dual solution
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π∗v , v ∈ O ∪ N , infeasible. Moreover, the constraint generated by the new configuration is

violated by the optimal dual solution in question to the maximal extent; in fact, the value

of this violation is equal to what is usually called the reduced cost of the non-basic variable

c′ in the simplex algorithm. On the other hand, when the optimal objective is greater than

or equal to 1, there is no improving configuration outside C ′ and therefore C ′ is sufficient

to solve the linear relaxation (2) to optimality even though not all configurations in C are

directly considered.

The strength of our solution approach can be seen here. We use a general framework for

solving for the network lifetime, with the specifics of the task(s) the network is to perform

relegated to the pricing problem. The complexity and difficulty of properly formulating

constraints for routing and aggregation as in our pricing problem is typical of many other

network problems. By adopting our approach, the lifetime can be maximized for any task,

and the formulation of the specific task constraints is a relatively independent undertaking,

with only the objective determined by the dual problem (3).

3.5. Solving the master problem

For solving the (integer) master problem formulated in (1) we use the so-called price-

and-branch (P&B) two-stage algorithm [26]. In the first stage we solve the linear relaxation

(2) of the master problem by column generation that involves, as explained above, solving

the pricing problem (4) (that is why the word “price” appears in P&B). Then, in the second

stage, we solve formulation (1) through the standard branch-and-bound (B&B) algorithm

(that is why the word “branch” is used in P&B) available in mixed-integer programming

solvers, such as CPLEX, for the fixed set C ′ of configurations resulting from the column

generation algorithm. Clearly, the so obtained solution of the master problem is in general

suboptimal as there is no guarantee that the set C ′ contains a subset of the configurations

necessary to achieve the optimum (which would be guaranteed if the set C of all configuration

were applied).

Actually, to assure true optimality, the master problem should be solved using the branch-

and-price (B&P) algorithm [26] instead of P&B. The basic difference between B&P and P&B

is that in the latter the column generation algorithm is invoked only once, at the root node of
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the B&B tree, and then the linear subproblem solved at each of the subsequent B&B nodes

assumes the subfamily C ′ computed at the root. B&P in turn, would apply the column

generation algorithm at each B&B node. Because of this, B&P would consume excessive

overall computational time even for medium size networks.

In fact, it is also possible to solve the master problem to optimality using a compact

mixed-integer problem formulation (instead of using the non-compact formulation (1) to-

gether with the pricing problem (4)) for which the number of variables and constraints is

polynomial in the size of the network and the battery capacity. In such a formulation, the

configurations for the consecutive measurement periods are specified explicitly by means of

additional binary variables and corresponding constraints (for each measurement period) in

the way used in the pricing problem. The so obtained formulation could be solved directly,

using a mixed-integer programming solver, but this would involve a number of binary vari-

ables that is far beyond the reach of current solvers. For this reason, we take the more

practical approach of P&B to solve this computationally hard problem.

As already observed in Section 3.2, a feasible solution of the master problem can be

easily obtained by rounding down the optimal values t∗c , c ∈ C ′, of the linear relaxation

resulting from the column generation algorithm. The quality of such an integer solution can

in general be improved by solving the master problem for the set of configurations C ′′, where

C ′′ = {c ∈ C ′ : t∗c > 0}. This may considerably decrease the number of variables in (1)

(and thus speed up the computations) since the number of configurations in the set C ′′ is not

greater than the number of nodes with entirely exhausted batteries in the optimal solution

of the linear relaxation — this follows from the form of the basic optimal solution of a linear

programming problem [27]. Such an obtained solution could also be used as an initial lower

bound in the second stage of the P&B algorithm, improving its performance.

3.6. Practical Implementation

As our results in Section 4 will show, the time needed to solve our optimization formu-

lations using the approach described above is feasible for practical implementation of this

approach provided that the network lifetime obtained is sufficiently long. We will defer fur-

ther discussion of the solution times to Section 4, however there are a number of other issues
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that need to be addressed to realise a practical deployment. These are how and where the

optimization is performed, how the nodes in the network are informed of the configurations

to use and their roles in them, and what signalling is required to initiate each reconfiguration

of the network at the correct time.

In many networks performing machine-to-machine communication, a connection to the

wider Internet is present in at least some nodes. In fact, this can be regarded as the typical

case, and increasingly so in future, as new radio technologies such as LPWAN and 5G bring

Internet connectivity to more areas. In this case, the optimization problems can easily be

solved in the cloud, with its abundant computing resources, and the results communicated

to the nodes in the mesh network via the Internet gateways. However, even in the case of

a standalone network, since the configurations can be computed in advance, it is possible

to solve the optimization problems before deployment of the network, with the results then

pre-programmed into the nodes. This adds to the storage requirements of the nodes, since

they must store the timing of each configuration and their role in it, however this increase

is modest since, as we will see in Section 4, only few configurations are needed to reach the

maximal lifetime.

A more difficult issue is that of coordinating the nodes to perform the actual reconfig-

urations. Correct updating of network flow routing is a non-trivial issue that has been the

subject of much research, both in traditional IP networks and software-defined networks

[3], with potential pitfalls such as forwarding loops and forwarding black holes if nodes are

updated in the wrong order. As such, the definition of a protocol to ensure correct operation

of the network during reconfiguration is beyond the scope of this work, but existing work on

software-defined network updating could be used as a basis for this.

Nonetheless, it is clear that synchronization is required so that all nodes will update their

configurations at the designated time. However, since each configuration is expected to be

used for at least hours, and more likely weeks or longer, this synchronization does not need

to be particularly precise. One possible mechanism could be the designation of one or more

controller nodes in the network that can disseminate a reconfiguration message to the other

nodes, for example via simple flooding, when it is time to adopt the next configuration.

Relative to the time of operation of each configuration, this will incur only a small overhead
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Nodes Area width [m] K |O| |D| |N |

10 122.47 3 4 2 4

15 150.0 5 6 3 6

20 173.21 6 8 3 9

25 193.65 8 10 4 9

30 212.13 9 12 5 13

Table 2: Parameters used for the numerical study.

in network capacity and energy usage. In the case of a network with an Internet connection,

the controller may even be external, placed in the cloud or a fog node.

4. Numerical study

We conducted a numerical study in which we generated networks using [28], with 10 to 30

nodes. The networks were generated using the same methodology and parameters as in [1] in

order to have comparable results. Nodes were placed uniformly randomly in a square area,

with the area, number of measurements to collect, and number of sensor and destination

nodes all scaled with the network size. The exact parameters used are given in Table 2. For

each network size, 20 different networks were generated, and all results are presented with

95% confidence intervals over the different network instances.

In order to initialize the column generation, we used the total energy minimization prob-

lem from [1]. This gives an initial network configuration that minimizes the sum of the

energy used by all nodes in one measurement period. We then iterated through the column

generation process, solving first the linear relaxation of the master problem (formulation (2))

to get the optimal dual solution vector π∗, and then the pricing problem to generate new

network configurations. When column generation was complete, the master problem was

solved a final time to get the optimal timeshares for each network configuration.

As discussed in Section 3.2, at this point we could either solve the master problem as

an integer problem, yielding an exact solution for the specific battery capacities given, or

we could again solve its linear relaxation, giving a solution that scales with the battery

capacities, albeit with a quantization error that depends on the absolute capacities. In
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Figure 2: Network lifetime vs. number of nodes in the network (linear relaxation).

our numerical study, we solved both variants in order to compare them. Since only the

relative energy costs of each operation are needed, we set the aggregation cost to 1 and the

transmission cost to 5 as in [1]. For the linear relaxation, we used a battery capacity of

100, that is, a node may perform 100 aggregation operations or 20 transmission operations

before depleting its battery. Here the actual capacity is not important, as long as it is large

enough to allow the network to complete at least one measurement period. For the integer

problem, however, we used a battery capacity of 1000 so that we were able to accommodate

a reasonable number of different configurations in the solutions.

4.1. Results

4.1.1. Linear Relaxation

Figure 2 shows the network lifetime vs. the network size, that is, the number of nodes in

the network, for the linear relaxation case. The total network lifetime was quite consistent,

with small variance for each network size, and not much difference in lifetime across different

network sizes. However, there is a slight decrease in the lifetime as the number of nodes

increases. In [1], both the total energy cost and the max-min per node energy cost increased

with the number of nodes, and the lifetime reflects this same trend: with increasing energy

costs, the lifetime decreases.

However, if we compare the improvement gained by optimizing for maximal network life-

time, as opposed to for minimal total energy (Figure 3), we see that the improvement is
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Figure 3: Network lifetime improvement compared with minimum total energy configuration vs. number of

nodes in the network (linear relaxation).

relatively flat across different network sizes. The largest improvement achieved for the net-

works tested was approximately 1.75 times the lifetime when simply using the configuration

that gives the minimal total energy. Solution times (averaged across all experiment runs)

for both the primal and dual problems were very short: less than 0.01 s in all cases.

However, the solution times for (all iterations of) the pricing problem were much longer:

1.6 s for 10 nodes and increasing exponentially to 817 649 s (227 hours) for 30 nodes. As can

be seen in Figure 4, this increase is partly due to an increase in the number of iterations of

the pricing problem that are needed as the network size grows. The increasing solution times

indicate that as the network lifetime increases, the absolute battery capacity of the nodes

needs to be sufficiently large to make it worthwhile to obtain optimal solutions for maximum

lifetime. For example, if the network would operate for multiple years — not unreasonable

in many IoT applications, for example infrastructure monitoring — then even long solution

times for optimization can easily be accommodated.

Another aspect that impacts the feasibility of implementing optimal solutions in practice

is the overhead required for switching between different network configurations. Figure 5

shows the number of configurations used in the final optimal solution as a function of network

size, and Figure 6 shows the minimum timeshare assigned to any configuration. The number

of configurations used was relatively small, around 10 even for the largest networks we tested,

but did increase with the network size. Further, as shown in Figure 6, in some cases the
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Figure 4: Pricing problem iterations needed to reach the final optimal solution (linear relaxation).
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Figure 5: Number of network configurations used in the final optimal solution (linear relaxation).

timeshares could be quite small. As such, whether or not it is worthwhile to use these small

timeshares depends on the time and energy needed to switch configurations, as well as the

absolute battery capacity, since the absolute time (in seconds) for each timeshare scales

directly with the battery capacity. If the overall lifetime is very long, even a small timeshare

— representing only a few percentage points of the total lifetime — may last for days or

weeks, and therefore be worth employing in practice.

4.1.2. Integer Problem

In the integer case, the network lifetime (Figure 7) and the lifetime improvement com-

pared with using the minimal total energy solution (Figure 8) showed similar behaviour to
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Figure 6: Minimum proportion of total network lifetime allocated to any one configuration used in the final

optimal solution (linear relaxation).
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Figure 7: Network lifetime vs. number of nodes in the network (integer problem).

that seen in the linear case. Although the highest improvement achieved was slightly lower

than for the linear relaxation, since the integer problem gives exact solutions, we will have

no further decrease in lifetime due to quantization as we do if we apply the linear solution.

In terms of actually solving the problem, the number of configurations actually used

in the solution to the master problem was again similar (Figure 9), as were the smallest

timeshares (Figure 10). However, in the integer case, no timeshare can be smaller than a

single measurement period, so there is an inherent lower bound on the smallest possible

timeshare. Indeed, in some solutions to our test cases the smallest timeshare was just one

measurement period.
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Figure 8: Network lifetime improvement compared with minimum total energy configuration vs. number of

nodes in the network (integer problem).
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Figure 9: Number of network configurations used in the final optimal solution (integer problem).

Even though the primal problem in this case used integer variables for the timeshares,

the solution times were nonetheless similar. Both the primal and dual problems solved very

quickly in all cases, with the time required dominated by the pricing problem. (Since the

column generation process is the same for both the integer and linear cases, the solution

times for the pricing problem in the integer case must always follow the same behavior as

for the linear relaxation case.) This means that the integer version of the problem is just as

feasible to use in practice as the linear relaxation, as long as the battery capacities of the

nodes are known in advance.

27



10 15 20 25 30
Number of nodes

0.0

0.1

0.2

0.3

0.4

0.5

M
in
im

um
 ti
m
es
ha

re
 p
ro
po

rti
on

Figure 10: Minimum proportion of total network lifetime allocated to any one configuration used in the final

optimal solution (integer problem).

4.1.3. Comparison of solution bounds

As discussed in Section 3.5, we can readily obtain a feasible solution to the integer version

of the master problem by rounding down the timeshares that constitute the solution to the

linear relaxation. We will call this solution the LR floor. A better solution can be obtained

by solving the integer problem using C ′′ — the set of network configurations with non-zero

timeshares in the linear relaxation — rather than all generated configurations. We will refer

to this solution as the IP restricted solution. Figure 11 shows the network lifetime for these

two lower bounds, as well as using the linear relaxation, and an upper bound obtained by

rounding up the timeshares in the solution to the linear relaxation, called LR ceiling.

As can be seen in the figure, the bounds on the integer problem are quite tight, meaning

that a good solution can be obtained using either of the proposed lower bounds. The variation

in network lifetime, as in the previous results, is quite small, but shown in Figure 11 at a

larger scale in order to distinguish the different solution methods. Since the confidence

intervals largely overlap, we cannot infer any trend in the lifetime for any of the solution

methods, save that at 30 nodes it is lower than at 10 nodes. More data would be needed to

determine whether the lifetime would continue to decrease at larger network sizes.

However, for the network sizes we tested, using the lower bounds does not result in

significant savings in solution time (Figure 12); in fact, for 20 nodes, the average solution

time for the IP restricted solution was higher than for the IP with all configurations. This was
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Figure 11: Network lifetime vs. number of nodes in the network, comparison of different linear and integer

solutions.
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Figure 12: Solution time vs. number of nodes in the network, comparison of different integer solutions.

however due to two anomalous network instances that took much longer to solve for the IP

restricted case; for most network instances the IP restricted solution was faster or similar to

the unrestricted IP solution. Although the solution times for all cases were very fast for our

generated networks, it may be useful to use the LR floor or IP restricted solutions for larger

networks, or for applications where the pricing problem constitutes a smaller proportion

of the overall solution time (and thus the solution time for the master problem is more

significant).
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5. Conclusion

In this paper we have presented optimization formulations for maximizing the network

lifetime, that is, the total operating time, of a wireless mesh network. In particular, we have

focused on the case of machine-to-machine communication requiring data aggregation and

dissemination within the network, where nodes are heterogeneous and may take on different

roles and tasks. Our models allow for reconfiguration of the network as nodes drain their

batteries, thus balancing the load of transmission and processing (aggregation) over time to

ensure the network continues to function for as long as possible.

Our numerical study, conducted on randomly generated wireless mesh networks from 10

to 30 nodes in size, shows the potential to improve the network lifetime substantially through

such intelligent reconfiguration. We achieved increases in network lifetime of up to 75% over

the network configuration giving the minimal total energy usage. These gains are consistent

over different network sizes. Although the number of configurations required to achieve

the maximum lifetime increased with the network size, it remained low in all cases, with

only around 10 different configurations used. In applications where network lifetime is an

important performance metric, such as infrastructure or agriculture monitoring, the network

is expected to work over a longer time period of months or even years. Reconfiguration is

thus needed only infrequently in order to obtain the maximum possible lifetime.

The models and methodology we have developed here are also general, able to be applied

to any type of network operation. We have focused on data aggregation and dissemination,

however, optimizing the network lifetime for a different task requires only changing the

pricing problem to express the constraints of the task and its energy costs for each node. The

main problem solving for the maximum network lifetime, along with the solution approach

we employ, will continue to apply, and therefore represent useful tools for a wide range of

use cases.
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