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Land cover and land use classification performance of machine learning
algorithms in a boreal landscape using Sentinel-2 data
Abdulhakim Mohamed Abdi †

Department of Physical Geography and Ecosystem Science, Lund University, Lund SE-223 62, Sweden

ABSTRACT
In recent years, the data science and remote sensing communities have started to align due to user-
friendly programming tools, access to high-end consumer computing power, and the availability of free
satellite data. In particular, publicly available data from the European Space Agency’s Sentinel missions
have been used in various remote sensing applications. However, there is a lack of studies that utilize
these data to assess the performance of machine learning algorithms in complex boreal landscapes. In
this article, I compare the classification performance of four non-parametric algorithms: support vector
machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The
study area chosen is a complexmixed-use landscape in south-central Swedenwith eight land-cover and
land-use (LCLU) classes. The satellite imageryused for the classificationweremulti-temporal scenes from
Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling,
each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation
(30%) subsets. Accuracywas assessed throughmetrics derived fromanerrormatrix, but primarily overall
accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the
proportions of correctly classified pixels of the algorithms and a McNemar’s chi-square test was used to
compare class-wise predictions. The results show that the highest overall accuracy was produced by
support vectormachines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017),
random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of
classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis,
McNemar’s test results showed that 62% of class-wise predictions were significant from one another at
the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2
bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic
spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are
discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key
knowledge gaps identified. The article concludes with recommendations for future research.
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1. Introduction

In recent years, the data science and remote sensing com-
munities have begun to align due to concurrent factors.
First, popular competitions held by data science companies
such as Kaggle (Google 2019) have demonstrated high
classification accuracies using advanced machine learning
algorithms. These competitions typically involve
a sponsoring organization that posts its data on the
Kaggle website for contestants to use as training input for
their models and the winners are awarded cash
prizes. Second, several new Earth-observing satellites,
such as Sentinel-2 and Landsat-8, were recently launched
and their data provided free to the public (Harris and
Baumann 2015; Belward and Skøien 2015). Finally, consu-
mer computing power has been dramatically increasing
while its cost has been decreasing (Waldrop 2016). The

combination of these factors has spurred the popularity of
machine learning in the remote sensing and Earth-
observation communities, particularly in the sub-field of
land-cover and land-use (LCLU) classification.

One of the most widely used machine learning algo-
rithms is random forests (RF) (Breiman 2001). The popu-
larity of this algorithm is due to the fact it can be used
for both classification and regression purposes, and
thus can be used with categorical and continuous vari-
ables (Woznicki et al. 2019). Because of this flexibility,
RF has been used in a wide range of Earth science
applications including modeling forest cover (Betts
et al. 2017), land-use (Araki, Shima, and Yamamoto
2018), land-cover (Nitze, Barrett, and Cawkwell 2015),
and object-oriented mapping (Kavzoglu 2017). RF was
compared with classification trees, which are also
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known as decision trees, by Rodriguez-Galiano et al.
(2012) who found that RF produced a high accuracy
of 92%, thereby outperforming classification trees. The
higher accuracy of RF was attributed to its ensemble
architecture in which several classification trees are
trained on subsets of the training data.

Support vector machines (SVM) has been shown to
outperform other classifiers due to its overall high capa-
city to generalize complex features (Shao and Lunetta
2012; Mountrakis, Jungho, and Ogole 2011). A land-
cover classification study using Landsat-8 and involving
six land-cover classes found that SVM was able to
achieve a relatively high overall accuracy of 88%
(Goodin, Anibas, and Bezymennyi 2015). Recently,
Mansaray et al. (2019) analyzed the impact of training
sample size on the overall accuracies of SVM and RF for
mapping paddy rice in China in 2015 and 2016. They
found that for 2015, SVM and RF achieved overall
accuracies of 90.8% and 89.2%, respectively, using 10
satellite observations from Landsat-8 and Sentinel-1A.
However, in 2016 SVM and RF achieved overall accura-
cies of 93.4% and 95.2%, respectively, using 14 satellite
observations from Landsat-8, Sentinel-1A and
Sentinel-2A.

Extreme gradient boosting (Xgboost) is a relatively
new algorithm first described by Chen and Guestrin
(2016). One of the earliest remote sensing applications
of Xgboost was conducted by Georganos et al. (2018)
using Bayesian parameter optimization on very-high-
resolution WorldView-3 data. They found that Xgboost
was able to outperform RF and SVM by 2–5% in larger
sample sizes albeit with increased computational time.
Man et al. (2018) compared five non-parametric classi-
fiers using Landsat-8 data. They found that Xgboost
slightly outperformed SVM by 0.3%. Xgboost was also
found to slightly outperform RF by 0.2% in a recent six-
class LCLU classification study using high-resolution
data from RapidEye (Hirayama et al. 2019).

Deep learning (DL) is an abstract term that refers to
a family of different algorithm architectures structured
around neural networks. These architectures include
multi-layer perceptrons, deep belief networks, stacked
autoencoders, deep neural networks, and restricted
Boltzmann machines, among others. Neural networks
have been used in satellite image classification since at
least the late 1980s and have been implemented in
remote sensing software packages, usually with one or
two hidden layers (Mas and Flores 2008). The number
of hidden layers applied in satellite image classification
remained low because data were expensive and com-
puting power was inadequate. Considering the limita-
tions at the time, some studies found no clear link
between hidden layers and classification accuracy

(Ardö, Pilesjö, and Skidmore 1997). This all changed at
the turn of the 21st century with the increased avail-
ability of Big Earth Observation Data and computing
resources that merited the use of more (i.e. deeper)
hidden layers and complex network architectures.
Since 2015, DL has been used in a wide range of
applications such as mapping land-cover (Li et al.
2016) and crops (Kussul et al. 2017; Zhong, Lina, and
Zhou 2019), estimating crop yields (Kuwata and
Shibasaki 2015), detecting oil palm trees (Li et al.
2017) and plant diseases (Mohanty, Hughes, and
Marcel 2016) with accuracies often exceeding 90%.

1.1. Motivation and objectives

Some of the most important changes to the environ-
ment, such as urbanization, deforestation, and agricul-
tural expansion, occur at the scale of landscapes and
directly impact ecosystem processes (O’Neill et al. 1997;
Belmaker et al. 2015). On the other hand, biotic inter-
actions can physically alter landscapes and produce
spatial patterns therein, a phenomenon termed ecosys-
tem engineering (Hastings et al. 2007). Thus, it is vital to
map the LCLU at the landscape scale in order to moni-
tor and manage these changes. Classification using
satellite data provides a crucial starting point for this
endeavor.

Satellite data from the Sentinel-2 mission was cho-
sen for this study for two main reasons (1) its relatively
high 10 m spatial resolution, and (2) its radiometry
includes three vegetation red edge bands. These two
characteristics make the Sentinel-2 data appealing for
LCLU mapping. However, there are presently no studies
that utilize these data for assessing the performance of
traditional and emergent machine learning algorithms
for classification purposes and in complex boreal
landscapes.

Thus, the objective of this study is to compare the
classification performance of four popular machine
learning algorithms over a boreal landscape in
Sweden using Sentinel-2 data. The machine learning
algorithms compared are two that have been widely
used in the remote sensing community (SVM and RF)
and two that are commonly used in the data science
community (Xgboost and DL), and that are gaining
popularity in remote sensing.

2. Study area

The study area (Figure 1) is a 10 km x 12 km mixed-
use landscape located in the county of Uppsala in
south-central Sweden. The mean annual tempera-
ture and precipitation are 5.6°C and 597 mm,
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respectively (Fick and Hijmans 2017). The elevation
of the area is 40 meters above mean sea level
(Tachikawa et al. 2011) and comprises stands of
Norway spruce (Picea abies), Scots pine (Pinus sylves-
tris), and birch (Betula sp.), as well as extensive
agriculture (Lundin et al. 1999). This area was spe-
cifically selected because of the weak annual ampli-
tude of the vegetation greenness, which makes it
difficult to capture seasonality (Jönsson et al. 2018)
and thus poses a classification challenge, particu-
larly for differentiation between vegetation types.
The area also includes the Norunda research site
that was established in 1994 for studies of green-
house gas exchange, energy and water using the
eddy covariance method. The research site is pre-
sently managed by Lund University and forms part
of the Swedish contribution to the European
research infrastructure Integrated Carbon
Observation System.

3. Data

3.1. Sentinel-2 data

The Sentinel-2 Multispectral Instrument (MSI) comprises
two satellites that observe the Earth at 10 m, 20 m, and
60 m spatial resolutions (Drusch et al. 2012). The 10 m
spatial resolution is the highest amongst freely

available satellite products. Another unique aspect of
the Sentinel-2 data is the presence of three red edge
bands, which are able to capture the strong reflectance
of vegetation in the near infrared portion of the elec-
tromagnetic spectrum (EMS).

The criteria for satellite imagery selection was
that the scenes must contain little or no clouds
and haze. The imagery must also be from different
seasons to capture different plant phenological
stages. As such, four Sentinel-2 scenes from 2017
and 2018 from tile 33VXG were included in the
analysis. Three of the scenes were in 2017: May 04,
July 06, and November 13, and one in 2018:
January 27 (Figure 2). All the images were captured
by Sentinel-2A except for the 2018 image, which was
from Sentinel-2B. As shown in Table 1, the twin
Sentinel satellites do not have identical band struc-
tures and the mean difference in the central wave-
length of the ten bands used in this study is
3.3 ± 4.6 nm. The satellite imagery was downloaded
from the Copernicus Open Access Hub (https://sci
hub.copernicus.eu/) on 29 May 2018. These were in
Level-1C processing format, which means that they
underwent geometric and radiometric correction but
were not atmospherically corrected (Drusch et al.
2012). Atmospheric correction was performed using
Sen2Cor (v2.5.5), which converts the top-of-
atmosphere reflectance Level-1C data to a bottom-

Figure 1. a) Study area; b) location of the study area within the 33VXG Sentinel-2 tile; c) overview of the 33VXG tile’s coverage
relative to Sweden and the Baltic region.
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of-atmosphere (BOA) reflectance Level-2A product
(Müller-Wilm 2018). BOA is also called “surface
reflectance,” i.e. reflectance that would be measured
at land surface, and is hereafter referred to as such.

Ten bands that cover the red, blue, green, red edge,
near- and short-wave infrared portions of the EMS
were selected for inclusion into the classification
procedure (Table 1). All the bands at 20 m spatial

Figure 2. Natural color composites of the multi-temporal imagery used in this study. a) 4 May 2017 (Sentinel-2A); b) 6 July 2017
(Sentinel-2A); c) 13 November 2017 (Sentinel-2A); d) 27 January 2018 (Sentinel-2B).

Table 1. Descriptions of the 10 Sentinel-2 bands used in this study. SR = Spatial Resolution, CW = Central Wavelength.
S2A S2B

Band Spectral Region
SR
(m)

CW
(nm)

Bandwidth
(nm)

CW
(nm)

Bandwidth
(nm) CW Difference

2 Blue 10 496.6 98 492.1 98 4.5
3 Green 10 560.0 45 559 46 1
4 Red 10 664.5 38 665 39 0.5
8 Near Infrared 10 835.1 145 833 133 2.1
5 Red Edge 20* 703.9 19 703.8 20 0.1
6 Red Edge 20* 740.2 18 739.1 18 1.1
7 Red Edge 20* 782.5 28 779.7 28 2.8
8A Near Infrared 20* 864.8 33 864 32 0.8
11 Shortwave Infrared 20* 1613.7 143 1610.4 141 3.3
12 Shortwave Infrared 20* 2202.4 242 2185.7 238 16.7

*Resampled to 10 m.
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resolution were resampled to 10 m using bilinear
interpolation to facilitate integration and
consistency.

Three spectral indices were derived from the resul-
tant bands of each Sentinel-2 scene. The normalized
difference vegetation index (NDVI) quantifies the ratio
between energy absorbed by the vegetation canopy in
the red portion of EMS and the energy reflected in the
near infrared (NIR) (Rouse et al. 1973). The modified
normalized difference water index (MNDWI) is a ratio
index that maximizes the reflectance of water by using
the green portion of the EMS while using the shortwave
infrared (SWIR) portion to suppress the influence from
artificial surfaces (Xu 2006). The normalized difference
built-up index (NDBI) uses the SWIR band to identify
artificial surfaces because of their strong reflectivity in
that portion of the EMS while using the NIR to suppress
the influence of vegetated surfaces (Zha, Gao, and Ni
2003). NDVI, MNDWI, and NDBI were included in the
classification process in order help capture vegetation,
water, and artificial surfaces, respectively. This resulted
in each Sentinel-2 scene having 13 layers (10 bands + 3
indices) for a total of 52 layers.

4. Methods

4.1. Study design and sample selection

Training data are crucial components in supervised
learning and most machine learning algorithms require
a large number of training data samples. However, the
delineation and acquisition of reference data from satel-
lite imagery can be a daunting task (Chi, Feng, and

Bruzzone 2008). In-situ collection of representative
training data is difficult over large, remote or distant
areas (Inglada et al. 2017) and the use of timely high-
resolution satellite or aerial imagery for this purpose is
not always feasible and often cost-prohibitive. The use
of old maps as ancillary data for classifying past land-
cover is not an uncommon practice in the remote sen-
sing community. For example, Tran, Tran, and Kervyn
(2015) used thematic maps from the 1970s as training
input to classify Landsat-1 data from 1973 over a study
area in Vietnam. A novel approach being applied in
a growing number of recent studies is that training
data are acquired from extant high-quality land-cover
maps (Wessels et al. 2016; Zhang and Roy 2017;
Hermosilla et al. 2018). The use of an existing maps as
training data for LCLU classification can introduce errors
inherent in the previous classification. However, land-
cover maps with reasonably high overall accuracy can
produce a large number of training samples with
increased efficiency allowing for a wide range of feature
representation (Hermosilla et al. 2018). Further, it is
important to randomly check the accuracy of the train-
ing samples collected from these land-cover maps in
order to minimize misclassification, for example, to
ensure that a sample labeled as “forest” actually falls
within a forest.

The study design (Figure 3) involves initial training
sample selection with orthophotos then increasing the
sample size using a high-quality LCLU map of the study
area. A total of 100 training samples were initially col-
lected for each land-cover class in the study area using
random sampling from 25 cm orthophotos of the study
area captured on the 2nd and 3rd of July 2015 by the

Figure 3. Flowchart of the methods.
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Swedish Cadastral and Land Registration Authority
(https://zeus.slu.se). These samples were then com-
pared to RGB and false color composites of the multi-
temporal Sentinel-2 scenes to discern any visible
change that took place between 2015 and 2017/18
such as clearcutting or infrastructure development.
The sample labels were modified in the event that
a change was detected. In the next step, each of the
samples was compared to the 2018 National Land
Cover Database of Sweden (Nationella marktäckedata,
NMD), produced by the Swedish Environmental
Protection Agency with a minimum mapping unit of
0.01 hectares. Again, sample labels were modified
where appropriate as described in the next paragraph.
The NMD dataset was the result of an integrated pro-
cessing chain that involves several ancillary datasets
from Swedish Cadastral and Land Registration
Authority (Lantmäteriet), Statistics Sweden (Statistiska
centralbyrån), road and railway network data, 25 cm
orthophotos, a 2 m digital elevation model, and air-
borne lidar. The NMD is part of Sweden’s national geo-
strategy for 2016–2020 and is available from https://
www.naturvardsverket.se/.

Fifteen of the 25 NMD classes occurred in the study
area and were aggregated to eight classes (Table 2).
These are: (1) Deciduous forest: comprising birch,
aspen, alder, beech, oak, elm and ash; (2) Coniferous
forest: comprising Scots pine and Norway spruce; (3)
Water: lakes, rivers and canals; (4) Artificial: urban areas,
construction sites, and roads; (5) Wetlands: saturated
land including marshes and bogs; (6) Agriculture; (7)
Clear cuts within and outside wetlands; and (8) Open
land with and without vegetation. The remaining seven
classes were discarded due to negligible presence in
the study area. A quantitative sample-by-sample
inspection resulted in a low (1.75%) mismatch between
the NMD dataset and the 800 samples (100 samples per
class) collected using the orthophotos, and a qualitative
visual inspection showed a good match between the
NMD classes and the orthophotos (Figure 4). In this
way, the reference data can reliably replicate on-
ground conditions and meet the good practice gui-
dance for accuracy assessment (Olofsson et al. 2014).

Next, the number of samples was increased using
the NMD dataset due to the data-driven framework of
machine learning models (Brink, Richards, and Fetherolf
2017). Stratified random sampling was applied in order
to produce 1477 samples per class. This number was
selected because it represents 1% of all the pixels in the
study area when all the class samples are summed
(1477 x 8 = 11,816). This amount of samples was chosen
because it is large enough to be adequately dispersed
across the study area (Figure 5) and does not exhaust
available computing power. The 11,816 samples were
then split into two portions: a training dataset compris-
ing 70% (8271) of the samples and an evaluation data-
set comprising the remaining 30% (3544). Each LCLU
class was assigned the same number of training (1034)
and evaluation (443) samples (Table 2).

4.2. Machine learning algorithms

This section provides descriptions of the algorithms
used in the classification. Readers seeking deeper
understanding of the theoretical background of
a particular algorithm should consult the reference pro-
vided at the end of each description.

4.2.1. Support vector machines
SVM was first described in Cortes and Vapnik (1995)
based on the work of Vapnik (1982) and is
a supervised learning technique commonly used in
a range of remote sensing applications. The SVM algo-
rithm finds the optimum minimization, i.e. decision
boundary, of ambiguous classifier outputs in
a problem space. This decision boundary is referred to

Table 2. Total number of pixels in each sample and the number
of pixels selected for the training and evaluation. The sum of
training and evaluation pixels represents 1% of all pixels in the
study area. Also shown are the original Swedish National Land
Cover Database (NMD) classes that were aggregated to form
each of the eight land cover types in this study. Forest classes
are all outside of wetlands.

LCLU Type
Class
ID

Original NMD Class
Description

Pixels
(Total)

Samples
(Training/
Evaluation)

Deciduous Class
1

1.1.5 Birch, Aspen, and
Alder forest

180,827 8271/3544

1.1.6 Beech, Oak, Elm, and
Ash forest

Coniferous Class
2

1.1.1 Scots pine forest 411,356 8271/3544

1.1.2 Norway spruce forest
1.1.3 Mixed coniferous
forest

Water Class
3

6.1 Water 45,222 8271/3544

Artificial Class
4

5.1 Developed land,
building

52,839 8271/3544

5.2 Developed land, no
building/road

5.3 Developed land, road
Wetland Class

5
2 Wetland 44,835 8271/3544

Agriculture Class
6

3 Agriculture 261,391 8271/3544

Clear Cut Class
7

1.1.8 Clear cut outside
wetlands

125,476 8271/3544

1.2.8 Clear cut within
wetlands

Open Land Class
8

4.1 Open land without
vegetation

56,497 8271/3544

4.2 Open land with
vegetation
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as the hyperplane and it distinguishes the classification
problem into a predefined set of classes that are con-
sistent with the training data. The algorithm undergoes
an iterative process of finding the optimum hyperplane
boundary in an n-dimensional classification space to
distinguish patterns in the training data then apply
the same configuration to a separate evaluation data-
set. The dimensions in this context are the number of
spectral bands and the vectors are the individual pixels
in a multiband composite (Mountrakis, Jungho, and
Ogole 2011). There are different kernels through
which the hyperplane boundary can be defined. Here,
a radial basis function kernel was used because some of
the Sentinel-2 bands are not linearly separable.
A detailed mathematical description of this algorithm
can be found in Cortes and Vapnik (1995).

4.2.2. Random forests
RF is an ensemble learning algorithm based on the
idea that a combination of bootstrap aggregated
classifiers perform better than a single classifier
(Breiman 2001). The bootstrap component means
that each individual tree is parameterized using
a randomly sampled set of observations with replace-
ment from the training data (Hastie, Tibshirani, and
Friedman 2009). This helps to de-correlate the trees
thereby reducing multicollinearity. The proportion of

observations that are not used for this purpose are
included in the evaluation and are referred to “out-of-
bag” samples. Several of these decision tree models
are created on different groupings of the input vari-
ables and the resultant output is the unweighted
majority vote of each class that is averaged across
all trees. A detailed mathematical description of RF is
provided in Breiman (2001).

4.2.3. Extreme gradient boosting
The classical gradient boosting machine (GBM) builds
an additive model of shallow decision trees that are
weak learners and then generalizes them by optimiz-
ing an arbitrarily defined loss function to make stron-
ger predictions (Friedman 2001). Xgboost is
a relatively new implementation of the GBM that
simultaneously optimizes the loss function while
building the additive model (Chen and Guestrin
2016). The novelty of Xgboost lies in the fact that it
comprises an objective function, which combines the
loss function and a regularization term that controls
model complexity. This enables parallel calculations
and the maintenance of optimal computational
speed. The softmax multiclass classification objective
function was used in this study. Softmax is a function
that normalizes each class into a probability

Figure 4. Comparison between the 25 cm orthophotos from 2015 (a-labeled panels) and the 2018 Swedish National Land Cover
Database (NMD) map (b-labeled panels) for different parts of the study area.
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distribution with an interval of (0, 1) that sums to 1.
A detailed mathematical description of Xgboost is
provided in Chen and Guestrin (2016).

4.2.4. Deep learning
The type of DL architecture implemented in this study
is a multilayered feed-forward deep neural network
(DNN) with error back-propagation. DNN links several
functions joined together in hierarchically structured
neural networks that are typically deeper than three
hidden layers. The information flows from the input
data through the activation function, error is calculated
and propagated back to the earlier layers, and finally
fed to the output at the conclusion of the predefined
iteration (Candel and Erin 2018; Goodfellow, Bengio,
and Courville 2016). In this way, every sequential hid-
den layer merges values in the previous layer and sub-
sequently learns to form more abstract representations
until the output layer. The algorithm exploits the

activation function by learning the values of parameters
that result in the best approximation (Beysolow 2017).
These are then taken by an output function that com-
putes class probabilities. The hyperbolic tangent (tanh)
activation function with a softmax output classification
function were used in this study. Tanh is a rescaled
logistic sigmoid function, i.e. fðxÞ ¼ 1þ e�xð Þ�1, that
provides zero-centered outputs and allows model para-
meters to be more frequently updated in feed-forward
neural networks. A detailed description of the DL
method applied in this study is provided in
Goodfellow, Bengio, and Courville (2016) and in
Candel and Erin (2018).

4.3. Model training and hyper-parameter
optimization

Hyper-parameter optimization (also called tuning) was
part of the model training process whereby optimal

Figure 5. Overview of the training (yellow dots) and evaluation (red dots) samples in selected parts of the study area: (a) The full
study area; (b) red box: within the vicinity of the Norunda research station; (c) turquoise box: agricultural fields of Örbyhus in the
northeast of the study area; (d) yellow box: the town of Björklinge in the southeast..
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hyper-parameters were selected for the algorithms.
Models were trained by optimizing hyper-parameters
using a repeated k-fold cross-validation. In the case of
SVM, RF and Xgboost, optimization was performed
using randomized sampling of all hyper-parameter
combinations up to a specified number of iterations
(Kuhn and Johnson 2013b; Bergstra and Bengio 2012).
This is called the tune length and it defined the total
number permutations that were evaluated. The training
dataset was randomly split into k sets of equal size, of
which one set was retained for validation and the
remaining k–1 samples were used for training. The
entire procedure was then repeated using
a predefined set of repeats in order to reduce model
variance (Kim 2009; Kuhn and Johnson 2013a). A 10-
fold cross-validation with 5 repeats was chosen as
a tradeoff between lowering the variance, ensuring
a robust model, and a reasonable computational time.

In case of DL, optimization was performed using
a random grid search. Here, the algorithm trained
a model for all possible combinations of the hyper-
parameters in the grid and selected the best one.

Once the tune length was reached, the performance
metrics from the cross-validation were used to select
the best model parameters (Table 3). SVM, RF, and
Xgboost were run using the caret package (Kuhn
2008) in the R statistical software environment version
3.4.2 (R Core Team 2017). DL was performed using the
H2O package, also in R (Cook 2016). All processing was
performed on an 8-core 3.60 GHz Xeon server with 48
GB of RAM running Windows 10 64-bit.

4.4. Accuracy assessment and area estimation

The accuracy of each algorithm was assessed using
a number of metrics derived from an error matrix.
These include Overall Accuracy (OA), Producer’s
Accuracy (PA), and User’s Accuracy (UA). Error matrices
were enhanced by providing unbiased estimations of
the proportional area of cells within the matrix as per
Olofsson et al. (2014). The area proportions of the
mapped classes were included in the output because
each class required its own estimation weight. These
proportions were necessary to estimate OA and PA in
order to include differences in sampling between
classes. Conversely, UA was computed from within
a given LCLU class and was thus retrieved directly
from the error matrix (Olofsson et al. 2013).

McNemar’s chi-squared (χ2) test (McNemar 1947) was
used to statistically compare error matrices by testing
for the marginal homogeneity between two classifiers.
Marginal homogeneity refers to the equality (i.e. lack of
statistically significant difference) in the overall distribu-
tions of row or column variables predicted by one
algorithm compared to another. It is a simple yet
powerful method to compare class-wise predictions
between algorithms. The test is parametric, has a low
type I error and consists of a straightforward formula-
tion (Dietterich 1998; de Leeuw et al. 2006).
Additionally, a two-proportion Z-test (Lachin 1981)
was used to compare the proportions of correctly clas-
sified pixels (PCCP) from two algorithms at a time. This
test produced a two-tailed probability value that tests
the null hypothesis of no difference between PCCP of
each algorithm pair. The square of the Z-statistic pro-
duced by the test followed a χ2 distribution with one
degree of freedom (Wallis 2013). For both methods, a χ2

value of greater than 3.84 indicated statistically signifi-
cant difference at the 5% level.

The conventional method of computing areas of
mapped classes involves multiplying the area of
a pixel by the total number of pixels in a class. This
method does not account for classification errors
(Czaplewski 1992) and introduces bias into the resultant
LCLU map. Therefore, in order to provide unbiased area

Table 3. Results of the hyper-parameter optimization process
showing the final values used in each model. The tune length
was set to 1000 iterations. SVM = Support Vector Machines,
RF = Random Forest, XGB = Extreme Gradient Boosting,
DL = Deep Learning. Algorithms were run in R using the
caret package (Kuhn 2008) and the H2O package (Cook 2016).
Model Hyper-parameter Value Definition

SVM sigma = 0.00425,
C = 64,
Kernel = “rbf”

rbf = radial basis function,
a multidimensional Gaussian
distribution function
describing the distance
between an input vector and
a pre-defined center vector.
sigma = weight of the RBF
kernel.
C = cost of misclassification.

RF mtry = 7, ntree = 1000 mtry = number of variables
randomly sampled as
candidates at each split.
ntree = number of trees.

XGB nrounds = 500
max_depth = 10
eta = 0.05
gamma = 0.3
nodesize = 1

nrounds = maximum number of
iterations.
max_depth = maximum
depth of a tree.
eta = learning rate by which
to shrink the feature weights.
gamma = minimum relative
improvement in squared error
reduction in order for a split
to happen.
nodesize = minimum number
of rows to assign to the
terminal nodes.

DL activation = “tanh,”
hidden_layers = 6,
neurons_per_layer = 200,
epochs = 500

activation = activation function.
hidden_layers = number of
hidden layers.
neurons_per_layer = size of
each hidden layer.
epochs = number of times to
iterate.
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estimates of the output classes, error-adjusted stratified
estimation of the error matrix was conducted following

Olofsson et al. (2013). Each area estimate was accom-
panied by a confidence interval (95%) that quantified

Table 4. Area-adjusted performance metrics for each machine learning algorithm and LCLU class derived from the error matrices in
Figure 6. The proportional weights of each class that were used to create the unbiased error estimate for each class. SVM = Support
Vector Machines, RF = Random Forest, XGB = Extreme Gradient Boosting, DL = Deep Learning, OA = Overall Accuracy.

Producer’s Accuracy User’s Accuracy Class Weight Area in km2 Number of Pixels

SVM
OA = 0.758 ± 0.017

Deciduous 0.63 0.69 0.1412 17 166,886
Coniferous 0.94 0.74 0.3216 38 380,212
Water 0.93 0.99 0.0381 5 45,047
Artificial 0.45 0.72 0.0589 7 69,645
Wetland 0.69 0.90 0.0466 6 55,134
Agriculture 0.93 0.85 0.1938 23 229,077
Clear cut 0.73 0.71 0.1280 15 151,311
Open land 0.49 0.64 0.0718 8 84,900

RF
OA = 0.739 ± 0.018

Deciduous 0.63 0.64 0.1461 17 172,733
Coniferous 0.93 0.74 0.3163 37 373,906
Water 0.92 0.98 0.0381 5 45,090
Artificial 0.40 0.72 0.0535 6 63,212
Wetland 0.67 0.85 0.0486 6 57,419
Agriculture 0.93 0.86 0.1954 23 230,974
Clear cut 0.67 0.65 0.1256 15 148,453
Open land 0.47 0.59 0.0765 9 90,425

XGB
OA = 0.751 ± 0.017

Deciduous 0.64 0.68 0.1427 17 168,754
Coniferous 0.94 0.75 0.3175 38 375,365
Water 0.93 0.98 0.0388 5 45,872
Artificial 0.45 0.72 0.0586 7 69,301
Wetland 0.65 0.89 0.0470 6 55,573
Agriculture 0.93 0.85 0.1957 23 231,346
Clear cut 0.70 0.67 0.1247 15 147,476
Open land 0.46 0.59 0.0749 9 88,525

DL
OA = 0.733 ± 0.0023

Deciduous 0.58 0.63 0.1334 16 157,741
Coniferous 0.95 0.75 0.3548 42 419,436
Water 0.93 0.98 0.0384 5 45,381
Artificial 0.36 0.71 0.0424 5 50,078
Wetland 0.64 0.88 0.0451 5 53,309
Agriculture 0.90 0.78 0.1884 22 222,755
Clear cut 0.70 0.66 0.1173 14 138,674
Open land 0.44 0.64 0.0802 9 94,838

Figure 6. Error matrices showing correct and incorrect cross-tabulations of the evaluation samples by each machine learning
algorithm. The LCLU classes are numbered 1 through 8, where 1 = Deciduous, 2 = Coniferous, 3 = Water, 4 = Artificial, 5 = Wetland,
6 = Agriculture, 7 = Clear cut, 8 = Open land. The error matrices form the basis for the calculation of the performance metrics
shown in Table 4.
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uncertainty. For a thorough explanation of the method
used to acquire these unbiased accuracies and quantify
uncertainty in area estimates, readers are strongly
encouraged to consult the good practices guide by
Olofsson et al. (2014) and the recommendations
described in Olofsson et al. (2013).

5. Results and discussion

5.1. Classifier comparison

The OA of the four algorithms were relatively close to
one another as shown in Table 4. These accuracies were
derived from the error matrix shown in Figure 6. The
highest OA was produced by SVM (0.758 ± 0.017), clo-
sely followed by Xgboost (0.751 ± 0.017) and RF

(0.739 ± 0.018), and finally DL (0.733 ± 0.0023). All
four algorithms produced similar maps that were
visually appealing (i.e. coherent classes and minimal
speckling) and represented the area fairly well (Figure
7). The adjusted areas of the classes within a 95% con-
fidence interval were similar for SVM, Xgboost and RF.
However, relative to the other algorithms, DL overesti-
mated coniferous forests and open land, and under-
estimated the remaining classes except water (Figure
8). All eight LCLU classes had the same number of
training and evaluation samples so that the OA is not
biased towards classes with more training samples (He
and Garcia 2008). One drawback of balanced training
samples in conventional accuracy assessment is that
the proportions of land-cover classes are not taken

Figure 7. Final classified maps of the study area for (a) Support Vector Machines; (b) Random Forests; (c) Extreme Gradient Boosting;
(d) Deep Learning.
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into consideration. However, area proportions were
taken into account in this study using by producing
unbiased OA estimates following Olofsson et al.
(2014), which could have led to lower OA. It is possible
to obtain higher OA values using an imbalanced class
distribution where the accuracy of certain well-
represented classes increases OA. But, this focus on
OA ignores the performance of individual classes and
is particularly disadvantageous to those that are under-
represented in the study area (Maxwell, Warner, and
Fang 2018). Therefore, the choice of sampling design
should be dependent upon whether the objective of
the study is to obtain the highest possible OA regard-
less of class distribution or equally represent all LCLU
classes.

The lowest PA across all four algorithms was for
open land and artificial surfaces (Table 4), which high-
lights the difficulty distinguishing these classes from
the rest. Open land was composed primarily of grasses
and herbs, and was visually similar to clear cuts, parti-
cularly those with regrown shrubs and herbaceous
cover. Thus, it remained difficult to classify due to the
similar spectral properties of the vegetation found in it
(Buck et al. 2015). On the other hand, artificial surfaces
in the study area consisted of suburban features such as
small towns and villages interspersed with vegetation
such as trees and grass. The inclusion of land surface
temperature (Abdi 2019) could have enhanced the
detection of man-made features but there is presently
no straightforward way to quantify emissivity because
the MSI lacks a thermal band.

SVM produced the highest accuracy for open land
(PA = 0.49) among the four classifiers, and tied with
Xgboost for artificial surfaces (PA = 0.45). The ability of
SVM to capture these classes was probably because it is
based on a relatively small number of complex decision

boundaries (Cortes and Vapnik 1995). In cases such as
open land and clear cuts, where the data were linearly
non-separable, the feature vectors were projected with
a nonlinear vector mapping function to a higher dimen-
sion feature space. This facilitates the creation of
a decision boundary that seems nonlinear in the origi-
nal feature space. The added computation intensity of
this projection was offset, to a certain extent, by kernel
functions that enable a simplified representation of the
data (Mountrakis, Jungho, and Ogole 2011). Indeed,
Khatami, Mountrakis, and Stehman (2016) found that
SVM was the most efficient algorithm for most applica-
tions and outperformed several classifier families,
including RF, neural networks, and decision trees in
direct comparison.

A somewhat surprising result was that DL produced
the lowest accuracy for open land and for artificial
surfaces (PA = 0.44 and 0.36, respectively), and was
overall the poorest performing algorithm. Use of the
tanh activation function was the probable reason for
the underperformance of DL in this study. The tanh
function easily saturates (i.e. the so-called “vanishing
gradient problem”) and slows the training procedure
when applied to DNNs (Rakitianskaia and Engelbrecht
2015). In the case of high-dimensional data such as
multi-temporal satellite imagery, this saturation was
possibly dependent on feature complexity. The tanh
activation function has a conventional sigmoid curve
that is centered at zero and is restricted to the range of
(−1, 1). It returns a near-zero slope when the input
values are large (Shi et al. 2018). This suggests that it
was incapable of the separating the complex multiclass
features in the study area. The DL classes with the
highest PA were those that can be relatively easily
distinguished from multi-temporal data such as conifer-
ous forests, water or agriculture (Table 4). The lowest

Figure 8. Adjusted area estimates of each LCLU class resulting from image classification using the four algorithms tested. The error
bars denote the 95% confidence interval. SVM = Support Vector Machines, RF = Random Forest, XGB = Extreme Gradient Boosting,
DL = Deep Learning.
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performing DL classes are spectrally complex and thus
had considerable variation in the relative intensity of
pixel reflectance and the tanh activation function per-
formed poorly in distinguishing between them. In retro-
spect, the rectified linear units (ReLU) activation
function may have provided a better output due to its
ability to hold the incremental gradient descent,
i.e.fðxÞ ¼ max 0; x½ �, because it is a non-saturating non-
linearity function (Nair and Hinton 2010).

McNemar’s test results (Table 5) showed that 42% of
the class-wise predictions between paired algorithms
exhibited significance at the 1% level (P ≤ 0.01); 20%
at the 5% level (P ≤ 0.05); and 11% at the 10% level
(P ≤ 0.10). Additionally, 27% of class-wise algorithm
pairings were statistically non-significant. Most of the
non-significant pairings were for wetland, except
between Xgboost and SVM (P ≤ 0.05) and between
Xgboost and DL (P ≤ 0.10). This means that apart from
these two pairings, accuracies for wetland between the
other classifiers were statistically insignificant, i.e. there
is no real difference between them. Both coniferous
forests and clear cuts were consistent at the 1% level
across all classifier pairings, suggesting that the accura-
cies achieved for these classes were highly significant.

The Z-test results (Table 6) showed that the PCCP of
two algorithm pairings were statistically significant
thereby rejecting the null hypothesis. These are SVM
and RF (χ2 = 4.832), and SVM and DL (χ2 = 4.701). This
indicates that the PCCP produced by SVM is markedly
different from those produced by RF and DL despite the
fact their OA are fairly close to one another (Table 4).
For the remaining four algorithm pairings, the null
hypothesis was not rejected, meaning their accuracies
are similar. Although the PCCP produced by SVM and
Xgboost are not statistically different from one another
(χ2 = 1.369), the latter failed to reject the null hypoth-
esis when compared to other algorithms (Table 6).

A possible limitation of the classification process was
the choice of user-defined parameters for each algorithm
(Table 3). The hyper-parameter optimization applied
here was based on iterative tuning and a random grid
search without empirically examining their optimum
values. This was done in order to compare the algo-
rithms in a fair manner and not introduce a priori knowl-
edge. Thus, the accuracies reported here may not
represent the maximum possible that could be attained.
That said, the removal of open land, which was one of
the confusion classes, increased the overall accuracy for
all algorithms by an average of 15% with Xgboost having
0.7% higher accuracy than SVM (not shown). A complex
landscape invariably includes classes that are spectrally
similar to one another, such as open land and clear cuts
in this study, but that have different land-use

categorizations. Therefore, an algorithm’s ability to gen-
eralize training samples within such classes will ulti-
mately be reduced. This leads to a non-separation of
these classes in a feature space causing overlap between
class distributions and a lower overall classification accu-
racy (Jansen and Gregorio 2002; Smits, Dellepiane, and
Schowengerdt 1999).

5.2. Variable importance metrics

All four algorithms provide variable importance metrics
as part of their output (Supplementary Figure 1–4). The
twenty highest scoring layers across the three algo-
rithms displayed two generalizable patterns of impor-
tance. First, nearly half belonged to the red edge (25%)
and shortwave infrared (SWIR) (23%) bands. Second,
they were dominated by scenes from May (38%) and
July (40%). None of the spectral indices were ranked
highly in this study. In the case of NDVI, it was probably
due to the red edge bands providing most, if not all, of
the information required to account for the vegetation
signal. Additionally, NDVI is known to saturate at high
values (Box, Holben, and Kalb 1989), which further
degrades its ability to capture high-biomass classes
such as forests. The absence of the other two indices
could be explained by inability to separate urban areas
and barren land in the case of NDBI (Zha, Gao, and Ni
2003), and between water and shadowed surfaces in
the case of MNDWI (Feyisa et al. 2014).

A distinguishing feature of the Sentinel-2 satellites is
the presence of red edge bands that provide an added
value previously only available in commercial satellites
such as RapidEye. The red edge region is so-called
because leaves reflect strongly between 680 nm and
780 nm and is dependent on chlorophyll concentration
(Horler, Dockray, and Barber 1983; Gates et al. 1965).
The advantage of the red edge bands in LCLU classifi-
cation is evident when Sentinel-2 data is compared
with other satellites such as Landsat-8 that do not
capture this portion of the EMS. For example, red
edge Band 5 (705 nm) was found to be important for
mapping crop types, particularly cereals and legumes
(Forkuor et al. 2018), red edge Band 6 (740 nm) was
useful for differentiating crop types from grassland at
the sub-pixel level (Radoux et al. 2016), and red edge
band 7 (783 nm) was used for classifying edge pixels in
boreal forests comprising Scots pine, Norway spruce
and birch (Zerega 2018).

The high importance of the SWIR bands could be
due to the dominance of forest classes in the study area
(Eklundh, Harrie, and Kuusk 2001). Sentinel-2’s SWIR
bands are centered at 1610 nm (Band 11) and
2190 nm (Band 12) and were thus able to detect
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variability in water content between different tree spe-
cies (Lukeš et al. 2013). The combination of red edge
bands with SWIR has been shown to enhance the mod-
eling of boreal forest canopy cover and leaf area index,
producing root-mean-square error values 1.6–7.2%
lower than Landsat-8 (Korhonen, Hadi, and Rautiainen
2017). Sentinel-2 Band 11 was also found to correlate
well (r = −0.68, p = 0.01) with Mediterranean forest
growing stock volume (Chrysafis et al. 2017), although
in a Swedish forest Zerega (2018) found a lower corre-
lation for Band 11 (r = −0.26) and higher correlations
(−0.51 and −0.52) for red edge bands 6 and 7, respec-
tively. Recent work by Persson, Lindberg, and Reese
(2018) to classify Norway spruce, Scots pine, hybrid
larch, birch and pedunculate oak found that red edge
bands captured in May and July and SWIR bands cap-
tured in April and October had the highest separation
of the tree species.

A possible limitation of the variable selection
process was the fact that different algorithms calcu-
late variable importance differently. For example,
the DL implementation in H2O used a method by
Gedeon (1997) that accounts for each input vari-
able’s connecting weights to the first two input
layers as a basis for computing its importance.
Both RF and Xgboost computed variable importance
in similar ways that were based on the mean
decrease of a predefined loss function such as
mean squared error (Breiman 2001; Chen and
Guestrin 2016). Despite these differences, the results
(Supplementary Figure 1–4) illustrate the consis-
tency with which red edge and SWIR bands from
May and July were selected by the algorithms.

5.3. Mono-temporal vs. multi-temporal Sentinel-2
data

The rationale for incorporating data from four seasons was
to help distinguish vegetation classes that had different
phenological cycles (e.g. coniferous, deciduous, crops).
However, the importance of the scenes from May and July
was clear in this study, which was probably due to the
dominance of forest area (Figure 8), and the increased leaf
expansion in the boreal zone that usually takes place in late
spring – early summer (Tang et al. 2016). Increase in the
light-saturatedmean daily rate of photosynthesis also takes
place around that time as the seasonal light intensity
increases with the approaching boreal summer (Sukenik,
Bennett, and Falkowski 1987; Letts et al. 2008). Canopy
maturation takes place around July, which is also an impor-
tant time for thematuration of certain crops, such aswheat,
that require relatively dry sunny conditions (Brown 2013;
Tang et al. 2016).

The use ofmulti-temporal datamay have inadvertently
increased the level of noise in the classification process as
increased data dimensionality leads to higher redundancy
(Nitze, Barrett, and Cawkwell 2015). Indeed, bootstrapped
accuracy provided by RF showed a steep decline with the
addition of new variables after reaching peak accuracy
with just six bands. This may suggest that mono-temporal
(i.e. a single scene) Sentinel-2 surface reflectance data,
captured within an optimal date (Vuolo et al. 2018), may
offer an alternative to multi-temporal time series. This
could be due to the relatively high radiometric resolution
of Sentinel-2 data, particularly the presence of three red
edge and two near infrared bands that enable the satel-
lites to sense important biophysical parameters.
Furthermore, differences in radiometry between
Sentinel-2A and Sentinel-2B were unlikely to have
impacted the results as the mean difference in the central
wavelength of the bands used was 3.3 ± 4.6 nm and there
was considerable overlap between the bandwidths of the
two satellites (Table 1).

Early work on Sentinel-2 data by Immitzer, Vuolo,
and Atzberger (2016) found that mono-temporal
Sentinel-2 red edge and SWIR were important for map-
ping both tree species and crop types. However, the
timing of the imagery used (13 August for trees and
30 August for crops) caused confusion within these
classes. The dates of these acquisitions were not opti-
mal because most crops were approaching senescence
while images acquired at the end of spring would have
better differentiated tree species (Immitzer, Vuolo, and
Atzberger 2016; Persson, Lindberg, and Reese 2018).
The authors thus concluded that they expect multi-
seasonal information contained within time-series of

Table 6. A Two Proportion Z-test to compare the proportions of
correctly classified pixels with its associated probability value
(P). SVM = Support Vector Machines, RF = Random Forest,
XGB = Extreme Gradient Boosting, DL = Deep Learning.
Algorithm pairs that exhibit a statistically significant
(P ≤ 0.05) difference in the proportion of correctly classified
pixels are in bold.
Algorithm Pair Two Proportion Z-test

SVM v. RF χ2 = 4.832
P = 0.027

XGB v. SVM χ2 = 1.369
P = 0.241

SVM v. DL χ2 = 4.701
P = 0.030

RF v. XGB χ2 = 0.996
P = 0.318

DL v. RF χ2 = 0
P = 1

XGB v. DL χ2 = 0.937
P = 0.333
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Sentinel-2 data to provide improved classification
results. Persson, Lindberg, and Reese (2018) used
Sentinel-2 images from four months (April, May, July
and October) in 2017 to classify tree species in Sweden.
They found that although the highest OA of 88.2% was
obtained when all bands from all four dates were
included, the highest accuracy provided by a single
image (80.5%) was the one from May.

It is not implausible that a single, optimally-timed,
atmospherically-corrected Sentinel-2 scene could pro-
vide equal or better results than a multi-temporal stack
for detecting spectral differences in vegetation due to
the accumulation of noise that is inherent in such data
(Feilhauer et al. 2013). Of course, this is highly depen-
dent on the aims that a study hopes to achieve. For
example, Prishchepov et al. (2012) found that in order
to map land abandonment with classification accuracies
greater than 80%, it was necessary to use at least three
multi-temporal images within a single year before and
after abandonment. Phenological information con-
tained within multi-temporal data does allow for better
discrimination between spectrally similar and phenolo-
gically distinct vegetation. However, it should be used
with caution in managed land due to anthropogenic
changes that could be confused for phenological
change (Ghioca-Robrecht, Johnston, and Tulbure 2008).

6. Conclusions and recommendations

The Sentinel-2 Multispectral Instrument is unique
among presently operating Earth-observation satellites
due to its three red edge bands that can capture plant
chlorophyll content and its medium-high spatial resolu-
tion of 10 m. This study represents a first assessment of
traditional and emergent machine learning algorithms
to classify land-cover and land-use using multi-
temporal Sentinel-2 data over a complex boreal land-
scape. Two of the machine learning algorithms, support
vector machines and random forests, are widely used in
the remote sensing community. The other two, extreme
gradient boosting and deep learning, are commonly
used in the data science community but are gaining
popularity in remote sensing.

The four tested algorithms produced similar overall
accuracies ranging between 0.733 to 0.758. The Z-test
comparison of classifier accuracies showed that a third
of algorithm pairings were statistically distinct from one
another, while McNemar’s test results showed that 62%
of class-wise predictions were significant. The highest
classification accuracy produced by support vector
machines is due to the algorithm’s relatively small num-
ber of complex decision boundaries. The lowest perfor-
mance produced by deep learning is probably due to

a large number classes and the saturation of the hyper-
bolic tangent activation function used in the study.
Finally, the variable importance metrics show that
nearly half of the top twenty bands belonged to the
red edge and shortwave infrared bands and were domi-
nated by scenes from May and July.

Studies that compare machine learning algorithms
should do so in a consistent manner in order to not
introduce bias. The algorithms being compared should
undergo equally robust hyper-parameter selection. Bias
can be introduced in an experiment when some algo-
rithms are executed with hyper-parameter values from
a priori knowledge while those of other algorithms are
calibrated using default or random values. Random
iteration across a defined number of parameter combi-
nations, as done in this study, can be used to eliminate
a priori knowledge but at the cost of the algorithms not
reaching optimum accuracies. Modifications to this
approach include (1) significantly increasing the num-
ber of random iterations, which will invariably increase
computing requirement, or (2) individually assessing
optimum hyper-parameter thresholds for each
algorithm.

Spectral vegetation indices are often used in land-
cover and land-use classification to help distinguish
between vegetation types. However, a quarter of the
top twenty important bands in this study were red
edge whereas none of the spectral indices were ranked
highly. This suggests that the presence of the red edge
bands in the Sentinel-2 satellites might render the use
of vegetation indices obsolete in boreal landscapes.
Thus, there is need for more studies that assess the
efficacy of Sentinel-2 red edge bands relative to vege-
tation indices for the purposes of land-cover and land-
use classification, particularly in regions dominated by
forests.

The dominance of the imagery from May and July in
the band scoring metrics of this study raises important
questions about the use of mono-temporal vs. multi-
temporal imagery in land-cover and land-use classifica-
tion. It is presently unknown whether the performance
of an optimally-timed mono-temporal Sentinel-2 scene
is equivalent to, or better than, a multi-temporal stack
in classifying land-cover and land-use over complex
landscapes. More studies are needed to assess the
added value of the Sentinel-2 red edge bands in both
mono-temporal and multi-temporal experiments invol-
ving different vegetation classes.
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