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Abstract

This thesis focuses on the development and application of efficient mathematical
tools for estimating and modelling the exchange of carbon dioxide (CO2) between
the Earth and its atmosphere; here referred to as the global CO2 surface flux.

There are two main approaches for estimating the CO2 flux: Processed based
(bottom-up) modelling and atmospheric inversion (top-down) modelling. The
first part of the thesis focuses on applying and improve methods for estimating
unknown or uncertain parameters in ecosystem models. This can partly be seen
as an optimization problem since the task is to find the parameter set which gives
a modelled flux output closest to the flux observations with respect to certain
model assumptions. Standard gradient-based optimization methods are seldom
applicable since the derivatives are commonly unknown and, due to the complex
interactions between flux output and model parameters, the system is highly non-
linear and often multimodal.

We show that a popular model-based search method, Gradient Adaptive Stoch-
astic Search (GASS), which combines importance sampling with some second-
order gradient information, can be used for efficient parameter inference. Fur-
thermore, the importance sampling for this method is improved by forming prob-
abilistic distributions based on good samples from previous iterations in the al-
gorithm.

Secondly, the thesis deals with atmospheric inversions, where time series of
CO2 concentrations taken from a global network of measurement stations are
used together with an atmospheric transport model, to obtain a reconstruction of
the CO2 surface flux.

For this application, we introduce a new concept of modelling the surface
flux, by using Gaussian Markov Random Fields (GMRF) defined on a continuous
spatial domain. In contrast to previous inversion methods, the modelled concen-
trations are obtained from a highly resolved spatial integration, while keeping a
discrete temporal resolution. The smooth representation of the flux reduces ag-
gregation errors present in traditional flux representations restricted to a grid and
allows the flux covariance to be estimated on a continuous spatial domain.

Modelling the CO2 flux using GMRFs open up for the use of numerical
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Abstract

methods for sparse matrices. The last part of the thesis presents methods for im-
proving the inference on our GMRF model, by using Markov Chain Monte Carlo
methods. We show that using Crank Nicholson based proposals significantly re-
duces the computational time needed for estimating CO2 flux in atmospheric
inverse modelling.
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Populärvetenskaplig sammanfattning

Den främsta orsaken till en ökad växthuseffekt anses idag bero på en högre kon-
centration av koldioxid i atmosfären. Sedan den industriella revolutionen har
människan påverkat mängden koldioxid i atmosfären genom aktiviteter så som
förbränning av fossila bränslen, avskogning, förändringar i markanvändning, samt
cementproduktion. För att kunna motverka framtida klimatförändringar krävs en
fördjupad kunskap om de processer som styr koldioxidens kretslopp, och en ökad
förståelse om hur dessa processer eventuellt påverkas av klimatförändringar. Den-
na avhandling försöker uppnå detta genom att studera utbytet av koldioxid mellan
vår jord och dess atmosfär med hjälp av matematiska modeller.

Så kallade ekosystemmodeller utnyttjar kunskapen om olika fysikaliska proces-
ser för att beskriva ekosystemet, inklusive hur vegetation och markanvändning
påverkar koldioxidflödet. Genom att mäta koldioxidflödet på en eller flera platser
kan vi, genom olika matematiska metoder, förbättra våra modeller så att koldiox-
idflödet från modellerna matchar det observerade flödet. Första delen av avhand-
lingen fokuserar på att hitta de parametrar, som ger störst likhet mellan det mo-
dellerade och obsvererade flödet. Istället för att fokusera på enskilda parametrar,
använder vi robusta statistiska metoder som justerar en sannolikhetsmodell över
alla möjliga parametrar. Genom att slumpvis dra olika parameter-kombinationer
och betygsätta deras kvalitet, kan vår sannolikhetsmodell hitta de parametrar som
ger bäst matchning mellan det modellerade och observerade flödet.

Information om koldioxidytflödet kan också fås genom att titta på variationer
av atmosfäriska koncentrationer av koldioxid i tid och rum, genom så kallad at-
mosfärisk invers modellering. En ökning eller minskning av den lokala koldioxid-
koncentrationen i atmosfären, har sitt ursprung i ytflödet, d.v.s. från upptag och
utsläpp av koldioxid genom olika fysikaliska processer vid jordytan. Genom att
använda transportmodeller som approximerar hur luftmassor har färdats från jor-
dytan, genom atmosfären, till de enskilda mätstationerna, kan vi försöka hitta ett
ytflöde som ger en bra överensstämmelse med de observerade koncentrationerna.
De okända parametrarna består här av ett stort antal komponenter som beskriver
det okända ytflödet, ofta med fler komponenter än observerade koncentrationer.
Detta innebär att flera olika representationer av ytflödet kan ge likvärdiga approx-
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imationer av data. Därför krävs ytterligare restriktioner på ytflödets struktur, i
form av t.ex. en lämplig modell. Denna avhandling fokuserar på nya sätt att de-
finiera dessa modeller, vilka ger fördelaktiga beräkningsegenskaper och möjliggör
bättre approximationer till det sanna ytflödet.

xii



Introduction

1 Estimating CO2 surface fluxes

The increase in atmospheric greenhouse gases (GHG), such as carbon dioxide
(CO2), and their link to increasing temperature and other climate impacts, has
motivated numerous research studies on the different components of the CO2

cycle. The terrestrial biosphere is of major interest since the terrestrial productivity
has a strong connection with CO2 concentration in the atmosphere. To limit the
future increase in CO2 concentrations, it is important to understand the underly-
ing physical processes behind sources and sinks of CO2, and how these processes
interact with a varying climate.

There are mainly two types of modelling approaches when analysing the
CO2 surface flux, i.e. the exchange of carbon dioxide between land and atmo-
sphere. Ecosystem or ”bottom-up” modelling is based on process understanding,
for which knowledge of physical sub-processes and interactions between climate
and ecosystem is inferred to predict future CO2 surface flux. These models sim-
ulate CO2 exchange for either undisturbed ecosystems (natural CO2 exchange),
or for human-influenced ecosystems by including effects from agriculture (crops),
forestry, and deforestation. Forcing the ecosystem models with different climate
scenarios, bottom-up modelling can be used for predicting future source and sinks
of CO2.

The other important tool for analysis of surface flux is atmospheric inversion
modelling, also known as ”top-down” modelling. Here, the idea is to reconstruct
the historical surface fluxes1 by using observations of atmospheric concentrations
together with a transport model, which quantifies the sensitivity of observations to
the surface fluxes. The (linear) transport models are based on numerical meteor-
ological models and give information on how winds have transported the source
fluxes to the different observational sites. Due to the under-determined nature

1In atmospheric inverse modelling, the flux is often referred in plural form as CO2 surface
fluxes. The flux has traditionally been restricted to a grid; thereof the plural form. Even when a
continuous representation of the flux exists the transport models still have a finite resolution, in
which case surface fluxes typically refer to the flux resolved on the transport grid.

1



Introduction

of atmospheric inverse modelling, fluxes are often informed by assigning struc-
ture to the fluxes using a Bayesian formalism. The top-down method can help to
identify locations of emissions not accounted for in the ecosystem process mod-
els, but can also locate (unreported) anthropogenic emission sources. Moreover,
ecosystem modelling and atmospheric modelling can easily be combined by using
the output from ecosystem models as input, or prior flux belief, in the atmo-
spheric inversion. Due to the possibility of quantifying carbon sources and sinks,
inverse modelling has the potential for being used in decision making, as a tool
for understanding and reducing emissions of CO2 to the atmosphere.

1.1 Bottom-up modelling

Process-based dynamical ecosystem models (Cox, 2001, Knorr, 2000, Sitch et al.,
2003, e.g.) are based on mathematical descriptions of ecological systems and are
often highly complex due to the many interacting components involved. These
models include detailed descriptions of processes that govern the carbon cycle
such as: the creation of carbon through photosynthesis and solar radiation, the
allocation of carbon to plant growth, release of carbon to the atmosphere via
plant respiration and decomposition, etc. Each process is described by its own set
of model parameters, which are fixed in time. Dynamical state variables of the
system, such as carbon- and water balance, and vegetation structure and compos-
ition, are used to describe the current state of the system.

Today’s ecosystem models have large sources of errors (Heimann and Körner,
1996). One source of errors is due to uncertainties in the model parameters. The
calibration of parameters are usually performed on small-scale field experiments,
and parameters may need to be tuned when used in Dynamical Global Vegetation
Models (DGVMs) (Cramer et al., 1999). This can be done by comparing flux
output from DGVMs against flux tower observations. The problem of tuning
the parameters is in literature commonly called parameter estimation. Due to the
highly non-linear relation between parameters and model output, the problem
of finding the (statistically) optimal parameters is complex. Moreover, the lack
of gradient information restricts the number of optimisation tools that can be
used for the problem. The first part of this thesis, Part I (Paper A and B), deals
with parameter estimation in ecosystem models. The main focus is on parameter
estimation for the LPJ-GUESS vegetation model, introduced in the following
section, using CO2 flux tower observations.

2



1. Estimating CO2 surface fluxes

1.1.1 LPJ-GUESS

The parameter estimation in this thesis is applied to the LPJ-GUESS (Lund-
Potsdam-Jena General EcoSystem Simulator, Smith et al., 2014), a DGVM ori-
ginally developed at Lund University in collaboration with the Postdam Institute
for Climate Impact Research, and the Max-Planck Institute. It is an advanced eco-
system model driven by regional climate conditions and atmospheric CO2 con-
centrations, with vegetation dynamics resulting from competition among plants
for light, space, and nutrients. A simplified schedule of LPJ-GUESS is shown in
Figure 1.

Each grid cell in the LPJ-GUESS model has its own set of climate input.
The grid cells include a number of replicate patches, that aim at describing the
distribution of vegetation stands in that grid cell. The patches include plants in
different stages of development, that are exposed to different disturbances. To
limit the possible number of components, plants of similar type are grouped into
plant functional types (PFT:s), which are treated as a unit within the same cohort
(age group) and patch. In daily time steps, the LPJ-GUESS model includes pro-
cesses such as soil hydrology, photosynthesis, plant respiration, phenology, and
microbial decomposition. At annual time scale, that year’s net production of car-
bon is allocated to leaves, fine roots and stem wood, etc; with the exact allocation
and the resulting growth in biomass depending on PFT class (Smith et al., 2014).

The net release/uptake of CO2 flux from land to the atmosphere is an output
from DVGMs. By matching the output of CO2 flux from the model with obser-
vations of CO2 flux, the aim is to fine-tune the parameters in LPJ-GUESS that
are sensitive to the CO2 flux.

1.1.2 Data – Fluxes of CO2

In the first part of the thesis, Part I, the main focus is on applying new meth-
ods for parameter estimation, as well as developing current methods. The ability
to recover the global solution, i.e. the true parameters, is tested by introducing
a simulation (or twin) experiment. The model parameters are optimised using
pseudo-observations of CO2 flux simulated from the LPJ-GUESS model, assum-
ing a perfectly-known process-model, and no observational noise. Thus, the ex-
periment tests the capability of reconstructing model parameters under optimal
conditions. In Paper A, we also investigate the ability to constrain the LPJ-GUESS
model parameters using daily CO2 flux observations from a single boreal site in

3
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Figure 1: Schedule of process-dynamics in the vegetation model LPJ-GUESS.

Northern Sweden, during the time period 1997-2003. Currently, several flux
towers in Europe are under construction. These will be part of the Integrated
Carbon Observation System (ICOS); a European research infrastructure. In the
future, the aim is to estimate model parameters using all available flux towers in
ICOS.

1.2 Top-down modelling

Atmospheric inversion modelling aims to use spatio-temporal observations of
CO2 concentration in combination with atmospheric transport, to reconstruct
historical sinks and sources of CO2 (Ciais et al., 1995, Gurney et al., 2002, Rayner
et al., 1999).

New and larger sampling networks for measuring concentrations of atmo-
spheric CO2 enables more detailed reconstructions from atmospheric inverse mod-
elling, and introduces a need for more efficient computational methods. In the
second part of this thesis, Part II (Paper C and D), we introduce flux models
based on Gaussian Markov Random Fields (GMRF). The precision matrices of
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GMRFs, i.e. the inverse covariance matrices, have only a few non-zero elements.
This sparsity promotes computational tools, which enable efficient and fast nu-
merical operations. Another important difference to previous inversion methods
is that our CO2 fluxes are defined on a continuous spatial domain, whereas pre-
vious inversion methods have fluxes confined to a longitude-latitude grid. Thus,
we limit aggregation errors arising from the assumption of a piecewise flat fluxes
in each grid cell, and moreover, the resulting spatial covariance model is derived
on a continuous spatial domain.

A general problem for inverse methods is the dense observational matrix that
arises from the flux integration, yielding expensive computations when using
standard inference tools. In the last paper, Paper D, the maximum-likelihood
estimation in Paper C, is replaced by a Markov Chain Monte Carlo (MCMC)
method, which avoids the most expensive calculations, improving computational
efficiency.

1.2.1 Data – Concentrations of CO2

The raw data in the atmospheric inversion consists of CO2 surface flask meas-
urements at a global surface network, with samples collected and analysed by
several institutions (e.g. NOAA). Weekly concentrations are averaged to monthly
mean CO2 concentration when processed according to the procedure described
by Rödenbeck (2005) for the Jena Carboscope. The spatial distribution of meas-
urements is shown in Figure 2, with several marine sites in the Pacific Ocean,
and a high number of measurements in North America, and Western Europe.
Few stations are located in sparsely populated or underdeveloped regions such as
Siberia, tropical South America, tropical Africa, and the Southern Ocean, where
the natural fluxes are assumed to be high.

1.2.2 Atmospheric transport

The link between fluxes and observations are obtained through an atmospheric
transport model. Because CO2 is an inert gas, i.e., a gas without chemical in-
teraction to the surrounding atmosphere, CO2 concentrations are tractable based
solely on knowledge regarding transport, sinks, and sources. The atmospheric
transport of CO2 is governed by the past meteorological state. Mathematic-
ally, atmospheric transport models are obtained by numerically solving the mass
continuity equations, based on the state of the atmosphere, found from three-
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Figure 2: Network of global measurement stations. The observations locations marked
with blue triangles are used to estimate fluxes, whereas observation locations indicated
with red circles is used for validating the different model performances (Fig. 2 in Paper
C).

dimensional weather forecast models - or atmospheric general circulation models
running in climate mode (Heimann and Körner, 2003). Large studies on the ef-
fect of transport errors on CO2 flux inversions were performed in the Transcom
3 intercomparison project (Baker et al., 2006, Gurney et al., 2003, 2004). In our
inversion system, we use the global atmospheric tracer model TM3 (Heimann
and Körner, 2003). In similarity with other grid-scale inversions (high resolution
inversions), the sensitivity is defined on a regular longitude-latitude grid. Here
with 48 boxes in latitude and 72 boxes in longitude.

1.3 Model framework

1.3.1 Data assimilation

In Geoscience, parameter estimation and atmospheric inverse modelling is often
treated under a common framework; referred to as data assimilation (Rayner et al.,
2018, Wang et al., 2009). The goal of data assimilation is to integrate (statistical)
methods with observations to obtain optimal estimates of unknown states, and/or

6



1. Estimating CO2 surface fluxes

Table 1: The different components in data assimilation when applied on parameter
estimation v.v. atmospheric inversion.

Parameter estimation Atmosperic inversion
External forcing (u) Climate and atmospheric conditions -
Model (m) Non-linear DGVM Linear transport model
Target (x) DGVM model parameters CO2 surface fluxes
Observations (y) CO2 surface fluxes CO2 atmospheric concentrations

parameters; here referred to as the target variables. Data assimilation essentially
has up to four components: (1) External forcings, (2) A model that relates the
state, model parameter and external input to observations, (3) Observations, and
(4) an optimisation technique (Wang et al., 2009). For the parameter estimation
in part I, the model is a non-linear DGVM forced by climate and atmospheric
conditions, the target is the DGVM model parameters, and observations consist
of CO2 surface fluxes. Whereas in atmospheric inversion the model is the linear
atmospheric transport, the target is the CO2 surface fluxes and the observations
consists of monthly CO2 concentrations (see Table 1 for a comparison).

A common reference for relating target variables, x (nx × 1), and external
forcing, u, to observations, y (ny × 1), is here referred to as the model, m(x, u).
Data assimilation aims at finding target variables such that the model output gives
a good match to the observations, i.e., m(x, u) ≈ y. This is in general handled
by introducing a cost function, J, to be minimized. Typically, the cost function is
based on an assumption of additive errors using an observation model

y|x, u = m(x, u) + ε, (1)

where the observation error, ε, includes both measurement noise and model noise
arising from an imperfect model. Since the external forcing, u, is usually assumed
known (apart from in prediction studies), the subscript u is from now on sup-
pressed. The cost function is typically formed by minimizing the sum of the
squared errors:

J(x) = ‖y−m(x)‖2
2 (2)

where ‖·‖ is the Euclidean norm, corresponding to an assumption of ε being iid
Gaussian errors. If different weights are assigned to different observation, the cost
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function extends to

J(x) =

ny∑
i=1

(
yi −mi(x)

)2

Σε,ii
(3)

where Σε is a diagonal matrix, in general assumed to be known. If we al-
low for dependent errors, the matrix Σε represents the error covariance matrix,
Cov(ε,ε), and J(x) = (y−m)ᵀΣε(y−m).

In Part I of the thesis, the model m(x) is highly non-linear, and therefore
minimizing J becomes a difficult problem. Since no explicit solution exists, the
optimisation of the cost function is based on iterative methods.

In Part 2, the model m(x) is linear, but the number of unknowns are typ-
ically much larger than the number of knowns, i.e., nx � ny. This results in
an ill-conditioned problem, which requires additional information on the target
variables.

Historically, different kinds of regularizations have been attempted to make
the inversion system in Part 2, solvable. Shrinkage estimators (Krakauer et al.,
2004) penalize the overall size of the target variables, whereas smoothing operators
penalizes rapid variations in the target variables (Enting, 1987, McIntosh and
Veronis, 1993). The most common form of shrinkage regularization is Tikhonov
regularization (Tikhonov and Arsenin, 1977), which adds a penalization term
‖Τx‖2

2 to the cost function (3), where Τ = σ2 · Inx is a scaled identity matrix
of size nx . A popular smoothing regularization is the smoothing spline (Wahba,
1990), which assumes target variables to be dependent. The smoothing spline
can be directly linked to Gaussian random fields, through its definition based
on Stochastic Partial Differential Equations (SPDEs), as described in Lindgren
et al. (2011), Nychka (2000). Thus, it can be shown that the Wahba splines
correspond to a Gaussian target distribution with Matérn covariance of infinite
range (Kimeldorf and Wahba, 1970, Nychka, 2000, Wahba, 1990).

Current inversion methods replace the standard regularization tools by assign-
ing a (prior) distribution for the (unknown) target variables. This is commonly
referred to as a Bayesian formalism since we assign a density to the unobserved
or ”latent” variables/parameters. Introducing a prior on the target variables can
be seen as a way of combining shrinkage and/or smoothing regularization. A
Gaussian prior yields a penalizing term that shrinks the solution to a prior mean,
μx, with the smoothness of the solution related to the prior covariance matrix,
Σx = Cov(x, x).

8



1. Estimating CO2 surface fluxes

By adding a prior distribution to the target we obtain a modified cost func-
tion, related to the posterior distribution of the target variables, p(x|y), introduced
in the following section. Assuming Gaussian observation errors and a Gaussian
prior, the cost function takes the form:

J(x) = (y−m(x))ᵀΣ−1
ε (y−m(x)) + (x− μx)Σ−1

x (x− μx). (4)

based on the relation, J(x) = −2 log p(x|y). Thus, minimizing the cost function
(4) yields the maximum of the posterior density.

1.3.2 Hierarchical Modelling (HM)

From a statistical view point data assimilation, with a prior distribution on the
target, can be translated into hierarchical modelling (HM) (Carlin et al., 2014,
Wikle et al., 1998) consisting of two or three layers:

Data model: p(y|x,θ)

Process/Prior model: p(x|θ)

Parameter/Prior model: p(θ)

where y are the observed data, x is the latent field (or target variables), and θ are
the model parameters. The posterior density of the target can be derived based
on Bayes theorem (Bayes, 1763). In data assimilation, the model parameters, θ,
are often assumed to be fixed and known. In this case, the posterior density of the
latent field, p(x|y), is given by :

p(x|y,θ) =
p(y|x,θ)p(x|θ)

p(y)
∝ p(y|x,θ)p(x|θ). (5)

where p(y) is the probability distribution of the observations.
If model parameters are assumed to be fixed, but unknown, this is called

Empirical Hierarchical Modelling; or empirical-Bayesian modelling (Cressie and
Wikle, 2015). Then, p(x|y,θ) is replaced by p(x|y, θ̂) in Equation (5), where
θ̂ is an estimator of θ, typically obtained from maximum likelihood (ML) or
maximum aposteriori probability (MAP) estimation.

In the third case, a probability distribution is assigned to the model paramet-
ers, θ, resulting in a Bayesian Hierarchical Model (BHM) (Berliner, 1996). The
joint posterior density of the latent field and model parameters then becomes

p(x,θ|y) ∝ p(y|x,θ)p(x|θ)p(θ)
p(y)

. (6)
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The posterior of the parameters can be obtained by marginalizing over the latent
field:

p(θ|y) ∝ p(θ)
∫

p(y, x|θ)dx, (7)

and for the latent field, the posterior is found from:

p(x|y) ∝
∫

p(x|y,θ)p(θ|y)dθ. (8)

Hence, the cost function (4) is related to the posterior (5), given the assump-
tion of fixed (possibly unknown) model parameters, θ.

2 Part I: Parameter estimation

The goal of parameter estimation for DGVMs is to find the most likely model
parameters, x∗ ∈ X ⊆ Rd , based on statistical assumptions and observations. If
prior information on model parameters is included, the data assimilation adopts a
Bayesian framework and the cost function (4) will be proportional to the negative
log-posterior (5). The statistically optimal parameters are found by minimizing
the cost function (maximizing the posterior):

x∗ = arg min
x∈X

J(x). (9)

Even though the data assimilation problem (1) is typically not ill-conditioned
for parameter estimation, prior information on the parameters based on process
knowledge can still be helpful to constrain the parameters to reasonable values.
Due to the non-linear model, m(x) (see Section 1.3.1), the posterior density is
very complex, and therefore iterative methods are required to optimise the cost
function.

The posterior uncertainty, V(x|y), is often approximated using the Hessian
matrix, i.e. by the second-order partial derivative of the posterior calculated, pos-
sibly using finite differences, at the mode:

V(x|y) ≈
[
∂2

∂x2 log p(x|y)

∣∣∣∣
x=x∗

]−1

. (10)
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2. Part I: Parameter estimation

In some studies on parameter estimation (e.g. Ziehn et al. 2012), the goal
is to estimate the entire posterior distribution, p(x|y). This can be obtained by
e.g. Markov Chain Monte Carlo methods (introduced in Part II, Section 3.4.2).
However, the parameter estimation in this thesis focuses on using and developing
stochastic optimisation methods for finding the optimal parameter values. There-
fore, the discussion on parameter estimation is focused on optimisation methods,
and on stochastic theory for improving a certain class of random search methods.

2.1 optimisation

Solving the optimisation problem (9), is a complex problem due to the very un-
structured and multi-modal dynamic vegetation model used as m(x). In this sec-
tion, some standard optimisation methods are discussed, as well as some modern
stochastic optimisation tools.

2.1.1 Gradient-based

Gradient-based methods are iterative methods that use the gradient of the func-
tion at the current point, to calculate a search direction. The common update
form for gradient-based algorithms is

xt+1 = xt + αtht , (11)

where t is the iteration index, αt > 0 is a scaler at iteration t, helpful for con-
trolling step length and convergence, and ht is the step direction at iteration t. In
order for h to be a descent direction, i.e., a direction that guarantees that J can
be reduced, the step direction must satisfy hᵀJ′(xt) < 0. By defining the step
direction on the form:

h = −B−1
t J′(xt), (12)

a descent direction is obtained whenever Bt is a positive definite matrix. Let-
ting B−1

t = I, where I is the identity matrix, one obtains the steepest descent
method. The standard Newton update is obtained with Bt = J′′(xt). If J is
non-linear, as is typically the case in applications to DGVMs, the Hessian J′′(xt)
is not necessarily positive definite and therefore h does not have to be a descent
direction. However, if the optimisation is started close enough to the global min-
ima of a ”nice” function, then J′′(xt) will be positive definite, and the algorithm
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converges quadratically to the solution (Fletcher, 1987). In quasi-Newton meth-
ods, Bt is a positive definite approximation to the Hessian which is updated at
each iteration. Some examples of quasi-Newton methods are Broyden-Fletcher-
Goldfarb-Shanno (BFGS) (Byrd et al., 1995) method and symmetric-rank-1 (SR1)
(Byrd et al., 1996). Quasi-Newton methods are often implemented to avoid the
computationally expensive evaluation and storage of large Hessian matrices, but
also to guarantee a decent direction.

2.1.2 Gradient-free

Although there are many gradient-based algorithms which provide good conver-
gence properties under mild condition, gradient-based methods are in general
informed locally, which is inappropriate when working with highly multi-modal
objective functions. Moreover, in the application on parameter estimation for the
LPJ-GUESS model, derivative information is hard; or even impossible, to obtain.
Thus, traditional gradient-based methods would require numerical approxima-
tions of the gradient. Moreover, some parameters of the DVGM model can ab-
ruptly change the dynamics of certain sub-processes, leading to discontinuities in
the objective function.

Gradient-free methods work on global domains, with several cost functions
evaluated at each step in the algorithm, and are therefore less sensitive to local
minima. In the following, an overview of a few gradient-free methods, and fam-
ilies of stochastic gradient-free methods is provided:

Nelder-Mead One popular gradient-free method is the Nelder-Mead algorithm
(Nelder and Mead, 1965), which is based on an iterative update of the vertices in
a simplex; a polytype of n + 1 vertices that define a search domain in dimension
n. This approach is effective for smaller dimensions, but for larger dimensions
and with a non-structured objective functions, the risk of converging to a local
solution is high (Lagarias et al., 1998).

Random Search methods Random search methods are a collection of optim-
isation methods which are based on a stochastic mechanism to generate candid-
ate solutions, i.e., populations of possible solutions to the optimisation prob-
lem (Zlochin et al., 2004). These methods are attractive for unstructured ob-
jective functions, since their stochastic nature, provides opportunities to escape
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local minima. Depending on the mechanism of generating new candidate solu-
tions, random search methods are divided into instance-based or model-based
algorithms.

In Instance-based algorithms, new candidate solutions depend explicitly on
previous candidate solutions. Genetic algorithms (Sastry et al., 2005) are a class
of instance-based methods that have been used for parameter estimation in ve-
getation modelling (Barrett, 2002, Roxburgh et al., 2006). Another example of
instance-based methods is simulated annealing (Kirkpatrick et al., 1983).

Model-based methods are a newer generation of random search methods (Hu
et al., 2012b, Pelikan et al., 2002). In these algorithms, the candidate solutions
are generated via an intermediate probabilistic model, and the algorithm describes
how to propagate this probabilistic model using candidate solutions from previous
steps. In general, many model-based (and instant-based) methods are of a heur-
istic nature and lacks support for convergence. However, quite recently, Zhou and
Hu (2014) were able to connect the framework for some model-based methods to
stochastic approximation (SA), which provided better insight into the asymptotic
behaviour and convergence properties of these algorithms.

For the parametrization problem of DVGMs, we will apply and extend a
method called Gradient Adaptive Stochastic Search (GASS), which belongs to the
class of model-based methods.

2.2 GASS

The idea of GASS (Hu et al., 2012a, Zhou and Hu, 2014) and other model-based
methods is to form a sequence of distributions, {f (x,θk)}, where the limiting
distribution f ∗ = limk→∞ f (x,θk), assigns most of its probability mass to the set
of optimal solutions. The procedure is usually divided into two main steps:

1. Sample candidate solutions, xi, i = 1, . . .N , from the current distribution,
f (x,θk).

2. Use the candidate solutions to update the model parameters θk to new
model parameters θk+1, such that f (x,θk+1) is biased towards the candid-
ate solutions of high quality.

Model-based methods differ mainly in the specification of the distributions, {f (x,θk)},
and in the update rule. Moreover, the construction of the distribution f (x,θk),
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and/or the update rule, depends on the objective function which is not always
available in explicit form. In GASS, the original optimisation problem over the
solution space X ∈ Rn:

x∗ = arg max
x∈X

H (x), (13)

is exchanged with optimisation over the parameter spaceΘ:

θ∗ = arg max
θ∈Θ

∫
Sθ′(H (x))f (x;θ)dx, (14)

where θ′ ∈ Θ is a fixed but arbitrary parameter, and S is a monotone shape
function for which S(H (x)) is non-negative. The maximum of (14) is obtained
when the distribution, f (x,θ), has all its probability mass concentrated at the
global solution, x∗. By restricting the distribution to the exponential family, given
on the form:

f (x;θ) = h(x) exp(θᵀT (x)− φ(θ)), (15)

where T (x) is the sufficient statistics and θ is the vector of natural parameters, the
model parameters are updated efficiently based on a standard Newton step, e.g.
(11). At step k, the gradient and Hessian of (14) given θ′ = θk, are approximated
based on current samples. The gradient, Φ, is given by

Φ = Ep(·,θk)[T (X)]− Ef (·,θk)[T (X)], (16)

where the distribution, p(·,θ), is defined as:

p(x;θ) ,
Sθ(H (x))f (x;θ)∫
Sθ(H (x))f (x;θ)dx

. (17)

The second term in (16) can be calculated explicitly, whereas the first term is
estimated by Monte Carlo integration using the candidate solutions, {xi}N

i=1, to
perform importance sampling. The Hessian is approximated by:

−
(
Vf (·,θk)[T (x)] + εI

)
, (18)

where the variance term is estimated from current samples and the diagonal mat-
rix εI is added to ensure that the Hessian approximation can be inverted in the
Newton update step.

14



2. Part I: Parameter estimation

2.3 Importance sampling

The unknown form of the objective function, H (x), prevents the analytical calcu-
lation of the gradient in (16). If we would be able to draw independent candidate
solutions directly from the distribution p(x,θ), the standard Monte Carlo estim-
ate of the gradient (16) is

Φ̂ =
1
N

N∑
i=1

T (xi), xi ∼ p(x;θk), (19)

where Φ̂ → Φ when N →∞, by the law of large numbers. Moreover, the Monte
Carlo estimation of Φ providesO(

√
N ) converges, independent of the dimension

of x. However, in the application to DGVMs, H (x) = −J(x) (see Eqn. 4) is
a complex function, and even though the exact form of H (x) was known, the
distribution p(x;θ) would probably not allow for direct sampling.

An alternative is to estimate the gradient (16) based on Importance Sampling
(IS). This method was originally introduced as a way for reducing the variance of
Monte Carlo estimates. Introducing an arbitrary instrumental distribution, g(x),
we have that:

Φ =

∫
T (x)p(x;θk)dx =

∫
T (x)

p(x;θk)
g(x)

g(x)dx, (20)

if g(x) > 0 whenever T (x)p(x;θk) 6= 0. Thus, one can sample from g(x), and
introduce weights, ω(x) =

p(x;θ)
g(x) , resulting in:

Φ̂ =
1
N

N∑
i=1

ω(xi)T (xi) xi ∼ g(x). (21)

In the GASS method, the gradient is estimated using importance sampling with
the instrumental density being the current probabilistic model, i.e., g(x) = f (x;θk),
where f belongs to the exponential family. The corresponding weights satisfy the
proportionality:

ωi ∝
p(xk

i ;θk)

f (xk
i ,θk)

∝ Sθk (H (x)). (22)

For the unstructured objective functions occuring when estimating parameters in
DGVMs, a more efficient instrumental distribution for estimating the gradient
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(16), is one that better captures the multi-modal shape of the objective function.
In Paper B of this thesis, our aim is to improve the efficiency of the importance
sampling, by introducing an instrumental distribution, given on a multi-modal
form:

g(x;θ, {πj,ψj}Nν
j=1) = (1− δ)f (x,θ) + δ

Nν∑
j=1

πjνj(x;ψj). (23)

Here the second term is a Gaussian mixture model fitted to samples from previous
iterations, with components νj(x;ψj), and weights {πj} satisfying

∑Nν
j πj = 1.

2.4 Expectation Maximization method

The unknown parameters of the mixture components in (23) can be estimated
using the well-known expectation maximization (EM) algorithm (Dempster et al.,
1977, McLachlan and Krishnan, 2007). The EM algorithm is often used when
the likelihood or posterior is easier to obtain by including some kind of ”missing”
or ”hidden” data. It does not have to be missing data in the conventional sense,
such as missing observations in a time series, but could also be more hypothetical,
like un-observable variables, e.g. which mixture component each observation
belongs to.

The EM algorithm is an iterated two-step procedure, where the E-step re-
quires the calculation of the complete/full likelihood, conditional on the observa-
tions and current iterate, or guess, of the unknown parameters to be estimated.
The M-step maximizes the Q-function derived in the E-step based on some op-
timisation procedure. These two steps are repeated until the (incomplete) likeli-
hood converges.

Example For the above mixture model, (23), assume that we have observations
~x = {xi}n

i=1, and ”missing” data being the class/mixture-belongings, z, taking
some value in the integer set {1, . . . ,Nν}. Let the aim be to estimate the un-
known parameters of the mixture model: Ψ = {πj,ψj}Nν

j=1. The logarithm of
the full likelihood takes the form

log p(~x, z|Ψ) =

Nν∑
j=1

[
log(πj) + log νj(xi;ψj)

]
I(zi = j),
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where I(zi = j) is an indicator function, taking value one if observation i belongs
to class j, and zero otherwise. The Q-function at iteration t of the EM algorithm
is given by

Q(Ψ,Ψt) = EΨt
[
log p(~x, z|Ψ)

]
=

n∑
i=1

Nν∑
j=1

[
log(πj) + log νj(xi;ψj)

]
P(zi = j|xi,Ψ

t),
(24)

where P(zi = j|xi,Ψ
t) is the probability of zi taking value j, given xi and Ψt ,

i.e. the probability of observation i belonging to class j. The M-step of the EM
algorithm optimises the Q-function with respect to the unknown parameters:

Ψ
t+1 = arg max

Ψ

Q(Ψ,Ψt). (25)

The EM steps, (24) and (25), are repeated until the likelihood L(Ψ) = p(x|Ψ)
has converged, e.g. until L(Ψt+1)− L(Ψt) becomes sufficiently small.

Assigning a prior distribution to any component in Ψ, one would instead
maximize the log posterior

log p(Ψ|x) = log p(x|Ψ) + log p(Ψ). (26)

Using the same Q-function as in (24), the new M-step for the posterior becomes

Ψ
t+1 = arg max

Ψ

[
Q(Ψ,Ψt) + log p(Ψ)

]
.

The introduction of a ”nice” Bayesian prior on the unknown parameters,Ψ, will
almost always result in a more concave objective function, aiding the optimisa-
tion.

3 Part II: Atmospheric inverse modelling

This part of the introduction describes the spatial-temporal statistics, used in the
atmospheric inversion.

Due to the ill-conditioned nature of the atmospheric inverse problem, the
main focus in the research on atmospheric inverse modelling has been on either
restricting the solution to an identifiable form, e.g. by the design of the target;

17



Introduction

or by using some kind of ancillary information, such as regularization. Since the
introduction of Bayesian methods to atmospheric inverse modelling (Enting et al.,
1993, 1995), most focus has been on including appropriate prior knowledge, and
on developing methods for estimating the resulting targets.

In atmospheric inverse modelling, the targets are usually discretized fluxes on
a grid (Baker et al., 2006, Gurney et al., 2003, 2004, Law et al., 2003, e.g.), or
weights in some basis function expansion (Dahlén et al., 2019, Rödenbeck et al.,
2003). Target variables might also arise from some regression type models of the
mean fluxes, as in (Michalak et al., 2004). In all studies, the target variables or
parts of the target variables can be modelled using spatio-temporal random fields.

In what follows; the spatial processes are first introduced (Section 3.1), where-
after the model is expanded to spatio-temporal processes (Section 3.2). In Section
3.3 the computational benefits arriving from sparse matrices and matrices on Kro-
necker form are considered. The standard model set-up and inference is discussed
in Section 3.4, followed by some more detailed information on inference meth-
ods.

3.1 Spatial statistics

A spatial process has no temporal structure, and might be an instantaneous state
of a spatio-temporal process, or arise from some aggregation in time. Often,
nearby process values tend to be more similar than those further apart, due to
physical processes that interact in a spatio-temporal continuous domain. When
aggregated over time, this typically results in higher spatial correlations between
nearby values (Cressie and Wikle, 2015). Therefore, the introduction of spatial
dependence into the process model can help predict process-values at unobserved
locations.

Let us denote a continuous spatial random process by x(s), s ∈ D, where
D ⊂ Rd . Typically, the spatial dimension is either d = 2 (a surface) or d = 3 (a
volume). A spatial process is defined based on it’s multivariate distribution over a
finite set of spatial locations, {s1, . . . sn} ∈ D, given by

F (x1, . . . , xn; s1, . . . , sn) = P(x(s1) ≤ x1, . . . x(sn) ≤ xn). (27)

If the above distribution is invariant to spatial shifts, h, i.e., if

F (x1, . . . , xn; s1, . . . , sn) = F (x1, . . . , xn; s1 + h, . . . , sn + h). (28)
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the process is called strictly stationary. A process for which the two first moments
exist and are invariant to spatial shifts is called a weakly or second-order stationary
process. Then, the process mean is constant, and the covariance depends only on
a vector between two points, i.e.

E[x(s)] = μ ∀s ∈ D
and

Cov[x(s), x(s + h)] = C(h) ∀s, s + h ∈ D
where C(h) is the covariance function. If the covariance only depends on the
distance and not the direction of the vector separating the points, the covariance is
isotropic, and the covariance is given by: Cov[x(s), x(s + h)] = C(‖h‖), where ‖·‖
denotes the Euclidean length (see Gelfand et al. (2010) for many more details).

The Matérn covariance function (Matérn, 1960) is a popular isotropic covariance
function defined as

C(‖h‖) = σ2 (κ‖h‖)νKν(κ‖h‖)
2ν−1Γ (ν)

, (29)

where ‖·‖ is a distance on a metric space, Kν is the modified Bessel function
of the second kind, σ2 is the marginal variance (C(0) = σ2), and ν > 0 and
κ > 0 are the smoothing and scaling parameters, respectively. The Matérn model
is commonly used in geostatistics due to its flexible form (Stein, 2012), and the
family incorporates common covariance families such as the exponential (ν = 1

2 )
and Gaussian (ν→∞) (Guttorp and Gneiting, 2006).

3.1.1 Gaussian Fields

In this thesis, the stochastic processes are typically modelled by Gaussian fields,
where the joint density of a random vector, x =

[
x(s1), . . . x(sn)

]
, has a Multivari-

ate Gaussian distribution:

p(x|μ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
1
2

(x− μ)ᵀΣ−1(x− μ)

)
, (30)

with mean, μ ∈ Rn, and covariance matrix, Σij = Cov(x(si), x(sj)) ∈ Rn×n.
This is typically denoted as x ∼ N(μ,Σ). Note that the Gaussian process is
defined by its two first (central) moments, E[x], and V[x]. Therefore, a weakly
stationary Gaussian process, is also strictly stationary.
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3.1.2 Gaussian Markov Random Fields

Gaussian Markov Random Fields (GMRFs) (Lauritzen, 1996, Rue and Held,
2005) are Gaussian fields characterized by their sparse precision matrix; i.e. with
many elements being zero in the inverse of the covariance matrix, here denoted
Q = Σ−1. This facilitates efficient matrix algebra using mathematical tools for
sparse matrices (see e.g. Rue and Held 2005), and reduces the complexity of com-
puting determinants and solving equation systems involving the precision matrix
(see Section 3.3.1). This is particularly useful for ML inference, as demonstrated
in Section 3.4.1, and in MCMC methods (see Section 3.4.2), where one needs to
simulate from the random field.

A random vector x ∼ N (μ,Q−1), with elements, xi = x(si), is called a
GMRF if the joint distribution of x satisfies p(xi|x−i) = p(xi|xNi ),∀i. Here, x−i

denotes the full vector x without element xi, andNi is a subset of neighbourhood
variables {xj}j∈Ni , which in some sense are close or connected to xi. It further
holds that

xi ⊥ xj|x−{i,j} ⇐⇒ Qij = 0⇐⇒ j 6∈ Ni.

Thus, Qi,j being zero implies that xi and xj are conditionally independent, and
moreover, j is not a neighbour of i (Rue and Held, 2005).

3.1.3 Link between Gaussian Fields and Gaussian Markov Random Fields

The application of GMRFs has historically been restricted to models on grid-
ded discrete domains (Besag, 1974, Besag et al., 1991, Rue and Tjelmeland,
2002). However, the link between Gaussian fields and GMRFs introduced in
Lindgren et al. (2011), extends the application of GMRFs to continuous spatial
domains. The foundation of the method builds on the research by Whittle (1954,
1963) showing that Gaussian fields with Matérn covariance are solutions to the
stochastic differential equation:

(κ2 −Δ)α/2
τx(s) =W(s), (31)

where Δ =
∑d

i=1
∂2

∂x2
i

is the Laplacian operator, W(s) is Gaussian white noise,

and τ is a scaling parameter. The parametric relation between the SPDE and
Matérn covariance function in (29) is given by, α = ν+ d/2, and τ relates to the
marginal field variance, as

C(0) = σ2 =
Γ (ν)

Γ (ν+ d/2)(4π)d/2κ2ντ2
.
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The idea in Lindgren et al. (2011) involved expressing the Gaussian field using a
finite element representation:

x(s) =
n∑

i=1

φi(s)ωi, (32)

with Gaussian distributed weights {ωi}n
i=1 and piecewise linear basis functions

{φi(s)}n
i=1, defined on a Delaunay triangulation (see Lindgren et al. 2011 for

details). The link to GMRF is obtained by solving the distribution of weights
such that the approximation (32) follows the stochastic weak formulation of the
SPDE:〈(κ

2 −Δ)α/2
τx,ψ1〉

...
(κ2 −Δ)α/2

τx,ψn〉

 d
=

〈W,ψ1〉
...

〈W,ψn〉

 (33)

where {ψj}n
j=1 is a specific set of test functions,

d
= denotes equality in distribution,

and 〈·, ·〉 denotes the inner product defined as 〈f , g〉 =
∫

f (s)g(s)ds.
The common Galerkin solution is obtained by letting ψi = φi, and α = 2,

for which element, j, on the left-hand side of (33), can be written:

〈(κ2 −Δ)τx, φj〉 =
n∑

i=1

ωi 〈(κ2 −Δ)φi, φj〉 τ

=
n∑

i=1

ωi
(
κ2〈φi, φj〉 − 〈Δφi, φj〉

)
τ.

By specifying matrices C and G with elements Cij = 〈φi, φj〉, and Gij = 〈Δφi, φj〉,
and forming a matrix Kκ2 = (κ2C + G), and a vector ω =

[
ω1 . . . ωn

]
, the

left-hand side of (33) is given by τKκ2ω.
The right hand side (33) is multivariate Gaussian, with mean zero and pair-

wise covariance, Cov(〈W, φi〉, 〈W, φj〉) = Cov(〈φi, φj〉) = Cij. Thus, (33) can
be reformulated as:

τKκ2ω
d
= N(0,C),

yielding weights, ω ∈ N(0, τ−1K−1
κ2 CK−T

κ2 τ
−1). Thus, the corresponding preci-

sion matrix is:

Q = τKᵀ
κ2C−1Kκ2τ = τ(κ2C + G)ᵀC−1(κ2C + G)τ. (34)
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Due to the specification of the basis functions, {ψj}n
j=1 , both C and G are sparse

matrices, with non-zero values, obtained only where the basis functions overlap.
However, C−1, is dense, but2 can, with minor effects, be replaced by a diagonal
matrix C̃ with elements C̃ii = 〈φi, 1〉. For a stationary covariance both τ and κ
are constants, but a non-stationary GMRF can easily be formed by introducing τ
and κ as diagonal matrices. The SPDE approach introduced above also generalizes
to manifolds, such as the sphere.

For other values of α, GMRFs are only obtained if α ∈ Z+ (Rozanov, 1977),
and have precision matrix, Qα = τQα,κ2τ, with Qα,κ2 given by the recursion

Q1,κ2 = Kκ2 = (κ2C̃ + G)

Q2,κ2 = Kᵀ
κ2C̃−1Kκ2

Qα,κ2 = Kκ2C̃−1Qα−2,κC̃−1Kκ2 , if α = 3, 4, . . .

(35)

3.2 Spatio-temporal statistics

The extension from spatial to spatio-temporal random fields is obtained by adding
a temporal component, t, yielding processes on the form

{x(s, t) : (s, t) ⊆ Rd × R}. (36)

The difference from viewing the process (36) as a spatial process on Rd+1, mainly
arrives from physical interpretation of time moving in only one (forward) direc-
tion. Hence, a good model should account for this difference. Still, several tech-
nical results for spatial processes, related to covariance functions and inference,
applies to spatio-temporal processes when viewed as spatial processes on Rd+1.

For example, a spatio-temporal process on Rd × R is second-order stationary
if it is second-order stationary on the Euclidean domain Rd+1. The corresponding
covariance is expressed through a space-time covariance function:

Cov(x(s, t), x(s + h, t + v)) = C(h, v) (37)

where h ∈ Rd and v ∈ R. The margins, C(·, 0) and C(0, ·) are purely spatial and
temporal covariance functions, respectively.

In this thesis, we use separable space-time covariance functions expressed on
the form

C(h, v) = CS(h) · CT (v). (38)
2all C-matrices
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Thus, the spatial and temporal covariances are fully separated. The covariance
matrix, Σ, of a spatio-temporal vector with separable covariance can be written
as a Kronecker product (Blangiardo and Cameletti, 2015) between the temporal
covariance matrix,ΣT , and the spatial covariance matrix,ΣS , i.e.:

Σ = ΣT ⊗ΣS .

Some computational benefits arising from the Kronecker structure are dis-
cussed in the next section.

3.3 Reductions in computational costs and memory requirements

Often, high dimensional targets arise when the unknown of interest lies in an
infinite-dimensional space and is approximated using a finite-dimensional repres-
entation. This is the case for e.g. the latent field, x, in the atmospheric inversion
problem. For large-dimensional targets the computational time and storage often
limit the applicability of standard inference methods.

Modelling a stochastic field (vector) using a GMRF typically leads to compu-
tational advantages and reduced memory requirements. Commonly, the compu-
tations involving the sparse precision matrix Q (n×n) are implemented by calcu-
lating and using the Cholesky factorization, Q = LLᵀ, where L is a lower triangu-
lar matrix3 that inherits much of the sparse structure in Q. The cost of computing
the Cholesky factorization for a sparse and a full matrix Q, respectively; and for
different problem dimensions (1D, 2D and 3D), are given in Table 2. Here, we
also show how the number of non-zero elements in the matrices Q and L: nQ

and nL, scales with the size of the stochastic field, n (Rue and Held 2005, chapter
2.4.3; George and Liu 1981, chapter 8).

The Kronecker structure of the spatio-temporal covariance matrix, emerging
from the separable space-time covariance function (38), also reduces the com-
putational costs and memory requirements. Both the precision matrix and the
Cholesky factorization inherits the Kronecker structure of the covariance,

Q = (ΣT ⊗ΣS)−1 = Σ−1
S ⊗Σ−1

T = QT ⊗QS (39)

L = LT ⊗ LS (40)

which can be used efficiently in matrix operations involving Q.

3The Choleskey factorization is sometimes given as Q = RRᵀ where R = Lᵀ is an upper, or
right, triangular matrix.
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Table 2: The number of non-zero elements in matrices Q and L: nQ and nL, and the cost
for computing the Cholesky decomposition, Q = LLᵀ, for sparse versus full precision
matrices. For fields with n different elements in 1D, 2D and 3D defined on a regular
mesh (Rue and Held 2005, chapter 2.4.3; George and Liu 1981, chapter 8).

Sparse Q Full Q
1D 2D 3D 1D - 3D

Field dimension n× 1
√

n×√n n1/3 × n1/3 × n1/3 -
nQ O(n) O(n) O(n) n2

nL O(n) O(n log n) O(n4/3) n2

Cholesky O(n) O(n3/2) O(n2) O(n3)

For Gaussian fields, computations of log-likelihoods and conditional expecta-
tions needed in the inference typically involve three key matrix expressions: 1) log-
determinants log|Q|, 2) matrix-vector multiplication Qv, and 3) solving matrix-
vector equation systems Q−1v.

In the following, we discuss the computational advantages of sparse matrices,
and matrices on Kronecker form, when applied to solve these three matrix expres-
sions.

3.3.1 Computations with sparse matrices

The logarithm of the determinant can be computed via the Cholesky decompos-
ition as:

log|Q| = log|LLᵀ| = 2 log|L| = 2
n∑

i=1

log Lii

where the last equality follows from the fact that L is a lower triangular matrix.
The above expression also holds for Cholesky factors of full matrices. However,
the cost of computing the Cholesky factorization of a sparse matrix is much lower
(see Table 2).

The matrix-vector product is often not the limiting calculation in the infer-
ence. For sparse Q matrices, the i:th element in Qv is efficiently computed as

[Qv]i = Qiivi +
∑
j∈Ni

Qijvj
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where Ni is the neighbourhood of i (see Section 3.1.2). Thus, the number of
operations for computing all elements in the matrix-vector product scales linearly
with nQ; the number of non-zero elements in Q.

The matrix-vector equation system can be computed via a two-step procedure
using the Cholesky matrix, L. We note that

Q−1v = (LᵀL)−1v = L−1(L−ᵀv)

where b = L−ᵀv, and L−1b can be solved efficiently using forward and backward
substitution. The cost of these operations scales with the number of non-zero
elements in L, i.e. nL. Since the amount of non-zero element is typically smaller
then the cost of obtaining the Cholesky factorization (see Table 2), the main
computational cost arrives from calculating L.

3.3.2 Kronecker structure

With Q represented on a separable form (39), and using mathematical rules for
the Kronecker product (further useful quantities can be found in Harville, 1997,
Petersen and Pedersen, 2012), we have that

log|Q| = nS log |QT |+ nT log |QS | (41)

where nS and nT are the sizes of QS and QT , respectively. Note that the cost of
computing the Cholesky factorization for QT is of order nT , since the temporal
domain is one dimensional (see Table 2). Thus, for a process with separable space-
time covariance function, the cost of computing the log determinant mainly scales
with the computational cost of computing the Cholesky factorization for QS .

Moreover, the matrix-vector multiplication, Qv, can be expressed as

Qv = (QT ⊗QS)v = vec
(
QS ivec(v) Qᵀ

T

)
(42)

by using the vec-operator (Petersen and Pedersen 2012, p.60), illustrated in Fig-
ure 3. Hence, the high dimensional matrix-vector multiplication is replaced by
the calculation of two smaller matrix-matrix multiplications. The corresponding
computational cost is reduced from O(n2

T n2
S) to O(nT n2

S) (assuming nT < nS).
Using the same calculations with vec-operators as introduced above, the mat-

rix expression, Q−1v, is given by

Q−1v = vec
(

Q−1
S ivec(v)Q−ᵀT

)
= vec

([
Q−1

T

(
Q−1

S ivec(v)
)ᵀ]ᵀ)

.
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vec(v)

ivec(v)

nSnT

nS

nS

nT

Figure 3: Illustration of the vec and ivec (inverse vec) operations that transform a nSnT ×
1 vector to a nS × nT matrix.

Note that the two-equation systems inside the above brackets can be solved effi-
ciently using Cholesky factorization and back/forward substitution as explained
in the previous section (3.3.1). Thus, the problem of solving one large equation
system of size nS · nT , is reduced to solving several smaller equation systems of
size nS and nT . Due to the low cost of solving the forward and backward substi-
tution, the cost of solving Q−1v scales with the computational cost of computing
the Cholesky factorization for QS .

Finally, we note that by using the Kronecker form (39), computation and
storage of the whole (n× n) precision matrix, Q, can be avoided.

3.4 Inference

In atmospheric inverse modelling, the model introduced in Section 1.3 is linear,
and can typically be expressed in the form, m(x) = y0 + Ax, where A is a dense
matrix that approximates an integral over the latent field. The model arrives from
the originally continuous representation of a single CO2 concentration as

y(s, t) = y0 +

∫ t

t0

∫
S2

J (s, t, u, τ)x(u, τ)dudτ, (43)

where y0 is the background concentration at time t0, and J is the sensitivity of
concentration y(s, t) to the flux at time τ and spatial location u. The discretization
of J is often called the transport matrix (see section 1.2.2).
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The observational error is typically assumed to be independent and Gaussian
with variance, σ2

ε
, resulting in a precision matrix, Qε = Iσ−2

ε
, and a data model:

y|x ∼ N(y0 + Ax,Q−1
ε ) (44)

Historically, the latent field (target), x, has been modelled as a Gaussian field. The
introduction of spatial and temporal correlation structures on fluxes corresponds
to a smoothing regularization, which enables fluxes to be resolved on higher res-
olution (Rödenbeck et al., 2003). In both Paper C and D, the latent field is
modelled as a zero-mean GMRF,

x|θ ∼ N(0,Q(θ)−1) (45)

where the precision matrix, Q = QT ⊗QS , is constructed from sparse temporal
and spatial precision matrices: QT and QS . Conditional on parameters, θ, a
Gaussian latent field with Gaussian observations yields a Gaussian posterior (5).
Explicit expressions for the posterior expectation and variance are given by (see
e.g. Rue and Held 2005)

E[x|y] = μx|y = Q−1
x|y AᵀQε

(
y− y0

)
(46)

V−1[x|y] = Qx|y = (Q + AᵀQεA) (47)

where the precision matrices, Q and Qε, depend on the model parameters θ.
Models on the typical form explained above commonly have a sparse observa-

tion matrix, A, arising from observing a single or a few components of the latent
field. However, in atmospheric inversions, the observation matrix approximates
an integration of the latent field and is therefore dense. This leads to a dense pos-
terior precision, Qx|y in (47), which obstructs the use of efficient inference tools,
such as INLA (Rue et al., 2009).

In Paper C, the model parameters, θ are assumed to be fixed but unknown
leading to an Empirical Hierarchical Model (see Section 1.3.2). The inference
is based on a maximum likelihood estimation of the unknown parameters (see
Section 3.4.1), where an effort has been made to reduce the cost of computing
the log-likelihood.

In Paper D, the aim is to speed up the inference by modelling the inverse
problem using a BHM; assigning suitable priors to the unknown model paramet-
ers. Here, we sample the joint posterior distribution (6) using a MCMC method
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(see Section 3.4.2). The high dimensional latent field is sampled based on an
efficient and computational beneficial Crank Nicholson proposals (Cotter et al.,
2013) (see Section 3.4.3).

3.4.1 Maximum Likelihood

The maximum likelihood estimate of θ is found by maximizing the likelihood,
L(θ) = p(y|θ), with respect to parameters, θ. The likelihood has an expression
similar to (7), and is given by

p(y|θ) =

∫
p(x, y|θ)dx =

∫
p(y|x,θ)p(x|θ)dx.

The above integral is hard to compute, and instead we use a ”trick” similar to the
one introduced in Rue et al. (2009). Noting that

p(x, y|θ) = p(x|y,θ)p(y|θ) = p(y|x,θ)p(x|θ),

we solve for p(y|θ) and obtain the likelihood,

p(y|θ) =
p(y|x,θ)p(x|θ)

p(x|y,θ)
, ∀x. (48)

The above expression is valid for any x, and completely tractable since our Gaus-
sian observations give a Gaussian posterior p(x|y,θ). By choosing x = μx|y, we
obtain a numerical beneficial expression for the posterior distribution, for which
p(x|y,θ) ∝ |Qx|y|1/2. Computing (48) still requires the calculation of both the
inverse (for computing μx|y) and the determinant of the dense posterior preci-

sion matrix (47), both computed at a cost of n3. In Paper C, we combine the
Woodbury matrix identity (Woodbury, 1950), the structure of A, and computa-
tions for sparse matrices (section 3.3.1), to minimize the computational cost of
the likelihood (48).

3.4.2 Markov Chain Monte Carlo

The inference for BHMs is often obtained by sampling from the posterior distri-
bution(s) using Markov Chain Monte Carlo (MCMC) (see e.g. Gilks et al. 1995,
Wikle et al. 1998). MCMC is an iterative method, where the idea is to construct
an irreducible and aperiodic Markov chain with the posterior, or target density,
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as stationary distribution. In contrast with most other sampling methods, the
samples from a Markov Chain are dependent.

Suppose we want to compute μ = Ef [Φ(X)], i.e. the expectation of some
function Φ(X) with respect to a target density, f (x). In terms of BHM this can
be seen as computing a posterior expectation. The Law of Large Numbers for
Markov Chains implies that

μ̂n =
1
n

n∑
i=1

Φ(Xi)
P−→
∫
Φ(x)f (x)dx as n→∞, (49)

where {Xi}n
i=1 is a Markov Chain with stationary distribution f (x). In other

words, μ̂n converges to μ in probability. Moreover, the uncertainty in the estimate
of μ̂ is given by the Markov Chain Central Limit Theorem (here without provid-
ing detailed conditions for the Central Limit Theorem) as:

μ̂n ∼ N(μ,
1
n

(
V(Φ(Xi)) + 2

∞∑
i=1

Cov
(
Φ(Xi),Φ(Xi+k))

))
. (50)

Thus, the accuracy of the MCMC estimator is connected to the pairwise cov-
ariances between samples Φ(Xi) and Φ(Xj). In practise the uncertainty of (50)
can never be calculated, but needs to be estimated from a Markov Chain of finite
length.

A popular way of assessing the quality of the Markov Chain is the mixing
property; i.e., how efficiently the state space is explored by the Markov Chain.
A good mixing means that E[Xk − Xk−1] is large. Optimal mixing properties
have been derived for certain algorithms under specific conditions (the optimal
acceptance rate for a Gaussian proposal is given in the next section).

3.4.3 The Metropolis-Hastings algorithm

One of the most common method for constructing a Markov Chain with a sta-
tionary distribution, f , is the Metropolis-Hastings (MH) algorithm (Hastings,
1970, Metropolis et al., 1953). Given the value of the current step of a Markov
Chain, Xk = xk, a new sample xk+1 is obtained according to the following pro-
cedure:

1. Sample a candidate value x∗ from a proposal density, q(x|xk).
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2. Calculate the acceptance ratio

a(x∗, xk) = min

(
1,

f (x∗)q(xk|x∗)
f (xk)q(x∗|xk)

)
. (51)

3. Accept the new proposal with probability a, by drawing a standard uniform
variable, U, and set

xk+1 =

{
x∗ if U < a

xk o.w.
(52)

Here, stationarity implies that if xk is a sample from the target density, then xk+1

will also be a sample from f .
The choice of proposal density, q, will affect the performance of the MH

algorithm. In low dimensions, a common proposal density, q(x|xk), in the MH
algorithm is the random walk proposal:

x∗ = xk + ε ε ∈ N(0, Iσ2) (53)

where the step size, ε, is Gaussian with standard error σ. If the step size is to
large, the acceptance ratio (51) becomes low, and candidates are seldom accepted,
leading to highly dependent samples and slow mixing. On the other hand, a small
step size yields high acceptance rates, but a slow exploration of the state space and
highly correlated samples.

In the case of a Gaussian target distribution and a Gaussian proposal, the op-
timal acceptance rate for 1-dimensional problems is about 44%, while for higher
dimensional problems this ratio decreases to 23.4% (Gelman et al., 1996, Roberts
and Rosenthal, 1998, Roberts et al., 1997, 2001).

Crank Nicholson For high dimensional distributions, it is often hard to find a
proposal density for the Metropolis-Hastings algorithm with good mixing prop-
erties. Another concern is the computational cost of the MCMC method, which
sometimes might be infeasible for high dimensional problems. In Cotter et al.
(2013) the authors introduce efficient methods for constructing proposal distri-
butions that are robust to the dimension of the discretized target.

Let us assume a Gaussian latent field and a general observation model:

x ∼ N(0,Q−1) p(y|x) ∝ exp (−Φ(x)) ,
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resulting in a posterior distribution:

p(x|y) ∝ exp(−1
2

xᵀQx− Φ(x)). (54)

that we want to sample from. The proposals are based on discretizations of the
Langevin SDE:

dx
dt

= −K(Qx +∇Φ(x)) +
√

2KW, (55)

where W is Brownian white noise and K is a positive definite matrix acting as
preconditioner, suggested by Cotter et al. (2013) to be either the identity matrix,
I, or the prior covariance matrix, Q−1. Using an implicit approximation for the
linear term (Qx), the SDE is discretized as:

xk+1 = xk − δK
(
(1− ν)Qxk + νQxk+1 +∇Φ(xk)

)
+
√

2δKW, (56)

where ν ∈
[
0 1

]
. Choosing ν = 0, leads to a standard forward Euler approx-

imation of (55), resulting in the commonly used Metropolis-adjusted Langevin al-
gorithm (MALA) proposal (Girolami and Calderhead, 2011, Roberts and Rosenthal,
1998, Roberts and Stramer, 2002).

Instead, choosing ν = 1/2 (Beskos et al., 2008), leads to a Crank Nicholson
discretization and update step, with xk+1 obtained by solving:

(I + δ

2KQ)xk+1 =
(
I− δ2KQ

)
xk − δK∇Φ(xk) +

√
2δKW. (57)

The acceptance rate is computed from (51), with the target, f (x,θ), being the
posterior in (54).

Choosing K = I, leads to the Crank Nicholson Langevin (CNL) proposal
and a corresponding acceptance rate, given by:

xk+1 =
(
I + δ

2 Q
)−1

[(
I− δ2 Q

)
xk − δ∇Φ(xk) +

√
2δe
]
, (58a)

log a(xk+1|xk) = Φ(xk)− Φ(xk+1)− δ4‖∇Φ(xk+1)‖2
2 + δ

4‖∇Φ(xk)‖2
2

− 1
2

[
xᵀk
(
I + δ

2 Q
)
− xᵀk+1

(
I + δ

2 Q
)]
∇Φ(xk+1)

+ 1
2

[
xᵀk+1

(
I + δ

2 Q
)
− xᵀk

(
I + δ

2 Q
)]
∇Φ(xk),

(58b)

where e ∼ N(0, I). This proposal is suitable whenever
(
I + δ

2Q
)−1

x can be easily
computed.
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Instead, choosing K = Q−1 leads to the preconditioned Crank Nicholson
Langevin (pCNL) proposal and a corresponding acceptance rate:

xk+1 = 1
2+δ

[
(2− δ)xk − 2δQ−1∇Φ(xk) + 2

√
2δε
]
, (59a)

log a(xk+1|xk) = Φ(xk)− Φ(xk+1)− δ4‖∇Φ(xk+1)‖2
Q−1 + δ

4‖∇Φ(xk)‖2
Q−1

− 1
4

(
(2 + δ)xᵀk − (2− δ)xᵀk+1

)
∇Φ(xk+1)

+ 1
4

(
(2 + δ)xᵀk+1 − (2− δ)xᵀk

)
∇Φ(xk),

(59b)

where ε ∼ N(0,Q−1). This proposal should be used if we can sample efficiently
from the prior.

In both of the Crank Nicholson proposals introduced above, the calculations
involved in the proposal and acceptance steps can be speed up by making use
of the sparse structure in the precision matrix in a GMRF. In Paper D we use
this to construct MCMC based estimation algorithms that avoid some of the
computational issues in Paper C.
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4 Overview of the papers

Paper A

Parameter optimisation of Terrestrial Ecosystem Models using Gradient Ad-
aptive Stochastic Search
Unn Dahlén, Marko Scholze, Stefan Olin, Andrew McRobert and Johan Lindström

In Paper A, a stochastic optimisation method, Gradient Adaptive Stochastic
Search (GASS), is applied and adapted to a parameter estimation problem of a
highly non-linear, multimodal and computational expensive vegetation model;
LPJ-GUESS. The idea is to demonstrate a new efficient parallellizable optimisa-
tion method for application on Dynamical Global Vegetation Models (DGVMs),
and investigate the ability of the method to find globally optimal parameter solu-
tions.

A simulation study is performed using two sets of observational networks, one
set mirroring the true availability of observations, and the other set representing
availability of data in a more ideal set-up. By modifying the standard object-
ive functions used in data assimilation for DGVMs, we are able to evaluate the
improvement from additional observations.

Parameters are also optimised using true data of CO2 fluxes at a single meas-
urement site in Northern of Sweden.

My contribution:
Johan and Marko had the main idea of the project. The implementation and
adaptation of the algorithm and the analysis was done by me, as well as the main
part of the writing. Johan and Marko provided suggestions for the analysing.
Stefan and Andrew helped with the settings up the model to run, and provided
suitable prior information on parameters.

Paper B

Using memory-based importance sampling to improve stochastic gradient
optimisation of vegetation models.
Unn Dahlén, Johan Lindström and Marko Scholze

In Paper B, we improve a stochastic optimisation algorithm, GASS, for optimisa-
tion of non-structured, multimodal, and computational expensive cost functions,
motivated by the parameter estimation problem in Paper A.
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The main idea is to increase the efficiency of the importance sampling pro-
cedure in GASS used for estimating the gradient in the Newton update step of
the algorithm. This is done by exchanging a unimodal sample density (instru-
ment distribution) with a multimodal sample model adapted to good candidate
solutions observed in the past.

Three types of sample distributions are tested and compared to the standard
GASS method. The different methods are evaluated using both test functions and
the LPJ-GUESS vegetation model investigated in Paper A.

My contribution:
Me and Johan jointly formulated the project idea. The different sample distri-
butions were mainly developed by me, with minor guidance from Johan. The
analysis and algorithm implementation was performed by me. The main writing
was done by me, with proofreading by Johan and Marko.

Paper C

Inverse modelling of spatio-temporal CO2 flux fields using Gaussian Markov
Random Fields
Unn Dahlén, Johan Lindström and Marko Scholze

In Paper C, the main idea is to introduce a model for spatio-temporal CO2 sur-
face fluxes for application in global atmospheric inverse modelling, that allows
for a flexible construction of spatial-temporal covariance structures, and efficient
calculations for inference.

A GMRF model is introduced for modelling past spatio-temporal CO2 sur-
face fluxes. In contrast with traditional flux models, the spatial representation of
the fluxes on a grid is replaced by a continuously defined basis expansion on the
globe, thereby reducing aggregation noise. Unlike previous applications on at-
mospheric inverse modelling, all unknown model parameters are estimated based
on observations of CO2 concentrations. We demonstrate that this yields the best
reconstruction given the statistical models and the available observations.

My contribution:
Johan had the basic idea of the project, but the extension to multiple latent fields
and seasonal dependence was my idea. The computational optimisation was de-
veloped in close collaboration between Johan and me. The implementation and
analysis were done by me with minor inputs from Johan and Marko. The main
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writing was done by me, with support from Johan and Marko.

Paper D

An efficient MCMC method for parameter inference in atmospheric inverse
modelling of CO2 using Gaussian Markov Random Fields.
Johan Lindström, Unn Dahlén

In Paper D, the aim is to improve the inference for the atmospheric inverse
modelling based on the GMRF model introduced in Paper C.

This is done by assigning a Bayesian Hierarchical model to the inverse prob-
lem, and using a MCMC approach for estimating the unknown fluxes and model
parameters. By using a version of Crank Nicholson proposals for the latent
field we manage to obtain a good proposal for the high dimensional latent field.
Moreover, suitable prior distributions for the model parameters are obtained based
on theory for penalized complexity-priors.

My contribution:
Johan had the main idea for the project. The implementation was done jointly
by Johan and me. The writing was done jointly by Johan and me, with the major
methodology written by Johan.

Paper E

Damage Identification in Concrete using Impact Non-Linear Reverberation
Spectroscopy.
Unn Dahlén, Nils Rydén and Andreas Jakobsson

In Paper E, an approach for identifying damage in brittle materials such as
concrete is developed.

Typically, non-destructive testing are based on the evaluation of the non-
linearity from the relative change in frequency and attenuation from a standard
impact frequency test. Traditionally, the signal is separated into several shorter
time intervals, possible overlapping, wherein the frequency and amplitude is cal-
culated and compared between intervals.

Here, we model the signal over a wider dynamic range as compared to tra-
ditional methods by introducing a parametric model with polynomial phase and
attenuation, resulting in higher resolved non-linear parameters.

This work is a continuation on the master project by Dahlén (2013).
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My contribution:
Nils and Andreas introduced the problem and I had the main idea for the meth-
odology. The implementation of the method was done by me, as well as the main
part of the writing.
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