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Zr-H solid solution and hydride

Hydrogen occupies tetrahedral sites in Zr-H solid solution
a-lattice distorts to match the y and 6 structures
Interstitial ordering results in periodic occupation of tetrahedral sites
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Zr exhibits two allotropic modification: low T hcp (o) and high T bce () phases
Two stable hydrides (6 and ¢) and one metastable (y) hydride forms in this system

Under optical microscope the traces of hydrides appears as dark lines

At higher magnification the hydride plates reveal several smaller entities
Hydride plate comprises of platelets stacked side by side
Each platelet comprises of sub-platelets stacked end to end



Multi-scale Structural Mechanics

Hydride blisters
Fracture toughness

Delayed Hydride Cracking

__

Autocatalytic Nucleation

Mechanism of hydride transformation
Stress Reorientation of hydrides
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Top view of a hydride blister grown in
Zr—2.5wt%NDb pressure tube alloy (Singh et al., 2001)




Examination of a section of blister (grown in Laboratory)

Figure : Optical micrograph of hydride
blister section, grown in Zr-2.5wt.% Nb
pressure tube material. Three regions -
Region I - matrix & circumferential hydrides,
region II - matrix containing both radial and
circumferential hydrides and region III -
mainly of d-hydride.
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Expanding elastic-plastic inclusion (Hill, 1950)

Elastic
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Thin layer increasing inclusion volume (and mass)

- Thin swelling layer

Swelling,
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Blister formation - Stress field computation — Multi step
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Fig. 2 Different characteristic regions of the solution. In » > r, the material is
elastic; in r < r,, the material is plastic; in 7.; <7 < R no tensile stress; in r, <7 <
r.1 tensile radial stress; in v, < r < r, tensile radial stress and hydrostatic stress;
In r < r., all stresses are tensile.
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Op = -0, [MPa]
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Radial pressure, - g /k, versus vs. distance 7/R
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Hoop Stress
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Radial Displacement
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Elastic matrix
Elastic-plastic matrix

Transforming layer
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Crack Surface Displacement
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Crack Length vs. Inclusion Radii
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v Mises Stress, Incremental Growth
Expanding Cylinder ahead of a Crack

z8ziM 2

(22T :pvA)
00+s3E8, 1+
O0+aEEL. I+
00+s0€0. 1 +
10-5t78.04
10-alpS. 8+
10-at IS5+
10-508!.,3+
10-s0C!.C+
10-50S L.+
10-a000,£4
10-8020.8+
10-50€0,1+
00+a000.0+

\‘\\
R
S
L5 “\:\\\}\\}\\\i“.\
L T T, et T
NI s AT )




Deformation, Simultaneous Growth
Expanding Cylinder ahead of a Crack

émm

N\

A\

77

AL
A\

7




Deformation, Incremental Growth
Expanding Cylinder ahead of a Crack




v Mises Stress, Simultaneous Growth
Expanding Cylinder ahead of a Crack
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Conclusions

® Precipitates that grow at its edges obtain reduced pressure
in its interior.

e At self-similar growth, stresses become logarithmically
singular for all precipitates shapes.

e The mechanical state of the matrix of homogeneously
growing precipitates matches the present solution exactly but
for larger expansion.

e Spontaneous crack growth may occur



