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nvironmental Stress Cracking is one of the 
most common causes of unexpected brittle 
failure of thermoplastic polymers. Environmental 
stress cracking may account for around 15-30% 
of all plastic component failures in service.  
!
 
H. F. Mark. Encyclopedia of Polymers Science and 
Technology – 3rd Ed., John Miley & Sons Inc. 2004 
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Evolving Surface Morphology 
Asaro-Tiller (1972), Grinfeld (1986, 1993), Srolovitz (1989), 
Freund (1995), Kim et al. (2000) 
 
Gibb’s free energy 
 

 

 

where 
 

 is the free chemical energy and  
 is the free elastic energy 
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The free chemical energy  

  
 
where  
 

        gives the position of the surface 
      is the surface energy density 
 
The free elastic energy (Cerutti) 
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Evaporation-condensation  
 
  
 

 
 
Surface diffusion  
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Governing equations: 
 
Evaporation - condensation 

   
 
 
or surface diffusion 
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FEM calculation of an evolving surface

Increasing time

and depth
Original surface
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Landau potential:  
  

    ; Ginzburg, Landau (50) 
 

with 

 

 

 

 

 

 

F = Fc + Fe + Fgr

Fe =

Z
G(�)

2
(�w)2dV

Fc =

Z
U(�) dV

Fgr =

Z
gb
2
(��)2dV
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Double-well  
chemical potential 

 
  
 
 
 

 
  
Shear modulus 
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Antiplane deformation => Two free variables 
 
Displacements  w   and   phase (density)   

             

               ,     
  

 (5 ) 
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Evolution of the phase 
 
 
 
Evolution of the displacements 
 
 
 
At equilibrium: 
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One dimension (Ginzburg, Landau) 
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With mechanical loading 
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Seek perturbation solution:  
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The result  
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i.e. the speed of the corroding edge 
 
 

c = L�� =
3

4
pL�Go(rw)2

r
2gb
p   . 

 

21 (28)



XX
X

X
X

X
X

X
X

XX
X

X
X

X
X

X

X

X

X

1000 2000 3000 4000

0.05

0.10

0.15

0.20

0.25

0.30

Steady state solution 
 

 

 

 

 

 

  
 

 

 

Dissolution rate 

Tensile stress 

Dissolution Rate vs. Tensile Stress 
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 Red is remaining material      Effective stress
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     Without general corrosion     with general corrosion 
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Summary  
 
• Stress corrosion cracking is modelled 
as a moving boundary problem  

 
• Surface morphology, crack initiation and 
crack growth are captured  

 
• Branching occurs when the crack front 
becomes unstable 

 
• Solutions become semi-self similar 
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