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Populær sammenfatning på dansk

I årtusinder har mennesket beskæftiget sig med fysik. Fysikken er den gren af vi-
denskaben, der beskriver hvordan verden ser ud, hvad den består af og hvordan vi
skal forstå den. En af de grundlæggende grene af fysikken er partikelfysikken. Par-
tikelfysik omhandler de mindste dele af alting, det som kaldes elementarpartikler. El-
ementarpartikler defineres som partikler, der ikke kan brydes i mindre elementer, i
modsætning til fx. atomer, der kan deles i protoner, neutroner og elektroner. Ele-
mentarpartiklerne inddeles i to klasser kaldet kvarker og leptoner, og vekselvirker med
andre partikler ved hjælp af bosoner – en tredje type elementarpartikler, der bærer
tre ud af fire kendte naturkræfter: den stærke og den svage kernekraft samt elektro-
magnetismen. Endnu har vi ikke fundet bosonen, der antages at være bærer af tyn-
gdekraften, hvorimod Higgs bosonen, der giver masse til de andre elementarpartikler,
for nyligt er blevet fundet.

For detaljeret at beskrive hvordan disse forskellige vekselvirkninger foregår, har man
brug for en matematisk teori, der forklarer hvilke regler, de forskellige elementarpar-
tikler er underlagt. En væsentlig teori for denne afhandling er kvante-kromodynamik
(på engelsk quantum chromodynamics (QCD)), der fortæller hvordan partikler, der er
ladet under denne stærke kernekraft, vekselvirker med hinanden. Ligesom elektrisk
ladning (indirekte) er kvantetallet for elektromagnetismen, findes kvantetallet farve
(color) i QCD, ikke at forveksle med de farver, vi kender fra hverdagen. De eneste el-
ementarpartikler, der er ladet under den stærke kernekraft, er kvarkerne og gluonerne,
hvoraf de sidste er bærere af den stærke kernekraft.

I modsætning til elektromagnetismen, hvor frie elektrisk ladede partikler er tilladt, er
det ikke er muligt at observere frie farve-ladede partikler. Kun under helt specielle
omstændigheder, for eksempel ved enormt høje energier, kan vi tale om frie kvarker
og gluoner, der kan vekselvirke. Under helt normale omstændigheder er kvarkerne
bundet sammen af den stærke kernekraft på en sådan måde, så de observeres som
farve-neutrale (eller farveløse). Eksempler herpå er protoner og neutroner.

Ved høje energier, hvor kvarkerne og gluonerne kan anses for frie, kan man benytte
perturbativ QCD (pQCD) til at udregne sandsynligheden for forskellige processer.
Forsimplet går pQCD ud på at man approksimerer den fulde teori med en, der kan
udregnes ved en given præcision. Men hvad gør man, hvis energierne eller energiover-
førslen mellem partiklerne ikke er høje nok til at kvarkerne og gluonerne kan anses
som frie partikler? I disse tilfælde kan man ikke benytte sig af pQCD, og man er
derfor nødsaget til at bruge fænomenologiske modeller. Tag som eksempel en elastisk
proton-proton kollision. Her forestiller vi os en kollission som på et pool-bord. To
kugler kolliderer med hinanden og er intakte bagefter. Men hvordan skal vi beskrive
denne process? Vi har jo lært at protoner ikke er kugler – de er opbygget af kvarker
og gluoner. Hvordan kan det være, at de stadig er bundet sammen på (næsten) præ-
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cis sammen måde efter kollisionen? Og hvilken type af partikler er ansvarlige for at
udveksle energi mellem protonerne, uden at de går i stykker?

Processer, der ikke kan beskrives med pQCD, kaldes ofte bløde kollisioner (på engelsk
soft processes). Historisk er de blevet beskrevet som en udveksling af en anden type af
sammensatte objekter. En teori, der beskriver disse udvekslinger, kaldes Regge teorien.
Denne teori er grundlaget for de fleste artikler i denne afhandling. Bl.a. undersøges de
ovennævnte elastiske processer, samt en anden type – de diffraktive processer. I diffrak-
tive processer, brydes en (eller begge) af protonerne i en elastisk proces op, men på en
helt særlig måde: i sådanne processer er der store områder af faserummet, hvori der
ikke er partikelproduktion. Man vil derfor eksperimentielt kunne lede efter sådanne
’huller’ i ens detektor. I disse diffraktive kollisioner sker det særlige, at vi benytter os
af Regge-teorien til at forklare hvor ofte sådanne kollisioner sker, mens måden, hvorpå
de diffraktive systemer opfører sig, ofte kan beskrives med pQCD.

Det særlige miljø, som disse typer af kollisioner danner, er yderst unikt netop på grund
af dette sammenspil mellem perturbative og ikke-perturbative beskrivelser. Arbejdet
i denne afhandling er et forsøg på at give ekstra opmærksomhed til dette regime: der
er her udviklet nye modeller og værktøj, der giver ny indsigt i de diffraktive hændelser
og kan benyttes til videre studier.
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Introduction

This thesis consists of two parts. The main body, part two, consists of four journal articles,
referred to as Papers I–IV. All deal with model-building and phenomena related to quantum
chromo-dynamics (QCD), and represent the majority of work I have pursued during my
Ph.D. The purpose of the first part, this introduction, is to present the reader with the
theoretical background for understanding the articles in part two. The goal is not to teach
the reader the actual methods of calculation — for this a textbook is more appropriate —
instead I intend to present the concepts and ingredients that go into such calculations, and
how these are utilized, extended and understood in Papers I–IV. This introduction is thus an
appetizer: it will give a short overview of QCD and introduce why it is common to speak of
two regimes (“soft” and “hard”) here. Methods for calculating scattering processes in both
regimes are presented, and the classification of soft processes in theoretical and experimental
communities is discussed. As the articles are developed within the framework of Monte
Carlo event generators, the constituents of such event generators are also presented. If the
reader becomes inspired by this introduction, an outlook is given to how the work presented
in part two can be improved and continued.

QCD is the theory of colored particles (quarks and gluons, collectively called partons) and
their interactions, giving rise to the strong force. When discussing QCD (as well as other
theories), often many different scales are used: short and long distance scales as well as
small and large momentum transfer scales. Here we recall that these are related through
the uncertainty principle, ΔxΔp ≥ ℏ/2, such that large momentum transfers are equivalent
to short distances and vice versa. Large distance scales in QCD correspond to roughly 1
fm (10−15 m), where the quarks and gluons are bound (confined) inside color-neutral
objects (hadrons) such as protons and neutrons. These large distances are equivalent to
processes with momentum transfers of approximately (ℏc)/1fm ∼ 0.2 GeV, with ℏc ∼
0.2 GeV·fm a unit conversion factor. Short distances in QCD, however, means that the
individual partons of the hadrons can be probed. This occurs roughly at or below 0.1 fm,



corresponding to momentum transfers in the GeV range. Thus in collisions with large
momentum transfers it is possible to consider the quarks and gluons as free particles and
from these study e.g. the heavier elementary particles.

The interesting measurable quantities (observables) also depend on the scales of the process
considered. Observables related to processes with large momentum transfers are thus based
on the partonic degrees of freedom, say an interaction probability (cross section) deter-
mined from a partonic scattering process, e.g. where two quarks scatter by the transfer of a
single gluon. As the small momentum transfer processes cannot resolve the partonic degrees
of freedom, the relevant degrees of freedom are instead the hadronic ones, and observables
could then e.g. be the hadronic scattering cross sections. In such processes, however, the
strong force is too large to invoke the standard perturbative method of calculating cross sec-
tions in QCD (cf. section 1), and thus other approaches or phenomenological models have
to be used. The regimes where perturbation theory breaks down are often called nonper-
turbative or soft regimes, and from the uncertainty principle consist of QCD on both large
distance scales and at small momentum transfers. Soft QCD is thus an umbrella-term span-
ning many different topics including (but not limited to): hadronic scattering processes,
hadronization models, low energy processes, QCD at small momentum fractions (x) and
so on.

Part two explores the regime of soft QCD. The primary focus of this thesis is diffraction, a
subset of the hadronic scattering processes, explored in Papers I–III. In diffractive processes,
no color is exchanged between the two colliding beams. This does not imply that nothing is
exchanged, because often the diffractively excited beam particles are widely different from
the incoming ones. Some even show evidence of hard scales by e.g. the formation of heavy
elementary particles or highly energetic sprays of particles (jets). The interplay between
soft and hard scales in these diffractive processes is unique, and allows us to study the
connection between these two regimes in great detail. In this thesis diffraction is studied in
both proton-(anti)proton (pp, pp̄) collisions, in electron-proton (ep) collisions and in ultra-
peripheral proton-ion (pA) collisions. In the latter two collision types diffraction occurs
because of the non-zero probability for a photon to fluctuate into a hadronic state.

Paper IV explores QCD at small x, where a perturbative approach can be utilized. The
small-x evolution model is used to predict the matter distribution of the hadrons just before
a collision, and its implications are studied in ep, pp, pA and ion-ion (AA) collisions. The
first steps towards creating fully exclusive final states for electron-ion (eA) collisions are also
taken, by studying the color fluctuations of the hadronic cross sections in photon-proton
(γ∗p) and the effects of these on photon-ion (γ∗A) collisions.

Throughout this introduction, unless otherwise stated, the focus is on pp collisions. Nat-
ural units (ℏ = c = 1) are used throughout, such that masses, energies and momenta
are expressed in units of giga-electron-volt (GeV), length either expressed in GeV−1 or in
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femtometer/fermi (fm) and finally cross sections are given in units of area, millibarn (mb)
with 1 fm2 corresponding to 10 mb.

1 The theoretical foundations

Historically, the development in theoretical particle physics has been driven by the need and
aim to describe unexplained phenomenona observed in experiments. The most convincing
theories or models, however, have also been able to make predictions later confirmed by
experiment. The theoretical and experimental community thus exhibit a symbiosis, and
both play a crucial role in pushing the limits of our knowledge. In theoretical particle
physics, two of the most spectacular theories of the last century, quantum mechanics and
special relativity, are combined into quantum field theory (QFT). Here, particles are seen
as excitations of an underlying field, and the description of how these fields interact is given
by mathematical objects called Lagrangians. A Lagrangian describes the difference between
the kinetic and potential energy of a (set of ) field(s) and can be used to find the equations of
motion and other useful quantities. The ingredients of a QFT Lagrangian includes matter
content (elementary particles), force carriers (gauge bosons), the strength with which these
interact (the coupling), along with the symmetries of the theory, that are related to the
conserved quantities.

As of today we have managed to create a QFT describing the interactions between all known
particles along with an explanation of the origins of three of the four fundamental forces,
gravity excluded.¹ This model is known as the Standard Model (SM) of particle physics, and
is given as a sum of the Lagrangians of each of the three included interactions: the QCD
Lagrangian and the electroweak (EW) Lagrangian, that combines the weak interactions
with the electromagnetic. The quantum numbers of interest in the EW theory are electric
charge and weak isospin. In QCD the quantum number is color charge — not to be
confused with ordinary colors — of which there are three: red, green and blue. Here,
the analogy with ordinary colors become visible, as red, green and blue can be combined to
form white, while the quantum numbers red, green and blue can form color-neutral objects
(baryons). Similar to the electric charge, we can also combine a color and an anticolor to
form color-neutral objects (mesons).

The elementary particles are the half-integer spin fermions and integer spin bosons. The
latter include the gauge bosons and the Higgs boson, giving rise to the masses of the ele-
mentary particles. The fermions are divided into two groups, quarks and leptons, where
the former of the two are the only ones affected by the strong force carried by the gluon.
Electrically charged fermions are affected by the electromagnetic force carried by the pho-

¹Gravity is excluded because of the difficulties with including it in a renormalizable QFT: a QFT where
divergencies can be absorbed into physical quantities.
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ton, while all fermions are affected by the weak force carried by the W± and Z0 bosons.
It is common to group the fermions into three generations based on their masses, each
generation containing four particles: a pair of quarks and a pair of leptons.

The electroweak Lagrangian describes the interactions between the gauge and Higgs bosons
and the fermions. The QCD Lagrangian is shown in box 1. Contrary to the photon in
QED, the QCD Lagrangian allows for self-interactions of the gluon, cf. the last term of
eq. (1). One could thus imagine forming a bound state of gluons, similar to the hadrons
being bound states of quarks. Some glueball candidates have been proposed, see e.g. [1],
but at present it is not possible to claim hard evidence of such states due to mixing between
the glueballs and quark states.

Box 1: The QCD Lagrangian
The QCD Lagrangian is given as:

LQCD =ψ̄i(i(γ µDµ)ij − mδij)ψj

−
1
4
Ga

µνG
µν
a , (1)

Dµ =∂µ − i
gλa
2

Aa
µ , (2)

Ga
µν =∂µAa

ν − ∂νAa
µ + gf abcAb

µA
c
ν , (3)

where ψ denotes the quark fields, γ µ the Dirac
gamma matrices, Dµ is the covariant derivative of
QCD, λa the Gell-Mann matrices, Aa

µ the gluon
fields and Ga

µν the gluon field strength tensor. g

is the QCD coupling, related to the strong cou-
pling through αS = g2/4π. Renormalization of
the QCD Lagrangian forces the strong coupling to
be energy-dependent. It can in principle be calcu-
lated to any order in perturbation theory. At first
order the strong coupling is,

αS(Q2) =
4π

β0 log(Q2/Λ2)
, (4)

with β0 = 11 − 2
3nf, Q a momentum scale, nf the

number of active quark flavours present at this
momentum scale and Λ a cutoff scale.

Once the SM Lagrangian has been written down, it is time to make predictions with it.
Despite the seemingly mathematical simplicity of the SM Lagrangian, this turns out to be
almost impossible. This means that approximations often have to be used in order to make
predictions. One approximation could be to discretize the continuous space-time variables,
which reduces the difficulties in evaluating the integrals that arise in the calculations, a
method used in Lattice QCD. Another approximation is to use perturbation theory. In
perturbation theory the full solution to a problem is approximated by a power series in
some small parameter. In a QFT this small parameter is the coupling of the theory. The
precision of the approximation of course increases with the number of orders kept in the
series, such that a leading order (LO) prediction is less precise than a next-to-leading order
(NLO) prediction and so on. Note, however, that this perturbative approach only works
if the coupling of the theory is small. If the coupling is small, the higher orders of the
perturbative expansion are smaller than the lower orders. If the couplings are of order
unity or above, the higher orders are larger than the lower orders, and our perturbative
expansion breaks down.

In the theory of leptons and photons, quantum electrodynamics (QED), the coupling of
interest is the fine-structure constant, α = e2

4π ≃ 1
137 . The smallness of the fine-structure
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Figure 1: The running of the strong coupling as a function of Q [2]. Data points show the large variety of experiments, that
are able to measure the strong coupling constant, with parantheses indicating the perturbative order at which the
calculation is performed.

constant thus allows for a perturbative description throughout. For small momentum trans-
fers, the value of the strong coupling, αS, is of order unity. Thus at a first glance, pertur-
bation theory is not applicable in QCD. But it turns out that renormalization of QCD
introduces an energy-dependence to the coupling,² a feature often called a running cou-
pling. In QCD, it turns out that the coupling vanishes asymptotically as the energy scale of
the process increases. This form of energy dependence is called asymptotic freedom, and al-
lows for a perturbative description of QCD when the relevant energy scale of the process is
high. A comparison between theoretical prediction for αS and experimental measurements
is given in figure 1.

Equation (4) in box 1 show the theoretical prediction for the strong coupling. It is evident
that if Q ≫ Λ the coupling becomes weak and the quarks and gluons can be considered as
free particles. Similarly we see that as Q → Λ the coupling blows up. Thus at low energy
scales, Q ∼ Λ, the quarks and gluons are confined inside the aforementioned hadrons.
This feature has yet to be proven from what is called first principles, i.e. from the underly-
ing QFT, but as all evidence points towards this (no free quarks and gluons are observed at
everyday energies), several models have proposed explanations for confinement. The most
convincing models explain confinement by examining the potential of QCD. Where QED

²Renormalization of any QFT introduces energy-dependent couplings, but this can be ignored if the cou-
pling of the QFT is small even at low momentum transfers.
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predicts a potential falling off at large distances, VQED(r) ∼ 1/r, Lattice QCD predicts
that the QCD potential has an additional linear term, VQCD(r) ∼ 1/r+ κr, with κ often
called the string tension. At large distances the linear term dominates, and the former can
be ignored. The full color field between a color and an anticolor can then be approximated
by a one-dimensional string stretched between the two color charges, hence the name for
κ. The linear term results in a constant force at large separation, F = κ, thus pulling
the two charges infinitely far apart requires an inifinite amount of energy and is simply
not achievable. The energy stored between the separating charges will, at some point, be
large enough that it is energetically favorable to create a new color-anticolor pair, splitting
the original force-field into two. Thus instead of two free charges one obtains two neutral
composite objects with the color-anticolor pairs confined, but not in their original config-
uration. Repeated breaks of the field or string may occur, such that a single string could
produce several mesons in this way.

Due to the breakdown of perturbative QCD at low energy scales, phenomenological mod-
els are reqired to describe many aspects of QCD. Some of these models can be calculated
analytically, but many require numerical simulations. Because the quantum world is inher-
ently probabilistic, the methods of probability theory are often employed in such numerical
simulations. Hence the term “Monte Carlo” is often used in the name of such numerical
simulations.

2 Monte Carlo event generators

All results in this thesis have been developed within a Monte Carlo event generator. This is
a tool that takes a theory or model and generates a complete event from which observables
can be defined and predicted. An event here means a complete simulation of what theo-
rists believe occured in a single collision. This includes the chain of processes that tranform
two incoming particles into a (normally) larger set of outgoing particles. Often some ob-
servables can be predicted from theory without generating events, e.g. a scattering angle in
an elastic pp collision. Others cannot be found without having the entire event available,
especially if one wants to compare to actual experimental data where detector resolution
effects have to be taken into account. The predictions from Monte Carlo event genera-
tors can thus be compared to experimental data, allowing theorists to revisit their models
to make improvements. As most nonperturbative and phenomenological models contain
parameters that one cannot predict the value of, the experimental data is also used to tune
the Monte Carlo event generators, a process where the value of a given parameter is chosen
such that there is best agreement between simulation and data.

In this section, the main components of a general purpose event generator will be described:
the hard scattering process and the extraction of the partons from the beams, the showering
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process and the hadronization process. The treatment of additional scatterings between the
incoming beams, the multiparton interactions (MPIs), are postponed to section 3. Many
other components go into the generation of a full event, e.g. the treatment of beam rem-
nants, decays of unstable particles and so on, but as these parts are not crucial for this thesis,
they will not be described here.

q

q′

q

q′

g

Figure 2: The LO diagram for qq′ → qq′.

In the regime where the colored particles can be considered free, we can employ the standard
methods of calculating differential cross sections. To exemplify this we consider a simple
hard scattering process: two quarks exchanging a gluon, qq′ → qq′, where q ̸= q′ for
simplicity, see figure 2. This is the QCD analogue of the QED process of two leptons
exchanging a photon, e.g. eµ → eµ. The two processes actually only differ by couplings and
by prefactors of order unity. The process is described by a leading order partonic differential
cross section,

dσ(qq′ → qq′)
d̂t

=
4πα2

S(Q
2)

9̂s2
ŝ2 + û2

t̂2
, (5)

where we have introduced the Mandelstam variables.³ Had we been studying the QED
process eµ → eµ, this differential cross section would have been the final story. But as we
have just learned, quarks are confined within hadrons. Assuming both quarks have been
extracted from protons, we have to be able to describe the probability of extracting such
quarks from the proton. This probability is called a parton distribution function (PDF),
cf. box 2.

Convolution of the partonic cross section with the PDFs of the protons gets us some way
towards the actual measurable quantity. Having assigned a fractional momentum to each
of the incoming quarks, we arrive at the cross section differential in Mandelstam variable t̂
and energy fractions x1, x2,

d3σ(pp → qq′)
dx1dx2d̂t

= fq(x1,Q2) fq′(x2,Q2)
dσ(qq′ → qq′)

d̂t
. (6)

The energy of the outgoing partons from the hard scattering is still large enough that they
can be considered free particles. But such highly energetic particles have the tendency to

³The Mandelstam variables are defined from the momenta of the particles in a scattering process, a(p1) +
b(p2) → c(p3) + d(p4), such that ŝ = (p1 + p2)

2 = (p3 + p4)
2, t̂ = (p3 − p1)

2 = (p4 − p2)
2 and

û = (p4 − p1)
2 = (p3 − p2)

2.
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radiate off some of their energy, similar to an electron radiating photons when accelerated.
This subsequent radiation is called a parton shower (box 3) and creates a spray of particles in
the direction of the outgoing partons (partonic jets). At some point during this evolution
the particles can no longer be resolved perturbatively and the showering process thus cannot
be traced any further.

Box 2: Parton distribution functions
PDFs describe the composition of partons inside
a hadron at a probing scale or virtuality, Q2, and
for a fraction of hadron momentum carried by the
partons, x. A large virtuality allows for smaller re-
gions of the hadron to be probed, thus finer de-
tails are resolved. Given a distribution f (x,Q2) at
a scale Q2

0 the DGLAP evolution equations [3–6]
evolve this distribution to a different Q2 scale.

dfb(x,Q2)

d log(Q2)
=
αS(Q2)

2π

∑
a

∫ 1

x

dz
z

fa(y,Q2)Pa→bc

(
z =

x
y
,Q2

)
, (7)

with Pa→bc the splitting kernels, given as

Pq→qg(z,Q2) =
4
3

1 + z2

1 − z
, (8)

Pg→gg(z,Q2) =3
(1 − z(1 − z))2

z(1 − z)
, (9)

Pg→q̄q(z,Q2) =
nf
2
(z2 + (1 − z)2) , (10)

with nf the number of quark flavours. The initial
state of the PDFs at low scale Q0 is not described,
however, so one has to parametrize this in some
way. No predictions of the initial state can be
made from first principles, but a simple approx-
imation could be of the form (1 − x)ax−b. This
function vanishes at x → 1, the limit where the
entire momentum of the hadron is carried by
a single parton. The parameters a, b are phe-
nomenological model parameters and have to be
fitted to data.

Some parts of the initial state are known. If
the probing scale Q2 is small, we are primarily

probing the valence content of the hadron. In-
creasing the probing scale makes the virtual fluc-
tuations visible, such that gluon emissions and
virtual quark-antiquark pairs can be seen. These
virtual particles are called the sea-constituents of
the hadron. In a perfect world a PDF for every
single hadron would be defined. In reality often
the same PDF is employed for several different
hadrons provided their valence content is equiva-
lent. This is because the construction of the PDFs
requires a great amount of data as there are a lot
of free parameters that need to be tuned. Even
for particles that are considered elementary, PDFs
may often be constructed. This is the case for
the photon, as it has a non-zero probability to
fluctuate into a quark-antiquark pair. If we were
to collide a particle with the photon in exactly
this moment, the particle probing the photon
would instead see a mesonic state. Thus we can
describe the photon as a meson under certain
circumstances, with significant consequences for
the scattering processes available.

Complementary to the evolution in virtuality, an
evolution in x can be performed. This is known
as the BFKL evolution [7, 8] and corresponds to
filling up the hadrons with partons of smaller
and smaller energy fractions. At some point we
expect to obtain so many partons, that they will
overlap. This creates a probability of recombining,
such that two partons merge to form one. This
region of recombination is called the saturation
region, and is not included in the DGLAP evolu-
tion. Paper IV introduces the BFKL evolution in a
Monte Carlo and discusses some of the aspects
related to saturation in such an evolution.

This is not the end of the story. As many other processes give rise to two jets — and as it
is extremely hard to distiguish between jets of different content — one has to include all
partonic processes that give rise to two jets in the final state, before comparisons to data
can be carried out. But we also have to combine the partons in the event to measurable
hadrons, the aforementioned hadronization process. Several hadronization models exist
but two are widely used: the Lund string model [9] and the cluster model [10].
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Box 3: Parton showers
The radiation off colored partons can be described
with a parton shower. The parton shower is exact
in the collinear limit, where the splitting angle is
very small, but can be used as an approximation
of the complete answer in the entire phase space.
The probability for a qq̄ pair to emit an additional
gluon can be calculated by studying the ratio of
matrix elements dσ(e+e− → qq̄g)/dσ(e+e− →
qq̄). In the collinear limit, the probability reduces
to the aforementioned splitting kernels also used
in the PDFs. The splitting probability is,

dPa→bc

dz
=
αS(Q2)

2π
dQ2

Q2 Pa→bc(z,Q2) , (11)

with Pa→bc given by eqs. (8–10).

The choice of evolution variable Q is not unique,
some use p⊥, others (energy-weighted) angles.
The probability is applied to all colored partons
in the event until some minimal stopping scale is
reached, usually around Q ∼ 1 GeV. If Q2 > 0
the shower is time-like and describes final state
radiation, while Q2 < 0 gives a space-like shower

and describes initial state radiation. In the latter
case, the relation to PDFs become evident, as the
initial state shower evolves the partons to larger
Q2.

The parton shower is developed in the NC = ∞
limit, with NC the number of colors, where the
expressions simplify a lot. In order to mimic a
full-color (Nc = 3) parton shower, a dynamical
color evolution (color reconnections) is often ap-
plied after the showering process. This shuffles
the color structure of the event, required to get
better agreement between data and predictions
from event generators. Color reconnections can
also arise in other ways, for instance in W-pair
production when both W’s decay to quark pairs.
Here, the decay products form color singlets, and
one would naïvely not expect any connection be-
tween the two decay products. This, however, is
not what is observed in experiments: at LEP the
best overall description of data was found with
models introducingmoderate color reconnections
in roughly half of the events [11].

The Lund string model is based on imagining the color-electric field as a string stretched
between a color and an anticolor, cf. section 1, with κ assumed constant. This gives rise
to a linear potential and the breaking of the string can occur when the potential energy
in the string is sufficiently high to create a new quark-antiquark pair. The string between
an initial quark-antiquark pair can fragment into several new pairs, and these are then
combined into hadrons systematically, such that a quark and an antiquark from adjacent
breaks are combined to form a hadron. Gluons are in this model treated as kinks on the
string stretched between the quark-antiquark pair. As antiquarks can be approximated by
a diquark system (anti-red can be formed by a green-blue diquark system) and vice versa,
both baryons and antibaryons can be created in the string breaking as well. As the strings
have transverse size different from zero, it is likely that overlapping strings will modify
the hadronization model. A model introducing such modifications, the string shoving
model [12], has recently been developed, enhancing the string tension in dense regions.

In the cluster model all gluons are forced to split into a quark-antiquark pair before each
of these pairs are combined to form color singlet objects called clusters. The clusters have
masses according to the momenta of its constituents, and high-mass clusters are allowed to
decay into lighter clusters. These clusters are then allowed to decay into two hadrons with
a probability based on the spin and mass of the hadrons and the mass of the cluster itself.

Although much progress has been made in recent years, we are still far from understanding
all aspects of particle collisions. So far, the focus here has been on leading order calculations.
Much progress has been made to go beyond this by e.g. introducing NLO matrix elements
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in the hard scattering. At NLO two types of diagrams are added to figure 2: additional
radiation off the incoming and outgoing partons and loop diagrams, where virtual gluons
or quark-antiquark pairs are emitted and absorbed. Both give rise to new propagators, thus
further complicating the phase-space integration. In recent years several dedicated event
generators have become available that not only calculate (almost all) processes to LO, but
also to higher orders in QCD and some even include EW corrections as well. This is an
astonishing accomplishment that allows for extremely precise predictions, showing to a
large extent better agreement with data than the LO predictions.

Increased precision has also been achieved through matching and merging techniques. The
processes of interest are often multi-jet events, where the goal is to improve the descrip-
tion of well separated n jet states through n-parton matrix elements calculations. Multi-jet
merging introduces a scale µ above which the n-parton matrix element is used, and below
which the parton shower is employed. The matching techniques make sure that the lowest
multiplicity states include fixed-order corrections, often taking all NLO corrections into
account. The parton shower is then used to handle additional soft radiation off such ma-
trix elements. Both matching and merging techniques require information of higher order
corrections to a given process at a desired accuracy, often included through the dedicated
matrix element generators. Further improvements to the event generation could be intro-
duced by e.g. developing a full NLO parton shower, or taking the full color structure of
the parton shower into account.

To summarize, the following steps have been taken in order to arrive at a measurable quan-
tity:

• The hard process of interest has been identified and calculated to some perturbative
order.

• The incoming partons have been extracted from the colliding hadrons using PDFs.
• Subsequent radiation off the incoming and outgoing partons have been dealt with

in the parton shower (with or without matching and merging schemes).
• The partons have been hadronized to form measurable particles.

Again we note that these are not all the steps included in an event generator. Beam remnants
and decays of unstable particles also have to be treated. Specialized effects, such as Bose-
Einstein correlations and hadronic scatterings in the final state, can also be included. One
component neglected in the list above, the MPIs, is crucial for this thesis and is presented
in section 3.

In order to compare predictions from Monte Carlo event generators and data from exper-
iments, both sides of the community have to agree on what is actually measured. This
includes agreeing on particle definitions (how do we define a lepton in a detector? Should
it include any additional radiation in a small cone close by?), agreeing on what cuts have
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been used in the experimental analysis (is it really possible to measure a particle p⊥ down
to zero, or is there a minimal threshold because of detector noise?), and also — very im-
portantly — agreeing if detector effects should be mimicked in the event generator, or
subtracted from data. During my Ph.D. I have been active in the development of the Rivet
framework [13]. This is a toolkit for validating (and tuning) Monte Carlo event generators
against experimental data analyses, many of which are provided by the experiments them-
selves. It addresses all of the questions above and provides a diverse set of functions and
particle definitions, such that the definitions on the event generator-side agree best with
the experimental definitions. I have primarily developed tools and functions for studies of
diffraction as well as included some diffractive analyses to the Rivet framework. But I have
also contributed to the upgrade of Rivet in order to facilitate heavy ion analyses [14]. These
analyses often have a very different definition of observables and require several other tools,
such as cumulant calculators for flow-variables. Both upgrades are available from the Rivet
homepage [15]. Most figures presented in the forthcoming papers are produced with Rivet,
as this provides a fast and efficient way of comparing results from Monte Carlo to data.

3 Multiparton interactions

An essential part of this thesis uses the concept of MPIs. MPIs are based on the idea that
several partonic collisions can occur in the same hadron-hadron scattering, but that the
majority of these collisions are of the soft QCD type, just barely described by perturbation
theory. The idea begins with the view of two Lorentz-contracted hadrons — pancakes —
colliding. The reasoning is now that several subcollisions between the partons inside these
pancakes can happen essentially simultaneously. The number of subcollisions depend on
the overlap, or impact parameter b, of these two pancakes, albeit not being fixed by the
impact parameter, as random fluctuations occur even for fixed b.

p1

p2
b

Figure 3: The impact parameter b of the collision between two contracted protons p1, p2. The open circles represent the center
of the two protons, while the arrows indicate their motion.

MPIs were originally introduced to explain the discrepancies between the successful Lund
string hadronization model and data from pp̄ collisions [16]. It was observed that the im-
plementation of the initial- and final-state showers on top of a partonic 2 → 2 matrix
element improved the jet observables, but not the description of the underlying event, i.e.

11



the additional hadronic activity outside of the jets. This led to the development of the MPI
framework, such that not only one partonic scattering can occur, but several. The idea is
an extension of the concept of double parton scattering (DPS) that theoreticians had ex-
plored earlier, although not restricted to only contain two scatterings. It is also inspired by
pictures of multi-Pomeron exchanges in pp collisions, where the Pomeron will be explained
in detail in a forthcoming section.

As the basic concepts of MPIs were developed within the Lund group and implemented
into the early versions of Pythia (current version being 8.2 [17]), we will here focus on
this description of MPIs. Other descriptions are available, e.g. the BFKL-inspired DIPSY
model [18] and the eikonal model developed in Herwig++ (see [19] and references therein).
Many of these are equally successful in describing data as the MPI model described below.

The Lund MPI model [20, 21] begins with the differential perturbative QCD 2 → 2 scat-
tering cross section,

dσ

dp2
⊥

=
∑
i,j,k

∫ ∫ ∫
fi(xi,Q2) fj(xj,Q2)

dσ̂kij

d̂t
δ

(
p2
⊥ − t̂û

ŝ

)
dxi dxj d̂t , (12)

where Q2 = p2
⊥, and the differential cross section

dσ̂k
ij

dp2
⊥

is exactly the cross section giving
rise to two jets as explained in section 2. When integrated this gives the interaction cross
section,

σint(p⊥min) =

∫ s/4

p2
⊥min

dσ

dp2
⊥

dp2
⊥ . (13)

Here, the integration is performed with a sharp cutoff, p⊥min, below which the partonic
cross section is not evaluated. If we let p⊥min → 0, at some point the interaction cross
section will exceed the total cross section. The novel idea here is that the fact that the
interaction cross section exceeds the total cross section for small p⊥min-values means that
we have more than one such interaction per event, i.e. that we have multiple partonic in-
teractions. Assuming that we only get jets from “regular” events (formally the inelastic
nondiffractive events, where the particles are evenly distributed in the detector), a single
hadron-hadron scattering is expected to give an average number of hard interactions above
p⊥min as,

⟨nMPI(p⊥min)⟩ =
σint(p⊥min)

σND
, (14)

with σND being the total inelastic nondiffractive cross section. The hard scattering of in-
terest is then actually considered the “first” or hardest MPI.
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From the qq′ → qq′ example in section 2 we know that the 2 → 2 QCD cross section
diverges for p⊥min → 0,

dσ̂

d̂t
=

4πα2
S(Q

2)

9̂s2
ŝ2 + û2

t̂2
∼
t̂→0

α2
S(Q

2)

t̂2
∼
α2
S(p

2
⊥)

p4
⊥

, (15)

where for t̂ → 0 we have t̂ ∼ p2
⊥. Here, however, we have assumed that the partons are

asymptotically free states, which we know is not correct. The partons have to be confined
within a hadron, and thus the above relation cannot be the entire story. Naively we would
expect a breakdown at around the hadron radius, giving a minimal p⊥ of the order p⊥min ∼
1/rh. But, as we do not fully understand low-p⊥ physics, and we do not know what the
actual form of the physical (measurable) cross section looks like for p⊥ → 0, we instead
introduce a screening parameter, p⊥0 ∼ 1/d with d a color screening length scale, to avoid
the divergency. In the Lund model the partonic cross section is thus dampened at small p⊥
with a factor of (

αS(p2
⊥0 + p2

⊥)

αS(p2
⊥)

p2
⊥

p2
⊥0 + p2

⊥

)2

, (16)

which then modifies the cross section as,

dσ̂

dp2
⊥

→
α2
S(p

2
⊥0 + p2

⊥)

(p2
⊥0 + p2

⊥)
2 , (17)

which instead of diverging is finite. In the case where the dampening factor is introduced,
the interactions can occur all the way to p⊥ = 0 GeV, but the characteristic scale for such
low-p⊥ partons would be around p⊥0.

Although the MPIs are expected to occur simultaneously, it is convenient to order them in a
sequence of decreasing p⊥ values, such that p⊥1 > p⊥2 > p⊥3 · · · . Each of the successive
MPIs with p⊥’s less than the hardest scattering, can then be generated in a downwards
evolution in p⊥ similar to the parton shower,

dP
dp⊥i

=
1
σND

dσ

dp⊥i
exp

(
−
∫ p⊥i−1

p⊥i

1
σND

dσ

dp′⊥i
dp′⊥

)
, (18)

where the exponential is the Sudakov (cf. box 4) factor giving the no-interaction probability
between p⊥i−1 and p⊥i. As the PDFs of the incoming hadrons appear in the differential
cross section, special care has to be taken. This is because of the fact that, say, a valence
quark removed in a “previous” MPI cannot be used as an incoming parton in a “later” MPI.⁴
Similarly, an MPI initiated by a sea quark gives rise to the appearance of the companion sea

⁴The times here are in quotation marks, as they refer to the evolution variable and not proper time.
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antiquark in the PDF of the hadron, as these always come in pairs. Energy and momentum
also has to be conserved in the evolution, and thus a sophisticated scaling and normalization
scheme for the PDFs is implemented in the MPI evolution. These are issues not condisered
in a standard PDF parametrization, which only address the hardest scattering.

Box 4: The Sudakov method
The Sudakov method is widely used in Monte
Carlo event generators whenever some form of
evolution is considered. It can be derived from
general consideration of decays or emissions: at
a given time t in the evolution, either the particle
has decayed or not. Conservation of probability
thus requires the no-decay probability, Pnd, to be
given as

Pnd = 1 − Pd , (19)

with Pd the decay or emission probability. Divid-
ing the time scale considered (0 < t < T ) into
two, (0 < t < T1) and (T1 < t < T ), gives a
new no-decay probability,

Pnd(0,T ) =Pnd(0,T1)Pnd(T1,T ) . (20)

Dividing the scale t into n equal-sized steps be-
tween 0 and T thus gives

Pnd(0,T ) = lim
n→∞

n−1∏
i=0

Pnd(Ti,Ti+1)

= lim
n→∞

n−1∏
i=0

(1 − Pd(Ti,Ti+1))

= exp(−
∫ T

0

dPd
dt

dt)

≡Δ(0,T) . (21)

The probability for having the first emission at
scale T is then the product of the emission prob-
ability at that scale and the Sudakov:

P(T) = Pd(T)Δ(0,T) . (22)

If each MPI occurs independently, the probability of having at least one such MPI is given
by Poissonian statistics as,

Pint ≡ Pn≥1 =1 − P0 = 1 − exp(−⟨nMPI⟩) . (23)

It is easily imagined that a head-on collision of the two hadrons gives rise to more activity,
i.e. more MPIs, than a peripheral collision. This means the interaction probability should
depend on the impact parameter b of the collision. An impact parameter of zero would
imply a head-on collision, while a larger impact parameter implies a more peripheral colli-
sion. Assuming a relation between the average number of MPIs and the overlap function
f (b) of the two (assumed) spherically symmetric hadrons, given as ⟨nMPI⟩ = k f (b), the
interaction probability thus becomes dependent on b,

Pint(b) =1 − exp(−k f (b)) , (24)

The overlap function itself can be found using the matter distributions ρ(x̄) of the colliding
hadrons,

f (b) ∝
∫ ∫

d3x̄ dt ρ(x, y, z) ρ(x, y, z−
√
b2 + t2) , (25)
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or it can be set directly without an underlying assumption of the matter distributions. The
evolution equation thus becomes dependent on the impact parameter through

dP
d2b dp⊥i

=
f (b)

⟨ f (b) ⟩
1
σND

dσ

dp⊥i
exp

(
− f (b)
⟨ f (b) ⟩

∫ p⊥i−1

p⊥i

1
σND

dσ

dp′⊥i
dp′⊥

)
, (26)

where ⟨ f (b) ⟩ =
∫
f (b)d2b/

∫
Pintd2b. The factor of f (b)/⟨ f (b) ⟩ gives rise to an

enhancement at small impact parameter and a depletion at large.

Several choices for the matter distributions appearing in the overlap functions can be made
in the Lund model, but same for all is that the incoming hadrons are considered spher-
ically symmetric. Denser regions of the protons can be introduced, e.g. by choosing a
double Gaussian matter distribution, mimicking hot-spots around the valence quarks of
the proton. The option to choose an x-dependent distribution also exists, but in general
asymmetries and fluctuations in the initial state are not considered. This thesis introduces
a method to create some initial-state fluctuations in Paper IV. The new model is utilized in
the MPI framework only though assigning spatial vertices to the MPIs, thus does not affect
any other parts of the MPI framework presently. The new model could, however, be used
as input for the MPI framework: it predicts the size of the nondiffractive cross section as
well as the sizes of the colliding protons. The former could then replace σND in eq. (26),
while the latter could be connected to p⊥0.

4 Detecting events

As the strong coupling is much larger than the electroweak one, we expect that the majority
of partonic scatterings in high-energy pp collisions involve colored particles. The simplest
possible collisions in QCD are exactly the 2 → 2 collisions that we considered in section
2, thus we expect these to be the dominant processes. Combining eq. (6) and the relation
in eq. (15) we find

d3σ(pp → qq′)
dx1dx2dp2

⊥
∼ fq(x1, p2

⊥) fq′(x2, p2
⊥)
α2
S(p⊥)
p4
⊥

. (27)

The PDFs are peaked at small x, while the hard scattering is peaked at low p⊥. Hence it is
evident that the majority of scatterings in high-energy pp collisions occur at low x and with
low p⊥ — in the soft QCD regime!

In the longitudinal rest frame of the qq′ → qq′ collision, the quarks are created back-to-
back at a given scattering angle. If we neglect parton showers, the gluon exchange between
the two quarks causes two color strings to be stretched between either of the quarks back
to the opposite beam remnant, cf. figure 4 (a). The fragmentation or breaking of a single
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string will cause hadrons to be produced more or less evenly along this string, hence we
expect the number of particles per string per unit rapidity⁵ to be roughly constant, giving
rise to a rapidity plateau: a roughly flat distribution of particles per unit rapidity, cf. the
red lines in figure 4 (b). The total number of particles per unit rapidity is then the sum of
particles produced by both strings in the qq′ → qq′ scattering.

q

q′

q

q′

g

(a)

y

dN/dy

(b)

Figure 4: (a) The color flow in a qq′ → qq′ process. (b) A schematic view of the particle production as a function of rapidity
produced by two strings (red lines) compared to a full event containing MPIs (blue lines).

The full event includes showers and MPIs as well. MPIs tend to favour the central region,
thus additional MPIs will increase the plateau slightly towards central rapidity, cf. the blue
distribution in figure 4 (b). The parton shower creates a spray of particles in the direction
of each of the outgoing partons. For the MPIs, this does not affect the particle density per
unit rapidity much, as these events usually have low p⊥, leaving less room for particle pro-
duction. Where the parton shower does have an effect, however, is if the hardest scattering
has a relatively high p⊥. Here, jets are formed in the direction of the high-p⊥ quarks (in our
qq′ → qq′ example), and we will see two spikes in the dN/dy-distribution where the jets
are located. Thus, while low-p⊥ physics dominate, an event with a hard scattering contains
the signal (here the jets) along with an underlying event, the rapidity plateau formed by the
MPIs.

Other processes give rise to different event topologies. Imagine for instance Higgs pro-
duction by W+W− fusion [22]. As the W-bosons are color-neutral particles, no color is
exchanged between the beams, so naïvely no particles should be produced centrally except
for the Higgs decay products. This means that this process should have two rapidity gaps
on either side of the decay products, i.e. parts of phase space void of any particle produc-
tion. But because of the additional MPIs between the protons, these gaps will be filled
with particles. Due to the probabilistic nature of the MPIs, a fraction of the events should
contain no MPIs besides the hard scattering. This introduces the concept of a rapidity gap
survival factor, a subject largely explored in this thesis. We will return to this later.

Rapidity gaps are also expected in other systems. Many soft processes gives rise to such
gaps, most strikingly is of course elastic scattering, where only the two elastically scattered

⁵Rapidity is defined as y = 1
2 log ((E+ pz)/(E− pz)). It can be related to the pseudorapidity η =

− log(tan θ/2) where θ is the scattering angle w.r.t. the beam, as η = y for massless particles and, approxi-
mately, for massive ones provided p⊥ > m.
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Figure 5: A schematic view of elastic (blue lines) and diffractive processes: single diffraction (SD, green lines), double diffraction

(DD, purple lines) and central diffraction (CD, red lines). The picture shows how the particles are distributed in rapidity
y, and the rapidity gaps present.

protons are detectable, with a single rapidity gap in between. Another type of soft processes,
the diffractive processes, are also expected to contain rapidity gaps, visualized in figs. 5(a,b)
along with the familiar elastic scattering process. The definitions of the soft processes used
in this thesis are given in box 5.

Box 5: Types of soft collisions
The types of soft collisions used in this thesis have
the following definitions. Examples are given for
pp collisions.

• Elastic collisions (el), where the incoming
and outgoing particles are of the same
type.
p+ p → p+ p

• Single diffractive collisions (SD), where
one of the outgoing particles have been
diffractively excited.
p+ p → p+ X

• Double diffractive collisions (DD), where
both of the outgoing particles have been
diffractively excited.
p+ p → X+ Y

• Central diffractive collisions (CD), where
the final state includes the two incoming
particles and a diffractively excited sys-
tem.
p+ p → p+ X+ p

• Nondiffractive collisions (ND), which is
usually “the remainder” (σND = σtot −
σel − 2σSD − σDD − σCD) and contains
both hard and soft collisions.
p+ p → X

The “+” in the final state indicates a rapidity gap,
and “diffractively excited” here equates systems
with the same quantum numbers as the proton,
with a smooth transition between excited proton
states and systems of higher mass.

The distinction between these soft processes, however, is marred by large uncertainties.
Theoretically, diffraction and elastic scattering can be defined by the exchange(s) of a color-
neutral object(s), collectively called Reggeons. The aforementioned Pomeron is one of
these Reggeons, and the one dominating at high energies. Such exchanges of color-neutral
Pomerons are depicted in figure 6, thus diagrammatically showing the definitions of box 5.
Experimentally, these processes are defined by the detection of the rapidity gap produced by
the color-neutral exchange, and/or by the detection of elastically scattered proton(s). But,
as the size of the diffractive system depends on its mass, one could imagine that very large
systems are very wide in rapidity. This means that the rapidity gaps, parts of the diffractive
systems and the surviving proton(s) often escape detection due to the finite extent of the
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experimental detectors. This introduces a possibility for mis-identification of the diffractive
events.

p p

p p
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p p

p X

P

(b)
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p p

p p

X
P
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Figure 6: The elastic (a) and single (b), double (c) and central (d) diffractive processes in pp collisions. Here p is a proton and P
a Pomeron, the “particle” responsible for the momentum transfer. X, Y are diffractive systems.

Diffractive systems are also expected to have some MPI activity. One could here imagine
two different scenarios for MPIs: between the elastically scattered proton and the diffrac-
tive system, and within the diffractive system itself. The former would likely destroy the
rapidity gap, similar to the Higgs example, and thus this type of MPIs would kill the ex-
perimental classification of diffraction. The model for hard diffraction developed in Paper
I exploits the probabilistic nature of the MPIs. A no-MPI requirement is enforced between
the elastically scattered proton and the diffractive system, such that an event is only classi-
fied as diffractive if no MPIs occured. This reduces the number of diffractive events, and
effectively introduces a gap survival factor. Unlike other methods of gap survival, where an
overall suppression factor is more commonly used (see e.g. the approaches used in [23–26]),
the method presented in Paper I is performed on an event-by-event basis, thus a is dynam-
ical effect.

The MPIs formed within the diffractive system contain no restrictions, but are unfortu-
nately marred with open questions, such as

• what cross section should be used in place of the inelastic nondiffractive cross section
in eq. (26)?

• What should be the overlap function — or the matter distribution — of the Pomeron?
• What should one use in place of the hadronic PDFs in the evolution?

Before these questions can be answered, we first have to delve deeper into what a diffractive
system is and how we can model these phenomenologically. Thus the answers to these
questions are postponed to section 5.6.

5 Models for soft collisions

The aim of this section is to be able to describe (differential) cross sections for the soft
processes given in box 5. In general there are two approaches to calculate cross sections
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for soft QCD processes: geometrical models and diagrammatical models. These are also
called s- and t-channel approaches respectively, where s, t are the Mandelstam variables.⁶
Geometrical models emphasize the impact-parameter aspects, and often relate diffraction
to peripheral collisions. The diagrammatical methods usually build a Feynman diagram-
like recipe (similar to the diagrams in figure 6) for calculating the cross sections, and from
these increase complexity e.g. by adding new components.

5.1 The S-matrix approach

Both the s- and t-channel approaches arise from general considerations of the scattering
matrix (S-matrix), the operator that takes an initial state and transforms it into a final state.
In the S-matrix approach, the analytical properties of the scattering matrix is evaluated
instead of calculating matrix elements from Feynman diagrams as in the QFT approach.
With a small set of assumptions, a large variety of properties can be deduced from the
S-matrix. The following properties of the S-matrix are usually assumed:

• it is relativistically invariant,
• linearity,
• unitarity,
• analyticity,
• crossing.

The first property states that it must only depend on Lorentz-invariant combinations of
the kinematical variables and the second arises from the superposition principle. Conser-
vation of probabilities requires unitarity, while analyticity means that the S-matrix elements
are analytical functions of the kinematical variables (specifically the Mandelstam variables
s, t, u). The idea of crossing relates certain specific cross sections to each other, and arise
from the fact that an incoming particle can be viewed as an outgoing antiparticle with neg-
ative momentum. Thus the cross section of two different processes can be described by the
same analytic function, but in different regions of phase space. From these basic assump-
tions, of which a few of them will be described further below, a wide variety of information
can be extracted from the S-matrix.

The S-matrix is the linear operator that takes an initial state | i ⟩, into a final state | f ⟩,

S | i ⟩ = | f ⟩ . (28)

From this we can define a probability for the measuring the state | i ⟩ before the scattering
and the state | f ⟩ after,

Pfi = |⟨ f | S | i ⟩|2 = ⟨ i | S† | f ⟩⟨ f | S | i ⟩ , (29)

⁶Note that from now on we will drop the hat on the Mandelstam variables.
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where ⟨ f | S | i ⟩ are the matrix elements of S. Conservation of probability implies a sum
over all possible final states,

1 =
∑
f

Pfi =
∑
f

⟨ i | S† | f ⟩⟨ f | S | i ⟩ = ⟨ i | S†S | i ⟩ = ⟨ i | i ⟩ , (30)

for any | i ⟩. Thus we have required that the S-matrix is a unitary matrix, 1 = S†S = SS†.

We can now introduce the transition matrix T and the scattering amplitude A as

S =1 + i T = 1 + i (2π)4δ4(pi − pf)A , (31)

allowing us to rewrite all of the above in terms of actual transitions or scatterings | i ⟩ → | f ⟩
described byT orA, not including the process where nothing happens, | i ⟩ → | i ⟩ described
by unity. Thus we can write the unitarity relation of the S-matrix in terms of the transition
matrix,

i (T † − T ) = T †T . (32)

The matrix element of the left-hand side is

i ⟨ f |(T † − T )| i ⟩ = 2Im[Tfi ] , (33)

while inserting a complete set of intermediate states | n ⟩ on the right-hand side gives

⟨ f |T †T | i ⟩ =
∑
{n}

⟨ f |T †| n ⟩⟨ n |T | i ⟩ =
∑
{n}

T ∗
fnTni . (34)

Combining the two we obtain the unitarity equations in terms of T or A, also visualized in
figure 7:

2Im[Tfi ] =
∑
{n}

T ∗
fnTin , (35)

2Im[ A(i → f ) ] =
∑
n

∫
dΦn A ∗(n → f )A(i → n) . (36)

To arrive at eq. (36) we have used that∑
{n}

=
∑
n

∫ n∏
j=1

d3pj
(2π)32Ej

, (37)

giving the n-body phase space, dΦn, when the delta function is extracted from the T-matrix:

dΦn =
n∏

j=1

d3pj
(2π)32Ej

(2π)4δ4 (pi − pf
)
, (38)
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Figure 7: A visualization of the unitarity equations. Grey blobs represent an unspecified scattering. Solid lines represent physical
particles (of which n are intermediate on the right hand side). The vertical dashed line represents a final-state cut (cf.
section 5.5).

General considerations of a 2 → n scattering process allow us to write the differential cross
section,

dσ

dΦn
=

|A|2

N
, (39)

where N is a normalization factor and dΦn is the n-body phase-space. In the case of high-
energy 2 → 2 scatterings this reduces to

dσ

dt
=
|A(s, t)|2

16πs2
. (40)

If the 2 → 2 scattering above is elastic, i.e. that the incoming particles are of the same type
as the outgoing, we can derive the optical theorem (cf. box 6), which relates the imaginary
part of the elastic amplitude to the total cross section — a very powerful relation.

Box 6: The optical theorem
For 2 → 2 elastic scattering at vanishing scatter-
ing angle we have | f ⟩ = | i ⟩ and we use eq. (36)
to obtain the optical theorem

σtot =
2
Φ
Im[ Ael(s, t = 0) ] . (41)

as the right-hand side of eq. (36) can be recog-
nized as the total cross section, σtot, times the
incident flux, Φ = 2E12E2|v1 −v2| ≃ 2s with the
latter equality valid in the high-energy limit for

collinear incoming particles.

Taking the square on both sides gives the differ-
ential cross section for elastic scattering,

dσel

dt

∣∣∣∣
t=0

=
σ2
tot

16π
(1 + ρ2) , (42)

where ρ is the ratio of the real to the imaginary
part of the elastic scattering amplitude at t = 0.

In relativistic field theory we can view an incoming particle with momentum p as an out-
going antiparticle with momentum −p. Thus the same diagram for a 2 → 2 scattering can
be used to describe different processes, cf. figure 8 (a). This relates the following processes
to each other,

a+ b →c+ d , (43)
a+ c̄ →b̄+ d , (44)
a+ d̄ →c+ b̄ . (45)
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Figure 8: (a) A two-body scattering process a + b → c + d with momentum indicated as pi. The arrows with the text “s-

channel” or “t-channel” indicate the time-direction in the respective channels. (b) The physical regions for equal-mass
scatterings.

In the case where the scattering in figure 8 (a) only includes a single intermediate particle,
we obtain the definitions of the s-, t- and u-channels. These are shown in figure 9.

For the s-channel process, the physical region is given by requiring that s ≥ (ma + mb)
2

and | cos θ| ≤ 1, which in the equal-mass case gives

s ≥ 4m2, t, u ≤ 0 (s−channel) , (46)

where the Mandelstam variables are related by

s+ t+ u = 4m2 . (47)

The physical regions for the t- and u-channels are found by exchanging s and t in the former
case and s and u in the latter. These regions are shown in figure 8 (b). If a scattering
amplitude, A(s, t), is found in one region, crossing postulates that the same amplitude can
be continued to other regions of figure 8 (b), and describe the scattering amplitude there.
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d

s-channel
(a)

a

c̄

b̄

d

t-channel
(b)

a

d̄

c

b̄

u-channel
(c)

Figure 9: The s- (a), t- (b) and u-channels (c) obtained if the scattering of figure 8 (a) contains a single intermediate particle.

In the attempt to construct such a scattering amplitude, it is natural to turn to a simpler
theory first. From quantum mechanics we know that a scattering amplitude for spherically
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symmetric potentials can be expanded into partial waves,

A(k, cos θ) =
∞∑
l=0

(2l+ 1)al(k)Pl(cos θ) , (48)

with k the momentum of the incoming wave, θ the scattering angle, l = 0, 1, 2, ... denoting
the angular momentum of the partial waves, Pl are the Legendre polynomials of the first
kind and al the partial wave amplitudes at a given angular momentum. The same expansion
is applicable for relativistic high-energy scatterings. For 2 → 2 processes with particles of
equal mass, the s-channel scattering amplitude can thus be written as

A(s, zs(s, t)) =
∞∑
l=0

(2l+ 1)Al(s)Pl(zs(s, t)) , (49)

now with Al as the partial wave amplitudes at a given angular momentum and zs the scat-
tering angle of the process in the s-channel,

zs(s, t) ≡ cos θs = 1 +
2t

s− 4m2 . (50)

The scattering amplitude, eq. (49), contains singularities on the real s-axis. It is most easily
visualised in the s-channel, where discontinuities appear corresponding to the exchange of
physical particles with mass m, cf. figure 7. The first term of the sum on the right-hand side
of figure 7 is single-particle production, where a simple pole arises from the propagator of
the intermediate particle. If the particle has mass m, then the propagator, 1/(s − m2), is
divergent for s = m2. The second term in the sum is two-particle production. It is possible
to perform parts of the two integrals required here, thus giving a term proportional to√

s/4 − m2 on the right-hand side. Because x = 0 is a branch point of
√
x, we can identify

s = (2m)2 as a branch point in the s-plane. Thus the singularities of the s-plane are,

pole at s =m2 ,

branch points at s =(2m)2, (3m)2, . . . , (51)

where the branch points correspond to n ≥ 2 particles exchanged in figure 7.

Similar singularities can of course be found in the t- and u-channels, when exchanging ei-
ther s → t or s → u in the above. Because the Mandelstam variables are related through
eq. (47), the poles of the other channels can also appear in the s-channel scattering am-
plitude. Keeping t fixed, the u-channel poles and branch points also appear in the s-plane
at,

pole at u =m2 ⇒ s = 3m2 − t ,

branch points at u =(2m)2, (3m)2, · · · ⇒ s = −t,−t− 5m2, . . . . (52)
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So now we have written a scattering amplitude valid in the s-channel, and located all the
discontinuities on the real s-axis in the complex s-plane. All of these poles are contained
within the partial wave amplitude, Al(s), as the Legendre polynomials are convergent in
the physical domain of s, i.e. for s ≥ 4m2, t ≤ 0. It would thus be natural to try to extend
eq. (49) to, say, the t-channel to obtain a crossing symmetric scattering amplitude. In the
t-channel the roles of s and t are reversed, such that the scattering angle in the t-channel goes
roughly as zt ∼ s. This is to be inserted into the Legendre polynomials. In the high-energy
limit, s is large, and as the Legendre polynomials behave as Pn(x) ∼ xn for large arguments,
the series of eq. (49) will not converge in the t-channel. This means we must conclude that
the present form of eq. (49) cannot be extended to the other channels, and thus cannot be
a matrix element of the S-matrix as crossing is postulated.

5.2 The Regge formalism

In the presence of only a single resonance, the sum in eq. (49) reduces to only one term,
l = l0, and we avoid the trouble of a divergent series. Thus we can continue eq. (49) to the
t-channel and study the exchange of a single resonance of angular momentum l0,

A(s, t) = (2l0 + 1)Al0(t)Pl0

(
1 +

2s
t− 4m2

)
, (53)

where we have interchanged s and t in eq. (50) to obtain the t-channel scattering angle
zt(s, t). In the high-energy limit, we can use the large-argument form of the Legendre
polynomials to obtain

A(s, t) ∼ f (t)sl0 , (54)

where we have collected all terms depending on t in the function f (t). The total cross
section is then obtained from the optical theorem,

σtot ∼ sl0−1 . (55)

Thus for the exchange of particles with spin equal to l0 = 0, 1, 2, we get the following total
cross sections:

σtot ∼
1
s
, l0 = 0 , (56)

σtot ∼ const , l0 = 1 , (57)
σtot ∼s , l0 = 2 . (58)

Unfortunately, neither of these behaviours are seen in measurements, where at large energies
the behaviour is approximately σtot ∼ s0.1 for pp collisions. It thus is evident that it
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is neccesary to include more than one resonance in the sum of eq. (49) to describe the
behaviour of the total cross section in pp collisions.

To find a crossing symmetric scattering amplitude, a special trick has to be invoked. This
is the idea of complex angular momentum. In the late 1950’s and early 1960’s Regge pro-
posed this idea to study the bound states of spherically symmetric potentials in quantum
mechanics. The bound states of such a potential falls into families of increasing angular
momentum and energy, and appear as poles of the partial wave amplitudes for positive
integer angular momentum l and wavenumber k. By continuing l to complex values, an
interpolating function a(l, k) could be found that reduced to the partial wave amplitudes
at physical l, i.e. a(l, k) → al(k) for l = 0, 1, 2, · · · . What Regge noted was that the singu-
larities of the interpolating function a(l, k) are poles located at l = α(k), with α(k) called
the Regge trajectory. Each family of bound states has its own Regge trajectory.

As the partial wave amplitude is also defined for high-energy particle scattering, Regge’s
ideas were extended to this regime as well. The full derivation of the relativistic scattering
amplitude and the interpolating function in terms of complex l is not neccesary for this
thesis, so it will not be pursued here. The interested reader can consult e.g. [27–31]. Instead
we will briefly sketch the consequences of constructing a crossing symmetric amplitude in
this regime. In relativistic scattering theory it becomes neccesary to introduce two partial
wave amplitudes, A±(l, t), where

A+(l, t) → Al(t) for l even , A−(l, t) → Al(t) for l odd . (59)

Then the t-channel partial wave expansion is given as [31],

A(zt, t) =A+(s, t) + A−(s, t) , (60)

A±(zt, t) ∼
∞∑
l=0

(2l+ 1)Al(t)(Pl(zt(s, t))± Pl(−zt(s, t))) . (61)

Because of the property of the Legendre polynomials, P(−x) = (−1)lPl(x), the scattering
amplitude A+(s, t) only gets contributions from even l, and A−(s, t) only from odd l. We
can thus introduce a new quantum number, the signature ξ = ±1, that determines whether
even or odd angular momentum is exchanged. The end result in the small-t, large-s limit
(the Regge limit) is the signature amplitudes,

Aξ(s, t) ∼
∑
i

βi(t)ηi(ξ, t)sαi(t) , (62)

where ηi(ξ, t) is called the signature factor, βi is the residue and αi(t) the location of the
i’th pole. To lowest order, we can ignore all exchanges but the one with the largest real
part in the l-plane — this is called the leading pole. In this case we obtain the scattering
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amplitude,

A(s, t) ∼ β(t)η(t)sα(t) , (63)

where β(t) andα(t) are the residue and location (or Regge trajectory) of the leading pole. In
simple models the signature factor is often approximated with the imaginary unit, η(t) ∼ i.
The residue β(t) is unknown and has to be modeled somehow, and the Regge trajectory
(or Reggeon (R)) α(t) has to be determined from experimental data.

To check if we actually obtain bound states with such an amplitude, we can further examine
the behaviour of the interpolating function near the leading pole at l = α(t). Here we find
the behaviour,

A(l, t) ∼ 1
l− α(t)

. (64)

Assume now that for some t0 the Regge trajectory behaves as,

α(t0) = l+ iϵ , (65)

with ϵ a (small) number and l integer. A Taylor expansion near this point gives,

α(t) ≃ α(t0) + α′(t0) · (t− t0) = l+ iϵ+ α′(t0)(t− t0), (66)

resulting in the following behaviour of the interpolating function,

A(l, t) ∼ 1
t− t0 + iϵ/α′(t0)

. (67)

This can be recognized as a Breit-Wigner term for a resonance with mass
√
t0 and width

Γ = ϵ/α′(t0) for ϵ finite, but different from zero. If ϵ = 0 then the interpolating function
describes a stable bound state of mass

√
t0. So now we actually see, that the poles in the

interpolating function A(l, t) represent resonances and stable bound states of increasing
angular momentum l. Combining this knowledge with the form of eqs. (60) and (62), we
deduce the main point to take from the Regge theory: the asymptotic behaviour of the
s-channel scattering amplitude is determined by the exchange of a family of resonances in
the t-channel.

Strikingly, experimental results show that the Regge trajectories lie on straight lines in the
t, α(t)-plane, see figure 10. Thus we can write

α(t) = α(0) + α′t , (68)

for all known mesonic and baryonic trajectories. From this Regge trajectory we can ap-
proximate the total cross section as

σtot ∼sα(0)−1 , (69)
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Figure 10: The Regge trajectories for the ρ, ω families along with the observed mesons [32].

i.e. it depends only on the intercept of the Regge trajectory. Experimental results show that
the leading mesonic resonances all have intercepts at around α(0) ∼ 0.5, while the leading
baryonic ones (not shown in figure 10) have smaller intercepts. Thus neither of these predict
a total cross section similar to what is observed. Hence, we must find a Regge trajectory
with α(0) > 1 in order to describe the high-energy behaviour of the total pp cross section.
This trajectory is known as the Pomeron.

5.3 The Pomeron

Historically, the observation was that the total pp cross section seemed to approach a con-
stant at high energies, i.e. it required a trajectory with α(0) = 1. This trajectory was called
the critical Pomeron named after Pomeranchuk, who introduced it. Later on, when the
increase of the total cross section was observed, the supercritical Pomeron with α(0) > 1
was introduced. Presently, often the terms hard and soft Pomerons are used, describing
Pomerons with two different intercepts (as well as methods to find the intercepts).

As the Pomeron is supposed to be responsible for elastic scattering processes, this restricts
its quantum numbers to be those of the vacuum. These can be obtained by an exchange
of two gluons in the t-channel. This is the simplest (perturbative) picture of the Pomeron
trajectory. Additional gluon exchanges between the two t-channel gluons are allowed, thus
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creating a gluon-ladder. Such a ladder is exactly the BFKL Pomeron, derived from pQCD
in the late 1970’s [8, 33]. This is the Pomeron often referred to as the hard Pomeron. It
has an intercept larger than one giving rise to an increasing total cross section, albeit at a
larger rate than observed. The intercept can, however, be decreased by multiple Pomeron
exchanges, or eikonalization, similar to the dampening occuring within the MPI formalism
of section 3 (for a review of such approaches, see e.g. [30, 34]).

The BFKL Pomeron is one approximation — or interpretation — of the Pomeron trajec-
tory. Another interpretation is that the Pomeron is a bound state of gluons — the glueball
mentioned in section 1. The idea of a bound state of gluonic content was expanded in the
Ingelman-Schlein approach [35], where the Pomeron is modelled similar to any other com-
posite particle. To my knowledge, no trajectory has been analytically calculated for such
bound states of gluons, but instead a fit to data is used to extract the intercept and slope
for such soft Pomerons.

5.4 The Odderon

In 1973 Lukaszuk and Nicolescu proposed a partner to the Pomeron [36]. This trajectory
was called the Odderon, as it was proposed to have the same quantum numbers as the
Pomeron, except for having negative C and P parities. This set of quantum numbers can
be obtained with the exchange of three gluons and its intercept was analytically calculated
in 1999 [37]. The consequences of introducing this trajectory are vast, but most important
is that the asymptotic beaviour of many observables changes. Where the asymptotic be-
haviour of the total cross section and the parameter ρ (defining the ratio of real to imaginary
parts of the elastic scattering amplitude) become identical for pp and pp̄ (or any hadron-
hadron and hadron-antihadron) for processes without the Odderon, the introduction of
an Odderon with intercept αO ≤ 1 changes this behaviour to the two becoming distin-
guishable.

For long, this Odderon was not believed to exist, as no experimental evidence pointed
towards this. This, however, changed in 2017 when the TOTEM experiment [38, 39] mea-
sured ρ to be lower than what present models without Odderons predicted. Similarly, the
total cross section was measured to be larger than predicted by the same models. Thus a
tension between non-Odderon models and data was beginning to form. Quickly, papers
began to appear stating that the TOTEM experiment had seen evidence of this Odderon,
and not long after, the TOTEM experiment drew the same conclusions in a different ob-
servable [40]. Further analyses are however required before a definite conclusion can be
made. Especially the long-awaited results from the ATLAS experiment are needed, as their
last measurement of σtot at 8 TeV was lower than what was measured by TOTEM [41].
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5.5 Cut and uncut trajectories

It should now be evident that to describe the total and elastic cross sections, one could
construct a model with various Reggeons exchanged in the t-channel. The complexity of
such a model can be increased by including e.g. pole terms (single-Reggeon exchanges)
and branch cuts (multi-Reggeon exchanges). The method to handle such multi-Reggeon
diagrams, was proposed by Gribov and is denoted the Gribov Regge calculus [42]. This
method assigns a set of Feynman-like rules to any external and internal legs and vertices in
a given scattering diagram. An internal Reggeon⁷ exchange obtains a propagator of the form
η(t)sα(t), while the incoming and outgoing hadrons have wave functions approximated by
their form factor squared. This form factor is a measure of how likely it is for the hadron to
stick together after the emission (or absorbtion) of a particle, i.e. when absorbing the recoil
from the emitted particle. Thus in an elastic scattering at zero scattering angle, the form
factor equals unity, as both the incoming and outgoing particles are of the same type. Each
vertex is assigned a coupling strength: the hadron-hadron-Reggeon vertex has the strength
β(t), while the triple-Reggeon vertex has the strength g3(t). Thus diagrams containing
several exchanges can be evaluated similar to when using Feynman diagrams in pQCD.

p p

p p

P →

p p

p p

P P

(a)

y

dN/dy

rapidity gap

(b)

Figure 11: (a) The elastic amplitude (left of the arrow) and its cross section (right of the arrow). (b) The multiplicity as a function
of rapidity for elastic scattering.

An elastic scattering is then visualized as in figure 11 (a). Here, the diagram on the left of the
arrow show the elastic scattering amplitude, while the diagram on the right side shows the
cross section obtained from the diagram on the left. Cross sections are diagrammatically
visualized by placing a final-state cut (often a dashed line) in the diagram, where each side
of the cut thus represents the amplitude and its complex conjugate. A cut as shown in
figure 11 would not give rise to any particles in the final state, as this is an elastic scattering,
cf. figure 11 (b). Imagine now the Pomeron as a two-gluon exchange, where the two gluons
form a color singlet. Cutting through a Pomeron, i.e. cutting just between the two gluons,
produces two color strings between the two hadrons and fragmentation of these strings
gives rise to particle production, cf. figure 12. Thus a cut through a Pomeron gives rise to
particle production, while uncut Pomerons gives rise to rapidity gaps.

⁷In this section, the term Reggeon also includes the Pomeron and Odderon
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Figure 12: Cutting through a Pomeron approximately corresponds to cutting through two gluons (a). This gives rise to two
color-strings stretched between the two hadrons, hence giving rise to particle production in the entire phase space
(b).

Returning to the leading-pole approximation, an expression for the elastic pp scattering
amplitude can be written,

Ael(s, t) =β2
pP(t)ηP(t)s

αP(t) . (70)

This can now easily be turned into the total cross section,

σtot(s) ∼
1
s
ImAel(s, 0) = β2

pP(0)s
αP(0)−1 , (71)

where we have used the approximation η(t) ∼ i. This expression can be used in a fit to
measurements of the total cross section, and these fitted parameters can then afterwards be
used to describe the elastic cross section, both differentially and integrated.

In 1992 Donnachie and Landshoff [43] proposed a model using a single Pomeron and a
single Reggeon, and were able to describe the experimental measurements of the total cross
section spanning energies from measurements at around 5 GeV up until the Tevatron en-
ergies of 1.8 TeV. It also made predictions for the LHC which, however, turned out to
slightly undershoot data when measurements from LHC were published. This model was
later combined with a model for differential elastic and diffractive scatterings by Schuler
and Sjöstrand (the SaS model) [44], using only the Donnachie-Landshoff Pomeron in the
elastic and diffractive scatterings. This described the small-t region of elastic scattering fairly
well, but did not capture the observed structure at larger t — also known as the diffractive
dip and shoulder regions. Diffraction was also reasonably well described by the SaS model,
although a suppression factor later had to be introduced as the model gave too large diffrac-
tive cross sections at LHC energies. Several other authors (including the work presented
in Paper II discussed in the next section) have created models describing all or a subset of
these soft QCD processes with more or less success using Regge models, but to list them all
here would be too great a task. Instead we proceed to show how such soft collisions look
like in a detector, the hadronic event shapes of the soft QCD processes.
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5.6 Hadronic event shapes

Once the cross sections of the soft QCD scatterings have been established, the next natural
step is to make predictions for the hadronic event shapes of these systems. This section
thus extends the simple sketch of section 4 with further details. The hadronic event shapes
determine what the event looks like in a detector, i.e. how the particles are distributed in
the phase space. This is an essential prediction for event generators, but one that is often
neglected by the authors of the models describing the cross sections. Here we will follow the
model implemented in the general purpose event generator Pythia 8 [17], used in all of the
studies in this thesis. Other event generators use different approaches, and thus this section
will not be a comprehensive introduction of how event shapes are created, but merely an
introduction to the event shapes for soft QCD processes in Pythia 8.

The elastic systems are fairly simple to describe, as the incoming and outgoing particles
are the same. This means that the only observable left to sample is the scattering angle
θ, chosen probabilistically from the t-spectrum of the differential cross section, e.g. from
an exponential in the simplest models. Diffraction is more complicated. The mass(es) of
the diffractive system(s) and the squared momentum transfer(s) t are sampled based on the
differential cross sections. Paper II presented in this thesis includes several new models for
these differential cross sections, both the elastic and the diffractive. Preceding this work,
the elastic cross section differential in t was the simple exponential described above, albeit
with the possibility to include the Coulomb term for very low t values. This was extended
to models that includes the dip-shoulder region at intermediate and high t-values. Two
models were selected: the COMPAS [45] and ABMST [46] models. Both described the
available total and elastic data. They differ in the number of included trajectories and cuts,
but the difference is primarily seen in the large t tail, where almost no data exists. The former
model includes new structures here, similar to the dip-shoulder region at intermediate t-
values, whereas the latter shows no sign of such structure. Discriminating between the two
would thus require measuring the elastic scattering process at large t-values.

Paper II included a new model for diffraction, originally proposed only for single diffrac-
tion, but extended to other diffractive topologies here. The model includes a high-mass
regime containing two effective trajectories, P,R, as well as a term for pion exchange be-
tween the protons. The low-mass regime is modelled to include the first four excited states
of the proton, all a unit of angular momentum higher than the former. These are placed on
top of a smooth background containg the low-mass tail of the high-mass model. The new
model, and a variation of it also introduced in Paper II, performs well at LHC energies,
although data on diffraction is sparse and — unfortunately — disagrees between the two
general purpose experiments, ATLAS and CMS. Thus experimental measurements both in
different observables and at varying energies are required to test the models further.

Once the mass(es) and squared momentum transfer(s) have been chosen, the subsequent
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evolution of the diffractive system(s) depend on its mass, as very low-mass diffractive sys-
tems are not energetic enough to be described with pQCD. Pythia 8 operates with two
regimes (low- and high-mass systems) with a smooth transition between the two,

Ppert = 1 − exp

(
−max(0,MX − mmin)

mwidth

)
. (72)

Here Ppert gives the probability for using a perturbative evolution of the diffractive system,
MX is the mass of the diffractive system and mmin, width are free parameters to be tuned to
data. With this distribution, the probability for using the perturbative description vanishes
when MX ≤ mmin, just as we want.

The nonperturbative, low-mass regime is again split into two regions. Very low mass sys-
tems, with masses near the mass of the incoming hadron (MX ≤ mh + 1 GeV), can only
decay isotropically into a two-hadron state, thus no evolution or hadronization is applied
here. For masses above this limit, but still in the low-mass region, the collision is pictured
as a Pomeron obtained from the other side kicking out either a valence quark or a gluon
from the colliding hadron. The relative rate of which is kicked out is mass dependent,

P(q)
P(g)

=
N

MX p , (73)

with N, p free parameters. If a quark is kicked out of the colliding hadron, a single string
will be stretched from the quark to the remaining diquark in the hadron remnant. If a
gluon is kicked out, two strings are connected from the kicked-out gluon and back to the
hadron remnant. These strings are then allowed to hadronize using the string hadronization
model described in section 2.

In the high-mass regime, a very different approach is taken. Here, the collision is viewed as
a subcollision between a Pomeron and a hadron for single diffraction, as two such systems
for double diffraction and a subcollision between two Pomerons for central diffraction.
Such a picture was first proposed by Ingelman and Schlein [35], and was developed in
conjunction with experimental measurements showing evidence of hard scales in diffractive
systems, e.g. diffractive systems containing jets. In the Ingelman-Schlein approach, one
factorizes the differential diffractive cross section, similar to the factorization done in any
other nondiffractive process with a hard scale. This means that a flux of Pomerons and a
Pomeron PDF is used in place of the regular hadron PDFs, and then the standard evolution
framework is used with parton showers, multiple interactions and hadronization, just as
described in section 2.

The Pomeron flux can be viewed as a probability for extracting a Pomeron from the incom-
ing hadron, while the Pomeron PDF can be seen as a probability for extracting a parton
from the Pomeron. Theoretically these two can be separated, as they depend on different
variables. Experimentally, however, only the convolution of the two can be measured, and
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this is what is provided by the experimental collaborations. In the event generator the two
can be separated, and uncertainties related to the choice of either two probed. Note that
the Pomeron PDF, although imagined to be primarily of gluonic content, also contains a
sea of quarks and antiquarks, created by g → qq̄ splittings. Several uncertainties go into
the extraction of these diffractive PDFs (dPDFs). The perturbative order of course matters,
with an NLO description increasing the precision. Some experiments use a single Pomeron
in their dPDFs, others use both Pomerons and Reggeons. The lack of fully differential mea-
surements on diffractive systems results in the fits of the dPDFs to be less constrained than
e.g. the proton PDFs, where plenty of data exists. Thus dPDFs should always be used with
care and consideration.

The dPDFs are usually fitted to deep-inelastic scattering (DIS) data. In DIS, a highly
virtual photon is emitted from an electron and can thus directly probe the content of the
colliding particle — most often used to probe the content of the proton. In diffractive
DIS (DDIS), the virtual photon is used to probe the content of the Pomeron instead. Two
experiments at the German electron-proton collider HERA did dPDF measurements, using
the factorization approach and fitting the dPDFs to DDIS data. But when these dPDFs
were used in hadron-hadron collisions, the predicted cross sections completely failed to
describe data. In some processes, the predictions with the dPDFs were about a factor of
ten higher than measurements, see e.g. [41]. Thus the hadronic scattering data showed
evidence of the breakdown of factorization in diffractive processes. This motivated the
HERA experiments to measure diffraction in the photoproduction regime — a regime
where the photon emitted from the electron can fluctuate into a hadronic state, which then
interacts with a Pomeron extracted from the proton. Here, the experiments also observed
that the dPDF predictions were too large as compared to data, although not by as large
a factor as in pp and pp̄. Thus the factorization breaking was seen in both pp̄, pp and
photoproduced ep data.

Several models for explaning this factorization breaking has been proposed. Most of them
introduce a survival factor based on Regge theory, where additional uncut Pomerons be-
tween the two incoming hadrons reduce the cross section. But the effect is not easily cal-
culated, and often gives rise to an overall normalization factor, whereas some data suggest
that the suppression factor is observable-dependent, e.g. it depends on the p⊥ of the jets
created in the diffractive system.

As a different approach we have in this thesis developed a model (Paper I) that evaluates
the suppression factor on an event-by-event basis. The model discriminates between pre-
liminary diffractive and purely diffractive events, where the former is exactly the Ingelman-
Schlein approach. The difference in this model is that the events are only considered purely
diffractive if no other MPIs are found in the hadron-hadron system, as these would destroy
the rapidity gap created by the diffractive system. This creates a dynamical suppression,
one that is also dependent on the kinematics of the event. The latest results from the CMS
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experiment at CERN is shown in figure 13 [47]. Here it is evident that the model developed
in this thesis (denoted “Pythia8-DG” in the figure) does a very good job at describing the
data, thus hinting that the model might be on the right track. Furthermore, the model is
easily extended to other beam-types, and can thus also explain the factorization breaking
in photoproduced ep data. This extension was performed in Paper III and comparisons to
HERA data showed good agreement. Predictions for ultra-peripheral pp and pA collisions
(UPCs) was also given in Paper III, showing larger suppression compared to the ep sup-
pression factors, because of the larger energies available in the photon-Pomeron system in
UPCs. Measurements from the LHC on such diffractively produced dijets in UPCs would
be an ideal place to constrain the model developed in Papers I and III.
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Figure 13: The latest results from CMS [47] on diffractive dijet production. (a) shows the differential cross section as a function

of −t, while (b) shows it as a function of ξ = x/xP. The model developed in this thesis is denoted “Pythia8 DG” in
the plots and is shown with a light-blue dashed line.

5.7 The Good-Walker formalism

The following section leaves the t-channel approach behind and describes a single s-channel
approach for calculating cross sections in soft collisions. The Good and Walker approach
relates to the eikonal picture of high-energy scattering. The eikonal limit is the limit of
large s and small scattering angles. Here, the amplitude found from the t-channel approach
can be written as an integral over the impact parameter, b, between the two colliding par-
ticles as the angular momentum l can be related to the impact parameter b through the
approximation l ∼ kb, with k being the wavenumber of the incident wave. We thus obtain
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a scattering amplitude,

A(s, t) =
s

4π

∫
d2b e−iq·bA(s, b) (74)

=2is
∫

d2b e−iq·bΓ(s, b) , (75)

with the squared momentum transfer being t ≃ −q2. In the second step we have defined
the profile function Γ(s, b) related to the phase-shift δ(s, b) in impact-parameter space,

Γ(s, b) = − i
8π

A(s, b) = 1 − e2iδ(s,b) = 1 − e−Ω(s,b) , (76)

where we in the last equality also have defined the opacity Ω(s, b) from the phase shift. If the
potential has an azimuthal symmetry, the dot product can be evaluated (q · b = qb cosϕ),
and the azimuthal integration performed,

1
2π

∫ 2π

0
eiqb cosϕdϕ =J0(qb) , (77)

with J0 the zeroth order Bessel function. Thus we obtain the scattering amplitude,

A(s, t) =4πis
∫

db b J0(qb)Γ(s, b) . (78)

This expression is the same as obtained in optics. From optics we know that when a plane
wave hits an obstacle (or a hole in a screen) of size R, a pattern occurs on a different screen
(or detector) at a distance D away from the obstacle. In optics, where diffraction simply
means interference, two types of diffraction can occur: Fraunhofer diffraction, valid for
kR2/D ≪ 1, and Fresnel diffraction, valid for kR2/D ≈ 1. The former type is most easily
calculable, and luckily this is also the regime where high-energy particle diffraction exists.⁸
From the intensity of the incident and scattered light, the cross section for scattering and
absorbtion can be found by integrating the profile function. The total cross section is then
the sum of the two. Thus, as the scattering amplitude is the same in the eikonal limit
of high-energy particle scattering as in optics, we can directly use the cross section from
optics for elastic scattering (the scattering cross section in optics), inelastic scattering (the
absorbtion cross section in optics) as well as the total cross section,

σel(s) =
∫

d2b|Γ(s, b)|2 , (79)

σin(s) =
∫

d2b(2Re[Γ(s, b)]− |Γ(s, b)|2) , (80)

σtot(s) =2
∫

d2bRe[Γ(s, b)] . (81)

⁸In high-energy particle diffraction we are working on scales where R ∼ 1 fm, D ∼ 1 m and k ∼
√
s ∼ 1

TeV, thus kR2/D ≪ 1.

35



In the limit Ω → ∞ (absolute blackness), one can set the profile function to unity for a
given impact parameter b ≤ R. This gives the black disk relations,

σel = σin =
1
2
σtot = πR2 , (82)

that gives an upper limit for the elastic cross section.

In 1960 Good and Walker created a model for evaluating cross sections of low-mass diffrac-
tive scatterings [48]. The method has since been expanded and used in e.g. [49–51]. Here,
a normalized and complete set of real particle states {|N ⟩} with fixed quantum numbers
is defined. Similarly, eigenstates of the scattering (or transition) matrix T with eigenvalues
T |n⟩ = tn|n⟩ are defined, also forming a normalized and complete set of states ({|n⟩}) .
Assume that we have two incoming beams, one left-moving |L ⟩ and one right-moving |R ⟩.
These can now be diffracted onto the real particle states |N ⟩ and |M ⟩, where the former
carries the quantum numbers of the left-moving beam particle and the latter carries the
quantum numbers of the right-moving beam particle. The beam particles can be expressed
in terms of the scattering eigenstates,

|L ⟩ =
∑
n

cLn|n⟩ ,

|R ⟩ =
∑
m

cRm|m⟩ , (83)

and we can combine these into an incoming wavefunction |ψI⟩:

|ψI⟩ = |R, L ⟩ =
∑
n,m

cLnc
R
m|n,m⟩ . (84)

The scattered wavefunction can be written in terms of the outgoing beams denoted A and
B, |ψS⟩ = |A,B ⟩. It is obtained by operating with the transition matrix on the incoming
wavefunction,

|ψS⟩ =T |ψI⟩ =
∑
n,m

cLnc
R
mT |n,m⟩ =

∑
n,m

cLnc
R
m tnm|n,m⟩ . (85)

The inner product of the scattering wavefunction is then,

⟨ψS|ψS⟩ =⟨ψI|T †T|ψI⟩ =
∑
n,m

|cLn|2 |cRm|2 t 2
nm⟨n,m|n,m⟩

=
∑
n,m

|cLn|2 |cRm|2 t 2
nm ≡ ⟨t 2⟩RL , (86)
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where we have defined an average over both the left-moving and right-moving particles ⟨⟩RL
and suppressed indices on t. Using the completeness relation,⁹ we can rewrite the above as

⟨ψS|ψS⟩ =|⟨R, L |ψS⟩|2 +
∑
A̸=R

|⟨A, L |ψS⟩|2

+
∑
B ̸=L

|⟨R,B |ψS⟩|2 +
∑
A̸=R

∑
B ̸=L

|⟨A,B |ψS⟩|2 , (87)

i.e. the scattering process can return the incoming wave (elastic scattering), it can return an
exited state of either the left- or right-moving particle (single diffraction) or both the left-
and right-moving particles can be excited (double diffraction).

The profile function for elastic scattering at fixed s is then found from the first term of the
right-hand side of eq. (87)

Γel(b) =⟨R, L |ψS⟩ = ⟨R, L |T |ψI⟩ =
∑
n,m

|cLn|2|cRm|2 tnm⟨n,m|n,m⟩ ≡ ⟨t⟩RL , (88)

and the differential cross section is then obtained from the differential version of eq. (79)

dσel
d2b

=⟨t⟩2
RL . (89)

The profile function for obtaining the excited state A on the right-moving side at fixed s is
given as,

ΓA
SD(b) =⟨A, L |ψS⟩ = ⟨A, L |T |ψI⟩ =

∑
n,m

(
cAm
)∗ (cRm) |cLn|2 tnm⟨n,m|n,m⟩

=
∑
m

(
cAm
)∗ (cRm) ⟨t⟩L , (90)

where we have defined the expansion coefficients cA,Rm picked from either the incoming or
outgoing waves and the single-side average ⟨⟩L. Similarly the profile function for obtaining
the excited state B on the left-moving side is,

ΓB
SD(s, b) =

∑
n

(
cBn
)∗ (cLn) ⟨t⟩R . (91)

Cross sections are obtained by squaring the profile function and summing over possible
excited states A,B. For simplicity we add elastic scattering to the sum (i.e. A = R in the

⁹⟨α|α⟩ =
∑

a′ |⟨a
′|α⟩|2
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sum over A and B = L in the sum over B), as we can then use the completeness relation of
the beam-states {|B⟩}, ∑

B

cB∗i cBj = δij . (92)

The final result must then include a subtraction of the elastic contribution, and we obtain

dσRSD
d2b

=
∑
A

|ΓA
SD(b)|2 −

dσel
d2b

=
∑
A

∑
m,m′

(
cAm′
)∗ (cRm′

) (
cAm
) (

cRm
)∗ ⟨t⟩2

L − ⟨t⟩2
RL

=
∑
m

|cRm|2⟨t⟩2
L − ⟨t⟩2

RL = ⟨⟨t⟩2
L⟩R − ⟨t⟩2

RL . (93)

Similarly for the excitation of the left-moving side we obtain,

dσLSD
d2b

=⟨⟨t⟩2
R⟩L − ⟨t⟩2

RL . (94)

The double-diffractive cross section is most easily derived from eq. (87)

dσDD

d2b
=⟨ψS|ψS⟩ −

dσRSD
d2b

−
dσLSD
d2b

− dσel
d2b

=⟨t 2⟩RL − ⟨⟨t⟩2
L⟩R − ⟨⟨t⟩2

R⟩L + ⟨t⟩2
RL . (95)

The Good-Walker formalism thus derives diffractive excitations from the expectation value
and width of the eigenvalues of the scattering matrix T. The expectation value is defined
by a given incoming wavefunction. Hence expressions are required for both T and the
wavefunctions of the beams in order to use this method. There is no clear method of
calculating the central diffractive cross sections, as this would include two surviving protons
and a diffractive system in a pp collision, thus essentially live inside the elastic cross section
expression.

The Good-Walker framework was initially developed only for low-mass diffraction, but can
be extended to higher masses, if a scattering matrix T can be defined in this region. In the
case where the Good-Walker method is combined with the dipole description of QCD, T
is well-defined and thus can be used for all diffractive masses.

5.8 The dipole description of QCD

One way to describe the evolution of the incoming particles, alternative to conventional
ISR showers, is the Mueller dipole formalism [52]. Here, a quark-antiquark pair is seen as as
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Figure 14: A schematic evolution in rapidity of a single dipole (solid, black lines) stretched between a quark-antiquark pair
denoted 1, 2. The dipole emits a gluon (denoted 3) thus breaking into two new dipoles spanned between partons
1, 3 and 2, 3, respectively. The mother dipole is represented by dashed, red lines. Only one of the new dipoles are
allowed to emit in each step of the process. Definitions of the lengths, rij, have been shown in the first and second
step of the evolution.

the endpoints of a color-dipole, and the probability for emitting a soft gluon is calculated.
In Muellers original formalism, the calculation is performed in the eikonal approximation,
such that the emitters do not obtain any recoil from the emission of the gluon, i.e. there is
no energy or momentum conservation. The dipole splitting probability is found by adding
the contribution from emitting the gluon from either the quark or antiquark with the
interference effects,

dP
d2r3dy

=
3αS(Q2)

2π2
r212

r213r
2
23
, (96)

with rij the lengths of the dipoles, see figure 14. The evolution is performed in transverse
coordinate space (r3 = (rx, ry) are the transverse coordinates of the emitted gluon) and in
gluon rapidity, y, defined by

y = log
p+
p⊥

, (97)

with p⊥ the transverse momentum of the emitted gluon and p+ its positive lightcone mo-
menta, p± = E± pz. Note, however, that the splitting kernel, eq. (96), diverges for dipole
sizes approaching zero, thus requiring a cutoff for small dipole lengths, rij ≥ ρ.

Introducing the no-emission Sudakov to the splitting kernel allows for a iterative sampling
of the transverse coordinates and rapidities, similar to the sampling of new emissions in a
parton shower,

dP
d2r3dy

=
3αS(Q2)

2π2
r212

r213r
2
23

Δ(y0, y) , (98)

where y0 is the rapidity of the initial dipole. The allowed rapidity range for a single dipole
evolution depends on the type and energy of the colliding beams, ymax ∼ 1/2 log(s/m2).

With this description one can evolve a initial-state system in rapidity, to find the distribu-
tion of dipoles inside two colliding particles just before the collision. In order to calculate
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Figure 15: A schematic view of a dipole-dipole interaction. Here the dipole spanned between partons 1,2 interact with the
dipole spanned between partons 3,4. The scattering probability of these two dipoles depends on the lengths between
the endpoints rij. In this figure the lengths r12, r34, r14, r23 are shown, while lengths r13, r24 have been omitted for
simplicity.

cross sections, two additional ingredients are needed. Firstly, the dipole-dipole scattering
amplitude is required. This is given as,

fij =
α2
S(Q

2)

2
log2

[
r14r23

r24r13

]
, (99)

with rij being the distances between the endpoints of the two dipoles, see figure 15. Pro-
vided that the real part of a scattering amplitude is zero, we can directly treat these scattering
amplitudes as cross sections or probabilities. So, imagine now a projectile consisting of a
single dipole colliding with a target containing three dipoles. The total interaction proba-
bility corresponds to the probability of interacting with each of the dipoles in the targets
independently, but subtracting double-counting terms. This gives the following scattering
probability,

Pint =f1 + f2 + f3 − f1f2 − f2f3 − f1f3 + f1f2f3
=1 − (1 − f1)(1 − f2)(1 − f3)

≃
fi small

1 −
∏

exp(−fi) = 1 − exp(−
∑
i

fi) . (100)

This can be directly transferred to projectile and targets with an arbitrary number of dipoles,
thus giving the total interaction probability (also called the eikonalized scattering ampli-
tude)

Pint = 1 − exp(−
∑
ij

fij) . (101)

Secondly, we need an expression for the wavefunction of the initial particles. It turns out
[51], that the wavefunction of the proton can be approximated by an initial state consisting
of three dipoles in a triangle configuration. An examples of such an initial state along with
the evolved proton state os shown in figure 16. For other particles, e.g. the photon, other
wave functions have to be used, see e.g. Paper IV.

This dipole formalism can be used directly along with the Good-Walker method for ob-
taining cross sections, and have been implemented in the Monte Carlo event generators
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Figure 16: An initial state proton consisting of three dipoles in an equilateral triangle configuration (a). After a full evolution

in rapidity (ymax = 9) the three dipoles have evolved into several smaller ones in (b). In both figures r0 = 1 fm is the
size of the initial dipoles.

Dipsy [18] and Oedipus [53]. The latter did not contain any energy and momentum conser-
vation, and contained problems with a rapidly growing number of dipoles in the evolution.
The former introduced (amongst other things) energy and momentum conservation, and
thus could decrease the number of dipoles in the evolution. The dipole model introduced
in Paper IV contains some of the aspects used in the former model. In the dipole model of
Paper IV, fluctuations in the matter distributions of the protons are created by evolving an
initial state proton, parametrised by a triangle configuration of dipoles, in rapidity. If two
such asymmetric protons are collided, then the overlap between these two protons will also
be asymmetrically distributed, as opposed to the symmetric distribution used in the MPI
framework of section 3. The impact of such asymmetric initial states can then be studied
in observables related to collective effects.

In heavy-ion collisions, a linear response between the flow-coefficients and the initial eccen-
tricity has been observed for both elliptic (v2) and triangular (v3) flow coefficients [54], i.e.
vn ∼ knϵn. In Paper IV parton-level eccentricities, i.e. eccentricities measured on parton-
level objects such as quarks and gluons, are studied using both the symmetric and asym-
metric models in different collision systems. Ratios of these eccentricities can be directly
compared to ratios of the flow-coefficients, as the response is removed here. Paper IV shows
that the dipole model gives rise to larger eccentricities than the symmetric model, but dis-
tinguishing between the two models is difficult with the present data available.
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6 Outlook

The papers presented in this thesis could be used as a starting point for further studies. In
this section, some ideas are given in case the reader has become inspired to continue the
work.

6.1 Hard diffraction

The model developed in this thesis is currently limited to single diffractive events. It would
be possible to extend this to both double and central diffraction, although not much data
is available for these processes. The model could be constrained significantly in UPC pro-
cesses, as stated in Paper III. Constraining the modelling of the diffractive systems, e.g. the
MPI parameters in the Pomeron-proton system, would require detailed measurements of
the diffractive system: new measurements should not only measure the differential distri-
butions for the dijet system, but also the underlying event. Presently, the model has been
used in connection with double parton scattering in proton-lead collisions, where the total
double parton scattering is enhanced because of these hard diffractive events (see e.g. a talk
by O. Fedkevych [55]).

6.2 Central exclusive production

Currently, the production of a subset of the central exclusive processes (CEP) are available
in Pythia 8 with a plugin developed using the Durham method [56]. The Durham method
creates CEP using additional gluon exchanges, such that the net color charge between the
colliding protons is zero. Such an approach is different from the Pomeron-exchange ap-
proach used in Pythia 8. The end goal is to be able to describe low mass central diffraction
as well as CEP internally in Pythia 8, as these are presently ignored. One could argue that
the CEP plugin could be used internally for low-mass central diffraction, but the merging
of the two methods is not obvious, because of the different physics approaches. A study on
the production of central diffractive dijet events using the hard diffraction model and this
CEP plugin could highlight the differences between the two approaches, and thus be used
as a starting point for the inclusion of low-mass central diffraction.

6.3 Diffraction in cosmic rays

Highly energetic cosmic rays creates a cascade of particles during the passing through the
Earths atmosphere. Describing these rays requires models applicable for both very high
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energies at the start of the cascade, as well as the lower energies near the end of the cascade.
The hadronic cascades include diffractive events, thus requires modelling of these events
at a large range of energies. The improved description of such events presented in Paper
II could be used as input for dedicated air shower generators, thus likely improving their
predictions. Similarly, the models of Paper II could be extended to πp,Kp and proton-air
collisions, and again be used as input for dedicated cosmic ray generators. Using Pythia 8
as a cosmic ray generator could also be feasible in the future.

6.4 The dipole evolution model

The dipole evolution model implemented in Paper IV is extremely flexible. First off, by
defining the response function, e.g. using the string shoving mechanism [12], one could
directly compare to measured flow coefficients, instead of comparing ratios of flow coeffi-
cients as done in Paper IV. As wave functions can be defined for most particles, it is possible
to use the dipole model not only for collisions of protons, but also collisions of photons
or mesons. With the photon fluxes defined in Paper III, the dipole model could be used
for predictions in UPCs. Expanding the photon wave function in Paper IV opens up for
studies on vector meson production in ep collisions. Diffraction could also be studied us-
ing the Good-Walker method described in section 5.7. A combination of the dipole model
and the the recent extension to heavy ions within the Pythia framework, the Angantyr
model [57,58], opens up for predictions for electron-ion collisions — a work that was initi-
ated in Paper IV. And finally, models for saturation in the dipole cascade could be studied
and compared to other approaches, such as the CGC method [59].
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Abstract:

We present a new framework for the modeling of hard diffraction in pp and pp colli-
sions. It starts from the approach pioneered by Ingelman and Schlein, wherein the single
diffractive cross section is factorized into a Pomeron flux and a Pomeron PDF. To this it
adds a dynamically calculated rapidity gap survival factor, derived from the modeling of
multiparton interactions. This factor is not relevant for diffraction in ep collisions, giving
non-universality between HERA and Tevatron diffractive event rates. The model has been
implemented in Pythia 8 and provides a complete description of the hadronic state asso-
ciated with any hard single diffractive process. Comparisons with pp and pp data reveal
improvement in the description of single diffractive events.



1 Introduction

The nature of diffractive excitation in hadron-hadron collisions remains a bit of a mystery.
We may motivate why it happens, e.g. based on the optical analogy that lies behind its
name, or in the related Good-Walker formalism [1]. But to explain how diffractive events
are produced, and with what properties, is a longer story. In a first step the single diffractive
cross section should be describable as a function of the diffractive mass M and the squared
momentum transfer t. In a second step the generic properties of a diffractive system of
a given mass should be explained: multiplicity distributions, rapidity and transverse mo-
mentum spectra and other event characteristics. In a third step the existence and character
of exclusive diffractive processes and the underlying events associated therewith should be
understood.

Over the years much data has accumulated, and many models have been presented, but
so far without any model that explains all aspects of the data, and without any consensus
which models are the most relevant ones. It is beyond the scope of the current article to
review all the data and models; for a selection of relevant textbooks and reviews see [2–8].

For the path we will follow in this article, Regge theory provides the basic mathematical
framework. In it, poles in the plane of complex spin αmay be viewed as the manifestations
of hadronic resonances in the crossed channels. A linear trajectory of poles α(t) = α(0)+
α′t corresponds to a σtot ∼ sα(0)−1. Several trajectories appear to exist, but for high-energy
applications the most important is the Pomeron (P) one, which with itsα(0) > 1 is deemed
responsible for the observed rise of the total cross section, and in modern terminology
would correspond to a set of glueball states. With single-Pomeron exchange as the starting
point, higher orders involve multiple Pomeron exchanges, and also interactions between
the Pomerons being exchanged, driven by a triple-Pomeron vertex. Out of this framework
the cross section for various diffractive topologies can be derived, differentially in mass and
t, given a set of numbers that must be extracted from data.

Such models do not address the structure of the diffractive system. The fireball models of
older times implied isotropic decay in the rest frame of the diffractive system, or possibly
elongated along the collision axis, but without internal structure. The Ingelman-Schlein
(IS) model [9] made the bold assumption that the exchanged Pomeron could be viewed as a
hadronic state, and that therefore a diffractive system could be described as a hadron-hadron
collision at a reduced energy. This implied the existence of Parton Distribution Functions
(PDFs) for the Pomeron. Thereby also hard processes became available, confirmed by the
observation of jet production in diffractive systems [10]. The PomPyt program [11] com-
bined Pomeron fluxes and PDFs, largely determined from HERA data, with the Pythia
event generator of the time [12] to produce complete hadronic final states, and PomWig [13]
did similarly for Herwig [14].
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One limitation of these models is that they are restricted to the exchange of one Pomeron
per hadron-hadron collision, not the multiple ones expected in Regge theory. Translated
into a QCD-based, more modern view of such collisions, Multiple Partonic Interactions
(MPIs) occur between the incoming hadrons [15]. That is, since hadrons are composite
objects, there is the possibility for several partons from a hadron to collide, predominantly
by semisoft 2 → 2 QCD interactions. These together create color flows (strings [16])
criss-crossing the event, typically filling up the whole rapidity range between the two beam
particles with hadron production. Thereby a “basic” process containing a rapidity gap can
lose that by MPIs. (MPIs and soft color exchanges could also be sources of gaps [17, 18], a
possibility we will not study further in this article, so as to keep the discussion focused.)

A spectacular example is Higgs production by gauge-boson fusion, W+W− → H0 and
Z0Z0 → H0, where the naive process should result in a large central gap only populated by
the Higgs decay products, since no color exchange is involved. Including MPIs, this gap
largely fills up [19], although a fraction of the events should contain no further MPIs [20],
a fraction denoted as the Rapidity Gap Survival Probability (RGSP). Such a picture has
been given credence by the observation of “factorization breaking” between HERA and the
Tevatron: the Pomeron flux and PDFs determined at HERA predicts about an order of
magnitude more QCD jet production than observed at the Tevatron, e.g. [21].

In this article the intention is to provide a dynamical description of such factorization break-
ing, as a function of the hard process studied and its kinematics, and to predict the result-
ing event structure for hard diffraction in hadronic collisions. This is done in three steps.
Firstly, given a hard process selected based on the inclusive PDFs, the fraction of a PDF
that should be associated with diffraction is calculated, as a convolution of the Pomeron
flux and its PDFs. Secondly, the full MPI framework of Pythia, including also the effects
of initial- and final-state radiation, is applied to find the fraction of events without any
further MPIs. Those events that survive these two steps define the diffractive event frac-
tion, while the rest remain as regular nondiffractive events. Thirdly, diffractive events may
still have MPIs within the Pp subsystem, and therefore the full hadron-hadron underlying-
event generation machinery is repeated for this subsystem. The nondiffractive events are
kept as they are in this step.

One should not expect perfect agreement with data in this approach; there are too many
uncertainties that enter in the description. Nevertheless a qualitative description can be
helpful, not only to understand the trend of existing data, but also to pave the way for
future studies. The new framework we present here has been implemented as an integrated
part of the Pythia 8.2 event generator [22], and can be switched on for any standard hard
process. It thereby complements the already existing modeling of soft diffraction, i.e. of
diffractive events with no discernible hard process. The dividing line between these two
descriptions is not sharp, and in the future we will explore tensions between the two.
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As should be clear from this introduction, our model is “just” a combination of the existing
IS and RGSP ideas, and thus not anything fundamentally new. The devil lies in the details,
however, and to the best of our knowledge nobody has previously worked out a complete
model of this character.

The article is structured as follows. In section 2 we introduce the new model framework,
which then is validated in section 3. Some tentative comparisons with data are presented
in section 4. The article concludes with a summary and outlook in section 5.

2 The model

In this article we study hard diffraction, so this means we assume the presence of some hard
process in the events of interest. Standard examples would be jet, Z0 and W± production.
By factorization a cross section involving partons i, j from incoming beams A,B can be
written as

σ =
∑
i,j

∫∫
dx1 dx2 fi/A(x1,Q2) fj/B(x2,Q2) σ̂ij(̂s = x1x2s,Q2) , (I.1)

where σ̂ is the parton-level cross section, integrated over relevant further degrees of freedom,
like a p⊥ range for jets.

Assuming Pomerons to have some kind of existence inside the proton, in the Ingelman-
Schlein spirit, we introduce a Pomeron flux fP/p(xP, t), where xP is the P momentum
fraction and t its (spacelike) virtuality. The P has a partonic substructure, just like a hadron,
and thus we can define PDFs fi/P(x,Q2). The PDF could also depend on the t scale, just
like the photon has a PDF strongly dependent on its virtuality. For lack of a model for
such a dependence we assume the P PDF is a suitable average over the t range probed. As
a consequence we will not need t for most of the studies, and so it can be integrated out of
the flux, fP/p(xP) =

∫
fP/p(xP, t) dt.

Given the ansatz with Pomeron flux and PDF, the PDF of a proton can be split into one
regular nondiffractive (ND) and one P-induced diffractive (D) part,

fi/p(x,Q2) = f ND
i/p (x,Q

2) + f Di/p(x,Q
2) , (I.2)

where

f Di/p(x,Q
2) =

∫ 1

0
dxP fP/p(xP)

∫ 1

0
dx′ fi/P(x′,Q2) δ(x− xPx′)

=

∫ 1

x

dxP
xP

fP/p(xP) fi/P

(
x
xP
,Q2

)
. (I.3)
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The assumption that the diffractive part f D
i/p(x,Q

2; xP, t) of the full PDF can be decom-
posed in this way is in approximate agreement with the HERA data [23].

For two incoming protons (or antiprotons, or other hadrons) A and B, an initial probability
for diffraction PD ≈ PD

A +PD
B is obtained from the ratio of diffractive to inclusive PDFs,

PD
A =

f Di/B(xB,Q
2)

fi/B(xB,Q2)
for AB → XB ,

PD
B =

f Di/A(xA,Q
2)

fi/A(xA,Q2)
for AB → AX , (I.4)

wherePD
A/B is the probability for sideA/B to be the diffractive system, thus being dependent

on the variables of the opposite side.

This probability is used to determine, on an event-by-event basis, the nature of the selected
hard scattering, whether diffractive or not. Currently we concentrate on single diffraction.
A natural extension would be to associate the productPD

A PD
B with central diffraction (CD),

where two Pomerons collide and one parton is extracted from each P. It would also be
possible to extend the formalism such that part of the SD rate is reassigned as double
diffraction (DD), where the hard collision happens inside one of the two diffractive systems.
Neither CD nor DD are considered in this first study, however. Instead, for the fraction
PD
A PD

B of events, which normally is small anyway, a random choice is made between AB →
AX and AB → XB.

The key aspect of the model is now that it contains a dynamical gap survival. This means
that we do not allow any further MPIs to occur between the two incoming hadrons, so as to
ensure that the gap survives. In practice the tentative classification as diffractive, based on
eq. (I.4), initially has no consequences: all events are handled as if they were nondiffractive
hadron-hadron collisions.

Only if no additional MPIs occur does a diffractive classification survive and only then is
the Pp subsystem set up. Specifically the xP value is selected according to the distribution
implied by eq. (I.4), and also a t value is selected for the outgoing proton. Technically, it is
only at this stage that “pure” samples of diffractive events can be selected, should one wish
to single out such events.

Once thePp system has been set up, it is allowed to develop a partonic structure just like any
hadron-hadron collision. Both initial-state radiation (ISR) and final-state radiation (FSR)
thereby dress the original hard process by the emission of further softer partons. Also further
MPIs inside this system are allowed, based on the fi/P(x,Q2) PDFs, successively modified
to take into account the momentum and flavors already carried away by the MPI, ISR and
FSR activity at p⊥ scales above the currently considered one, just like for nondiffractive
systems.
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The ISR/FSR/MPI description is based on the perturbative parton picture. Nonperturba-
tive aspects have to be added to this. Beam remnants carry the momentum not kicked out
of the incoming P and p. For the former a fictitious “valence quark” content of either dd
or uu is chosen at random for each new event. It is essentially equivalent to having a gluon
as remnant, but is slightly more convenient. All outgoing partons are color-connected by
color flux lines - strings - that fragment to produce the primary hadrons of the final state.
The color flow in an event is not unambiguously determined, however, and data suggest
that colors tend to be more correlated than naively comes out of the perturbative picture,
a phenomenon known as Color Reconnection (CR).

We can by combining these two simple ideas give an explanation of the discrepancies be-
tween Tevatron and HERA. The dynamical gap survival introduces an additional suppres-
sion factor, reducing the number of diffractive events without any additional parameters.

2.1 Pomeron fluxes and PDFs

For numerical studies it is necessary to specify Pomeron flux and PDF parametrizations.
There are currently seven parametrizations/models for the former and five for the latter
available in Pythia.

The parametrizations for the Pomeron flux fP/p(xP, t) are

• Schuler-Sjöstrand model (SaS) [24],

• the Bruni-Ingelman model [25],

• the Streng-Berger model [26],

• the Donnachie-Landshoff model [27],

• the Minimum Bias Rockefeller model (MBR) [28] with an option to renormalize the
flux, and

• the H1 models Fit A and B [29, 30].

All have to obey an approximate form fP/p(xP) ∼ 1/xP in order to obtain an approximate
diffractive mass spectrum ∼ dM2

X/M
2
X, as required by Regge theory and by data. Just like

the rise of the total cross section requires a supercritical Pomeron α(0) = 1 + ϵ > 1, with
ϵ ≈ 0.08, several of the fluxes have adapted this steeper slope fP/p(xP) ∼ 1/x1+2ϵ

P (where
the factor of 2 in front of ϵ comes from the optical theorem). There are also some attempts
to account for an excess in the low-mass resonance region. The t dependence is typically
parametrized as a single exponential fP/p(xP, t) ∼ exp(BSDt), but also as a sum of two
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exponentials, or as a (power-like) dipole form factor. The MBR model differs from the
others, since the model renormalizes the flux to unity. This renormalization suppresses the
flux, thus making the dynamical gap survival obsolete. In order to make direct comparisons
to the other available flux-models, we have implemented the renormalization as an option
with the default being the non-renormalized flux.

The parametrizations for the Pomeron PDFs fi/P(x,Q2) are

• PomFix, a simple (toy) Q2-independent parametrization,

• the H1 Fit A and B NLO PDFs [29],

• the H1 Jets NLO PDF [31], and

• the H1 Fit B LO PDF [29],

• the ACTW B PDF with ϵ = 0.14 [32],

• the ACTW D PDF with ϵ = 0.14 [32],

• the ACTW SG PDF with ϵ = 0.14 [32],

• the ACTW D PDF with ϵ = 0.19 [32].

The first of these has a momentum sum of unity, whereas the latter are not normalized to
any specific value, the argument used being that the Pomeron is not a real particle and so
does not obey that kind of constraints [33, 34]. (Technically H1 chose to normalize the P
flux to unity at xP = 0.003, and then let the PDF normalization float. No normalization
constraints are included in the ACTW PDFs, as this is primarily set by the normalization
of the DL flux. Thus the momentum sum of these PDFs range from 0.5 to 2, depending
on fit.) Pragmatically it could be argued that what is measured is the convolution of the
P flux and the P PDF, so that it is feasible to shuffle any constant number between the
two. Unfortunately this makes it less trivial to mix freely, and makes it almost a necessity to
combine H1 PDFs with H1 fluxes. In Pythia 8, it is only allowed to combine the ACTW
PDFs with the DL flux, as these have been fitted together, and each of the fits uses different
ϵ values.

No attempts have been made to exclude or validate different flux–PDF combinations in
the light of more recent HERA data than available at the time of the fits; this would be a
separate project. We do note, however, that a more recent ZEUS article [35] compares a
new ZEUS DPDF SJ fit with the H1 Fit B, showing disagreements on the 10–20 level.
For our purposes this is an acceptable uncertainty, and we will often use Fit B as a reference,
but keep an open mind to variations.
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This is not the end of the story from an event-generator point of view, however. In most
of the available PDF parametrizations the momentum sums to approximately 0.5, but this
does not mean that half of the P momentum in the Pp collision can just be thought away.
At the very least this other half has to be considered as an inert component that sails through
without interacting, but is present in the beam remnant. A further complication arises
when MPIs are introduced. Normally these are generated in a sequence of decreasing p⊥,
with the PDFs for an MPI adjusted to take into account the momentum and flavors carried
away by the preceding MPIs. So if 0.4 of the P momentum has already been taken, does
it mean that 0.1 or 0.6 of it remains? This is an issue that did not exist at HERA, where
MPIs are negligible outside of the photoproduction region. The choice made in Pythia
is to assume that the full P momentum is available for MPIs. Furthermore we allow the
option to rescale the PDFs by a constant factor so as to change the momentum, notably by
a factor of two to restore (approximately) the momentum sum rule. This should then be
compensated by a corresponding rescaling of the P flux in the opposite direction. That way
the P can be brought closer to an ordinary hadron, and more P flux-PDF combinations
can be used.

Another problem is that most PDF fits are NLO ones. Given the sparsity of data, it should
be clear that “NLO accuracy” does not mean the same thing as it does for the inclusive
proton PDF. Since Pythia only contains LO matrix elements (MEs) for QCD processes
there is no extra bonus for using NLO PDFs. Worse, it is well known that the gluon
PDF (of the proton) is much smaller in NLO than in LO for small x and Q2; in principle
it can even become negative. This behavior compensates for the NLO MEs being larger
than the LO ones in this region, but the compensation is nontrivial. Therefore an all-LO
description, for all its weaknesses, is more robust in the small-p⊥ region, which is where
the MPI machinery largely operates. The default choice thus is H1 Fit B LO.

Finally also the inclusive proton PDF fi/p(x,Q2) should be chosen. Here several options
come with Pythia, and many more can be obtained via the interfaces to LHAPDF5 and
LHAPDF6 [36, 37]. The current default set is the NNPDF 2.3 QCD+QED LO one with
αs(MZ) = 0.130 [38]. The argument for using LO has already been outlined above.
Since the proton PDF is much better constrained than that of the P, there is less of a
point in varying it between different options consistent with current p data. Note that, for
diffractive events, the dependence on the original choice of proton PDF is largely removed
on the P side by applying eq. (I.4). It does remain on the proton side, and in the dynamical
calculation of rapidity gap survival, however.

2.2 MPI phenomenology

The QCD 2 → 2 processes are dominated by t-channel gluon exchange, which gives a
perturbative cross section dσ̂/dp2

⊥ ∼ α2
s(p2

⊥)/p
4
⊥ that diverges in the p⊥ → 0 limit. Two
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modifications are needed to make sense out of this divergence.

Firstly a divergent integrated QCD cross section should not necessarily be construed as a
divergent total pp cross section. Rather a µ = σtot2→2/σ

tot
pp > 1 for p⊥ > p⊥min should

be interpreted as implying an average of µ such partonic interactions per pp collision.
Overall energy-momentum conservation will reduce the naively calculated rate, but would
still kick out essentially all beam momentum if we allow p⊥min → 0, in contradiction with
the presence of well-defined beam jets wherein a single particle can carry an appreciable
fraction of the incoming beam momentum.

Secondly, therefore, it is important to note the presence of a screening mechanism: whereas
standard perturbation theory is based on asymptotically free incoming states, reality is that
partons are confined inside color singlet states. This introduces a nonperturbative scale of
the size of a hadron, or rather of the average distance d between two opposite-color charges.
In this spirit we introduce a free parameter p⊥0 ∼ 1/d that is used to dampen the cross
section

dσ

dp2
⊥

∝
α2
s(p2

⊥)

p4
⊥

−→
α2
s(p2

⊥0 + p2
⊥)

(p2
⊥0 + p2

⊥)
2 . (I.5)

Technically the dampening is implemented as an extra factor multiplying the standard
QCD 2 → 2 cross sections, but could equally well have been associated with a dampening
of the PDFs; it is only the product of these that enters in measurable quantities.

Empirically, a p⊥0 scale of 2 – 3 GeV is required to describe data. This scale is larger
than expected from the proton size alone, and is also in a regime where normally one
would expect perturbation theory to be valid. The p⊥0 scale appears to increase slowly with
energy, which is consistent with the growth of the number of gluons at smaller x values,
leading to a closer-packing of partons and thereby a reduced screening distance d. A similar
parametrization is chosen as for the rise of total cross section

p⊥0(ECM) = pref⊥0 ×
(
ECM

ErefCM

)E pow
CM

, (I.6)

with E pow
CM and pref⊥0 being tunable parameters and E ref

CM a reference energy scale.

With the protons being extended objects, the amount of overlap between two incoming
ones strongly depends on the impact parameter b. A small b will allow for many parton-
parton collisions, i.e. a high level of MPI activity, and a close-to-unity probability for the
incoming protons to interact. A large b, on the other hand, gives less average activity
and a higher likelihood that the protons pass by each other unaffected. Diffractive events
predominantly occur in peripheral collisions, a concept well-known already from the optical
point of view. In our approach it comes out naturally since we only allow one interaction to
occur, namely the hard process of interest; if there is a second one this will fill the rapidity
gap and kill the diffractive nature.

61



The shape of the proton and the resulting overlap – the convolution of the two incoming
proton distributions – is not known in any detail. The proton electric charge distribution
may give some hints, but measures quarks only and not gluons, and is in the static limit.
Instead a few different simple parametrizations can be chosen:

• a simple Gaussian, offering no free parameters,

• a double Gaussian, i.e. a sum of two Gaussians with different radii and proton
momentum fractions, and

• an overlap of the form exp(−bp) (which does not correspond to a simple shape for
the individual proton), with p a free parameter.

(A further option is a Gaussian with an x-dependent width, but this has not been im-
plemented in a diffractive context.) All are normalized to unit momentum sum for the
incoming partons, and an overall radius normalization factor is fixed by the total cross
section.

The more uneven the matter distribution, the broader will the charged multiplicity dis-
tribution be. Notably the higher the overlap for central collisions, the higher the tail to
very large multiplicities. Also other measures, like forward-backward correlations, probe
the distribution. Unfortunately it is always indirectly, and closely correlated with other
model details. As an example we can mention that the earliest tunes worked with a much
lower p⊥0 than today and with double Gaussians rather far away from the single-Gaussian
behavior. This changed when more modern PDFs started to assume a steeper rise of the
gluon PDF at small x, and when the Pythia parton showers were extended to apply to all
MPIs rather than only the hardest one, and for some other improvements over the years.
Currently best fits are not very far away from a simple Gaussian, e.g. with an overlap like
exp(−b1.85), but still on the side of more peaked than a Gaussian.

An event that contains a high-p⊥ interaction is likely to be more central than one that does
not, since the former has more MPIs and therefore more chances that the hardest of these
reaches a high p⊥. This bias effect is included in the choice of a b for an event where the
hardest interaction has been given, and is used in the subsequent generation of MPIs. For
the current study of hard diffraction this means that the hard process is initially picked
biased towards smaller b values, but afterwards the central b region is strongly suppressed
because the likelihood of several MPIs is so big there.

Starting from a hard interaction scale, and a selected b, the probability for an MPI at a
lower scale has the characteristic form

dP
dp2

⊥
= O(b)

1
σref

dσQCD

dp2
⊥

. (I.7)
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Here O(b) is the overlap enhancement/depletion factor, dσQCD the differential cross sec-
tion for all 2 → 2 QCD processes, and σref the total cross section for the event classes
affected by the QCD processes. Historically σref has been equated with the nondiffractive
cross section in Pythia, on the assumption that diffraction only corresponds to a negligible
fraction of dσQCD. Within the current framework a reformulation to use the full inelas-
tic cross section would make sense, but would require further work and retuning, and is
therefore left aside for now.

Given eq. (I.7) as a starting point, MPIs can be generated in a falling p⊥ sequence, using a
Sudakov-style formalism akin to what is used in parton showers. Actually, in the complete
generation the MPI, ISR and FSR activity is interleaved into one common p⊥-ordered
chain of interactions and branchings, with one common “Sudakov form factor”, down to
the respective cutoff scales.

In the current case, the MPI formalism is used twice. Firstly, to determine whether an
event is diffractive, and if not to generate the complete nondiffractive event. Secondly, for
diffractive events, to determine the amount of MPI activity within the Pp system. Here
eq. (I.7) can be reused, but with new meaning for the components of the equation.

• The dσQCD/dp⊥ is now evaluated using the P PDF on one side, but with the same
damping as in eq. (I.5), where ECM in eq. (I.6) is now the Pp invariant mass. If the
P is supposed to have a smaller size than the proton then this could be an argument
for a higher p⊥0 in this situation, but we have not here pursued this.

• The σref now represents the Pp total cross section, an unknown quantity that relates
to the normalizations of the P flux and P PDF. By default it is chosen to have a
fixed value of 10 mb, higher than is normally quoted in literature. This way, with
other quantities at their default settings, the charged multiplicity of a Pp collision
agrees reasonably well with that of a nondiffractive pp one at the same invariant
mass. This may not be the best of arguments, but is a reasonable first choice that is
experimentally testable, at least in principle.

• The O(b) factor may be changed, see next.

The impact parameter bPp of the Pp subcollision does not have to agree with the bpp of the
whole pp collision. It introduces the transverse matter profile of the Pomeron, even less
known than that of the proton. Generally a Pomeron is supposed to be a smaller object in
a localized part of the proton, but one should keep an open mind. For lack of better, three
possibilities have been implemented, which can be compared to gauge the impact of this
uncertainty.

• bPp = bpp. This implicitly assumes that a Pomeron is as big as a proton and centered
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in the same place. Since small bpp values already have been suppressed, by the MPI
selection step, it implies that few events will have high enhancement factors.

• bPp =
√
bpp (where normalization is such that ⟨b⟩ = 1 for minimum-bias events).

This can crudely be motivated as follows. In the limit that the P is very tiny, such that
the proton matter profile varies slowly over the width of the P, then what matters
is where the Pomeron strikes the other proton. Thus the variation of O(b) with
b is that of one proton, not two, and so the square root of the normal variation,
loosely speaking. Technically this is messy to implement, but the current simple
recipe provides the main effect of reducing the variation, bringing all b values closer
to the average.

• Pick a completely new bPp, as was done with bpp in the first place. This allows a
broad spread from central to peripheral values, and thereby also a larger and more
varying MPI activity inside the diffractive system than the other two options, and
thereby offers a useful contrast.

3 Validation

In this section we summarize some of the tests and sanity checks we have performed on the
model implementation. This provide insight into how the model operates and with what
general results, but also highlights the uncertain nature of many of the components of the
model.

In the model we have two options for when an event is classified as diffractive: either right
after the event has passed the PDF selection criterion, eq. (I.4), or after passing the further
MPI criterion. Results using only the former will from now on be denoted “PDF selected”,
and with the latter in addition “MPI selected”. Our full model for hard diffraction corre-
sponds to the latter, but the intermediate level is helpful in separating the effects of these
two rather different physics components.

Notably, many distributions tend to be mainly determined by one of the two criteria. Those
mainly sensitive to the PDF selection include the xP and thereby the mass of the diffractive
system, and the squared momentum transfer t of the process and thereby the scattering
angle θ of the outgoing proton. In particular we will explore the dependence on Pomeron
fluxes and PDFs. Aspects that depend on the details of the MPI model include several
particle distributions, such as multiplicities, and that will also be highlighted.

The key number where both components are comparably important is the overall diffrac-
tive rate, where each of them gives an order-of-magnitude suppression, resulting in a ∼1
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fraction of hard events being of a diffractive nature. This number thereby receives a con-
siderable overall uncertainty.

3.1 The Pomeron flux and PDF

We begin by studying the effects of variations of the P parametrizations. In figures I.1a and
I.1b the seven different Pomeron fluxes are compared. As can be seen there is a considerable
spread. Even in the region of medium xP values, xP ∼ 0.1, this corresponds to more than
a factor of two between the extremes. The dramatic differences at large xP are not readily
visible, since a large-xP event usually corresponds to a small rapidity gap and therefore is
difficult to discern from non-diffractive events. The limit of small xP generally is more
interesting, tying in with the intercept of the Pomeron trajectory, but plays a lesser role for
the current study of hard diffraction.
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Figure I.1: The seven different Pomeron fluxes included in Pythia on linear (a) and logarithmic scale (b). Note that the MBR flux

has not been renormalized (see [28]).

Turning to the Pomeron PDFs, a detailed comparison would entail the separate quark and
gluon distributions at varying Q2 scales. To simplify we show the QCD-charge-weighted
sum

FP(x,Q2) =
4
9

∑
i=q,q

xfi/P(x,Q2) + xgP(x,Q2) (I.8)

at a single value Q2 = 100 GeV2, figures I.2a to I.2d. We notice that they all tend to be
significantly harder than the corresponding proton PDF, here represented by the NNPDF
2.3 QCD+QED LO one. (The PomFix option is just a toy one, shown for completeness, but
not used in the following.) For the gluon on its own, the P is significantly harder than the
p, consistent with the idealized picture of a P as a glueball state with two “valence gluons”,
figures I.3a, b and I.4a, b. Surprisingly, also the quark PDFs of the P (figures I.3c, d and
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Figure I.2: The QCD charge-weighted sum, eq. (I.8), of the H1 PDFs and the toy PDF PomFix compared to the NNPDF 2.3 proton

PDF on linear (a) and logarithmic scale (b). The QCD charge-weighted sum, eq. (I.8), of the ACTW PDFs compared
to the NNPDF 2.3 proton PDF on linear (c) and logarithmic scale (d).

I.4c, d) are harder than proton ones, suggesting the presence of “valence quarks” in the P,
although an order of magnitude below the gluons. Another observation is that the P PDF
sets we compare are all primarily based on H1 analyses, with largely the same data and with
correlated assumptions for the definition of diffractive events. This is especially notable in
the quark distributions, which are close to identical. Also the close affinity of gluons at lower
x values should not be overstressed. The slightly larger variations in the ACTW PDFs are
due to both the different values of the flux-parameter ϵ, as well as different parametrizations
of the PDFs. Finally, note that the H1 parametrizations only apply down to x = 10−3,
and are frozen below that. This is likely to underestimate the low-x rise of PDFs, which as
well could have been of the same shape as in the proton. A small kink in the ACTW PDFs
around x = 10−4 is due to regions of phase space where the parametrization of the initial
quark distribution would become negative and has been reset to vanish.

In the end, what matters is the convolution of the P flux with its PDFs, and that is shown
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(d)
Figure I.3: The H1 P gluon distribution on linear (a) and logarithmic (b) scale. The H1 P quark and antiquark distributions on

linear (c) and logarithmic (d) scale. Both compared to the NNPDF 2.3 proton PDF distributions. Note that for the P
we have d = u = s = d = u = s(= c = c), where the c, c are only included in H1Jets.

in figure I.5. There would be too many combinations possible to show individually, so we
only indicate the range of possibilities and a few specific combinations. This may be on
the extreme side, since some fluxes and PDFs come as fixed pairs, not really intended to be
mixed freely. The key feature to note is that in this convolution the Pomeron part is now
falling steeper at large x than the proton as a whole. This has the immediate consequence
that diffractive hard subcollisions are not necessarily going to be produced more in the
forwards direction than the bulk of corresponding nondiffractive ones, but on the contrary
may be more central. The difference is not all that dramatic, however. It is also partly
compensated by a somewhat slower increase of the P towards lower x values, a feature that
for the H1 P PDF derives from the artificial freezing of below x = 10−3. Note that the four
different ACTW PDFs differ by up to an order of magnitude. The two D fits are similar
in shape and size as expected, but especially the SG fit stands out being up to a factor 10
smaller than the D fits. Most of this discrepancy is also seen in figure I.2c,d but also arise
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Figure I.4: The ACTW P gluon distribution on linear (a) and logarithmic (b) scale. The ACTW P quark and antiquark distributions

on linear (c) and logarithmic (d) scale. Both compared to the NNPDF 2.3 proton PDF distributions. Note that for the
P we have d = u = s = d = u = s(= c = c), where the c, c are only included in H1Jets.

from the difference in normalization, the D and SG fits having momentum sums of ∼ 1.8
and ∼ 0.5, respectively. The lack of major shape differences between the P part and the
rest will be visible in the more detailed studies later on. Because of the close similarity of
most of the different (but related) P PDFs at low-to-medium x, the bulk of the differences
come from the P fluxes. We have chosen to exemplify this for 2 → 2 QCD processes
with p⊥ > 20 GeV in

√
s = 8 TeV pp collisions, with the diffractive fractions for a few

combinations shown in table I.1.

Note that changing the Pomeron parametrizations changes the fraction of events passing
the PDF selection, but that the suppression factor introduced by the dynamical gap survival
is about ∼ 0.07 for all combinations in table I.1. This reflects the fact that neither the MPI
model nor the proton PDF are influenced by the Pomeron parametrization, hence the
probability for obtaining no additional MPIs in the pp system should not change. (This
does not have to hold in general, but here we compare very similar distributions of x and
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Figure I.5: The convolution of Pomeron fluxes and H1 PDFs for a few cases, with the range between the extremes marked

in yellow; (a) linear and (b) logarithmic x scale. The convolution of DL flux and ACTW PDFs on (c) linear and (d)
logarithmic x scale.

p⊥ values of the hard interaction, and then also the MPI effects are closely the same.) Note
also that some of the ACTW PDFs gives substantially larger fractions than the HERA
PDFs. This is related to the fact that the intercept of the P trajectory is larger in ACTW
fits than in the H1 ones, ϵ = 0.14 − 0.19 vs. 0.085. This gives a larger flux at high-
energy hadron colliders. A similar flux increase can of course be obtained for the H1 PDFs,
with the caveat that the flux might not be able to describe the total cross section and other
associated quantities. Additionally the gluon is only probed indirectly in DIS, and so is
poorly constrained, while it dominates for QCD jet rates.

Differential distributions of the diffractive events are also affected, since the kinematics
of the Pp system is set up using the Pomeron flux parametrizations. A subset of these
distributions is shown in figure I.6, for some of the same combinations as in table I.1. As
expected, P PDF variations do not have a large impact on the shapes (cf. figure I.6), while
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Table I.1: Diffractive fractions for the 2 → 2 QCD processes with p⊥ > 20 GeV obtained with Pythia 8. The samples have been
produced without any phase-space cuts.

Diffractive fractions
pp collisions at

√
s = 8 TeV

P PDF
P flux PDF selection MPI selection

H Fit B LO
SaS (. ± .)  (. ± .) 

H Fit B LO
MBR (. ± .)  (. ± .) 

H Jets
SaS (. ± .)  (. ± .) 

H Fit A NLO
H Fit A (. ± .)  (. ± .) 

H Fit B LO
H Fit A (. ± .)  (. ± .) 

ACTW D
DL (. ± .)  (. ± .) 

ACTW SG
DL (. ± .)  (. ± .) 

ACTW D
DL (. ± .)  (. ± .) 

the P flux gives rise to large effects in xP, hence on the broadening of the mass spectrum
and on the tails of the t and θ distributions. In view of these observations, we do not expect
to be able to discriminate between the available Pomeron PDFs when comparing to data.
Thus we will leave out this variation from now on, and focus on variations in the Pomeron
flux.

The diffractive event fraction is not process-independent. One reason is that processes may
be dominated by different initial states, another that different x and Q2 scales are probed.
In table I.2 we show the fraction of events passing either selection for various hard processes
available in Pythia 8 using the SaS flux and the H1 Fit B LO PDF. Firstly we note that
a smaller fraction of events pass the PDF selection than in table I.1, owing to the larger x
needed to produce these particles, cf. figures I.1,I.2. This is why top, being the heaviest, has
the smallest diffractive fraction. In addition there is a notable difference between the gluon-
dominated Higgs production and the quark-induced production of W±/γ∗/Z0, owing to
the hard gluon PDF in the P. If top production is considered separately for qq → tt
and gg → tt, the PDF survival rate is (9.74 ± 0.09) and (10.55 ± 0.10), respectively,
displaying the difference between the two production channels.

In figure I.7 we show the rapidity of the W-boson produced in the process qq → W±

at an 8 TeV pp collision, comparing three samples; nondiffractive, PDF selected and MPI
selected. It is observed that the diffractive W’s are slightly more central than the nondiffrac-
tive in the CM frame, as expected from figure I.5. The differences are small, however, being
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Figure I.6: Some kinematics distributions obtained with variations of the Pomeron parametrizations: (a) xP, (b) MX, (c) t and (d)

θ.

Table I.2: Diffractive fractions obtained with Pythia without any phasespace cuts at
√
s = 8 TeV for various hard processes.

Pythia is run with the SaS flux and the H1 Fit B LO PDF.

Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection
qq → W± (. ± .)  (. ± .) 
qq → γ∗/Z0 (. ± .)  (. ± .) 

Single top and top pair production ( . ± .)  (. ± .) 
SM Higgs production (. ± .)  (. ± .) 

on the order of (5-10), and might reduce when phase-space cuts are introduced. We will
study this process further in section 4.1.
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Figure I.7: The rapidity of the W-boson produced in qq → W± at
√
s = 8 TeV.

3.2 The dynamical gap survival and MPI models

In the above section we studied how the parametrization of the Pomeron flux and PDF
affected the diffractive fractions and distributions, and notably by the choice of P flux. By
contrast, we saw that the survival fraction in the MPI selection step was not significantly
affected by these choices. A dependence does enter both via the x and the p⊥ distributions of
a process: larger x scales leaves less energy for MPIs and thereby gives a higher MPI survival
probability, whereas larger p⊥ values gives a longer MPI evolution range and thereby a lower
MPI survival. Such effects are not too prominent, however, and tend to be overshadowed
by the sensitivity to the parameters of the MPI model. These enter twice. Firstly, for the
MPI selection, since the dynamical gap survival is tied to the number of MPIs in the pp
system. Secondly, for the properties of the diffractive system, where the number of MPIs
affects e.g. charged multiplicities.

The probability for obtaining MPIs is given by eq. (I.7), and hence depends on both the
overlap function and the regulator pref⊥0. The related parameters are primarily tuned to min-
imum bias and underlying event data, e.g. charged particle pseudorapidity dn/dη, multi-
plicity P(n) and transverse momenta dn/dp⊥ and ⟨p⊥⟩(nch) spectra of charged particles.
This means that a change of MPI parameters for the diffractive studies would spoil agree-
ment with nondiffractive data. Nevertheless, it is interesting to study how the survival rate
changes with these parameters for the pp collision itself.

The MPI modeling of the Pp collision can be decoupled from that of the pp one. Then the
MPI survival rate would not be affected by changes, but only the particle distributions in
the diffractive system. One inevitable free parameter is the effective Pp total cross section.
It is currently set always to be 10 mb, but could be made to depend on the mass of the
diffractive system. Also the relative normalization of P flux and PDFs can influence the
event activity. We will study the normalization dependence in the last part of this section.
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Figure I.8: Impact-parameter distribution of 2 → 2 QCD processes with p⊥ > 20 GeV in

√
s = 8 TeV pp collisions. (a) The

change during the selection steps. (b) The dependence on pref⊥0 . (c) The distribution in the Pp subcollision. (d) The
dependence on impact-parameter profile.

To begin with, consider the impact-parameter picture associated with hard collisions in our
model, figure I.8a. The b scale is normalized such that ⟨b⟩ = 1 for inclusive minimum-bias
events. Events with a hard interaction tend to be more central than that, since central events
have more MPIs in general and thereby a bigger likelihood that at least one of them is at
large p⊥. The PDF selection step does not have a significant impact, but the MPI one kills
most low-b events and pushes ⟨b⟩ above unity. The reason is obvious: for central events the
average number of MPIs is high, and thus the likelihood of only having the trigger hard
process and no further MPIs is small, while more peripheral collisions give fewer MPIs and
thereby a higher surviving fraction. Ultimately, when ⟨nMPI(b)⟩ ≪ 1, most protons pass
by each other without colliding at all. Thus the interesting region for diffraction is where
⟨nMPI(b)⟩ ∼ 1.
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The pref⊥0 regulator is by default 2.28 GeV. Since an increase in this parameter gives less
MPI in the pp system, we expect an increase in the diffractive fractions, and vice versa.
table I.3 confirms that this is indeed the case: variations of ±0.5 GeV around the default
pref⊥0 value gives about a factor of two in the MPI selection rate. This major pref⊥0 dependence
holds also for many other nondiffractive event properties, however; keeping everything else
fixed even a variation of ±0.1 GeV would be unacceptable. In figure I.9 we show the
charged multiplicity distribution, when we change the regulator pref⊥0 for both diffractive
and nondiffractive events, with minor/major effects for the former/latter. The stability in
the diffractive case is because a change in the regulator also affects the impact parameter
picture. Specifically, in this case bPp = bpp has been assumed. A lower value of the
regulator, giving rise to a larger number of MPIs in the pp system, pushes ⟨bpp⟩ to larger
values for those events that survive the diffractive MPI criterion, figure I.8b. More precisely,
the change is to b values where the average pp MPI activity is restored to its original level.
With bPp = bpp the same then holds when MPI activity is generated in the diffractive
system, such that the effects of a smaller regulator and a larger impact parameter almost
completely cancel.

Table I.3: Diffractive fractions for the 2 → 2 QCD processes with p⊥ > 20 GeV in
√
s = 8 TeV pp collisions. Pythia is run with

the SaS flux and the H1 Fit B LO PDF.

Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection
p⊥0 = 1.78 (. ± .)  (. ± .) 
p⊥0 = 2.28 (. ± .)  (. ± .) 
p⊥0 = 2.78 (. ± .)  (. ± .) 

0 50 100 150 200
nch

0.000

0.005

0.010

0.015

0.020

0.025

1/
N

d
N
/d
n

ch

pref
⊥0 = 2.28

pref
⊥0 = 1.78

pref
⊥0 = 2.78

(a)

0 50 100 150 200 250 300 350 400
nch

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1/
N

d
N
/d
n

ch

pref
⊥0 = 2.28

pref
⊥0 = 1.78

pref
⊥0 = 2.78

(b)
Figure I.9: Charged multiplicity distributions in the (a) Pp subsystem for diffractive events, (b) pp system for nondiffractive

events, in 2 → 2 QCD processes with p⊥ > 20 GeV as before.

As we have already discussed, the modeling of theP size could also affect the MPI machinery
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Figure I.10: Charged multiplicity distribution distributions for the Pp diffractive subsystem, for events with 2 → 2 QCD pro-

cesses with p⊥ > 20 GeV as before. (a) For three different bPp impact-parameter profiles. (b) With or without
rescaled P flux and PDFs, see text.

for the Pp subcollision via the impact parameter bPp. The currently implemented three
alternatives are compared in figure I.8c. The maybe less realistic last option of picking a
new bPp value at random implies a significant fraction of events with small bPp and thereby
the possibility of many MPIs. The average ⟨nMPI⟩ for the three options is 1.66, 2.04 and
4.09, respectively, thus giving rise to 0.66, 1.04 and 3.09 additional MPIs besides the hardest
process. This is reflected notably in the charged multiplicity distribution, figure I.10a.

Table I.4: Diffractive fractions for the 2 → 2 QCD processes with p⊥ > 20 GeV in
√
s = 8 TeV pp collisions. Pythia is run with

the SaS flux and the H1 Fit B LO PDF.

Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection
No impact parameter dependence (. ± .)  (. ± .) 

Single Gaussian matter profile (. ± .)  (. ± .) 
Double Gaussian matter profile (. ± .)  (. ± .) 

Default overlap (. ± .)  (. ± .) 
Exponential overlap (. ± .)  (. ± .) 

The MPI survival rate is highly dependent on the proton matter profile, table I.4 and fig-
ure I.8d. Diffraction thrives when ⟨nMPI(b)⟩ ∼ 1, so this b region should be as broad as
possible for a large diffractive rate. Conversely, a sharp proton edge implies less diffrac-
tion. The default overlap function exp(−b1.85) is close to a Gaussian, and the two have
about the same MPI selection rate. The double Gaussian and the exponential overlap are
examples of broader distributions, thus with more diffraction, whereas the option without
any b dependence represents the other extreme (not shown in figure I.8d), with less diffrac-
tion. Overall the variation is not so dramatic, however, if only experimentally acceptable
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variations are considered.

Finally we turn to the relative normalization of the P PDF and flux. From eq. (I.3) we know
that the PDF selection step depends on the convolution of the P flux and PDFs. Thus it
has no net effect if the flux is scaled down by a factor of two and the PDFs are scaled up
by the same amount, so as to bring the H1 PDFs to be approximately normalized to unit
momentum sum. It does have consequences for the MPI selection step, however, since the
average MPI rate comes up in the Pp system.

Compared with the (1.35± 0.04)  MPI selection rate in table I.1 for the H1 Fit A flux+PDF
combination, such a rescaling changes the rate to (1.40 ± 0.04) , i.e. no effects are seen.
The rescaling however, does change the multiplicity distribution, figure I.10b, as a conse-
quence of the increased dσMPI in eq. (I.7). This could be compensated by a corresponding
increase of σref from the default 10 mb to 20 mb, thereby restoring both the MPI selection
rate and the multiplicity distribution, cf. the blue line in figure I.10b.

3.3 Energy and scale dependence

Here we study the model dependence on the scales in the hard process and the energy of
the collision.

In figure I.11 the diffractive fractions are compared at different collision energies,
√
s, for

2 → 2 QCD processes with p⊥ > 20 GeV, and for W± production. In the PDF selection
step the diffractive rate increases with energy. The difference between the two processes
indicates that this rise can depend on the incoming flavors and the relevant ranges of x
values. Depending on the P flux and PDF, such as a freezing of the latter at small x, the
fraction might even decrease with energy.

A larger collision energies also implies a higher average number of MPIs, in addition to the
hardest collision, thus implying a reduced fraction of events passing the MPI criterion, see
figure I.11. There is a compensatory effect of diffraction shifting to larger impact parameters,
as already discussed for the pref⊥0 variations. For the close-to-Gaussian default overlap the
relative size of the ⟨nMPI⟩ ≈ 1 region decreases with energy, however, resulting in the trend
shown. By comparison an exponential overlap decreases slower than the close-to-Gaussian,
hence resulting in less suppression with increasing energy.

Finally, table I.5 shows the number of events passing the PDF and MPI selections when the
mass of the produced particle is changed. In the PDF selection step heavier particles are less
likely to be produced diffractively, as they require larger x-values, where the probability for
diffraction is lower (cf. figure I.5). The same trend was observed in table I.2, but was there
mixed up by the use of different production channels. After the MPI selection step the
mass dependence is not as clearly visible. A partial compensation can indeed occur, since a
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Figure I.11: (a) The diffractive fractions obtained in 2 → 2 QCD processes with p⊥ > 20 GeV (circles and solid lines) and

qq → W± (squares and dashed lines) in pp collisions at different energies. (b) The diffractive fractions obtained
in qq → W± with the default overlap function (squares and dashed lines) and the exponential overlap function
(crosses and dashed-dotted lines). Pythia is run with the SaS flux and the H1 Fit B LO PDF.

higher subcollision mass implies more momentum taken out of the incoming protons and
thereby less left for subsequent collisions.

Table I.5: Diffractive fractions for the process qq → Z0 in
√
s = 8 TeV pp collisions. Pythia is run with the SaS flux and the H1

Fit B LO PDF.

Diffractive fractions
pp collisions at

√
s = 8 TeV

PDF selection MPI selection
MW = 50 GeV (. ± .)  (. ± .) 

MW = 80.385 GeV (. ± .)  (. ± .) 
MW = 150 GeV (. ± .)  (. ± .) 
MW = 500 GeV ( . ± .)  (. ± .) 

3.4 Comparison with soft diffraction

The new model for hard diffraction complements the existing one for soft (or rather in-
clusive) diffraction. The latter already has a hard component arising from the MPI model,
which is used to pick the hardest process and all subsequent scatterings in the Pp system,
except for low-mass diffractive systems where no perturbative framework can be applied.
The soft diffractive model only allows for 2 → 2 QCD processes, unlike the new hard one,
but for QCD processes a comparison between the two is meaningful. To this end, the p⊥
of the hardest process in an event will be used. This is not a physically measurable observ-
able, unlike e.g. the closely related p⊥ of the hardest jet in an event, but for the relative
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comparison of hard and soft diffraction it is cleaner.

0 20 40 60 80 100
p⊥

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

d
σ
/d
p ⊥

(m
b/

G
eV

)

ND
SD
DD

(a)

0 20 40 60 80 100
p⊥

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

d
σ
/d
p ⊥

(m
b/

G
eV

)

ND soft
SD soft

ND hard
SD hard

(b)
Figure I.12: The p⊥ of the hardest process obtained with (a) the soft (or inclusive) diffraction framework, and (b) both the soft

and hard diffraction frameworks for events with p⊥ > 10 GeV.

The MPI framework predominantly gives low-p⊥ interactions, be it for diffractive or non-
diffractive events. Thus only a small fraction of the events will have p⊥ values at ∼ 10
GeV or more, see figure I.12a. Note that the p⊥ spectrum falls faster for diffractive than
nondiffractive events, mainly as a consequence of the former having a Pp invariant mass
spectrum peaked towards lower values.

Table I.6: Cross sections obtained with the two diffractive frameworks. Extracted from figure I.12 by integration.

Cross sections
pp collisions at

√
s = 8 TeV

Soft diffraction Hard diffraction
ND sample, p⊥ > 10 GeV (mb) . .
ND sample, p⊥ > 20 GeV (mb) . .
SD sample, p⊥ > 10 GeV (mb) . .
SD sample, p⊥ > 20 GeV (mb) . .

In figure I.12b the p⊥ of the hardest process for the two samples is compared. One is
obtained by generating inclusive (soft) events and keeping only those with large enough p⊥,
the other by generating only hard events above 10 GeV. Nondiffractive events are shown as
a sanity check, as for them the two approaches should give the same results. A closer look
at integrated cross sections, table I.6, shows a small discrepancy for the p⊥ > 10 GeV case,
while the p⊥ > 20 GeV agree much better. This discrepancy is caused by not having a
“Sudakov factor” in the hard model. That is, in the soft model the rate at lower p⊥ scales
is reduced by the requirement of not having an interaction at a higher p⊥ scale, whereas
no such reduction is implemented in the hard framework, which only uses pure matrix
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elements.

The single diffractive events show differences in the normalization, while the shape of the
p⊥ distributions agree between the two frameworks. The normalization differences arise
from the two different ways of handling the survival rate. The soft diffractive framework
assumes an effective flux of P’s inside the proton, rescaled to get the desired total diffractive
cross section, and thereby implicitly includes an average rapidity gap survival factor. The
hard diffractive framework has a higher initial P flux but then explicitly implements a
dynamical event-by-event survival factor. As it works out, single diffractive high-p⊥ events
are somewhat more suppressed in the latter case. This is indeed what we would expect: there
should be more MPIs in high-p⊥ (and high-mass) events than in low-p⊥ ones, and thus
more MPI survival suppression. Put another way, the soft implementation overestimates
the suppression at low p⊥ and underestimates it at high p⊥. (Assuming our new model is
the right way to view the matter.)

In the future it would be desirable to include such dynamical effects also in the soft frame-
work, so that the two descriptions can be made to agree in the high-p⊥ region. This is not
a trivial task, however.

4 Comparisons with data

In this section we compare the new model for hard diffraction with some available data.
While many results have been presented for soft diffractive processes, less is available on
hard ones.

At the Tevatron, both the CDF and D0 collaborations studied hard diffractive events. We
have chosen here to compare with two analyses, one in which only the diffractive fractions
are measured, the other in which also the distributions of the hard collisions are reported.

At the LHC, diffraction has been studied both by ATLAS [39–41] and CMS [42–44]. One
key observation there is that the Pythia default P flux shape does not describe the rapidity
gap distribution so well, suggesting that a new parametrization may be needed. In other
respects the model seems to do a reasonable job. For hard diffraction we will compare to
the latest ATLAS study, [41], and a similar CMS study, [43].

Unfortunately, neither of the studies at hand are implemented as Rivet [45] analyses, so we
have tried to apply the relevant experimental cuts as best as we can. This makes comparisons
with data less than reliable, and results should therefore be taken as a first indication only.
At least for LHC the intention is that the new Pythia options can be directly tested by the
experimental community, to allow more precise comparisons in the future.
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Table I.7: Cuts used in [46]. Number of events listed in each of the samples are based on Monte Carlo truth obtained when
generating 106 inclusive events. A blank means that a specific cut was not relevant.

CDF cuts W sample Z sample
ND SD SD×2

ND
() ND SD SD×2

ND
()

Lepton Ee
T(p

µ
T) >  GeV   .   .

Missing ET >  GeV   . - - -
One electron in |η| < . - - -   .
One lepton in |η| < .   .   .
MW

T = [, ] GeV   . - - -
MZ = [,] GeV - - -   .
|t| <  GeV2 -  . -  .
xP = [.,.] -  . -  .

4.1 DiffractiveW/Z production at the Tevatron

CDF has measured the fraction of events with a diffractively produced W/Z boson at√
s = 1.96 TeV [46]. The surviving antiproton was measured in a Roman Pot forward

spectrometer, and the boson decay products in the central detector. The observed fraction
of events with forward antiprotons was doubled, to compensate for there being no Roman
Pots on the proton side. Only the e and µ leptonic decays of the bosons were taken into
account. The cuts used in the analysis are listed in table I.7, along with the number of events
that survive after each step. To this end, the internal W- and Z-finder projections available
in Rivet [45] have been used as a starting point; these have previously been validated for
other CDF analyses. In addition the diffractive properties are derived from the measured
antiproton as

t = −p2
⊥ (I.9)

xRPS
P = 1 − 2|pz|√

s
(I.10)

which has been compared to Monte Carlo truth, giving good agreement.

The results in table I.7 are obtained with Pythia 8 using the SaS flux and the H1 Fit B LO
PDF, starting out from an inclusive MPI-selected sample. We note that a large fraction of
the diffractive events do not pass the experimental xP cut. Therefore, although we begin
with a “Monte Carlo truth” fraction of ∼ 1% diffractive W/Z, this is reduced to ∼ 0.2%
by the xP cut. Results look better for other choices of P flux, see table I.8, but even at best
still with a factor two discrepancy. Note that it is the fluxes that rise fastest in the low-xP
region that gives fractions closer to data.

We can compare these values to the results from [32], where no gap survival factor is in-
cluded. The authors only show results on W production and use different integration limits
on xP. A subset of the results are listed in Table I.9. It is worth noting that the results using
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Table I.8: Diffractive fractions for the W → lν and Z → l+l−, l = e, µ in
√
s = 1.96 TeV pp collisions.

P PDF
P flux (pp → p′ +W) ×  (pp → p′ + Z) × 
CDF (.±.)  (.±.) 
H Fit B LO
SaS (. ± .)  (. ± .) 
H Fit B LO
MBR (. ± .)  (. ± .) 
H Jets
SaS (. ± .)  (. ± .) 
H Fit A NLO
H Fit A (. ± .)  (. ± .) 
H Fit B LO
H Fit A (. ± .)  (. ± .) 

Table I.9: Diffractive fractions for the W production from [32].

P PDF
P flux xP = 0.01 xP = 0.1
CDF - (.±.) 
Fit B
DL, ϵ = 0.14 .  . 
Fit D
DL, ϵ = 0.14 .  . 
Fit SG
DL, ϵ = 0.14 .  . 

the lower integration limit are of the same order as the default settings of Pythia 8, whereas
the high integration limit (which is that of CDF) are higher than both data and our model.
This we interpret as being due to the lack of suppression factor, as their calculations do not
take MPIs into account.

The diffractive fraction can also be increased by changing the free parameters of the MPI
framework, with the caveat that nondiffractive events will then no longer describe data as
well. Table I.10 shows the diffractive fractions obtained when varying some of the MPI
parameters. This variation is still not sufficient when combined with the default flux and
PDF in Pythia 8. If combined with some of the fluxes in table I.8 it would be possible to
obtain fractions close to the experimentally observed values, however.

Table I.10: Diffractive fractions for the W → lν and Z → l+l−, l = e, µ in
√
s = 1.96 TeV pp collisions.

Parameter (pp → p′ +W) ×  (pp → p′ + Z) × 
CDF (.±.)  (.±.) 
pref⊥0 = 2.78 GeV (. ± .)  (. ± .) 
Exponential overlap (. ± .)  (. ± .) 
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Table I.11: Cuts used in [21].

CDF cuts
Jet E1,2

T >  GeV
Jet E3

T >  GeV
Jet |η1,2,3| < .

ΔR .
|t| <  GeV2

xRPS
P [.,.]

4.2 Diffractive dijets at the Tevatron

Another interesting measurement performed at CDF was the process pp → p+Xp, Xp →
X+ J+ J, i.e. SD dijet production with a leading antiproton. CDF measured this at three
different energies,

√
s = 630, 1800 and 1960 GeV [21,47,48]. Here not only the diffractive

fractions were measured, but a number of differential distributions. Large discrepancies
were found between the diffractive structure functions determined from CDF data and
those extracted by the H1 Collaboration from diffractive deep inelastic scattering data at
HERA. The discrepancies are both in normalization and shape and were interpreted as a
breakdown of factorization.

Our comparison focuses on the 1800 GeV data ( [21]), since this also includes a measure-
ment of the diffractive structure function. The cuts used in the analysis are listed in ta-
ble I.11. The jets are identified with the CDF cone algorithm as implemented in Rivet [45],
with a cone radius of 0.7. Jet energy scale corrections for underlying-event activity are done
separately for diffractive and nondiffractive events, as outlined in the CDF article, but only
has a minor impact on relative rates. The momentum transfer of the antiproton is evaluated
using eq. (I.9) and the momentum loss of the antiproton using eq. (I.10).

We begin by evaluating the suppression factor introduced by the MPI framework. This
is evaluated by running two samples of 106 events, one with and one without the MPI
criterion, both using the cuts of table I.11 and the SaS flux and the H1 Fit B LO PDF. We
obtain a suppression factor of 0.11, to be compared with the quoted discrepancies from
CDF of 0.06 ± 0.02 (0.05 ± 0.02) when using the H1 Fit 2 (Fit 3), respectively [21]. A
similar suppression factor as for SaS is obtained when using the H1 Fit B flux, based on the
same parametrization as the H1 Fit 2 and 3 fluxes, although with different values for the free
parameters of the model. Using this flux, however, allows for approximately two times more
events passing the experimental cuts. This is due to the fact that the H1 Fit B flux is less
restrictive in the low-xP region, where the experiment is performed. Hence we expect better
agreement with data when using the H1 Fit B flux, as compared to SaS. We are not able to
directly compare to the suppression factors obtained in [32], as these have been calculated
with different kinematical cuts (eg. ET > 10 GeV and 0.05 < xP < 0.1), but the numbers
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obtained are still interesting in their own right. Alvero et al. obtain suppression factors of
0.061 (fit B and DL flux, ϵ = 0.14), 0.029 (fit D, same flux) and 0.12 (fit SG, same flux),
thus ranging from the measured suppression factor to our one.

Results on kinematical distributions using both the SaS and the H1 Fit B flux are shown in
figure I.13. The SD E∗T distribution has a steeper falloff than the ND distribution, indicat-
ing a lower center-of-mass energy in the collision. Likewise the η∗ distribution is shifted
towards positive η, the proton direction, indicating a boost of the center-of-mass system.
The final kinematical distribution here is the difference in azimuthal angle between the two
leading jets. This observable was not shown in the 1800 GeV analysis but in the 1960 GeV
one. The SD events there show a tendency to be more back-to-back than the ND ones.
This can also be attributed to the lower energy in the Pp collision than in the full pp system,
leaving less space for initial-state radiation.

The momentum fraction of the antiproton carried by the subcollision parton can be eval-
uated from the jets using

x =
1√
s

3∑
i=1

EiTe
−ηi , (I.11)

where the sum is over the two leading jets, plus a third if it has ET > 5 GeV. The result
is shown in figure I.14, for the two P fluxes used in figure I.13. As expected the SaS flux,
figure I.14a, suppress the diffractive events too much, as the suppression factor is too large
compared to experimental value from CDF. With this flux, the PDF selected samples lie
above the CDF data, but then drop by an order of magnitude by the MPI selection, to lie
well below the data, by a factor of five. There is also some discrepancy in shape. Changing to
the H1 Fit B flux, figure I.14b, the PDF selected sample lies above the data as expected, with
the MPI selected sample a bit below, although only by a factor of three. The suppression is
still too large, and shapes still disagree, but not as markedly as in figure I.14a.

There are some aspects of the CDF article that we don’t understand, however. The key
figure 4 of [21] is intended to show the H1 predictions for the diffractive structure function
along with the experimentally measured one. The information provided on how the former
prediction is obtained is inconsistent with the curve shown, however, in normalization and
shape. In the end we therefore put more faith in the suppression factor between CDF
and HERA, already presented above, than in absolute numbers. Assuming we could have
reproduced the CDF curve intended to represent the predictions of the H1 PDFs, that
then is suppressed by an average multiplicative factor of 0.05 − 0.06 in data but 0.11 in
our model, we should have been a factor of ∼ 2 above data, which is inconsistent with the
outcome in figure I.14.
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Figure I.13: The mean ET of the leading jets in both SD and ND events using (a) the SaS and (b) the H1 Fit B flux. The mean η

of the leading jets in both SD and ND events using (c) the SaS and (d) the H1 Fit B flux. The mean difference in ϕ
between the leading jets in both SD and ND events using (e) the SaS and (f) the H1 Fit B flux.
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Figure I.14: The antiproton momentum fraction carried by the parton entering the hard collision, for Pythia 8 compared with

CDF data. Pythia is run with the H1 Fit B LO PDF and (a) the SaS or (b) H1 Fit B flux. (c) and (d) shows the ratio SD
to ND using (a) and (b).

4.3 CMS diffractive contribution to dijet production

CMS has studied the diffractive contribution to dijet events at
√
s = 7 TeV pp colli-

sions [43], The cross section is presented as a function of ξ̃, an approximation to the frac-
tional momentum loss of the scattered proton corresponding to the xP variable. Dijets
were selected with p⊥ > 20 GeV in the |η| < 4.4 range using the anti-k⊥ algorithm with
a cone size of R = 0.5 [49]. ξ̃ was reconstructed using particles in the region |η| < 2.4
with p⊥ > 0.2 GeV for charged particles as well as particles in the range 3.0 < |η| < 4.9
with E > 4 GeV. To enhance the diffractive contribution additional requirements was in-
troduced, such that the minimum rapidity gap was of 1.9 units (no particles was allowed in
the region |η| > 3). Finally a cut on ξ̃ < 0.01 was introduced.

With these cuts, rapidity gap survival probabilities are in the range 0.08 ± 0.04 (NLO) to
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Table I.12: Cuts used in [41].

Jet cuts
Jet E1,2

T >  GeV
Jet |η1,2| < .

Anti-k⊥ ΔR .
Neutral particles

|p| >  MeV
|η| < .

Charged particles
|p| >  MeV or
p⊥ >  MeV
|η| < .

0.12 ± 0.05 (LO), where the NLO gap survival probability was found using PomPyt and
PowHeg [50]+Pythia 8 and the LO gap survival probability was found using PomPyt and
PomWig.

Implementing the same cuts in Pythia 8, using the SaS flux and the H1 Fit B LO PDF gives
a rapidity gap survival probability of 0.06, compatible with the CMS results. Changing
from the SaS flux to the H1 Fit B flux gives the same suppression factor, but allows for
more events to pass the experimental cuts. We thus see the same trend as in the CDF
analysis, where the SaS flux is too restrictive at low xP.

4.4 ATLAS dijets with large rapidity gaps

Recently, the ATLAS collaboration published a study of dijets with large rapidity gaps in√
s = 7 TeV pp collisions [41]. Dijets were selected with p⊥ > 20 GeV in the |η| < 4.4

range, and the cross section was measured in terms of ΔηF, the size of the observed rapidity
gap, as well as in ξ̃ =

∑
pi⊥e

±ηi/
√
s, the estimate of the fractional momentum loss deduced

from charged and neutral particles in the ATLAS detector (the sign on η depends on where
in the detector the largest gap is located). Cuts used in the analysis are listed in table I.12.

Experimental results were compared with the Pythia 8 soft diffractive framework, which
predicts both the ND, SD and DD contributions to the dijet production. Three different
flux models were compared: SaS, Donnachie-Landshoff and MBR. All three predict cross
sections in the range of the data, without any need for additional gap survival probability
factors. The PomWig generator [13], on the other hand, needed an additional suppression
of S2 = 0.16 ± 0.04(stat) ± 0.08(sys) in order to describe data.

In this section we use the new model for hard diffraction to study the same cross sections.
The new model currently only includes the SD contribution, hence we will not be able to
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describe all aspects of data, especially in the high-ΔηF and low-ξ̃-regions, where the SD and
DD contributions are comparable in size, at least according to the soft diffraction model
available in Pythia 8. We could also expect the normalization of the SD events obtained
with the hard diffraction framework to be lower than in the soft one and thus in data,
because of the difference in normalization between the two frameworks (cf. section 3.4).
The ND contribution should not differ from the ATLAS analysis, however, since no changes
have been implemented in this framework.

The ND distribution was normalized to data, where the normalization factor was found
using the first bin of the ΔηF distribution. This approach has also been used in our analysis,
although when generating an inclusive sample (e.g. the purple distribution in figures I.15b
and I.15d) this normalization is applied to the full sample, unlike in the ATLAS paper. In
this sample, no classification of events occurs, hence the normalization cannot be performed
only on the ND sample. In the exclusive samples, the distinction between ND and SD is
performed, and we can apply the normalization to only the ND sample (cf. the black
distribution in figures I.15b and I.15d).

In figure I.15 we show the results obtained with the model for hard diffraction. Three
samples are compared: ND, PDF-selected SD and MPI-selected SD. Note that the MPI-
selected sample lies about a factor of 10 below the PDF-selected one, as usual, and that
the suppression due to the MPI-framework is constant over both intervals. The new model
undershoots the data in the regions where the DD contribution is non-negligible (ΔηF > 1
and log10ξ̃ < −0.5). When this contribution is included in the framework, a better
agreement with data should be possible, and overall the picture should be consistent with
the soft diffractive framework.

5 Summary and outlook

In this article we have studied hard diffraction by combining two concepts, the Ingelman–
Schlein picture of a Pomeron and the Pythia model for multiparton interactions. The
Pomeron fluxes and PDFs are mainly extracted from HERA data, while the MPI picture
(and several other relevant physics components) makes use of a broader spectrum of Teva-
tron and LHC data. This combination allows us, in principle, to predict all physical quan-
tities of hard diffractive events, from rapidity gap sizes to charged multiplicity distributions,
but most importantly the fraction of diffractive events for any hard process.

Reality is not quite as simple, however. In this article we have studied the different assump-
tions that go into a detailed framework, and explored the inherent uncertainties. One part
concerns the assumed Pomeron flux and PDFs, where particularly the latter is dominated
by one source only, namely the H1 analyses, making it difficult to assess to full range of un-
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Figure I.15: The dijet cross sections as a function of the size of the rapidity gap (a), (b) and the fractional momentum loss of

the proton (c), (d). Compared to the hard diffraction model of Pythia 8 using the SaS flux and H1 Fit B LO PDF. In
(b) and (d) the ND + MPI sample is a sum of the black and red dotted lines from (a) and (c), whereas the inclusive
sample are generated directly with Pythia 8. Only statistical errors are included in the ATLAS errorbars.

certainty. Another part concerns the MPI framework, which enters twice. When used the
first time, to determine the diffractive MPI survival, it involves parameters already tuned to
nondiffractive data, so narrowly constrained in principle. There could still be leeway, e.g.
if we were to use other parton showers that give less/more activity at small p⊥ scales, the
average number of MPIs would have to rise/drop to compensate. Thus our studies focus
on the sensitivity of some key parameters of the framework. When the MPIs are used the
second time, inside the diffractive subsystem itself, the level of uncertainty is considerably
higher. A key example is the impact-parameter picture of the Pp subcollision, notably how
impact parameters are related between the pp and Pp steps of an event.

Our studies puts the finger on our still limited understanding of diffraction, also when
restricted to the Pomeron framework, which is only one model class for diffraction. Fur-
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ther, we provide computer code that can be used to compare with data for hard diffractive
processes at the LHC. It thus can be used as a “straw man” model, where differences be-
tween predictions and data can help pave the way for a deeper understanding and more
accurate models. Specifically, with a generator it is possible both to emulate the experi-
mental diffractive trigger and to compare the resulting event properties, both of which are
considerably more complicated for analytical models.

Comparisons with data have shown qualitative agreements in many respects, but maybe
less so than one could have hoped for. For the Tevatron we face the problem of trying
to understand 15 years old analyses, with uncertain results. The main message probably
is that the overall Tevatron suppression factor of ∼ 10 − 20, relative to HERA-based
extrapolations, agrees well with what our model gives from the MPI selection step. For
the future it will therefore be more interesting to compare with LHC studies, in particular
those available in Rivet.

It is well known that the existing Pythia model for soft diffraction is not fully describing
the existing LHC data; at places the difference can be up to a factor of two. Similarly
we have seen less-than-perfect agreement for the hard diffractive processes studied in this
article. There is therefore room for improvements in both areas, and also for work to bring
the two approaches in closer contact. As one simple example, the soft model currently
does not involve a MPI survival step, and therefore the Pomeron flux does not have to be
normalized in the same way in the two cases. The intention is to study such issues closer,
and to provide an improved description of diffractive cross sections, both integrated and
differential ones.
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Abstract:

The LHC has brought much new information on total, elastic and diffractive cross sec-
tions, which is not always in agreement with extrapolations from lower energies. The de-
fault framework in the Pythia event generator is one case in point. In this article we study
and implement two recent models, as more realistic alternatives. Both describe total and
elastic cross sections, whereas one also includes single diffraction. Noting some issues at
high energies, a variant of the latter is proposed, and extended also to double and central
diffraction. Further, the experimental definition of diffraction is based on the presence of
rapidity gaps, which however also could be caused by color reconnection in nondiffrac-
tive events, a phenomenon that is studied in the context of a specific model. Throughout
comparisons with LHC and other data are presented.



1 Introduction
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Figure II.1: The squared matrix element for the total (a), elastic (b), single (c,d), double (e) and central (f) diffractive cross

sections.

The LHC has provided new information on any number of topics, including total, (dif-
ferential) elastic and (differential) diffractive cross sections, or σTED for short. The σTED

kind of quantities cannot be predicted from the QCD Lagrangian, although this is where
they have their origin. Therefore σTED results are often overshadowed by results from
the perturbative domain, where comparisons with the Standard Model, and searches for
physics beyond it, are more directly related to the underlying theory. Nevertheless, there
are good reasons to study the old and new σTED data now available. One is to assess how
well different effective models can describe the data, and implicitly or explicitly pave the
way for better models and better understanding, ultimately to form a stronger connection
with the underlying QCD theory. Another is that diffractive events form part of the “un-
derlying event” and pileup backgrounds that have a direct impact e.g. on jet energy scales
and jet profiles, and thereby on many experimental studies. In this latter aspect they com-
bine with the inelastic nondiffractive events into the overall inelastic event class, with a
separation that is far from unambiguous, as we will see. In this article we consider the three
simplest diffractive event classes: single, double and central diffraction, corresponding to
the dissociation of one, two or zero of the incoming protons, respectively.

Historically there are two main approaches to σTED in hadron–hadron collisions, the dia-
grammatical and the geometrical, although both aspects may well be represented in a spe-
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cific model [1–4]. In the diagrammatical approach new effective particles are introduced,
specifically the Pomeron(s) P and Reggeon(s) R, with associated propagators and vertex
coupling strengths. A Feynman-diagram-like expansion may be performed into different
event classes, with higher-order corrections. A subset of these are shown in fig. II.1, with
X = P,R and each of the couplings denoted with a g. In the diagrammatical approach, the
dashed line (the cut) represents the diagram at amplitude level. A cut through a P or R thus
represent particle formation at amplitude level, while an uncut Pomeron or Reggeon repre-
sents an area void of particle production. In a geometrical approach the impact-parameter
aspects are emphasized, where diffraction largely is related to peripheral collisions. The
analogy with wave scattering theory here is natural, and has given the diffractive event class
its name. Diffraction can also be viewed as a consequence of the interaction eigenstates
being different from the mass ones [5, 6].

Neither of these approaches address the detailed structure of diffractive events. In olden
days, at low energies, a diffractive system was simply viewed as an excited proton state that
could decay more-or-less isotropically, a “fireball” [1, 7]. This is clearly not a valid picture
for higher-mass diffractive states, where the same kind of longitudinal structure is observed
as for nondiffractive ones. The simplest partonic approach would then be for a P/R to
kick out a single quark or gluon from a proton, giving rise to one or two fragmenting
color strings. The Ingelman–Schlein picture [8] takes it one step further and introduces
an internal structure for the P, such that a Pp collision may be viewed as an inelastic
nondiffractive pp (or better π0p) one in miniature. Thereby also hard jet activity and
multiparton interactions (MPIs) become possible within a diffractive system, as supported
by data.

A key aspect of MPI modeling is the relation to color reconnection (CR), whereby partons
in the final state may be related in color so as to reduce the total string length relative to
naive expectations. This opens for another view on diffraction, where CR can generate
rapidity gaps dynamically [9, 10]. Then the diffractive and inelastic nondiffractive event
classes have a common partonic origin, and only differ by the event-by-event fluctuations
in color topologies. Even in models that do not go quite as far, the dividing line between the
two kinds of events may be fuzzy. This is even more so since the experimental classification
in terms of a rapidity gap allows for misidentification in both directions, relative to the
classification in a specific model. High-mass diffraction need not give a gap in the central
detector, while nondiffractive events by chance (CR or not) can have a large rapidity gap.
The classification of each event type in Pythia 8, however, is independent of CR model,
such that no double counting occurs on a theoretical level. Each event type has its own
specific cross section and, in a combined sample, the mix of event types is based on that.
The experimental signature of the events, however, does differ depending on CR model.
Thus it is likely that CR models that can give large gaps in nondiffractive events will need
a suppression of the diffractive cross sections in order to describe data.
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What should now be clear is that description of the σTED physics, and especially the diffrac-
tive part, is too multifaceted to be based purely on analytical calculations. The implementa-
tion into Monte Carlo Event Generators is crucial to test different approaches. One of the
most commonly used generators is Pythia [11,12], which by default is based on a rather old
diagrammatical “tune” for the σTED issues [13], combined with an Ingelman–Schlein-style
approach to the diffractive event structure [14]. In particular the first part does not agree
well with LHC data, and so needs an overhaul.

For the total and elastic cross sections we have chosen to implement two different parametriza-
tions, the parametrization from the COMPAS group as found in the Review of Particle
Physics 2016 [15] and a model developed by Appleby and collaborators (ABMST) [16]. In
addition to a better fit to the integrated cross sections, these also include a more detailed
description of the differential elastic cross sections.

The ABMST model also addresses single diffraction. It is in an ambitious diagrammatical
approach, supplemented with a careful description of the resonance shape in the low-mass
region, based on comparisons with low-energy data. Unfortunately, as is common in such
ansätze, the diffractive cross section asymptotically grows faster with energy than the total
one, making it marginally acceptable already at LHC energies and definitely unacceptable
for FCC ones. We therefore study possible modifications that would give a more reasonable
energy behavior. Further, while ABMST does not address double or central diffraction, we
use the framework of the model to extend it also to these event classes, and in the process
need to make further adjustments. Results for the ABMST-based modeling implemented
in Pythia are compared with the already existing default framework of Schuler-Sjöstrand
(SaS) and Donnachie-Landshoff (DL) [13, 17], and confronted with LHC data.

Furthermore we study the sensitivity to CR by comparing with the Christiansen–Skands
QCD-based CR model (CSCR) [18]. This model has no protection against “accidental”
rapidity gaps in nondiffractive events, unlike the default CR framework. But it is also not
intended to describe (the bulk of ) diffraction, and therefore it requires a retuning to provide
a sensible combined description. It therefore offers an interesting case study for a tuning
task that is likely to become more common in the future.

The plan of the article is as follows: In section 2 we begin by summarizing the current
status of Pythia 8, the default cross section parametrizations along with the hadronic event
properties of diffractive events. In section 3 we describe the new models for total and
elastic (differential) cross sections. In section 4, 5, 6 we extend these to single-, double- and
central diffractive (differential) cross sections, respectively. In section 7 we provide some
comparisons to LHC data and provide new tunes of the default Pythia 8 model. We end
with section 8, where we summarize and provide an outlook to further studies.

98



2 The current status of Pythia 8

Pythia 8 is a multi-purpose event generator aimed at the generation of high-energy events.
This includes collisions both of a perturbative and a non-perturbative character, each of
which gives contributions to the total collision cross section. In perturbative collisions, the
description begins with the matrix element of the hard scattering process in combination
with parton distribution functions. This core is dressed up with several other elements
such as multiparton interactions, parton showers and hadronization. In non-perturbative
scattering collisions, on the other hand, no standard formulation exists for the core process,
and phenomenological models are needed. After the model-dependent choices of the key
kinematical variables have been made, the event generation may be continued in a similar
manner as for perturbative events, where relevant.

In this paper we focus on the non-perturbative scattering processes, and the generation of
these. To set the stage for further improvements, the purpose of this section is to describe
the current status of the event generator. This we have split into two parts, beginning with
the description of the default cross section models, the SaS/DL one, and then go on to
describe the event property aspects that are the same regardless of the choice of model.

2.1 Differential cross sections

In the current version of Pythia 8, the predictions for the total, elastic and diffractive
cross sections do not agree so well with measurements performed at the LHC. The current
implementation is the parametrization of DL [17] for the total cross section,

σtot(s) = X ABsϵ + Y ABs−η, (II.1)

with s = E2
CM, ϵ = 0.0808, η = 0.4525. A and B denote the initial-state particles,

and XAB, YAB are specific to each such state. The elastic and diffractive cross sections are
described using the parametrization of SaS [13],

dσel
dt

= (1 + ρ2)
σ2
tot(s)
16π

exp(Bel(s) t) , (II.2)

dσXB(s)
dtdM2

X
=

g3P
16π

βAP(s)β2
BP(s)

M2
X

exp(BXB(s) t) FSD(M2
X, s) , (II.3)

dσAX(s)
dtdM2

X
=

g3P
16π

β2
AP(s)βBP(s)

M2
X

exp(BAX(s) t) FSD(M2
X, s) , (II.4)

dσXY(s)
dtdM2

X dM
2
Y

=
g2

3P
16π

βAP(s)βBP(s)
M2

XM
2
Y

exp(BXY(s) t) FDD(M2
X,M

2
Y, s) , (II.5)
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where indices X and Y here represent diffractive systems (not to be confused with the co-
efficients of eq. (II.1)), ρ is the ratio of real to imaginary parts of the elastic scattering
amplitude at t = 0 , βAP and βBP are hadron couplings strengths to the Pomeron, and g3P
the triple-Pomeron vertex strength. The slope parameters are defined as

Bel(s) = 2bA + 2bB + 4sϵ − 4.2,

BXB(s) = 2bB + 2α′
P ln

(
s

M2
X

)
BAX(s) = 2bA + 2α′

P ln

(
s

M2
X

)
BXY(s) = 2α′

P ln

(
e4 +

s s0
M2

XM
2
Y

)
, (II.6)

where bi = 2.3 for i = p,p, α′
P = 0.25 GeV−2, s0 = 1/α′

P, and the term e4 is added
by hand in order to avoid BDD(s) to break down for large values of M2

XM
2
Y. Special care

was taken to avoid unphysical high-energy behaviors; e.g. a logarithmic s dependence of
Bel would have lead to σel(s) > σtot(s) for large s.

Fudge factors are introduced to dampen large (overlapping) mass systems as well as increas-
ing the low-mass “resonance” region, without describing the resonances individually,

FSD(M2
X, s) =

(
1 − M2

X
s

)(
1 +

cresM2
res

M2
res +M2

X

)
FDD(M2

X,M
2
Y, s) =

(
1 − (MX +MY)

2

s

)(
s m2

p

s m2
p +M2

XM
2
Y

)

×
(

1 +
cresM2

res

M2
res +M2

X

)(
1 +

cresM2
res

M2
res +M2

Y

)
(II.7)

where cres = 2 and Mres = 2 GeV for pp and pp.

Central diffraction has been added to Pythia 8, but is not widely used in the experimental
communities, hence have not been maintained properly after its inclusion. It is off by
default, and is not included in any of the tunes performed by the Pythia 8 collaboration
or the experimental communities. Thus the results obtained with it included should not
be trusted too far. The cross section is

σCD(s) = σrefCD

ln1.5
(

0.06s
smin

)
ln1.5

(
0.06sref
smin

) , (II.8)

with σrefCD = 1.5 mb, sref = 4 TeV2 and smin = 1 GeV2. The diffractive mass is chosen
from a (1 − ξ1)(dξ1/ξ1)(1 − ξ2)(dξ2/ξ2) distribution, with ξ1,2 being the momentum
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fraction taken from the respective incoming hadron, such that M2
X = ξ1ξ2s. The two t

values are selected according to exponentials with slope 2bA + α′
P ln(1/ξ1) and 2bB +

α′
P ln(1/ξ2), respectively.

The expressions in eqs. (II.3) – (II.5) can be integrated to give the total elastic and diffrac-
tive cross sections. This worked reasonably well up to Tevatron energies, but it overshot
diffractive cross sections observed at the LHC [19]. Simple overall modification factors were
therefore introduced [20] to dampen the growth of the diffractive cross sections (including
the CD one in eq. (II.8)),

σmod
i (s) =

σoldi (s)σmax
i

σoldi (s) + σmax
i

, (II.9)

where the σmax
i are free parameters. The ansatz allows phenomenology at lower energies to

be preserved while giving some reasonable freedom for LHC tunes. It gives asymptotically
constant diffractive cross sections, but typically with asymptotia so far away that it is not
an issue for current studies.

The kinematical limits for t are determined by all the masses in the system. We define the
scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

X/s, µ4 = M2
Y/s where MX = mA if A

scatters elastically and MY = mB if B scatters elastically. Thus the combinations

C1 = 1 − (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4)

C2 =
√

(1 − µ1 − µ2)
2 − 4µ1µ2

×
√

(1 − µ3 − µ4)
2 − 4µ3µ4

C3 = (µ3 − µ1)(µ4 − µ2)

+ (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3), (II.10)

will lead to the kinematical limits tmin < t < tmax.

tmin = − s
2
(C1 + C2)

tmax =
s2C3

tmin
. (II.11)

These expressions are directly applicable for elastic scattering and for single and double
diffraction. For central diffraction AB → AXB they can be applied twice, with µ4 = M2

XB/s
for t1 and µ3 = M2

AX/s for t2.

An electromagnetic Coulomb term can be added to describe low-|t| elastic scattering. The
implementation is here based on the formalism as outlined e.g. in [21, 22]. Introducing an
electromagnetic low-|t| form factor as

G(t) ≈ λ2

(λ−t)2 , λ ≈ 0.71 GeV2 , (II.12)
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and a Coulomb term phase factor approximation [23, 24]

ϕ(t) ≈ ±αem

(
−γE − log

(
−Bel(s) t

2

))
, (II.13)

with γE ≈ 0.577, + for pp and − for pp, Coulomb and interference terms are added to
the hadronic dσel/dt above

dσC+int
el

dt
=

4πα2
em G4(t)
t2

± αem G2(t)
t

× (ρ cosϕ(t) + sinϕ(t)) σtot(s)

× exp

(
Bel(s) t

2

)
. (II.14)

The same expression can also be added to the Minimum Bias Rockefeller (MBR) model [25]
(and a flexible “set your own” one), while the ABMST and RPP formalisms each introduce
the Coulomb corrections as one extra amplitude term, with the full phase expressions of
[24]. Numerically the three implementations give very similar results.

2.2 Hadronic event properties

To model a diffractive system, it is convenient to view its internal structure as a consequence
of the interaction between two hadronlike objects, e.g. as a PB subcollision for the AB →
AX process, in the same spirit as a high-energy nondiffractive pp event, where perturbative
processes largely shape its structure. Such an approach is not viable for low-mass diffractive
systems, however. Therefore the diffractive event generation is split into two regimes, a
high-mass and a low-mass one, with a smooth transition between the two. The probability
for applying the high-mass description is given by [14]

Ppert = 1 − exp

(
−max(0,MX − mmin)

mwidth

)
, (II.15)

with mmin and mwidth free parameters, both by default 10 GeV. Note how Ppert vanishes
when below mmin.

For very low masses, MX ≤ mB + 1 GeV for a PB subcollision, the diffractive system is
allowed to decay isotropically into a two-hadron state. Above this limit, but still in the
nonperturbative regime, the collision process is viewed as the P kicking out either a valence
quark or a gluon from the incoming hadron B. The relative rate of the two is is mass-
dependent,

P(q)
P(g)

=
N
Mp

X
, (II.16)
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with N and p as free parameters, and MX in GeV. In the former case a single string will
be stretched between the kicked-out quark and the left-behind diquark, whereas the latter
gives a “hairpin” string topology, going from one remnant valence quark via the struck
gluon and back to the remnant diquark. These strings are then allowed to fragment using
the Lund fragmentation model [26]. The default values N = 5 and p = 1 ensures that the
double-string topology wins out at higher masses, consistent with what the exchange of a
single gluon (a.k.a. a cut Pomeron) is expected to give in pp collisions.

In the high-mass regime it is assumed that the diffractive cross section factorizes into a
Pomeron flux, a
Pomeron–proton cross section, and a proton form factor. Together these determine the
mass MX of the diffractive system and the squared momentum transfer t in the process.
Neither the P flux nor the Pp cross section are known from first principles; therefore seven
similar but somewhat different P flux options are available in Pythia 8.

The internal structure of the Pp system is then considered in an Ingelman–Schlein-inspired
picture. Thus perturbative processes are allowed, and P parton distribution functions
(PDFs) are introduced like for a hadron. Standard factorization can be assumed, i.e. cross
sections are given by hard-scattering matrix elements convoluted with the PDFs of two
incoming partons. Furthermore, the full interleaved shower machinery of Pythia 8 is en-
abled, giving rise both to initial- and final-state showers and to multiparton interactions in
the Pp system. This results in a more complex color string structure than in the low-mass
regime, which can also be subjected to additional color reconnection, owing to overlap and
crosstalk between the multiple subsystems.

The activity in the Pp system, as represented e.g. by the average charged multiplicity, can
be tuned to roughly reproduce that of a non-diffractive pp collision of the same mass.
This activity is closely related to the average number of MPIs per event, the calculation
of which differs between the two systems by a P vs. a p PDF in the numerator, and by
σeffPp vs. σnondiffractivepp in the denominator. Given a P PDF, and assuming the same MPI-
framework parameters as in pp, the σeffPp thus becomes the main (mass-dependent) tuning
parameter. In reality the two systems can be different, however, so experimental informa-
tion on diffractive mass and multiplicity distributions can be used to refine the tune. Be
aware that a different choice of PDFs is likely to require a different σeffPp value. Ten differ-
ent P PDF sets are implemented [27–30], plus a few toy ones for special purposes. Many
of these have been fixed by some convention for the P flux normalization, that in Pythia
could be set differently. In principle most of the P PDFs should only be used with the
associated P flux, as some of the experimentally provided PDFs do not assume a factoriza-
tion of the P flux and PDF. In practice the two can be chosen independently, as this opens
up for comparative studies. Similarly, the convention used for the P flux normalization
is often dependent on the experimental limits and often normalized to unity at seemingly
arbitrary phase space points. Other important aspects, such as the momentum sum rule,
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are also usually neglected in the PDFs provided by experiments, but often needed in phe-
nomenological studies. Hence all P PDFs are implemented with the option to be rescaled,
e.g. in order to approximately impose the momentum sum rule.

In the MPI framework [31] the joint probability distribution for extracting several partons
from a Pomeron needs to be defined. This is done in the same spirit as for protons [32].
MPIs are ordered in a sequence of decreasing p⊥ scales, and for the hardest interaction
the normal PDFs are used. For subsequent ones the x value is interpreted as a fraction
of the then remaining P momentum, thereby ensuring that the momentum sum is not
violated. Pomerons are assumed to have no valence quarks; thus the P PDFs initially only
contain gluons and a quark–antiquark-symmetric sea. If a quark is kicked out of the beam,
however, flavor conservation requires that an explicit “companion” sea antiquark must also
be present in the leftover P, and vice versa. Such a companion is introduced as an extra
component of the P PDF, similar to a valence (anti)quark, with normalization to unity
(just like the d valence in a proton). Overall momentum is preserved by scaling down the
gluon and ordinary sea quark distributions to compensate. If the companion is selected
for a subsequent MPI, then that “valence” component is removed, and the gluon and sea
components of the P PDF are scaled back up.

Also initial-state radiation (ISR) requires special attention in the MPI framework. ISR is
generated starting from the hard interaction and then evolving backwards, to lower scales
and larger x values [33]. Such ISR branchings are combined with the MPI generation into
one interleaved sequence of falling p⊥ scales. As above special consideration has to be given
to branchings that change the flavor of the incoming parton, and that can either induce or
remove a companion (anti)quark.

Similar to a proton [32], the Pomeron will leave behind a remnant after the MPIs and
showers have removed momentum and removed or added partonic content. To begin,
assume that only one gluon is kicked out of the incoming P. The remnant will then be
in a net color octet state, which means that two color strings eventually are stretched to
the outgoing partons of the hard collision (or to the other beam remnant). The remnant
could only consist of gluons and sea qq pairs, since the P has no valence flavor content,
so the simplest representation is as a single gluon or a single qq pair. From a physical
point of view the two options would give very closely the same end result, since the hairpin
string via a gluon remnant eventually would break by the production of qq pairs. For
convenience, the choice is therefore made to represent the remnant as an octet uu or dd
pair with equal probability. In the general case, further unmatched companion quarks are
added to represent the full flavor content needed in the remnant. Most MPI initiators
are gluons, however, which carry color that should be compensated in the remnant. This
is addressed by attaching the gluon color lines to the already defined remnants, which
implicitly introduces color correlations between the initiator partons. Such initial-state
correlations can be further enhanced by color reconnections in the final state. The final
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color topology decides how strings connect the outgoing partons after the collision, and
thereby sets the stage for the hadron production by string fragmentation.

2.3 Hard diffraction

Recently a framework for truly hard diffractive processes have been implemented into
Pythia [34]. This allows for diffractive subprocesses to generate e.g. hard jets, electroweak
particles and other internal Pythia processes, unlike the soft-to-medium QCD-only pro-
cesses that were allowed in the framework described above. This framework decides on
whether or not a process is diffractive by evaluating the diffractive part of the proton PDF,

f Di/p(x,Q
2) =

∫ 1

0
dxP

∫ 1

0
dx′ fP/p(xP) fi/P(x′,Q2) δ(x− xPx′)

=

∫ 1

x

dxP
xP

fP/p(xP) fi/P

(
x
xP
,Q2

)
, (II.17)

where fP/p(xP) =
∫
fP/p(xP, t) dt, as t for the most part is not needed. The ratio f Di/p/fi/p

defines the tentative probability for diffraction. A full evolution of the pp system is then
performed and only the fraction of events passing the evolution without any additional
MPIs is kept as diffractive. Additional MPIs between the two hadrons give rise to hadronic
activity, which could destroy the rapidity gap between the elastically scattered hadron and
the interaction subsystem, which is one of the clear experimental signatures of a diffractive
event. If the event survives the no-MPI criterion and is classified as diffractive, the partonic
sub-collision is assumed to have happened in a Pp sub-system. The Pp system is set up and
a full evolution is performed in this subsystem, similar to the method described above.

The no-MPI requirement introduces a gap survival probability determined on an event-by-
event basis, unlike other methods used in the literature. As MPIs only occur in hadron-
hadron collisions, the framework provides a simple explanation of the differences between
the diffractive event rates obtained at HERA and Tevatron. Diffractive fractions and sur-
vival probabilities obtained with the new framework show good agreement with experi-
ments, while some distributions show less-than-perfect agreement, see [34] for a discussion.
The model is currently only available for single diffraction; future work would be to extend
this to both double and central diffraction.

3 Total and elastic cross sections

The parametrizations of the total and elastic cross sections are related through the optical
theorem. The elastic cross section has historically been well described in the framework
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of Regge theory, with varying complexity based on the number of exchanges included in
the model. Up until the LHC era the simple ansatz of DL [17] using only a Pomeron
and an effective Reggeon has described the total cross section surprisingly well. With a
simple exponential t spectrum, the SaS parametrization [13] extended this to the elastic
cross section, and here at least the low-t data was well described. But with the higher
energies probed at the LHC it has become obvious that these simple parametrizations fail.
More complex trajectories have to be introduced in order to describe both the rise of the
total cross section and the t spectrum of the elastic cross section.

We have chosen to implement two additional models in Pythia 8. One, the model from
the COMPAS group as presented in the Review of Particle Physics 2016 [15], is of great
complexity, using six different single exchanges as well as some combinations of double
exchanges, along with the exchange of three gluons, the latter becoming important at high
|t|. The other, the newly developed ABMST model [16], is somewhat simpler, extending
the original DL model to four single trajectories and all possible combinations of double
exchanges between these, along with the triple-gluon exchange for high |t| values.

Recent TOTEM collaboration data on elastic scattering hint that none of the traditional
models describe all aspects of their data. Specifically, TOTEM obtains a decreasing ρ
parameter [35], and observes no structure in the high-|t| region (unpublished, but see
e.g. [36]). There is an ongoing discussion in both the theoretical and experimental commu-
nity on how to describe all data simultaneously. None of the models implemented here do
that, specifically they do not predict a decreasing ρ value. Further, the ABMST model does
not show any sign of structure at high |t|, while the COMPAS one does. Models could be
extended to include a maximal odderon, similar to the work of Avila et al. [37, 38] (AGN)
and Martynov et al. [39] (FMO), which would be able to describe the decrease in ρ. At
the time of writing the former has not been fitted to the new TOTEM data and the latter
has not been extended to t ̸= 0. Thus, for now, we have chosen not to implement either
in Pythia 8, but we show the FMO model in the relevant figures for completeness. Below
we will give short descriptions of each of the fully implemented models.

3.1 The COMPAS model

For the Review of Particle Physics 2016 the COMPAS group [15] has fitted a parametrization
of the elastic differential cross section to all available pp (upper signs) and pp (lower signs)
data, using a set of 37 free parameters. The cross sections are functions of the nuclear
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amplitude, T±, as well as the Coulomb amplitude, Tc
±,

σtot(
√
s) =

Im [T±(s, 0)]√
s(s− 4m2

p)

dσel
dt

(
√
s, t) =

|T±(s, t) + Tc
±|2

16π(ℏc)2 s(s− 4m2
p)

σel(
√
s) =

1
16π(ℏc)2 s(s− 4m2

p)

∫ tmax

tmin

dt |T±(s, t)|2. (II.18)

The Coulomb term, Tc
±, and the nuclear term, T±, are given as

Tc
±(s, t) = ±8π αem exp

(
∓iαem ϕ

NC
± (s, t)

) s
t

(
1 − t

Λ2

)−4

T±(s, t) = F+(̂s, t)± F−(̂s, t)
F+(̂s, t) = F H

+(̂s, t) + F P
+(̂s, t) + F PP

+ (̂s, t)
+ F R

+(̂s, t) + F RP
+ (̂s, t) + N+(̂s, t)

F−(̂s, t) = F MO
− (̂s, t) + F O

−(̂s, t) + F OP
− (̂s, t)

+ F R
−(̂s, t) + F RP

− (̂s, t) + N−(̂s, t). (II.19)

with the exact definitions of the different terms given as stated in [15]. It should be noted
that earlier versions of the PDG contains misprints in the definitions above as well as in
the crossing of even and odd functions, and the current still contains sign errors for the
Coulomb term, so these should be used with care.

3.2 The ABMST model

A somewhat simpler scattering model was proposed by Appleby et al. describing pp and
pp data from ISR to Tevatron energies [16]. The model is based on work by Donnachie
and Landshoff [40, 41] describing both elastic scattering and single diffractive scattering,
but includes new and more sophisticated fits compared to the ones from Donnachie and
Landshoff. In this section the details on the elastic scattering will be given, while the single
diffractive scatterings are presented in Sec. 4.

The ABMST model includes both the Coulomb and nuclear amplitudes, as well as the
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interference between the two. The cross sections are given as

dσel
dt

= π |fc(s, t)eiαϕ(t) + fn(s, t)|2

σel(s) = π
∫ tmax

tmin

dt |fn(s, t)|2

σtot(s) = Im [fn(s, 0)] , (II.20)

where the triple-gluon amplitude is left out of the nuclear amplitude [40] when evaluating
the total cross section. The Coulomb amplitude from [42] is used and the nuclear amplitude
consists of five terms: A hard Pomeron (Ph), a soft Pomeron (Ps), the f2, a2 Regge trajectory
(R1), the ρ, ω Regge trajectory (R2) and a triple-gluon exchange amplitude,

fn(s, t) = Aggg(t) +
∑

i=Ph,Ps,R1,R2

Ai(s, t). (II.21)

Also included is a double exchange term, where e.g. two Pomerons are exchanged. Exact
definitions of the various terms are found in [16,43]. It should be noted that that the cross
sections are only valid down to

√
s = 10 GeV, and that the fits have only been performed

up to UA1 energies. We thus expect good agreement in this energy range, whereas the fit
might disagree with data outside of it.

3.3 The FMO model

The FMO model [39] includes the maximal odderon, excluded by hand in the COMPAS
model. The odderon has been a controversial subject ever since its introduction, and so far
no signs of it has been observed. The main feature of its introduction is that the difference
between pp and pp total cross sections is not vanishing at high energies. Similarly the ρ
values will deviate at high energies. The FMO model only includes the t = 0 contribution
and can be written as

σtot(s) =
ImT±(s, 0)√
s(s− 4m2

p

T± = F H
+ ± F MO

− + F R
+ ± F R

−, (II.22)

with the exact definitions of the crossing-odd and -even amplitudes found in [39].

3.4 Comparisons with data

In fig. II.2a,b we show the above parametrizations of the total cross section and in fig. II.2c,d
the ρ parameter, for pp andpp processes respectively. Note how the ABMSTσpptot parametriza-
tion rises at

√
s < 10 GeV, a consequence of it not being fitted to this range. We do not
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aim to describe so low energies in Pythia 8, so this is not an issue. Both the ABMST and
COMPAS parametrizations well describe the LHC data points in pp, and seem to favor the
higher of the Tevatron data points in pp processes, unlike the original DL parametrization
available in Pythia 8. In fig. II.2c the ρ is well described by all three parametrizations,
below LHC energies. But at LHC the latest TOTEM value [35] is described only by the
FMO model, which explicitly includes the maximal odderon term in order for ρ to decrease
here. This term also gives rise to the difference in ρ for pp and pp processes, as seen in
figs. II.2c,d, a difference not present in the other two models.
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Figure II.2: The total cross section parametrizations in (a) pp and (b) pp processes. The ratio of real to imaginary parts of the

elastic amplitude at t = 0 for pp (c) and pp (d). Note that the SaS model has been left out in (c) and (d), as ρ is a
constant here, that can be set freely by the user. Data from PDG [15].

In fig. II.3 we show the available parametrizations of the elastic differential (a,b) and in-
tegrated (c,d) cross sections for pp and pp processes. Here it is evident that the pure ex-
ponential description used by SaS only makes sense for small |t|. Both the COMPAS and
ABMST parametrizations have been fitted to the

√
s = 23 GeV data, but not to the 7 TeV

data. Here it seems that the COMPAS parametrization prefers a larger dip than seen in
data, while it captures the high-|t| region slightly better than the ABMST parametrization.
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It is also evident that SaS underestimates the rise of the total elastic cross section, whereas
the other two do quite well.
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Figure II.3: The elastic differential cross section parametrizations in pp collisions at 53 GeV (a) and 7 TeV (b). The integrated

elastic cross section parametrizations in (c) pp and (d) pp processes. Data from PDG [15].

4 Single diffractive cross sections

As we proceed to the topologies of diffraction, the situation is more complicated than for
total and elastic cross sections. The experimental definition of diffraction is based on the
presence of rapidity gaps, but such gaps are subject to random fluctuations in the hadroniza-
tion process, and therefore cannot be mapped one-to-one to an underlying color-singlet-
exchange mechanism. Also the separation between single, double and central diffraction is
not always so clearcut. Some single-diffractive data is available at lower energies, but much
of it is old and of varied quality. This will of course affect any model trying to describe
these topologies, as usually there are model parameters that have to be fitted to data. To
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the best of our knowledge, only a few models actually try to fit data fully differentially in
both s, M2

X and t. The normal ansatz is instead to define an s-independent P flux, with fac-
torized ξ and t distributions, e.g. of the form (dξ/ξ1+δ) exp(b t) dt [27,44–46] where δ is
a small number. The t-integrated ξ distribution is then directly mapped on to an M2

X = ξs
spectrum.

The COMPAS group has not made any attempts to describe other topologies than the
elastic, neither has the FMO model. Hence, in addition to the already implemented SaS
and MBR models, we are left with the ABMST model as a new alternative, that gives a full
description of the single diffractive topologies. This model has been fitted to differential
data in the energy range 17.2 <

√
s < 546 GeV and in the t range 0.015 < |t| <

4.15 GeV2, and is thus expected to give a reasonable prediction in this range. The model,
however, has some unfortunate features, which we will discuss in a later section. But first
an introduction to the basics of the model itself.

4.1 The ABMST model

In [16] the authors present a model for single diffractive dissociation inspired by Donnachie
and Landshoff. They operate in two regimes, high and low mass diffraction, separated at

Mcut(s) =

{
3 s < 4000GeV2

3 + 0.6 ln
( s

4000
)

s > 4000GeV2 . (II.23)

In the high mass regime, they use a triple-Regge model with two components; An effec-
tive Pomeron and a degenerate Reggeon term. In order for the unknown phases of the
propagators to vanish, they require that the two t-dependent propagators in the diagrams
contributing to the single diffractive cross section are equal. This results in four diagrams;
PPP, PPR, RRP, RRR. The authors also include pion exchange in the differential cross
section arriving at

d2σHM

dtdξ
(ξ, s, t) = fPPP(t)ξαP(0)−2αP(t)

(
s
s0

)αP(0)−1

+ fPPR(t)ξαR(0)−2αP(t)
(

s
s0

)αR(0)−1

+ fRRP(t)ξαP(0)−2αR(t)
(

s
s0

)αP(0)−1

+ fRRR(t)ξαR(0)−2αR(t)
(

s
s0

)αR(0)−1

+
g2
ππp

16π2
|t|

(t− m2
π)

2F
2(t)ξ1−2απ(t)σπ0p(sξ), (II.24)
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with trajectories and parameter choices found in [16]. Each of the effective three-Reggeon
couplings are given as

fkki(t) = AkkieBkkit + Ckki, (II.25)

except for the triple-Pomeron coupling, which is modified as

fPPP(t) = 0.4 + 0.5t for − 0.25 ≤ t < −10−4

fPPP(t) = (APPPeBPPPt + CPPP)

(
t

t− 0.05

)
for − 1.15 ≤ t < −0.25

fPPP(t) = (APPPeBPPPt + CPPP)

(
t

t− 0.05

)
× [1 + 0.4597(|t| − 1.15) + 5.7575(|t| − 1.15)2]

for − 4 ≤ t < 1.15. (II.26)

Four resonances are modeled in the low-mass regime, along with a background from the
high-mass regime and a contact term matching the two regimes smoothly. The resonances
are excited states of the proton, each a unit of angular momentum higher than the previous
one. The resonances are parametrized by Breit–Wigner shapes with masses mi, widths Γi
and couplings ci,

d2σres
dtdξ

(ξ, s, t) =
e13.5(t+0.05)

ξ

4∑
i=1

[
cimiΓi

(ξs− m2
i )

2 + (miΓi)2

]
, (II.27)

with exact definitions found in the paper. The background is assumed quadratic and van-
ishes at a threshold, ξth =

(mp+mπ)2

s ,

Abkg(ξ, s, t) = a(s, t)(ξ − ξth)
2 + b(s, t)(ξ − ξth). (II.28)

A matching term between the high- and low-mass regions is subtracted from the resonances
to avoid any discontinuities at ξcut, and parametrized such that it is equal to the magnitude
of the resonance term at the matching point.

4.2 Comments on the ABMST model

In fig. II.4a,b we show the different components of the ABMST model at an energy of
√
s =

7 TeV along with the integrated cross sections in fig. II.4c,d. We have several comments to
these distributions, as they show some unexpected features.
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Figure II.4: The different components of the ABMST model for single diffraction as a function of (a) ξ and (b) t at 7 TeV. The
integrated single diffractive cross section as a function of

√
s for ξ < 0.05 (c) and in the full single diffractive phase

space (d). Data from references in [16].

To begin, consider the differential distribution in fig. II.4a. Here the cross section (multi-
plied by a factor of ξ for visibility) is shown as a function of ξ, displaying both the low-mass
resonances and the high-mass Regge terms. Note, however, the dip between these two
regimes, a decrease of a factor of 10. This is a feature of the background modeling, whereas
one would expect a more smooth transition between the two regimes. There is no physical
motivation as to why the Regge trajectories should have a quadratic behavior at low masses,
since none of the terms show this behavior at higher masses. One could imagine a simple
continuation of the high-mass background to lower masses, with the resonances added on
top. But this would likely cause too high a cross section in the low-mass region, hence
requiring a remodeling of the background description to avoid too high a low-mass cross
section.

Similarly unexpected is the increase of the cross section at higher masses (ξ ∼ 1), induced
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by the triple-Reggeon and pion terms. The larger the mass of the system the smaller the
rapidity gap between the diffractive system and the elastically scattered proton. The rule
of thumb is that Δygap ≈ ln(ξ), so for large ξ there will essentially be no gap at all. The
diffractive system will simply look like a non-diffractive one, making it impossible to distin-
guish between the two experimentally. The rise at ξ ∼ 1 also introduces a vast increase with
energy in the integrated cross section, making the single-diffractive cross section dominate
at large energies, which leaves little room for other processes, see fig. II.4d. The authors
themselves have tried to dampen the increase of the cross section by allowing the mass cut,
separating the low- and high-mass regimes, to vary with s, eq. (II.23). Unfortunately the
introduced dampening gives rise to a kink in the integrated cross section where the damp-
ening kicks in, at

√
s ∼ 60 GeV, and does not dampen the cross section sufficiently at high

energies.

In fig. II.4b we show the ABMST model differential in t. Noteworthy are the t-independent
termsCkki and the sharp cutoff at t = −4 GeV2, both of which are unphysical on their own.
That is, if the sharp cutoff is disregarded, then all but the pion and triple-Pomeron terms
become constant at large |t|, lacking any form factor suppression for scattering a proton
without breaking it up. The choice of t parametrization shape was based on the goodness-
of-fit, and not on any physical grounds. The authors note that the parametrization as
such gives too large a cross section at high energies, hence the modification of the Pomeron
coupling, as this dominates at high energies. The t ansatz may also cause problems if used in
other diagrams, e.g. in the extension to double and central diffraction that we will introduce
later.

As Pythia 8 aims to describe current and future colliders, the need for a more sensible
high-energy behavior of the ABMST model is evident. It is not realistic to have a model
where single diffraction and elastic scattering almost saturates the total cross section at
FCC energies (at 105 GeV σtot − σel − σSD ≈ 145 − 45 − 80 ≈ 20 mb). At the same
time we want to make use of the effort already put into the careful tuning to low-energy
and low-diffractive-mass data. We have thus chosen to provide a modified version of the
ABMST model, addressing the problems discussed above, as described in the next section,
while retaining the good aspects of the ABMST model. Both the modified and the original
version of the ABMST model are made available in the latest Pythia 8 release.

4.3 The modified ABMST model

To smoothen the dip between the low-mass and high-mass regions, several background
terms have been studied, such as a linear background becoming constant at threshold, a
combination of the linear and the quadratic background and, as an extreme, a continuation
of the high-mass background. The best results was found with the combination of the linear
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and quadratic,

Abkg(s) =

{
Aquadratic
bkg MX < M4

Alinear
bkg M4 < MX < Mcut

, (II.29)

where M4 is the mass of the fourth resonance.

The new parametrization of the high-mass background in the low-mass region does smoothen
the decrease between the two regions, but in itself does increase the integrated cross sec-
tion. We tame the integrated cross section by introducing a multiplicative rescaling of the
high-mass region, as well as a different Mcut parametrization. Again several possibilities
have been tried, and best results were obtained for a ln2(s)-dependent Mcut and rescaling.
That is, Mcut = 3 + c ln2(s/s0) GeV and the rescaling factor is 3/(3 + c ln2(s/s0)), with
c a free parameter and s0 = 100 GeV2, which is also where the rescaling begins, so as to
avoid kinks in the distributions.

While this change reduces the cross section at intermediate ξ values, it does not address the
strong rise near ξ = 1. This is an unobservable behavior, as already argued, and therefore
we also introduce a dampening factor 1/(1 + (ξ exp(ymin))

p) for the high-mass region.
Here ymin is the gap size where the dampening factor is 1/2 and p regulates how steeply
this factor drops around ymin; by default ymin = 2 and p = 5.

Separately, we wish to remove the artificial cut at t = −4 GeV2, in favor of a shape that is
valid at all t scales. To this end, couplings are modified as

f ABMST
kki (t) → f mod

kki (t) = (Akki + C mod
kki )eB

mod
kki t, (II.30)

where two new parameters C mod
kki and B mod

kki are introduced. These are fixed by the two
requirements that the integral over t and the average t value should remain unchanged
relative to the original ABMST values. Note, however, that we do not modify thePPP part,
as this already has the desired decreasing behavior at high |t|. Besides these modifications,
a minimum diffractive slope BSD = 2 is introduced, to avoid any unphysical situations
where the slope could become negative.

In fig. II.5 we show the components of the modified ABMST model as a function of ξ
(a) and t (b). The improvements of the modifications are clearly seen, as the dip between
the low- and high-mass description has decreased, the high-ξ region has been dampened
and none of the components become constant at large |t|. In figs. II.5c,d the two ABMST
models are compared to the SaS model available in Pythia 8 as default. We note that the
modified ABMST model shows better agreement with the SaS model at intermediate ξ
values, where SaS is in rough agreement with data, while retaining some features of the
ABMST model, such as the detailed resonance structure.

In fig. II.6 we show the comparison between the implemented models and the low-energy
data used in [16]. It is clear that the SaS model does not agree with data, while both the
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Figure II.5: The different components of the modified ABMST model for single diffraction as a function of (a) ξ and (b) t at 7 TeV.

The same distributions are shown in (c) and (d), where we compare the two models ABMST and ABMST modified
to the SaS model.

original and the modified ABMST model describe data reasonably well. In figs. II.7a,b the
integrated cross sections of all three models are shown in the restricted (a) and full (b) phase
space. The growth of the ABMST model has been tamed by our modifications. Insofar as
the SaS model seems to be on the high side relative to data, and the modified ABMST is
slightly higher, it may become necessary to finetune further for LHC applications. To this
end we have introduced an optional overall scaling factor k(s/m2

p)
p, with k, p being tunable

parameters.

The bulk of the modifications applied to the ABMST framework are intended to tame the
high-energy behavior of the model. One could have used an eikonal approach to the same
end, e.g. in the spirit of [47]. This would require a different set of assumptions, however,
such as the impact-parameter shape of the different diffractive topologies, and therefore not
be any less arbitrary. For now we therefore stay with the current framework and instead
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Figure II.6: The single diffractive differential cross section parametrizations in pp collisions at
√
s 17.57 GeV with t = −0.131

GeV2 (a) and 53.66 GeV with t = −0.52 GeV2 (b). The mass-spectrum showing the resonances at
√
s = GeV and

t = − GeV2 (c). The integrated t spectrum at
√
s = GeV (d). Data from references in [16].

proceed to address other shortcomings of the ABMST model, namely the lack of double
and central diffraction.

5 Double diffractive cross sections

The ABMST model only provides a description of the single diffractive differential cross
section. We can extend this to double diffractive systems, by extracting the vertices and
propagators from the single diffractive framework and using them in double diffractive
diagrams. Fig. II.1e shows a double diffractive diagram, where X is one of the Reggeons
used in the single diffractive framework. Thus several diagrams are obtained with Reggeons
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Figure II.7: The integrated single diffractive cross section at different energies for ξ < 0.05 (a) and in the full phase space (b).
Data from references in [16].

i, j, k (where i, j are connected to the proton and k are in the loop). Similar as for single
diffraction, in order for the unknown phases in the propagators to vanish, the requirement
of equal Reggeons is enforced in the loop. The fact that there are two different mass regimes
(low and high) for the two diffractive systems X and Y gives four different combinations.

If both systems have high mass, MX,Y > Mcut, the diagram of fig. II.1e implies a cross
section

d3σ

dtdM2
XdM

2
Y

=
∑
ijk

gip(0)gkki (t)gjp(0)gkkj (t)
16πM2

XM
2
Y

(
M2

X
s0

)αi(0)−1(M2
Y

s0

)αj(0)−1

×
(

ss0
M2

XM
2
Y

)2αk(t)−2

. (II.31)

Changing variables to ξ = M2/s and collecting the terms one obtains

d3σ

dtdξXdξY
=

1
16π

∑
ijk

(
s
s0

)2−2αk(t)

gip(0)gkki (t)ξ
αi(0)−2αk(t)
X

(
s
s0

)αi(0)−1

× gjp(0)gkkj (t)ξ
αj(0)−2αk(t)
Y

(
s
s0

)αj(0)−1

. (II.32)

From the single diffractive framework one has that

d2σHM

dtdξ
=

1
16π

∑
ik

g2
kp(t)gip(0)g

kk
i (t)ξ

αi(0)−2αk(t)
(

s
s0

)αi(0)−1

, (II.33)
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where we can recognize a part of the single diffractive cross section in the double diffractive
cross section,

d3σ

dtdξXdξY
=

1
16π

∑
k

(
s
s0

)2−2αk(t)
[

16π
g2
kp(t)

dσHM

dtdξX

][
16π
g2
kp(t)

dσHM

dtdξY

]

=
dσHM

dtdξX
dσHM

dtdξY

∑
k

16π
g4
kp(t)

(
s
s0

)2−2αk(t)

. (II.34)

A similar diagrammatic method can be used for the low-mass region, so all four (MX,MY)
regions can generically be described as

d3σ

dtdξXdξY
=

dσSD
dtdξX

dσSD
dtdξY

∑
k=P,R

16π
g4
kp(t)

(
s
s0

)2−2αk(t)

→ dσSD
dtdξX

dσSD
dtdξY

16π
g4
Pp(t)

(
s
s0

)2−2αP(t)

. (II.35)

In the last step we have taken the high-energy limit, where the Pomeron term dominates.
The last term can then be recognized as the inverse of the elastic cross section in the same
limit, and hence [4]

d3σDD

dtdξXdξY
≈ d2σSD

dtdξX
d2σSD
dtdξY

/
dσPel
dt

. (II.36)

In principle this formulation holds only at high energies, and only when using the Pomeron
as exchanged particle in all parts of the diagram in fig. II.1e. Nevertheless it offers the best
way to introduce double diffraction as a natural extension of the ABMST single diffractive
machinery, and is the one we will choose.

One of the drawbacks of this approach is that accidental dips in the elastic cross section de-
nominator can come to blow up the double diffractive cross section beyond what reasonably
should be expected. Therefore a slightly modified elastic cross section is called for in this
context. In fig. II.8a,b the different Pomeron contributions to the elastic differential cross
section are shown at two energies, along with the full description and an interference-free
description of the form

dσel
dt

=
|
∑

i Ai(s, t)|2

16π
≃
∑

i |Ai(s, t)|2

16π
(II.37)

where i runs over all four terms. Notice that the hard and soft Pomeron contributions
dominate in two different regions. Hence a reasonable approximation would be to use the
soft Pomeron term in the low-|t| range and the hard Pomeron term in the high-|t| range.
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In practice we use the combination of the hard and soft Pomerons, so as to avoid splitting
eq. (II.36) into two different t ranges.

Figs. II.8c,d show the effect of the various elastic
parametrizations on the double diffractive distributions. Note the normalization difference
between the hard-Pomeron-only description and the others, a difference that arises since
the hard Pomeron term is not the dominant one in the low-|t| region, where most of the
cross section is. On the other hand, the soft-Pomeron-only t spectrum is much wider than
the other distributions shown, since the soft Pomeron contribution to elastic scattering falls
off much steeper with t. The “Pure ABMST”, interference-free ABMST and “ABMST both
Poms” appear to have the same shapes in figs. II.8c,d. They differ somewhat in normal-
ization, as is expected given that the two latter correspond to somewhat larger elastic cross
sections.
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Figure II.8: The effect of using only a subset of the available Pomerons in the elastic parametrization, as used in the expression

for the double diffractive cross section, eq. (II.36). In (a) and (b) the elastic differential cross section is shown as a
function of t at two energies. In (c) and (d) the effect of these on the double diffractive distributions are shown as
a function of ξ = ξ1ξ2 and t, respectively. Note that the “Pure ABMST” has a minimal slope of BDD = 2 such as to
avoid the dip structure of the elastic description.
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To correct for the possible suppressions arising from the chosen approximation of the elastic
cross section, and from the underestimation implied by the step taken in eq. (II.35), we
introduce a scaling factor similar to the one introduced in the single diffractive framework.
A minimal double diffractive slope can also be enforced, such as to avoid any unphysical
situations. As a final modification, an option to reduce topologies without a rapidity gap
is applied in the region where both of the systems are of very large masses. Again, this is to
be able to distinguish the double-diffractive system from the non-diffractive ones.

As two different parametrizations are available in the ABMST framework for single diffrac-
tion, several choices for the double diffractive framework exists. Presented here are results
with three choices:

• Pure ABMST: the original ABMST single diffractive model together with the elastic
cross sections using only Pomerons, with the minimal double diffractive slope and
with reduced vanishing-gap topologies.

• Model 1: The modified ABMST model for the single diffractive cross section, with
the only-Pomerons elastic cross section. A minimal slope is used and the vanishing-
gap topologies are also reduced here.

• Model 2: Model 1 scaled with the tuneable factor k(s/m2
p)

p, where by default k = 2
and p = 0.1.
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Figure II.9: Some of the DD models available in Pythia 8. In (a) and (b) we show the differential cross section as a function of t
and ξ = ξ1ξ2, respectively.

Fig. II.9a shows the t spectrum of the different models compared to the SaS model. It is
evident that three models vanish faster than the SaS model. This is a result of the modest
falloff of the elastic t-spectrum in ABMST, as this affects the double diffractive slope less
than a sharply falling elastic t-spectrum in SaS, through the relation BXY = BAY+BXB−Bel.
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Figure II.10: The integrated double diffractive cross section as a function of energy of some of the models available in Pythia 8.

Fig. II.9b shows the differential cross section as a function of ξ = ξ1ξ2. Here, the ABMST
models show an approximate 1/ξ-behavior, while the SaS model indicates a 1/ξ(1+p) be-
havior with p > 0, favoring high-mass diffractive systems. The results of these effects are
visible in the integrated cross section, fig. II.10, where both “Pure ABMST” and “Model
1” are significantly suppressed compared to the SaS model. The scaled version, “Model 2”,
gives more reasonable estimates of the cross sections, around 10 mb at LHC energies, but
because of the choice of the power, p = 0.1, in the scaling, it does not rise as steeply as
the SaS prediction. Similarly to the single-diffractive case, the SaS model predicts slightly
larger cross sections than measured, so one might expect that the scaling chosen in Model
2 could be more in agreement with measurements.

6 Central diffractive cross sections

The central diffractive framework has long been neglected in general-purpose event gener-
ators. Dedicated event-generators exist for exclusive central diffractive processes, such as
SuperChic [48] and ExHume [49], but these only work with a limited set of final states.
Pythia 8 provides a description for inclusive high-mass central diffraction, but does not
provide any such description for the exclusive processes. As stated earlier, we stress that the
framework has not been tuned and thus is not to be trusted too far.

In this work we wish to extend the present description of central diffraction to include the
high-mass description of the ABMST model. We have not made any attempt to include
any low-mass resonances of central diffraction, as some of these are still not well established.
The low-mass resonances used in ABMST are baryonic resonances, hence they cannot be
extended to the central diffractive framework, as one expects scalar mesons, possibly scalar
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glueballs, to be produced in the collision of two Reggeons. Future work would be to extend
the model to such low-mass resonances, e.g. by including a low-mass resonance description
similar to what has been developed in [50]. There the central exclusive production of a pion
pair is considered and data is used to fit a model of the scalar resonances using complex
Breit–Wigner shapes. Lacking a model for all such exclusive states, and since some of the
resonances and their decays still are not experimentally under control, we have decided not
to include any of the low-mass states in this framework.

The new central diffractive cross section presented here is again mainly based on the ABMST
single-diffractive model. By examining the rapidity of the different components in the cen-
tral diffractive system, one obtains the following relations,

Δytot = ln
s
s0
, ΔyX = ln

ξ1ξ2 s
s0

,

Δy1 = ln
1
ξ1
, Δy2 = ln

1
ξ2
, (II.38)

where M2
X = ξ1ξ2s, ΔyX is the rapidity span of the diffractive system X, and Δy1,2 are the

sizes of the two rapidity gaps. Thus, after some algebra, we obtain a central diffractive cross
section of the form

d4σCD

dξ1dξ2dt1dt2
=

1
256π3

∑
ijk

(
s
s0

)αk(0)−1

g2
ip(t1)g

ii
k (t1)(ξ1)

αk(0)−2αi(t1)

× g2
jp(t2)g

jj
k(t2)(ξ2)

αk(0)−2αj(t2)

=
1
π

∑
k

1
g2
kp(0)

(
s
s0

)1−αk(0) d2σHM

dt1dξ1

d2σHM

dt2dξ2

→ 1
π

1
g2
Pp(0)

(
s
s0

)1−αP(0) d2σHM

dt1dξ1

d2σHM

dt2dξ2

=
1
π
d2σHM

dt1dξ1

d2σHM

dt2dξ2
/ σtot, (II.39)

where the high-energy limit is taken in the second step and recognized as the total cross
section [3]. Similar arguments on the validity of eq. (II.39) applies as for the validity of
eq. (II.36), i.e. eq. (II.39) is only valid in the high-energy limit, where the Pomeron term
dominates. In practice, however, the expression is used over the entire energy range, using
the sum of both the soft and the hard Pomeron term from the total cross section. A scaling
factor similar to the scaling for single and double diffraction can be applied, to compensate
for the approximations, and the same non-vanishing gap suppression can be applied as in
the single-diffractive framework. Finally, a minimal central diffractive slope can also be
applied.
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Similar to the double diffractive framework, the central diffractive framework will depend
on the choice of single diffractive framework, thus several options exist. Fig. II.11 shows
three choices of models with the same name conventions as used in the double diffractive
framework. Note, however, that the t spectrum is not shown, as this is exactly that of the
single diffractive model. The mass of the diffractive system is shown in fig. II.11a, where the
sharp cut at MX = Mcut is present for all ABMST variants. The SaS model has a similar
sharp cutoff, but at MX = 1 GeV. Lacking both model and data in the low-mass region, the
cut allows for a clear distinction between what is included and not, albeit being unphysical.

Fig. II.11b shows the integrated cross section as a function of energy. Here all ABMST
models lie below the SaS prediction, although “Model 2” exceeds it at around LHC energies.
The lack of a low-mass model is evident at low energies (

√
s < 30 GeV), where all three

models decrease rapidly. In this energy-range the low-mass states make up a large part of
the cross section, hence should not be neglected.

101 102 103 104

M 2
X (GeV2)

10−3

10−2

10−1

100

101

M
2 X

d
2
σ

C
D
/d
M

2 X
d
y

(m
b

/G
eV

2
)

SaS

Pure ABMST

Model 1

Model 2

√
s = 104 GeV, y = 0

(a)

101 102 103 104 105√
s

10−3

10−2

10−1

100

101

σ
C

D
(m

b
)

SaS

Pure ABMST

Model 1

Model 2

CD integrated cross section

(b)
Figure II.11: Some of the CD models available in Pythia 8. In (a) we show the mass of the diffractive system produced at central

rapidity and in (b) the integrated cross section as a function of energy.

7 Results

In this section the models are confronted with more recent LHC data. Several experiments
have performed measurements on integrated cross sections and diffractive fractions, but
not many provide results on differential distributions. We focus on the analyses available in
Rivet [51], where only two analyses provide differential results. First we provide a discussion
of the available data and the tuning prospects, and end with results obtained with the SaS
model, the CSCR model and the ABMST models.

124



7.1 The 7 TeV LHC data and tuning prospects

In 2012 and 2015 ATLAS [52] and CMS [53] presented results on 7 TeV events with rapidity
gaps. Both experiments measure all particles with transverse momenta larger than 200 MeV
in pseudo-rapidity ranges of |η| < 4.9 (4.7) for ATLAS (CMS), and define the measured
gap ΔηF as the largest distance between either detector edge and the particle nearest to it.
The two experiments, however, obtain different results for the shape of the distribution.

In fig. II.12a, we show the results obtained with default Pythia 8 using the SaS model
and the MBR model when comparing to either the ATLAS or CMS Rivet analyses. Both
models are shown, since ATLAS uses the SaS model for unfolding, while CMS uses the
MBR one, but model agreement is sufficiently close that unfolding differences should not
be an issue. Further, from fig. II.12a it is evident that the different experimental η cuts
gives at most a 5 effect on either model. This does not account for the approximately 25
difference seen in data, see fig. II.12b. A tune to both datasets will not be able to describe
either perfectly, as they so clearly disagree. Experiment-specific tunes would likely improve
the description of that particular dataset, hence worsening the description of the other. As
we cannot decide which of the two is the preferred one, we instead aim for the middle
ground.
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Figure II.12: (a) The SaS and MBR models using either ATLAS or CMS cuts along with the ratio of ATLAS to CMS cuts for both

models. (b) The ATLAS [52] and CMS [53] data along with the ratio of ATLAS to CMS data, showing significant
differences in the entire range.

Besides the above mentioned datasets measurements of the inelastic and diffractive cross
sections have been performed by both ATLAS, CMS and ALICE. We include the following
measurements: the inelastic cross section from ATLAS 2011 [54], the inelastic cross section
from CMS 2012 [55] and the inelastic and diffractive cross sections from ALICE 2012 [56].

None of the datasets available in the Rivet framework are able to constrain the parameters
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related to the hadronic event properties. This includes both the low-to-high-mass transition
probability parameters as well as the parameters of the non-perturbative and perturbative
description of the evolution of the diffractive system. In particular, the non-perturbative
description is left as is in this study, while the effects of changing the Pp cross section is
shown in figs. II.13 and II.14. This cross section determines the amount of multiparton
interactions activity in a high-mass diffractive event, and thereby e.g. the charged multi-
plicity distribution. It is interesting because of discrepancies between uncorrected ATLAS
data and the Pythia 4C tune (figs. 3a-d in [52]). A direct comparison cannot be made, since
the ATLAS distributions show the number of electromagnetic clusters rather than that of
charged particles, but the two clearly are related.
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Figure II.13: The effects of changing the reference Pp cross section on the charged multiplicity distribution using the SaS model

at 7 TeV in the four gap ranges: 0 to 2 (a), 2 to 4 (b), 4 to 6 (c) and 6 to 8 (d).

Figs. II.13 and II.14 show the effects of changing the Pp cross section on the charged particle
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Figure II.14: The effects of changing the power of the mass dependence in the Pp cross section on the charged multiplicity

distribution using the SaS model at 7 TeV in the four gap ranges: 0 to 2 (a), 2 to 4 (b), 4 to 6 (c) and 6 to 8 (d).

distributions in the different ΔηF bins compared to the 4C tune. In [52] the 4C tune
generally was seen to undershoot the low cluster-multiplicities, while overshooting the mid
to high cluster multiplicities. In the highest ΔηF bin, dominated by the diffractive events,
Tune 4C undershoots both the low- and high-multiplicity activity. Reducing the Pp cross
increases the multiplicity, and vice versa. Thus, to describe the high-multiplicity events, a
smaller Pp cross section would be preferred. This could be compensated by allowing the
perturbative description to go below MX = mmin = 10 GeV, thus allowing slightly more
activity in low-mass systems, possibly increasing the number of low-multiplicity events.
The effects of including a mass dependence in the Pp cross section is seen in fig. II.14. A
parametrization has been chosen as σeffPp(MX) = σrefPp (MX/Mref)

p, with Mref = 100 GeV.
Here, an increase of p slightly decreases the high-multiplicity region, albeit more subtly
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than with an increase of the Pp cross section. Recall that the mass of the diffractive system
is related to the collision energy, such that a value of p ∼ 0.2 − 0.3 is not unreasonable,
corresponding to a rise of the cross section with energy of s0.1 − s0.15.

A full study of particle production in diffractive events with Pythia 8, Herwig 7 [57,
58], Sherpa [59, 60] and Phojet [61] could provide further valuable information on the
hadronic event properties of diffractive systems, as the generators differ in how they describe
such production. The effects of color reconnection in a diffractive system is also of interest,
as the amount of “accidental” gaps could be constrained in these systems, if one assumes
that the CR scheme is the same in both diffractive and non-diffractive systems. At present
we leave the Pp cross section as is at 10 mb, and show the results with the models presented
so far in fig. II.15.

The bulk of the cross section arises from nondiffractive events. These tend to only give
rise to small rapidity gaps, as the phase space is more or less evenly filled by multiparton
interactions. Gaps of intermediate or large size can occur, however, e.g. by color recon-
nection between the partons [9,62]. The default Pythia CR framework has been designed
to avoid accidental gaps, so as to keep a clean separation between diffractive and non-
diffractive topologies. In other models, e.g. the CSCR one [18], the color reshuffling tends
to give somewhat larger probability for intermediate gaps. A combination of the CSCR
model and the default SaS diffractive setup then results in too large a cross section in the
intermediate-gap range, cf. figs. II.15a,b.

Diffractive events are more likely to give rise to intermediate to large gaps. Hence, depend-
ing on color-reconnection model used, they will dominate from gap sizes of approximately
two and larger. The size of the gap is closely connected to the mass of the diffractive sys-
tem. Thus a model with a dM2

X/M
2
X ansatz, like the SaS one (modulo some corrections),

will give an approximately flat distribution of measured gap sizes. This can be modified
by the recent inclusion of the mass-correction factor ϵSaS, which introduces an additional
1/M2ϵSaS

X factor to the differential model. Depending on the sign of ϵSaS, it will either
increase or decrease the high-mass cross section. In both the ATLAS and CMS datasets an
increase of the large-gap cross section is seen. Thus we expect a positive sign for ϵSaS, as
this will enhance the activity at low masses. For simplicity, adding the mass correction will
not affect the integrated diffractive cross section.

The ABMST models show slightly better agreement with the shape of the rapidity gap
distributions, although the original ABMST model overshoots both
datasets. This was to be expected, as the model had trouble with the increase of the single
diffractive cross section at LHC energies. The modified version of the ABMST model shows
very nice agreement with both datasets, except for an undershoot of the high-mass region
of the double-diffractive-dominated region in fig. II.15d. This behavior closely correlates
with the flatness of the ξdσ/dξ-spectrum, fig. II.9b. Both the ABMST models have a mass
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Figure II.15: The cross section as a function of gap size for the default SaS model, the SaS+CSCR model and the untuned

ABMST models compared to ATLAS [52] (a) and CMS [53] (b) data. The cross section as a function of log10ξX in a
single-diffraction dominated region (c) and double diffraction dominated region (d) compared to CMS [53] data.

spectrum shape comparable to data in the single-diffraction-dominated region, unlike the
SaS model, which overshoots the high-mass systems.

7.2 The tuned models

The tunes provided here are performed with the Professor framework [63], varying the high-
mass diffractive parameters given in table II.1. All non-diffractive parameters are left at their
default values, as given by the Monash tune [64], except for the CSCR-specific changes in
that setup. The H1 leading order Pomeron PDF [27] is used in all the tunes.
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Table II.1: The parameters used in the tunes for the different models.

ϵ α′ σmax
SD σmax

DD σmax
CD ϵSaS

SaS . . . . . .
SaS+CSCR . . . . . .
SaS+ϵSaS . . . . . .

kSD kDD kCD pSD pDD pCD

ABMST . . . . . .
ABMST modified . . . . . .

Fig. II.16 shows the three SaS-based models tuned to the above-mentioned data. Neither
of the three models are able to describe the shape of the gap data perfectly, figs. II.16a,b.
The tune has decreased the amount of activity in the mid- to large-gap region by a decrease
of the σmax

i values used in eq. (II.9). The inclusion of ϵSaS has shifted some of the activity
from intermediate-gaps to larger ones, while keeping the integrated cross section fixed.
Unfortunately this is at the expense of an undershoot in the transition region ΔηF ∼ 2
between diffractive and nondiffractive topologies. This is the region where CSCR does
better, so a combination of CSCR with an ϵSaS > 0 could provide a flatter MC/data
distribution in fig. II.16a,b.

For the mass spectra measured by CMS, fig. II.16c,d, evidently only the SaS+ϵSaS model
is able to describe the single-diffraction-dominated mass spectrum, whereas it undershoots
the high-mass double diffraction region since, relative to the original SaS model, it has
shifted some of the high-mass activity to lower masses.

Fig. II.17 shows the tuned ABMST models. The tune has a hard time improving the
modified ABMST model, as this gave a good agreement with data already to begin with.
The original ABMST model, however, is significantly improved by rescaling, and is now
very similar to the modified ABMST model developed in this paper. Note that the mass
spectrum of the single-diffraction-dominated region, fig. II.17c, shows the proper shape,
while the double-diffraction-dominated one, fig. II.17d, seems to overestimate the low-
mass region and underestimate the high-mass one. This is a result of the reduction of the
vanishing-gap topologies of double-diffractive systems, that has been kept unchanged in
this tune. Combining the ABMST models with the CSCR model has potential also here,
as the ABMST models underestimate data in the intermediate gap range, cf. figs. II.17a,b.

Fig. II.18 shows the CMS inelastic cross section obtained with two different approaches.
One uses forward calorimetry (3 < |η| < 5), to measure protons with fractional momen-
tum loss greater than ξ > 5 · 10−6, corresponding to everything but low-mass diffractive
systems (MX > 16 GeV). The other uses the central tracker, requiring either one, two or
three tracks. The SaS+ϵSaS and the modified ABMST models perform better than the oth-
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Figure II.16: The cross section as a function of gap size for the three SaS-based models compared to ATLAS [52] (a) and CMS [53]

(b) data. The cross section as a function of log10ξX in a single-diffraction dominated region (c) and double diffractive
dominated region (d) compared to CMS [53] data.

ers, with a maximum 5 deviation from CMS data. The SaS and the CSCR models has
the same model for diffractive systems, and hence it is not expected that these differ in the
measured inelastic cross section. With the SaS+ϵSaS model, however, some of the activ-
ity has been shifted to lower diffractive masses, resulting in a lower inelastic cross section.
For ABMST, the reduction of the high-mass systems in the modified model results in a
reduction of the inelastic cross section relative to the original one.

Table II.2 shows the integrated cross sections obtained with the ALICE and ATLAS 2011
analyses mentioned above. The ALICE results have been obtained for MX < 200 GeV
(ξ < 0.0008) for single diffraction, for gap sizes larger than Δη > 3 for double diffraction,
and with a van der Meer scan using diffractive events adjusted to data for the inelastic
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Figure II.17: The cross section as a function of gap size for the two ABMST-based models compared to ATLAS [52] (a) and

CMS [53] (b) data. The cross section as a function of log10ξX in a single-diffraction dominated region (c) and
double diffractive dominated region (d) compared to CMS [53] data. For reference the tuned SaS model is also
shown.

cross section. In the Rivet analysis, this corresponds to at least two tracks in the final
state, i.e. effectively without any experimental cuts and hence returning the generator-level
cross section. The SaS+ϵSaS model gives a better prediction for the single diffractive data,
because of the increased low-mass cross section. The CSCR model predicts a larger double
diffractive cross section, because of the larger probability for “accidental” gaps. The inelastic
cross section, however, is the same for all three SaS-based models when compared with the
ALICE data, as all have the same generator-level integrated cross section. In the ATLAS
measurement of the inelastic cross section (for ξ > 5 · 10−6) the SaS+ϵSaS model predicts
a lower inelastic cross section, again because of the larger low-mass cross section.
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Figure II.18: The inelastic cross section as a function of method described in the text compared to CMS [55] data.

Both the ABMST models give larger single-diffractive cross sections than SaS, having im-
proved in the low-mass region. But both underestimate the double-diffractive cross section
as they both underestimate the medium-sized gaps, compared with SaS and data. An addi-
tion of the CSCR model would be likely to improve this prediction. The ABMST models
predict the same inelastic cross section for ALICE, since the generator-level inelastic cross
section is the same for the two models. They differ for the ATLAS analysis, again because
of the reduced high-mass systems of the modified ABMST model.

In general, however, all models fail to describe the measured integrated cross sections, al-
though some of the more sophisticated models do improve in some respects. Similarly,
it seems that neither of the models describe well the transition from a non-diffractive-
dominated region to a diffraction-dominated one. Including a color-reconnection model
that allows for larger gaps in the non-diffractive events, like CSCR, is likely to improve
the description in the mid-sized-gap range, if combined with a model that predicts a lower
diffractive cross section there, like the ABMST models and SaS+ϵSaS. The overall question
of how to combine the descriptions of non-diffractive and diffractive topologies, however,
will still exist even if the CR model “accidentally” (i.e. by “accidental” gaps) improves the
description of data. All this highlights our still limited understanding of nonperturbative
QCD, which forces us to work with models e.g. rooted in Regge theory. This may be good
enough for an overall understanding, but still not for a precise reproduction of all relevant
data.
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Table II.2: The integrated cross section obtained with the three aforementioned Rivet analyses for the tuned models. For
ALICE [56], the SD cross section is for MX < 200 GeV, the double diffractive for gaps larger than 3, the inelastic
using a van der Meer scan using diffractive events adjusted to data. The ATLAS [54] inelastic cross section is for
ξ > 5 · 10−6.

σSD (mb) σDD (mb) σinel (mb) σinel (mb)
(ALICE) (ALICE) (ALICE) (ATLAS)

data . ± . . ± . . ± . . ± .
SaS . ± . . ± . . ± . . ± .

SaS + CSCR . ± . . ± . . ± . . ± .
SaS + ϵSaS . ± . . ± . . ± . . ± .
ABMST . ± . . ± . . ± . . ± .

ABMST mod . ± . . ± . . ± . . ± .

8 Conclusions

In this paper we provide an updated description of the cross sections and hadronic event
shapes in the event generator Pythia 8. The update has been required since the first results
appeared from the LHC experiments, showing significant discrepancies between the models
provided by Donnachie and Landshoff for the total cross section, as well as the elastic and
diffractive cross sections by Schuler and Sjöstrand. By chance the DL undershooting of
the total cross section and the SaS undershooting of the elastic cross section partly cancel
in the inelastic cross section. Further to that, the SaS overshooting of the diffractive cross
sections gave rise to a reasonable agreement between Pythia 8 and LHC measurements
on the observable non-diffractive cross section, which is the relevant one for many of the
measurements performed at the LHC. Thus, in spite of these shortfalls, the default Pythia 8
cross sections usually were good enough, notably when diffractive cross sections had been
reduced somewhat (eq. II.9).

The discrepancies became largely evident with the precision measurements of the elastic and
total cross sections performed by both TOTEM and ATLAS+ALFA. Here the exponential
shape of the t spectrum in Pythia 8 is too simplistic, and other models have to be used for
comparisons. Some of these models have now been implemented into Pythia 8, thereby
providing a more sophisticated framework for elastic scattering and total cross sections.

For diffractive topologies the precision is less. The studies are marred by non-diffractive
events mimicking diffractive ones, and vice versa, making the explicit distinction between
the various diffractive and non-diffractive event topologies hard. The possibility of tagging
the elastically scattered protons would greatly improve the separation of the samples, but so
far no analyses on diffraction with tagged protons have appeared from CMS+TOTEM or
ATLAS+ALFA. Thus we are left with measurements only using the central general-purpose
detectors. Unfortunately these do not give fully consistent answers. Notably the CMS and
ATLAS rapidity-gap measurements disagree in the diffraction-dominated region, making
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it hard to compare models with data. Lacking any further guidance, we have here aimed
for a middle ground between the two data sets.

The situation is even worse for hadronic event shapes. Single diffractive data is available for
very low energies, most of which goes into the ABMST model, but rather little for higher
energies. This means that, even if integrated cross sections were provided for diffractive
topologies from the LHC experiments, no constraints are put on the internal structure of
diffractive systems. The ansatz of Pythia 8, that the diffractive system properties are similar
to those of non-diffractive events, could be wrong. A future study of these event shapes, and
of the different strategies underlying commonly used event generators, would help provide
a guideline what would be interesting distributions to see measured at the LHC.

In conclusion, we provide an updated and extended framework for elastic and diffractive
topologies, as well as an update for all parts of the total cross section. We rely on previous
work provided by several other authors, but have corrected and extended the models where
need be. Each of the models has been tuned to available data, thus providing an upgrade
of the already present models in Pythia 8. We have discussed some of the consequences
of different approaches for creating rapidity gaps, such as the CSCR model, and how this
affects the predictions for LHC. Still, the lack of data or the discrepancies of present data,
leaves us with imperfect descriptions and predictions, in particular for diffraction. The
situation may be “good enough” for current needs, but will hopefully improve with new
data in the future. At present we are not able to decide which model is “the better one” for
diffraction, but in the case of total and elastic cross section the new models, COMPAS and
ABMST, offer an improved description as compared to the SaS model. As the COMPAS
model offers no description of diffraction, we propose to use the ABMST model for total
and elastic cross section and the modified ABMST model for diffraction, with the tuned
parameters as provided in this paper. We expect to change the default behavior in the next
Pythia release.

Foreseeable further work could include a low-mass description for central diffractive topolo-
gies, possibly modeling the resonances present there. Other work
would be an extensive study of the diffractive event shapes as discussed above. A study
on eikonalization aspects, e.g. of events with both diffractive and nondiffractive Pomeron
exchanges, could also provide more insight on both cross sections and event topologies.
Finally, the diffractive framework could be extended also to other processes, such as γp
and γγ collisions.
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Abstract: We present a new framework for modeling hard diffractive events in photopro-
duction, implemented in the general purpose event generator Pythia 8. The model is an
extension of the model for hard diffraction with dynamical gap survival in pp and pp col-
lisions proposed in 2015, now also allowing for other beam types. It thus relies on several
existing ideas: the Ingelman-Schlein approach, the framework for multiparton interac-
tions and the recently developed framework for photoproduction in γp, γγ, ep and e+e−

collisions. The model proposes an explanation for the observed factorization breaking in
photoproduced diffractive dijet events at HERA, showing an overall good agreement with
data. The model is also applicable to ultraperipheral collisions with pp and pPb beams,
and predictions are made for such events at the LHC.



1 Introduction

Diffractive excitations represent large fractions of the total cross section in a wide range of
collisions. A part of these has been seen to have a hard scale, as in e.g. the case of diffractive
dijet production. These hard diffractive events allow for a perturbative calculation of the
scattering subprocess, but still require some phenomenological modeling. This includes
modeling of the Pomeron, expected to be responsible for the color-neutral momentum
transfer between the beam and the diffractive system X. In the framework of collinear
factorization, a diffractive parton distribution function (dPDF) may be defined. This can
further be factorized into a Pomeron flux and a PDF, describing the flux of Pomerons from
the beam and the parton density within the Pomeron, respectively.
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Figure III.1: Leading order Feynman diagrams for diffractive dijet production with photons in ep collisions. Either the photon

participates directly in the hard scattering matrix element (a) or a parton from the resolved photon participates (b).

Here we focus mainly on photoproduced diffractive dijets in ep collisions. This scattering
process can be separated into different subsystems, visualized in Fig. III.1. The initial state
consists of an electron and a proton, with the former radiating off a (virtual) photon. If
the photon is highly virtual, we are in the range of deep inelastic scattering (DIS), while a
photon with low enough virtuality can be considered (quasi-)real. This is the photoproduc-
tion regime. No clear distinction between the two regimes exists, however, and photons of
intermediate virtuality require careful consideration to avoid double-counting. A special
feature in the photoproduction regime is that there is a non-negligible probability for the
photon to fluctuate into a hadronic state. These resolved photons open up for all possible
hadron-hadron processes, including diffractive ones.

The next subsystem shown in Fig. III.1 is the photon-proton scattering system. Here,
diffraction could in principle occur on both sides if the photon is resolved. In direct pho-
toproduction (and in DIS) the diffractive system can only be present on the photon side,
as no Pomeron flux can be defined for point-like photons. In this article the emphasis will
be on Pomeron emission from the proton.
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The final subsystem is the hard scattering generated inside the diffractive system X. For
direct photoproduction (and DIS) this includes the photon as an incoming parton, see
Fig. III.1 (a). In the resolved case, Fig. III.1 (b), a parton is extracted from the hadronic
photon, which then proceeds to initiate the hard scattering along with a parton extracted
from the Pomeron. In both cases a beam remnant is left behind from the Pomeron, while
resolved photoproduction also gives rise to a beam remnant from the hadronic photon.
Multiple scatterings or multiparton interactions (MPIs) are expected between the remnants,
but also in the larger photon-proton system. The particles produced by the latter type of
MPIs may destroy the diffractive signature, the rapidity gap between the diffractive system
and the elastically scattered proton (or meson, depending on the side of the diffractive
system).

The model for photoproduced diffractive dijets presented here is based on the general-
purpose event generator Pythia 8 [1]. It combines the existing frameworks for photo-
production and hard diffraction, the latter originally introduced for purely hadronic colli-
sions. The new model thus allows for event generation of photon-induced hard diffraction
with different beam configurations. The model is highly dependent on the components of
Pythia 8. The relevant ones – the model for MPIs, photoproduction and hard diffraction
– are described in the following sections.

The first measurements of diffractive dijets were done by the UA8 experiment at the SppS
collider at CERN [2]. Later on, similar events have been observed in ep collisions at
HERA [3], in pp collisions at the Tevatron [4], and nowadays also in pp collisions at the
LHC [5]. Similarly, diffractively produced W± and Z0 bosons have been observed at the
Tevatron [6]. All of these processes are expected to be calculable within a perturbative
framework, such as the Ingelman-Schlein picture [7]. A model for such hard diffractive
events was included in Pythia 8 [8], based on the Ingelman-Schlein approach and the
rapidity gap survival idea of Bjorken [9]. The model proposed an explanation of the ob-
served factorization breaking in hard diffractive pp collisions – the observation that with the
Pomeron PDFs and fluxes derived from HERA DIS data, the factorization-based calcula-
tion was an order of magnitude above the measurement. The suppression factor required
on top of the dPDF-based calculation, was dynamically generated by requiring no addi-
tional MPIs in the pp (or pp) system. The model predicted production rates in agreement
with pp and pp measurements, albeit some differential distributions did show room for
improvement when comparing to Tevatron data. The latest preliminary analysis on diffrac-
tive dijets by CMS [10] finds a very good agreement between the model and data in all
differential distributions.

First evidence of factorization breaking for diffractive dijets in ep collisions was observed
by an H1 measurement [11], where a suppression factor of 0.6 was required to describe
the dijet data in the photoproduction region, whereas the analysis for the DIS region was,
by construction, well described by the factorization-based model without a corresponding

145



suppression factor. Advances in the formulation of the dPDFs improved the description
of data in the DIS regime, but the discrepancies remained in the photoproduction limit.
Several analyses have been performed by H1 and ZEUS for diffractive dijet production
[12–16], all requiring a suppression factor between 0.5 − 0.9 in order for the factorization-
based calculations to describe data.

The extension of the hard diffraction model in this article, to collisions with (intermediate)
photons, makes it possible to explain the factorization-breaking in the photoproduction
regime. The model is also applicable to the DIS regime, but here no further suppression
is added since the highly virtual photons do not have any partonic structure that would
give rise to the MPIs. Furthermore, the framework can also be applied to diffractive pho-
toproduction in purely hadronic collisions, usually referred to as ultra-peripheral collisions
(UPCs) [17]. The model predicts a substantial suppression for diffractive dijets in UPCs at
the LHC.

The article is structured as follows: After the introduction in sec. 1, we briefly describe
in sec. 2 the event generation procedure in Pythia 8. We then proceed in sec. 3 to the
photoproduction framework available in Pythia 8 and continue to a short description of
the hard diffraction model in sec. 4. We present results with our model compared to data
from HERA on diffractive dijets in photoproduction in sec. 5, and show some predictions
for photoproduction in UPCs at the LHC in sec. 6. We end with sec. 7 where we summarize
our work and provide an outlook for further studies.

2 Event generation with Pythia 8

Recently, Pythia 8 has undergone a drastic expansion. Where the earlier version, Pythia 6
[18], was designed to accommodate several types of collisions (lepton-lepton, hadron-hadron
and lepton-hadron, excluding nuclei), the rewrite to C++ focused mainly on the hadronic
physics at the Tevatron and the LHC. While the LHC will run for years to come, there
are several future collider projects under consideration. A common feature between the
projected colliders is that they will be using lepton beams either primarily (linear e+e−

colliders: CLIC and ILC [19,20] or Electron-Ion Collider (EIC) [21]), or as a first phase to-
wards a hadronic collider (FCC [22,23]). To enable studies related to these future colliders,
Pythia 8 has been extended to handle many processes involving lepton beams. Another
major facility has been the extension from pp to pA and AA collisions with the inclusion
of the Angantyr model for heavy ion collisions [24]. Combining the heavy-ion machinery
with the recent developments related to lepton beams will also allow simulations of eA col-
lisions and ultra-peripheral AA collisions. Work in this direction has been started within
the Pythia collaboration.
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The Pythia 6 description of lepton-lepton and lepton-hadron collisions included a sophis-
ticated model for merging of the DIS regime (high-virtuality photons) and the photopro-
duction regime (low-virtuality photons) [25]. This, however, created upwards of 25 differ-
ent event classes, each of which had to be set up differently. The model for the transition
from photoproduction to DIS turned out not to agree so well with data, and the division
of the different event classes was somewhat artificial. The aim for the Pythia 8 imple-
mentation of these processes has been to reduce the number of hard-coded event classes
and increase robustness. The present framework, however, does not yet include a smooth
merging of the high- and low-virtuality events and therefore the events with intermediate
virtualities are not addressed. Work towards such a combined framework is currently on-
going. In addition, there is progress towards improving the parton showers for DIS events
(see e.g. [26] and [27]). In this paper we focus on the photoproduction regime, which is
mature and well tested for hard-process events with virtuality ≲ 1 GeV against LEP and
HERA data [28–30].

The generation of non-diffractive (ND) pp or pp events proceeds with the following steps.
First, the incoming beams are set up with (possible) PDFs at a given (user-defined) energy.
Then the hard scattering of interest is generated based on the matrix element (ME) of the
process and the PDFs. The generated partonic system is then evolved with a parton shower
(PS), in Pythia 8 using the interleaved evolution of both initial and final state showers (ISR,
FSR) [31]  and MPIs [32]. The splitting probabilities for the FSR and ISR are obtained from
the standard collinear DGLAP evolution equations. The ISR probabilities also depend on
the PDFs of the incoming beams, as the evolution is backwards from a high scale, set by
the hard process, to a lower scale. Similarly, the MPI probabilities depend on the PDFs
of the incoming beams, and these have to be adjusted whenever an MPI has removed a
parton from the beam. Color reconnection (CR) is allowed after the evolution to mimic
the finite-color effects that are not taken into account in the infinite-color PS. After the
partonic evolution, a minimal number of partons are added as beam remnants in order to
conserve color, flavor and the total momentum of the event. Lastly, the generated partons
are hadronized using the Lund string model [33] along with decays of unstable particles.

In ep events, Pythia 8 operates with two regimes: the DIS regime, where the electron
emits a highly virtual photon (Q2 ≫ 1 GeV2), and the photoproduction regime, where
the photon is (quasi-)real (Q2 ≲ 1 GeV2). Currently no description is available for inter-
mediate-virtuality photons. In DIS events, the hard scattering occurs between the incoming
lepton and a parton from the hadron beam by an exchange of a virtual photon (or another
EW boson). The photon can thus be considered devoid of any internal structure. In the
photoproduction regime, the photon flux can be factorized from the hard scattering, such
that the intermediate photon can be regarded as a particle initiating the hard scattering.
In this regime, both point-like and hadron-like states of the photon occur. This signifi-
cantly increases the complexity of the event generation, thus the photoproduction regime
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is thoroughly described in the next section.

3 The photoproduction framework

The (quasi-)real photon contains a point-like, direct part without substructure as well as a
hadron-like part with internal structure. The latter part, the resolved photon, dominates the
total cross section of the physical photon. The total cross section is expected to contain all
types of hadronic collisions, including elastic (el), single- and double diffractive (SD, DD)
and inelastic ND collisions. The ND collisions contain both hard and soft events, where
the former can be calculated perturbatively, while the latter are modeled using the MPI
framework in Pythia 8 [34]. Elastic and diffractive collisions require a phenomenological
model for the hadronic photon.

The ND processes were first introduced in Pythia 8.215 [30], with a cross section given
as a fraction of the total cross section, σND = fσtot, f < 1. The framework for photo-
production has since been expanded to include all soft QCD processes using the Schuler-
Sjöstrand model [35] in Pythia 8.235, and with this the cross sections for each of the event
classes is calculated separately. The full description of these event classes is postponed to a
forthcoming paper [30], as we here concentrate on diffractive processes with a hard scale.
Between the two versions, the γp and γγ frameworks were extended to ep and e+e− by
the introduction of a photon flux within a lepton, now giving a complete description of
all photoproduction events in γp, γγ, ep and e+e− collisions in the latest release, 8.240.
Furthermore, an option to provide an external photon flux has been included, allowing
the user to study photoproduction also in UPCs, where the virtuality of the intermediate
photon is always small and thus the photoproduction framework directly applicable. An
internal setup for these cases is under way.

The resolved photon is usually split into two: one describing a fluctuation of the photon
into a low-mass meson and the other describing a fluctuation into a qq pair of higher
virtuality. The former is usually treated according to a vector-meson dominance (VMD)
model [36,37], where the photon is a superposition of the lightest vector mesons (usually ρ,
ω andϕ), whereas the latter, the anomalous part of the photon, is treated as “the remainder”,
σanom = σtot−σdirect−σVMD. A generalization of the VMD exists (the GVMD model)
which takes into account also higher-mass mesons with the same quantum numbers as
photons [38]. Note, however, that if the resonances are broad and closely spaced, they
would look like a smooth continuum.

The event generation for the direct photons begins by sampling the hard scattering between
the incoming photon and a parton (or another direct photon in case of γγ), e.g. qγ → qg.
The subsequent parton-shower generation always include FSR and in γp case also ISR for
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the hadronic beam. The whole photon momentum goes into the hard process, xγ ∼ 1, as
direct photons do not have any internal structure. Hence there is no energy left for MPIs
and no photon remnant is left behind. The hadronization is then performed with the Lund
string model as usual.

For resolved photons, a model for the partonic content of the hadronic photon, the photon
PDF, needs to be taken into account. This PDF includes both the VMD and the anomalous
contributions, the latter being calculable within perturbative QCD, the former requiring
a non-perturbative input. As in the case of protons, the non-perturbative input is fixed in
a global QCD analysis using experimental data. There are several PDF analyses available
for photons [39–42] using mainly data from LEP, but some also exploiting HERA data to
constrain the gluonic part of the PDF [43]. Ideally one would have a PDF for each of the
VMD states, in practice one uses the same parametrization for all – or approximates these
with pion PDFs.

After the setup of the photon PDFs, the hard collision kinematics has to be chosen. Here,
a parton from the photon PDF initiates the hard process, carrying a fraction of the photon
momentum, xi < 1, with parton i being extracted from the photon. Thus energy is still
available in the fluctuation after the initial hard process, opening up for additional MPIs
along with ISR and FSR in the subsequent evolution. As with other hadronic processes,
a remnant is left behind, with its structure being derived from the flavor content of the
original meson or qq state and the kicked-out partons.

As in pp collisions, the PS splitting probabilities with resolved photons are based on the
DGLAP equations. The DGLAP equation governing the scale evolution of resolved photon
PDFs can be written as [44]

∂fi/γ(xi,Q2)

∂ log(Q2)
=
αem(Q2)

2π
e2i Piγ(xi) +

αs(Q2)

2π

∑
j

∫ 1

xi

dz
z
Pij(z)fj/γ(

xi
z
,Q2) , (III.1)

where fi(j)/γ corresponds to the PDF of the photon, xi the fractional momenta of the photon
carried by the parton i, αem, αs the electromagnetic and strong couplings, ei the charge
of parton i and Pij, Piγ the DGLAP and γ → qq splitting kernels, respectively. The term
proportional to Piγ gives rise to the anomalous part of the photon PDF. In Pythia 8 the
separation into VMD and anomalous contributions is not explicitly performed. By the
backwards evolution of ISR, however, a resolved parton can be traced back to the original
photon by a γ → qq branching at some scale Q2. Post facto, an event where this happens
for Q2 > Q2

0 can then be associated with an anomalous photon state, and where not
with a VMD state. The dividing scale Q0 is arbitrary to some extent, but would be of
the order of the ρ0-meson mass. In the interleaved evolution of the parton showers and
MPIs, additional MPIs and ISR splittings on the photon side become impossible below
the scale where the photon became unresolved. This reduces the average number of MPIs
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for resolved photons compared to hadrons, and therefore has an impact also for the hard
diffraction model as discussed in sec. 3.1.

3.1 MPIs with photons

When the photon becomes resolved it is possible to have several partonic interactions in
the same event. MPIs in Pythia 8 are generated according to the leading-order (LO) QCD
cross sections, albeit being regularized by introducing a screening parameter p⊥0 [32],

dσ

dp2
⊥

∼
α2
s(p2

⊥)

p4
⊥

→
α2
s(p2

⊥0 + p2
⊥)

(p2
⊥0 + p2

⊥)
2 . (III.2)

Note here that p⊥0 can be related to the size d of the colliding objects, p⊥0 ∼ 1/d, thus a
different value of the screening parameter could be motivated if the photon has a different
size than the proton. Further, one could imagine working with different matter profiles
for both the proton and the photon, and possibly also for each of the components of the
photon. For now the shape is kept common for all systems, but possibly with different
scale factors, i.e. average radii.

The screening parameter is allowed to vary with center-of-mass energy
√
s,

p⊥0(
√
s) = pref⊥0

( √
s

√
sref

)p

, (III.3)

with pref⊥0, p tunable parameters and √
sref a reference scale. Thus both the parameters

from the matter profile and the parameters related to p⊥0 require input from data. These
parameters can be fixed by a global tune, with the Monash tune [45] being the current
default. The MPI parameters in this tune, however, are derived using only data from pp
and pp collisions. As the partonic structure and matter profile of resolved photons can be
very different from that of protons, the values for the MPI parameters should be revisited
for γγ and γp collisions. The limitation is that there are only a few data sets sensitive to
the MPIs available for these processes, and therefore it is not possible to perform a global
retune for all the relevant parameters. Thus we have chosen to use the same form of the
impact-parameter profile as for protons and study only the p⊥0 parameters (which allow
for different scale factors).

For γγ collisions, LEP data is available for charged-hadron p⊥ spectra in differentWγγ bins,
allowing studies of the energy dependence of p⊥0 as shown in [28]. In the γp case the HERA
data for charged-hadron production is averaged over a rather narrow Wγp bin. Hence a
similar study of the energy dependence is not possible for γp, and it becomes necessary
to assume the same energy dependence for p⊥0 in γp as for pp collisions. The value of
the p⊥0-parameter, however, can be retuned with the available data. As discussed in [29] a
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good description of the H1 data from HERA can be obtained with a slightly larger pref⊥0 in
γp than what is used in the pp tune, pref⊥0(γp) = 3.00 GeV versus pref⊥0(pp) = 2.28 GeV.
Thus the photon-tune is consistent with a smaller size of the photon, i.e. that the photon
does not quite reach a typical hadron size during its fluctuation.

The rule of thumb is that a larger screening parameter gives less MPI activity in an event,
thus a smaller probability for MPIs with resolved photons is expected compared to proton-
proton collisions. As the model for hard diffraction is highly dependent on the MPI frame-
work, we expect that the increased screening parameter gives less gap-suppression in pho-
toproduction than what was found in the proton-proton study. This is simply because
there is a larger probability for the event to have no additional MPIs when the pref⊥0-value
is larger. Furthermore, since the ISR splittings may collapse the resolved photon into an
unresolved state and, by construction, the direct-photon induced processes do not give rise
to additional interactions, the role of MPIs is suppressed for photoproduction compared
to purely hadronic collisions. Also, the invariant mass of the photon-proton system in the
photoproduction data from HERA is typically an order of magnitude smaller than that in
previously considered (anti-)proton-proton data, which further reduces the probability for
MPIs. Anticipating results to be shown below, this is in accordance with what is seen in
diffractive dijet production at HERA, where the suppression factor is much smaller than
that at the Tevatron.

3.2 Photon flux in different beam configurations

In the photoproduction regime one can factorize the flux of photons from the hard-process
cross section. For lepton beams a virtuality-dependent flux is used,

fγ/e(x,Q2) =
αem

2π
1 + (1 − x)2

x
1
Q2 , (III.4)

where x is the momentum fraction of the photon w.r.t. the lepton. Integration from the
kinematically allowed minimum virtuality up to the maximum Q2

max allowed by the pho-
toproduction framework, yields the well-known Weizsäcker–Williams flux [46, 47]

fγ/e(x) =
αem

2π
1 + (1 − x)2

x
log

[
Q2
max(1 − x)
m2
ex2

]
, (III.5)

where me is the mass of the lepton.

In pp collisions the electric form factor arising from the finite size of the proton, or equiva-
lently that the proton should not break up by the photon emission recoil, needs to be taken
into account. A good approximation of a Q2-differential flux is given by

fγ/p(x,Q2) =
αem

2π
1 + (1 − x)2

x
1
Q2

1
(1 + Q2/Q2

0)
4 , (III.6)
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where Q2
0 = 0.71 GeV2. Integration over the virtuality provides the flux derived by Drees

and Zeppenfeld [48],

fγ/p(x) =
αem

2π
1 + (1 − x)2

x

[
log(A)− 11

6
+

3
A
− 3

2A2 +
1

3A3

]
, (III.7)

where A = 1 + Q2
0/Q

2
min and Q2

min is the minimum scale limited by the kinematics of
a photon emission. Due to the form factor the photon flux drops rapidly with increasing
virtuality and becomes negligible already at Q2 ∼ 2 GeV2. This ensures that the photons
from protons are well within the photoproduction regime and there is no need to introduce
any cut on maximal photon virtuality.

In case of heavy ions it is more convenient to work in impact-parameter space. The size of
a heavy nucleus is a better defined quantity than it is for protons, so the impact parameter
b of the collision can be used to reject the events where additional hadronic interactions
would overwhelm the electromagnetic interaction. Simply rejecting the events for which
the minimal impact parameter, bmin, is smaller than the sum of the radii of the colliding
nuclei (or colliding hadron and nucleus for pA) provides a b-integrated flux,

fγ/A(x) =
αemZ2

πx
[
2ξK1(ξ)K0(ξ)− ξ2(K2

1(ξ)− K2
0(ξ))

]
, (III.8)

where Z is the charge of the emitting nucleus, Ki are the modified Bessel functions of the
second kind and ξ = bmin xmN, where x is a per-nucleon energy fraction and mN a per-
nucleon mass. The downside of working in the impact-parameter space is that the virtuality
cannot be sampled according to the flux, as virtuality and impact parameter are conjugate
variables. For heavy-ions, however, the maximal virtuality is very small (of the order of
60 MeV [17]), and can be safely neglected for the considered applications. The different
photon fluxes are shown in Fig. III.2.
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Figure III.2: The photon fluxes used for different beam types. Here fγ/b is the photon flux obtained from the beam b.

When extending the photoproduction regime from pure photon-induced processes to col-
lisions where the photon is emitted by a beam particle, some additions are needed. In

152



direct photoproduction, the partonic processes can be generated by using the photon flux
directly in the factorized cross-section formula, similar to what is done with the PDFs in
a usual hadronic collision. In resolved photoproduction, a PDF for the partons from the
photons emitted from the beam particle is needed. This can be found by convoluting the
photon flux from the beam particle b, fγ/b(x), with the photon PDFs, fi/γ(xγ ,Q2), where
Q2 refers to the scale at which the resolved photon is probed. This scale can be linked to
the scale of the hard(est) process, e.g. the p⊥ of the leading jet in jet-production processes.
The convolution yields

xifi/b(xi,Q2) =

∫ 1

xi

dx
x
xfγ/b(x)

xi
x
fi/γ(

xi
x
,Q2) , (III.9)

with xi the energy fraction of beam particle momentum carried by parton i and x the energy
fraction of the photon w.r.t. the beam. In practice the intermediate photon kinematics is
sampled according to the appropriate flux during the event generation, thus taking care of
the convolution on the fly.

4 Hard diffraction in Pythia 8

The Pythia model for hard diffractive events in pp collisions was introduced as an explana-
tion for the factorization breaking between diffractive DIS at HERA and the Tevatron [8].
The model can be applied to any process with sufficiently hard scales, including production
of dijets, Z0,W±,H etc. It begins with the Ingelman-Schlein picture, where the diffractive
cross section factorizes into a Pomeron-particle cross section and a Pomeron flux. Based on
this ansatz a tentative probability for diffraction is defined as the ratio of diffractive PDF
(dPDF) to inclusive PDF, as it is assumed that the proton PDF can be split into a diffractive
and a non-diffractive part,

fi/p(xi,Q2) =f ND
i/p (xi,Q

2) + f Di/p(xi,Q
2) ,

f Di/p(xi,Q
2) =

∫ 1
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dxP
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fP/p(xP)fi/P(
xi
xP
,Q2) ,

PDA =
f Di/B(xi,Q

2)

fi/B(xi,Q2)
,

PDB =
f Di/A(xi,Q

2)

fi/A(xi,Q2)
, (III.10)

with fi/p describing the PDF of the proton, f D
i/p being the diffractive part of the proton

PDF defined as a convolution of the Pomeron flux in a proton (fP/p) and the Pomeron
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PDFs (fi/P). The probabilities for side A,B to be the diffractive system are given as PDA,B
and each relies on the variables of the opposite side.

This tentative probability is then used to classify an event as preliminary diffractive or
non-diffractive. If non-diffractive, the events are handled as usual non-diffractive ones.
If diffractive, the interleaved evolution of ISR, FSR and MPIs is applied, but only events
surviving without additional MPIs are considered as fully diffractive events. The reason-
ing behind this is that additional MPIs in the pp system would destroy the rapidity gap
between the diffractive system and the elastically scattered proton. The gap survives if no
further MPIs occur, and the event can be experimentally quantified as being diffractive,
with e.g. the large rapidity gap method. This no-MPI requirement suppresses the prob-
ability for diffraction with respect to the tentative dPDF-based probability, and can thus
be seen as a gap-survival factor. Unlike other methods of gap survival (e.g. [9, 49–51]) this
method is performed on an event-by-event basis, thus inherently is a dynamical effect. Fur-
thermore, it does not include any new parameters, but relies solely on the existing and well
tested (for pp/pp) MPI framework. Once the system is classified as diffractive, the full
interleaved evolution is performed in the Pp subsystem. Here the model does not restrict
the number of MPIs, as these will not destroy the rapidity gap between the scattered proton
and the Pomeron remnant.

4.1 Hard diffraction with photons

In this article we extend the hard diffraction model to collisions involving one or two
(intermediate) photons. The extension is straightforward. Changing the proton PDF in
eqs. (III.10) to a photon PDF on one side, it is possible to describe hard diffraction in γp in-
teractions. Changing on both sides, the model is extended to γγ collisions. Thus eq. (III.10)
is valid in events with (intermediate) photons with the change p → γ. Connecting the
event generation with an appropriate photon flux allows to study hard diffraction in both
ep and e+e− collisions as well as in ultra-peripheral collisions of protons and nuclei. The
differential cross section of the hard scattering (Xh) in a diffractive system X, e.g. the dijet
system within the diffractive system, for direct (dir) and resolved (res) photoproduction can
then schematically be written as,

dσAB→XhB
dir =fγ/A(x)⊗ fP/p(xP, t)⊗ fj/P(xj,Q2)⊗ dσγj→Xh ,

dσAB→XhB
res =fγ/A(x)⊗ fi/γ(xγ ,Q2)⊗ fP/B(xP, t)⊗ fj/P(xj,Q2)⊗ dσij→Xh , (III.11)

with beam A emitting a photon, beam B emitting a Pomeron, and AB → XhB denoting
that the diffractive system is present on side A. Changing A → B in eqs. (III.11) thus results
in a diffractive system on side B. In the above, fγ/A denotes the photon flux from beam
A, fi/γ the photon PDF, while fP/B and fj/P are the Pomeron flux and PDF, respectively.
dσγ(i)j→Xh are the partonic cross sections calculated from the hard scattering MEs. The
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full diffractive system X also contains partons from MPIs and beam remnants that also
have to be taken into account, thus eqs. (III.11) only represent the hard subprocess part of
the diffractive system. Presently, neither the double diffractive process AB → XAhX

B
h nor

the central diffractive process AB → AXhB are modeled, and the Pomeron can only be
extracted from protons and resolved photons. As the model is based on dPDFs and the
dynamical gap survival derived from the MPI framework inside Pythia 8, the extension
does not require any further modeling or parameters.

The dynamical gap survival is present only in the cases where the photon fluctuates into a
hadronic state. Hence the tentative probability, eqs. (III.10), equates the final probability
for diffraction in direct photoproduction and in the DIS regime, where no MPIs occur. In
resolved photoproduction, the dynamical gap survival suppresses the tentative probability
for diffraction, offering an explanation for the discrepancies between next-to-leading or-
der (NLO) predictions for dijets in photoproduction compared to measured quantities at
HERA, see e.g. [11, 13, 16]. The observed factorization breaking is not as striking as in pp
collisions, but the factorization-based calculation still overshoots the latest H1 analysis by
roughly a factor of two [16].
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Figure III.3: The two diffractive systems available for resolved photoproduction: either the proton is elastically scattered and
the photon side contains the diffractive system (a), or the vector meson is elastically scattered and the proton side
contains the diffractive system (b).

It should be noted that this extension allows for diffraction on both sides, i.e. the Pomeron
can be extracted from the hadronic photon and/or the proton, see Fig. III.3. Typically,
the experiments only considered diffractive events where the diffractive system consists of
a photon and a Pomeron, with a rapidity gap on the proton side (and a surviving proton,
whether observed or not). The option to generate diffractive events on only one of the sides
exist in Pythia 8, such as to avoid needless event generation.
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4.2 Recent improvements in dPDFs

Since the publication of the hard diffraction model for pp/pp, several improvements have
been made for dPDFs. Work has been put into the inclusion of NLO corrections to the
splitting kernels describing the evolution of the partons inside the Pomeron. Other work
includes more recent fits to combined HERA data, or includes additional data samples into
experiment-specific fits, so as to constrain some of the distributions in the dPDFs. A subset
of these new dPDFs have been added to Pythia 8 recently and are briefly introduced below.

Specifically two new sets of dPDFs have been introduced, along with the Pomeron fluxes
used in these fits. The first set, the GKG18 dPDFs by Goharipour et al. [52], consists of two
LO and two NLO dPDFs fitted to two different combined HERA data sets available, using
the xFitter tool [53] recently extended to dPDFs. In addition, we consider an analysis
released by the ZEUS collaboration offering three NLO dPDFs fitted to a larger sample
of data. One of these, denoted ZEUS SJ, includes also diffractive DIS dijets from [54] in
order to have better constraints for the gluon dPDF [14]. Using PDFs derived at NLO is
not perfectly consistent with the LO matrix elements available in Pythia 8, but since the
ZEUS SJ dPDF analysis is the only of the considered dPDF analyses including dijet data¹,
it is interesting to compare the results to other dPDFs.

Both the GKG18 and the ZEUS SJ fits uses the following parametrization for the Pomeron
flux,

fP(xP, t) =AP
exp(BPt)
x2αP−1
P

, (III.12)

with αP = αP(0) + α′
Pt and A,B being parameters to be included in the fits. The dPDFs

are typically parametrized as

zfi(z,Q2
0) =AizBi(1 − z)Ci , (III.13)

again with Ai,Bi,Ci being parameters to be determined in the fits. The dPDFs are then
evolved using standard DGLAP evolution [56–59] to higher Q2. Different schemes for the
inclusion of heavy quarks were invoked in the two fits; see the original papers for details. In
both dPDFs the light quarks (u, d, s) have been assumed equal at the starting scale, while
heavy quarks (c, b) are generated dynamically above their mass thresholds. We show the
new Pomeron PDFs and fluxes in figs. III.4 and III.5, along with the H1 Fit B LO PDF [60]
used as a default in Pythia 8. The GKG18 dPDFs are available with Pythia 8.240, while
the ZEUS SJ set is expected in a forthcoming release.

¹H1 has also performed a dPDF analysis with DIS dijets at NLO [55] with very similar results as ZEUS SJ.
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Figure III.4: The GKG18 LO Fit A, B and ZEUS SJ fluxes on a linear (a) and logarithmic (b) scale in xP. Note that t has been
integrated over its kinematical range, f(xP) =

∫
dtf(xP, t).

0.0 0.2 0.4 0.6 0.8 1.0
xq

10−2

10−1

x
q
f q
/P

(x
q
)

H1 LO Fit B

GKG LO Fit A

GKG LO Fit B

ZEUS NLO Fit SJ

Light quarks at Q2 = 100 GeV2

(a)

10−4 10−2 100

xq

10−2

10−1

100

x
q
f q
/P

(x
q
)

Light quarks at Q2 = 100 GeV2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
xg

10−2

10−1

100

x
g
f g
/P

(x
g
)

Gluons at Q2 = 100 GeV2

(c)

10−4 10−2 100

xg

10−1

100

101

x
g
f g
/P

(x
g
)

Gluons at Q2 = 100 GeV2

(d)

Figure III.5: The GKG18 LO Fit A, B and ZEUS SJ dPDFs on a linear (a,c) and logarithmic (b,d) scale. The upper figures shows
the light quark content, the lower the gluonic content.

5 Diffractive dijets in the photoproduction range

The production of dijets in a diffractive system is particularly interesting, as it provides valu-
able information on the validity of factorization theorems widely used in particle physics.
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These factorization theorems are not expected to hold in the case of diffractive dijets aris-
ing from resolved photoproduction, as this process essentially is a hadron-hadron collision,
where the hard scattering factorization fails.

Both H1 and ZEUS have measured the production of diffractive dijets in both the photo-
production and DIS range. We here limit ourselves to showing results from two analyses,
the H1 2007 and ZEUS 2008 analyses on diffractive dijets [12,13]. Other analyses have been
presented, including several ones examining only the DIS regime, but as the analysis codes
or even the data itself have not always been preserved, we limit ourselves to reconstructing
only a subset of these analyses. We aim to validate and provide the analyses used in this
article within the Rivet framework [61].

Both experiments have data on ep collisions at
√
s = 318 GeV using 27.5 GeV electrons

and 920 GeV protons, with the proton moving in the +z direction. Both use the large
rapidity gap method for selecting diffractive systems. The experimental cuts in the two
analyses are shown in table III.1. In the H1 analysis we concentrate on the differential cross
sections as a function of four variables: invariant mass of the photon-proton system (W),
transverse energy of the leading jet (E∗ jet 1

⊥ ) and momentum fractions zobsP and xobsγ , both
constructed from the measured jets as

xobsγ =

∑2
i=1(E

jet,i − pjet,iz )

2yEe
,

zobsP =

∑2
i=1(E

jet,i + pjet,iz )

2xPEp
, (III.14)

where Ee (Ep) is the energy of the beam electron (proton) and the summation includes the
two leading jets, i.e. the two with highest E⊥. The inelasticity y and Pomeron momentum
fraction w.r.t. the proton xP are determined from the hadronic final state. In the ZEUS
analysis the momentum fractions zobsP and xobsγ are defined in terms of transverse energy
and pseudorapidity of the jets,

xobsγ =

∑2
i=1 E

jet, i
⊥ exp(−ηjet,i)

2yEe
,

zobsP =

∑2
i=1 E

jet, i
⊥ exp(ηjet,i)

2xPEp
, (III.15)

equivalent to the definitions in eq. (III.14), if the jets are massless. In a LO parton-level cal-
culation these definitions would exactly correspond to the momentum fraction of partons
inside a photon (xγ) and Pomeron (zP). Due to the underlying event, parton-shower emis-
sions and hadronization effects, however, the connection between the measured zobsP and
xobsγ and the actual xγ and zP is slightly smeared, but still eqs. (III.14) and (III.15) serve as
decent hadron-level estimates for the quantities. In place of W the ZEUS analysis provides
the differential cross section in terms of invariant mass of the photon-Pomeron system, MX.
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Table III.1: Kinematical cuts used in the experimental analyses by H1 [12] and ZEUS [13]. An asterisk (∗) indicates that the
observable is evaluated in the photon-proton rest frame. xP,MY, t are found in the rest frame of the hadronic system
X, while the remaining are found in the laboratory frame.

H  ZEUS 

Q2 < 0.01 GeV2 Q2 < 1 GeV2

- 0.2 < y < 0.85
165 GeV < W < 242 GeV -
Njet ≥ 2 Njet ≥ 2
E∗ jet 1
⊥ > 5.0 GeV Ejet 1

⊥ > 7.5 GeV

E∗ jet 2
⊥ > 4.0 GeV Ejet 2

⊥ > 6.5 GeV
−1 < ηjet 1,2 < 2.0 −1.5 < ηjet 1,2 < 1.5
xP < 0.03 xP < 0.025
MY ≤ 1.6 GeV -
|t| < 1.0 GeV2 -

There are several theoretical uncertainties affecting the distributions of the diffractive events.
Here we focus on the most important ones:

• Renormalization- and factorization-scale variations, estimating the uncertainties of
the LO descriptions in Pythia 8.

• dPDF variations affecting especially the zobsP distribution and indirectly the number
of events through the cuts on the squared momentum transfer, t, the momentum
fraction of the beam carried by the Pomeron, xP and the mass of the scattered (and
possibly excited) proton, MY.

• pref⊥0-variations, affecting the gap survival factor.

Other relevant parameters and distributions have also been varied, showing little or no effect
on the end distributions. Remarkably, one of these was the choice of photon PDF. Pythia 8
uses the CJKL parametrization [42] as a default both in the hard process and in the shower
and remnant description. As the MPI and ISR generation in the current photoproduction
framework require some further approximations for the PDFs, that are not universal and
thus cannot be determined for an arbitrary PDF set, only the hard-process generation is
affected by a change of photon PDF. Thus the effect of a different photon PDF on the
various observables is not fully addressed with the present framework. The hard-process
generation should, however, provide the leading photon PDF dependence. We find only a
minimal change to the final distributions when changing to either the SaS [41], GRV [39] or
GS-G [62] provided with LHAPDF5 [63]. There are two reasons for the weak dependence
on photon PDFs. Firstly, the cuts applied by the experimental analyses presented here
forces xγ to be rather large, where the photon PDFs are relatively well constrained by the
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LEP data. Secondly, the no-MPI requirement rejects mainly events from the low-xγ region,
where the differences between the mentioned photon PDFs are more pronounced.

Two other analyses from HERA [11, 16] have also been used to check the current frame-
work, giving results similar to the analyses presented here. For our baseline setup we show
comparisons to both the H1 and ZEUS analyses, while for the more detailed variations we
focus on comparisons to ZEUS.

5.1 Baseline results
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Figure III.6: The model with (solid lines) and without (dashed lines) gap survival compared to ZEUS data on MX (a), zobsP (b),
xobs
γ (c) and Ejet 1

⊥ (d).

In figs. III.6 and III.7 we show the results obtained with Pythia 8 along with the ex-
perimental measurements. We show two simulated samples, one based on dPDFs solely
without the dynamic gap survival (the “PDF” sample, dashed lines), and one including the
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Figure III.7: The model with (solid lines) and without (dashed lines) gap survival compared to H1 data on W (a), zobsP (b), xobsγ

(c) and E∗ jet 1
⊥ (d).

dynamic gap survival (the “MPI” sample, solid lines). The results show that the “PDF”
sample is too large compared to data in all distributions except for xγ , thus showing evi-
dence of factorization breaking. The “MPI” sample, however, seems to give a reasonably
good description of data as the ratio of MC/data is smaller for the “MPI” sample than the
“PDF” sample, thus hinting that it is the additional probability for multiparton interactions
between the photon remnant and the proton that causes the factorization breaking.

Aχ2-test have been performed in order to quantify which of the models do better. Here, we
have performed three different tests; using only either of the H1 or ZEUS datasets, or using
both, table III.2. It is evident that the “MPI” model including the gap survival effect does a
better job than the “PDF” model without it, within our baseline setup. The calculation of
the χ2 values include all differential cross sections provided by the experimental analyses,
excluding the additional xobsγ -binned distributions in ZEUS analysis to avoid counting the
same data twice. Error correlations are not provided and so not considered.

161



Table III.2: χ2 tests using three different datasets.

χ2/nDOF H ZEUS Combined

PDF . . .
MPI . . .

In general, most distributions are well described by the model including dynamical gap
survival. The invariant mass distributions for the photon-Pomeron system (MX) and for
the photon-proton system (W) in figs. III.6 and III.7 (a) are both sensitive to the form of
the photon flux from leptons. Both data sets are well compatible with the MPI samples,
indicating that the standard Weizsäcker-Williams formula provide a good description of
the flux.

It is, however, evident that in some observables the shape of the data is poorly described.
Examples are zobsP and xobsγ , figs. III.6, III.7 (b, c). The former is sensitive to the dPDFs used
in the event generation. The baseline samples use the LO H1 Fit B flux and dPDF, fitted
to data that is mainly sensitive to quarks. As the Pomeron is assumed to be primarily of
gluonic content, it is expected that the vast majority of the dijets arise from gluon-induced
processes. Thus a poorly-constrained gluon dPDF is expected to give discrepancies with
distributions sensitive to this parameter, such as zP. In both the H1 and ZEUS analyses
zobsP is overestimated in the low end, while being underestimated in the high-zobsP end. If
the measured jets are dominantly gluon-induced, then it is expected that changing from
the H1 LO Fit B dPDF to the ZEUS SJ fit should improve on the zobsP -distribution, as the
low-zobsP gluons are suppressed in this dPDF.

The latter observable, xobsγ , is similarly underestimated in the low end and overestimated
in the high end. The tight cut on xP together with the requirement of high-E⊥ jets reduces
the contribution from lower values of xobsγ . This suppresses the resolved contribution and
therefore increases the relative contribution from direct processes, which typically are close
to xobsγ = 1. The additional no-MPI requirement further suppresses the already low re-
solved contribution, and we end up with not being able to describe the shape of xobsγ . As
already discussed, the discrepancy cannot be explained with the uncertainties in the photon
PDFs, as the sensitivity to different PDF analyses was found to be very low. The issue seems
to be a problem with the relative normalizations of the direct and resolved contributions.
This is evident from Fig. III.8, where the ZEUS analysis conveniently splits the data into
two regions, a direct- and a resolved-enhanced region with the division at xobsγ = 0.75.
Here, the model underestimates the resolved-enriched part of the cross section and overes-
timates the direct-enriched part, confirming what we already observed in figs. III.6, III.7
(c).

Future measurements could shed more light on this issue, especially experimental setups in
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which the events passing the kinematical cuts would not be dominated by the direct contri-
bution. In the experimental analyses considered here, a similar observation was made when
comparing to a NLO calculation: the shape of xobsγ was well described by the NLO calcu-
lation (corresponding to our PDF selection) in the direct-enhanced region, but applying a
constant suppression factor for the resolved contribution undershot the data at xobsγ < 0.75,
similar to what we observe. It is worth pointing out that both poorly-described distribu-
tions, xobsγ and zobsP , are constructed from the jet kinematics. Therefore further studies
on jet reconstruction and their η distributions could offer some insights for the observed
discrepancies.
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Figure III.8: The model with (solid lines) and without (dashed lines) gap survival compared to ZEUS data on MX in the direct-

enhanced (a) and resolved-enhanced (b) regions.

The jet variable E⊥ can be used to check if the amount of activity within the diffractive
system is properly described. As this system contains a Pomeron, it might very well be that
the MPI parameters here could be different from the MPI parameters in the γp-system. It
seems that using the same parameters for the γP system as for γp slightly overestimates the
high-E⊥ tail. This indicates that there might be too much MPI activity in the events, thus
requiring a slightly larger pref⊥0 value in the diffractive system than in the γp system. The
argument for a different pref⊥0-value for γp as compared to pp can also be applied here: if the
Pomeron has a smaller size than the proton, then the pref⊥0-value can be increased. Having
too much MPI activity in the γP-system may also push the xobsγ distribution towards higher
values, as the E⊥ of the jets may increase due to the underlying event. A full discussion of
the MPI parameters in the diffractive system in pp collisions has been provided in [8], but
have not been pursued further here.
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5.2 Scale variations

To probe the uncertainties in the choice of renormalization and factorization scales, µR
and µF, we employ the usual method of varying the scales up and down with a factor of
two. Each is probed individually, such that one scale is kept fixed while the other is varied.
Only the scales at matrix-element level are varied; thus the shower and MPI scales have
been excluded from these variations. Each variation gives rise to an uncertainty band, and
in Fig. III.9 we show the envelope using the maximal value obtained from either of the
two uncertainty bands. The envelope is dominated by the renormalization scale, giving
the largest uncertainty in most of the figures shown – not unusual in a LO calculation.
Note, however, that the scale uncertainty in the high-xobsγ bin actually reaches the upper
error of the data point, essentially hinting that the model is able to describe the direct-
enhanced region within theoretical uncertainties. The resolved region, however, cannot be
fully accounted for within these theoretical uncertainties.
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Figure III.9: The model along with the uncertainty bands arising from varying the renormalization- and factorization scales

compared to ZEUS data on MX (a), zobs
P (b), xobs

γ (c) and Ejet 1
⊥ (d).
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5.3 Variations of the dPDFs
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Figure III.10: The model without gap suppression using three different dPDFs: H1 LO Fit B (blue lines), GKG LO Fit A (green

lines) and ZEUS NLO SJ (red lines) compared to ZEUS data on MX (a), zobsP (b), xobsγ (c) and Ejet 1
⊥ (d).

As explained above, the considered observables are sensitive to the dPDFs, especially the
fractional momentum carried by the parton from the Pomeron, zobsP . We here investigate
if the increased amount of diffractive DIS data in the GKG LO dPDFs will provide a better
description of the data than the less constrained H1 LO Fit B dPDF. We also show results
obtained when using the NLO dPDF and flux from ZEUS SJ, as this dPDF includes data
on diffractive dijets that is directly sensitive to the gluon distributions. Note, however, that
a combination of NLO PDFs and LO matrix elements is still only accurate to LO and
mixing different orders may result in different results compared to a situation where the
matrix elements and PDF determination are consistently at the same perturbative order.

In Fig. III.10 we show results using two of the new dPDFs, ZEUS NLO SJ [14] and GKG
LO Fit A [52] without the gap suppression factor. At first glance, the new dPDFs improve
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Figure III.11: The model without gap suppression using the three dPDFs: H1 Fit B LO (blue lines), GKG LO Fit A (green lines) and

ZEUS SJ (red lines) compared to ZEUS data on MX in the direct-enhanced (a) and resolved-enhanced (b) regions.

the overall description of data without a further need for suppression. Overall the new
dPDFs seem to suppress the distributions as compared to H1 Fit B LO dPDF, with the
ZEUS SJ dPDF performing slightly better than GKG LO Fit A as seen e.g. in the zobsP
distribution. Here, the ZEUS SJ dPDF flattens out at high zobsP as compared to the GKG
and H1 dPDFs, having a slightly larger xg-distribution in this regime.

The distributions that the baseline study did not fully describe, also the new dPDFs fail
to describe. Especially the xobsγ distribution is still underestimated at xobsγ < 0.75, which
underlines the discrepancies with the relative normalization between the direct and resolved
contributions. The Ejet 1

⊥ distribution is now well described with the GKG set. With the
ZEUS SJ set the normalization is improved compared to the H1 Fit B but the shape of the
distribution is similarly off.

A separation of MX into the two regimes, Fig. III.11, shows that the direct-enhanced region
is well described with the ZEUS SJ dPDFs. The GKG set improves the normalization but
the shape of the distribution is still not compatible. The resolved region, however, is too
suppressed with both of these, so the relative normalizations of the two contributions re-
main as an unresolved issue. Adding the gap suppression factor on top of this, Fig. III.12,
further suppresses the already suppressed resolved-enhanced region, worsening the agree-
ment with the data in this regime. Little effect is seen in the direct-enhanced region, as
expected.

These results thus puts forth the question whether the gap suppression is necessary if the
dPDFs are refined and improved with additional diffractive data. The improvements seen
especially with the ZEUS SJ dPDF in both the xobsγ and zobsP distributions might hint
towards this. As discussed earlier, this might partly follow from the tight cuts applied in
the ZEUS analysis which does not leave much room for MPIs in the γp system. Also,
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Figure III.12: The model with gap suppression using the three dPDFs: H1 Fit B LO (blue lines), GKG LO Fit A (green lines) and

ZEUS SJ (red lines) compared to ZEUS data on MX in the direct-enhanced (a) and resolved-enhanced (b) regions.

one should keep in mind that using NLO dPDFs with LO matrix elements might lead to
different results compared to a full NLO calculation.

5.4 Variations of the screening parameter

The gap suppression method used here is highly sensitive to the model parameters of the
MPI framework. Here we especially look at the screening parameter, pref⊥0, as the value of
this parameter differs between tunes to ep and to pp collisions. Changing the value of pref⊥0
have only a small effect on the “PDF” samples. The “MPI” samples, however, are affected
by the value of the screening parameter. A smaller value of pref⊥0 results in more MPIs, thus
we expect that the gap suppression will be larger if we decrease pref⊥0 to its pp value, as a
smaller fraction of the events will survive the MPI-selection.

This effect is exactly what is seen in Fig. III.13. The “PDF” samples are not affected, but the
pp-tuned pref⊥0 value in red causes a stronger suppression, best seen in the ratio plots where
the solid red curves, the “MPI” sample with pref⊥0 = 2.28 GeV, is lower than the solid
blue curves with pref⊥0 = 3.00 GeV. The value of pref⊥0 has some effect on the shape of the
distributions, mainly because a higher MX allows for more MPI activity, and thus a smaller
fraction of events survive the no-MPI requirement. This means that the gap suppression
increases with increasing energy available in the system, i.e. with increasing MX, seen in
Fig. III.13 (a), where ratio-plot shows a suppression factor of approximately 0.9 in the low
MX bin and 0.6 in the high MX bin.
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Figure III.13: The model with (solid lines) and without (dashed lines) gap suppression using two values of pref⊥0 : The pp-tune,
pref⊥0 = 2.28 GeV (red lines) and the ep-tune, pref⊥0 = 3.0 GeV (blue lines). Again we show the samples in the
observables MX (a), zobsP (b), xobs

γ (c) and Ejet 1
⊥ (d).

5.5 Gap suppression factors

Several models have been proposed to explain the factorization breaking in diffractive
hadronic collisions. Many of these employ an overall suppression factor, often relying
primarily on the impact-parameter of the collision, see e.g. [49–51]. Some also include a
suppression w.r.t. a kinematical variable, such as the p⊥ of the diffractive dijets. But to
our knowledge, the model of dynamical gap survival is the first of its kind to evaluate the
gap survival on an event-by-event basis. This means it takes into account the kinematics
of the entire event, and is thus also able to provide a gap suppression factor differential in
any observable. In the model presented here, the ratio of “PDF” to “MPI” samples equates
the gap survival factor, as the two samples only differ by the no-MPI requirement that
determines the models definition of a fully diffractive event.
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Figure III.14: The predicted gap suppression factors as a function of MX (a) and Ejet 1
⊥ (b) compared to the ZEUS analysis.
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Figure III.15: The predicted gap suppression factors as a function of W (a) and E∗ jet 1
⊥ (b) compared to the H1 analysis.

The theoretical uncertainties not directly related to MPI probability (e.g. scale variations)
are expected to cancel in such a ratio. Even though many experimental analysis present
similar ratios by using a NLO calculation as a baseline, such a ratio is not a measurable
quantity, as it always require a theory-based estimation for the unsuppressed result. These
ratios, however, are useful for demonstrating the effects arising from different models such
as our dynamical rapidity gap survival. In order to estimate the factorization-breaking effect
in data w.r.t. our model, we show also the ratio between the data and the “PDF” sample.

In Fig. III.14 we show the gap suppression differential in the observables MX and Ejet 1
⊥

from the ZEUS analysis and in Fig. III.15 we show the gap suppression differential in the
observables W and E∗ jet 1

⊥ from the H1 analysis. These distributions demonstrate some of
the main features of our dynamical rapidity gap survival model. We show the ratio of data
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to “PDF” sample (black dots) and the ratio of “MPI” to “PDF” sample (solid blue curve).
This latter ratio is exactly the gap suppression factor predicted by the model. The shapes of
the gap suppression factors agree reasonably well with the suppression factors derived from
the data (the black dots), albeit the shape of Fig. III.14 (b) is off in the high-E⊥ end, as
already mentioned in the baseline results.

The model predicts a slowly decreasing suppression in E(∗) jet 1
⊥ , while the suppression in-

creases towards larger MX and W. This increase follows as the larger diffractive masses are
correlated with larger invariant masses of the γp-system, where there is more room for
MPIs at fixed jet E⊥. This results in a larger fraction of the events having additional MPIs,
thus a smaller fraction of the events survive as diffractive. Similarly, high-E⊥ jets takes away
more momentum than low-E⊥ jets, again leaving less room for MPIs to take place. Thus
we do not predict a flat overall suppression, as has often been applied in the experimental
analyses.

Suppression factors in the range 0.7 − 0.9 are predicted in the shown observables. Given
the uncertainty on the “PDF” sample, this is in agreement with the suppression factors of
approximately 0.5 − 0.9, as observed by H1 [11, 12, 15, 16] and ZEUS [13]. A somewhat
contradictory result was observed in ref. [14], in which the ZEUS dijet data from ref. [13]
was found consistent with the purely factorization-based NLO calculation when using the
ZEUS SJ dPDFs.

The experimental cuts applied in the ZEUS analysis, as compared to the analysis from
H1, forces xobsγ to very large values, where the suppression from the MPIs does not have
a large effect. Thus the ZEUS measurement requires less suppression than what is needed
in the H1 measurement. The shown distributions, however, are still marred by the large
theoretical uncertainties. One way to reduce these theoretical uncertainties would be to
consider the ratio of photoproduced dijets to ones from DIS, as done e.g. in the recent H1
analysis [16]. The kinematic domain is slightly different due to different virtualities, but
this would still greatly reduce dependency on dPDFs and scale variations, leaving only the
mild photon PDF dependence in addition to the factorization breaking effects, that would
be pronounced in this ratio. Unfortunately the current Pythia 8 description of DIS events
at intermediate virtualities is not adequate to describe the inclusive DIS dijet data, so such
a comparison is a project for the future.

6 Photoproduction in ultra-peripheral collisions

Because of the more than an order of magnitude larger
√
s at the LHC, the accessible in-

variant masses of the γp system are much larger than what could be studied at HERA.
This allows us to study the factorization-breaking effects in hard-diffractive photoproduc-
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Table III.3: Kinematics for the UPC analyses.

pPb pp

√
sNN 5.0 TeV 13.0 TeV

E1
⊥,min 8.0 GeV

E2
⊥,min 6.0 GeV

Mjets,min 14.0 GeV
xmax
P 0.025
|ηmax| 4.4

tion in a previously unexplored kinematical region. Such measurements would fill the gap
between the rather mild suppression observed at HERA and the striking effect observed in
pp and pp collisions at Tevatron and the LHC. This would provide important constraints
for different models and thus valuable information about the underlying physics. Besides
the results we present here, predictions for these processes have been computed in a frame-
work based on a factorized NLO perturbative QCD calculation with two methods of gap
survival probabilities, one with an overall suppression and one where the suppression is
only present for resolved photons [64]. The authors here expect that the two scenarios can
be distinguished at LHC, especially in the xobsγ -distribution. The model presented in this
work should thus be comparable to the latter suppression scheme from [64]. Another work
considering similar processes is presented in Ref. [65].

In principle these measurements could be done in all kinds of hadronic and nuclear colli-
sions, since all fast-moving charged particles generate a flux of photons. There are, however,
some differences worth covering. In pp collisions, the photons can be provided by either of
the beam particles with an equal probability. The flux of photons is a bit softer for protons
than with leptons, but still clearly harder than with nuclei. Experimentally it might be dif-
ficult to distinguish the photon-induced diffraction and “regular” double diffraction in pp,
since both processes would leave a similar signature with rapidity gaps on both sides. In
pPb collisions the heavy nucleus is the dominant source of photons, as the flux is amplified
by the squared charge of the emitting nucleus, Z2. Thus the photon-induced diffraction
should overwhelm the QCD-originating colorless exchanges (Pomerons and Reggeons).
Similarly, in PbPb collisions the photon fluxes are large and thus would overwhelm the
Regge exchanges. The latter type is currently not possible to model with Pythia 8, however,
as in addition to regular MPIs, one should also take into account the further interactions
between the resolved photon and the other nucleons, that could destroy the rapidity gap.
Since these are currently not implemented in the photoproduction framework, we leave
the PbPb case for a future study.
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6.1 pPb collisions

The setup for the photoproduction in pPb collisions is the same as our default setup for
ep, albeit the photon flux is now provided by eq. (III.8). We here neglect the contribution
where the proton would provide the photon flux, such that all photons arise from the nu-
cleus. The jets are reconstructed with an anti-kT algorithm using R = 1.0 as implemented
in FastJet package [66]. The applied cuts are presented in table III.3 and are very similar to
the ones used by HERA analyses. The experimentally reachable lower cut on E⊥ is not set
in stone, however. This depends on how well the jets can be reconstructed in this process.
On one hand, the underlying event activity is greatly reduced in UPCs as compared to pp
collisions, thus possibly allowing for a decrease of the reachable jet E⊥. On the other hand,
the increased W might require an increase of the minimum E⊥ w.r.t. the HERA analyses.
Feasibility of such a measurement has been recently demonstrated in a preliminary ATLAS
study [67] which measured inclusive dijets in ultra-peripheral PbPb collisions at the LHC.

The resulting differential cross sections for diffractive dijets from UPCs in pPb collisions
are presented in Fig. III.16. Similar to sec. 4 we show the results differential in W, MX,
xobsγ and zobsP . The “PDF” samples (dashed lines) are without the gap suppression and
“MPI” samples (solid lines) are with the gap suppression. The lower panels show the ratio
of the two, corresponding to the rapidity gap suppression factor predicted by the model. As
discussed earlier, the energy dependence of the p⊥0 screening parameter in γp collisions was
constrained by HERA data in a narrow W bin around 200 GeV. As the UPC events at the
LHC will extend to much higher values of W, the poorly-constrained energy dependence
of p⊥0 will generate some theoretical uncertainty for the predictions. To get a handle on
this uncertainty we show samples with both the pp-tuned (red lines) and ep-tuned (blue
lines) values for p⊥0.

The predicted gap suppression factor is rather flat as a function of zobsP at around ∼ 0.7.
The suppression factor is, however, strongly dependent on W and MX, also observed in the
HERA comparisons. It is more pronounced at the LHC thanks to the extended range in
W, with an average suppression being roughly two times larger than at HERA. A similar
strong dependence is also seen in xobsγ . As concluded earlier, the increasing suppression
with W follows from the fact that the probability for MPIs is increased with a higher W,
due to the increased cross sections for the QCD processes. Thus a larger number of tenta-
tively diffractive events are rejected due to the additional MPIs. Similarly, decreasing xobsγ

will leave more room for the MPIs to take place, since the momentum extracted from the
photon to the primary jet production is decreased.

A reduction of the pref⊥0-value from 3.00 GeV to 2.28 GeV increases the MPI probability,
thus having a twofold effect. Firstly, it increases the jet cross section in the “PDF”-sample,
as the additional MPIs allowed with the lower reference value increase the energy inside
the jet cone. Secondly, the enhanced MPI probability rejects a larger number of tentatively
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diffractive events, thus giving a larger gap suppression effect. Collectively, these effects lead
to 20 − 30 % larger gap-suppression factors as compared to the γp value for pref⊥0.
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Figure III.16: Cross section for diffractive dijets in ultra-peripheral pPb collisions for observablesW (a),MX (b), xobsγ (c) and zobsP
(d). Vertical bars denote the statistical uncertainty in the MC generation.

6.2 pp collisions

The kinematical cuts applied in pp equals those from pPb. Due to the increased
√
s and

the harder photon spectrum from protons compared to heavy ions, the W range probed is
extended to even larger values. When keeping jet kinematics fixed this leaves more room
for MPIs in the γp-system, while also increasing the relative contribution from resolved
photons. Thus the predicted gap-suppression factors are further increased here, as com-
pared to pPb and ep case, cf. Fig. III.17. At extreme kinematics – high-MX, low-xobsγ – the
gap-suppression factors are almost as large as what have been found in hadronic diffractive
pp events. The pp suppression factors should provide an estimate of the upper limit for
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photoproduction, as the latter includes the (unsuppressed) direct contribution. The sup-
pression factors show a similar sensitivity to the value of pref⊥0 as in pPb collisions, such
that the lower value gives more suppression. Notice that the cross sections are calculated
assuming that the photon is emitted from the beam with positive pz.

A particularly interesting observable is the xobsγ distribution. Due to the extended W reach,
the dijet production starts to be sensitive also to the low-x part of the photon PDFs. Here,
the photon PDF analyses find that gluon distributions rise rapidly with decreasing x, the
same tendency as seen in proton PDFs. This generates the observed rise of the cross section
towards low values of xobsγ when the MPI rejection is not applied. However, the contribu-
tion from the low-xobsγ region is significantly reduced when the rejection is applied, as these
events have a high probability for MPIs. Note, however, that there are large differences in
the gluon distributions between different photon PDF analyses in this region. Thus here a
variation of the photon PDF in the hard scattering could have some effect on the predicted
gap-suppression factor, even though only very mild impact was seen in the HERA compar-
isons. But as most of these events with a soft gluon in the hard scattering will be rejected
due to the presence of additional MPIs, the predicted cross-sections shown in Fig. III.17 is
expected to be rather stable against such variations. Further uncertainty again arises from
the dPDFs. But as the purpose of the shown UPC results is to demonstrate the gap survival
effects, we do not discuss the sensitivity to dPDF variation here explicitly.

7 Conclusions

In this paper we present a model for explaining the factorization-breaking effects seen in
photoproduction events at HERA. The model, implemented in the general purpose event
generator Pythia 8, is an extension of the hard diffraction model to photoproduction. It
is a novel combination of several existing ideas, and it is the first model of its kind with a
dynamical gap suppression based on the kinematics of the entire event.

The starting point is the Ingelman-Schlein approach, where the cross section is factorized
into a Pomeron flux and a PDF, convoluted with the hard scattering cross section. The
Pomeron flux and PDF are extracted from HERA data, but if used out-of-the-box these
give an order-of-magnitude larger cross sections in pure hadron-hadron collisions, while the
differences in photoproduction are around a factor of two at most. Thus, factorization was
observed to be broken in diffractive events with a hard scale. The dynamical model extended
here, explain this factorization breaking with additional MPI activity filling the rapidity
gap used for experimental detection of the diffractive events. Thus the MPI framework
of Pythia 8 is used as an additional suppression factor on an event-by-event basis, giving
cross sections very similar to what is seen in data, both in pp and pp events. As low
virtuality photons are allowed to fluctuate into a hadronic state, MPIs are also possible in
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Figure III.17: Cross section for diffractive dijets in ultra-peripheral pp collisions for observables W (a), MX (b), xobsγ (c) and zobsP
(d). Vertical bars denote the statistical uncertainty in the MC generation.

these systems. Thus the same mechanism is responsible for the factorization breaking in
photoproduction events in ep collisions, and also here the model predicts cross sections
similar to what is seen in ep data.

We present results obtained with the model compared to experimental data from H1 and
ZEUS for diffractive dijet photoproduction. The agreement with the data is improved
when the MPI rejection is applied, supporting the idea behind the factorization-breaking
mechanism. However, the kinematical cuts applied by the experiments reduce the contri-
bution from resolved photons, so the observed suppression is rather mild with the HERA
kinematics, especially for the ZEUS data. The improvements in the dPDFs raises the ques-
tion if such a suppression is actually needed, as the new dPDFs seem to describe data fairly
well without, especially in the direct-enhanced region of phase space. Furthermore, there
are several theoretical uncertainties that hamper the interpretation of the data, and the
description is far from perfect for all considered distributions. Many of these theoretical
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uncertainties could be reduced by considering ratios of diffractive dijets in DIS and photo-
production regimes, but have not been pursued here as the description for DIS in Pythia 8
is not yet complete.

As an additional example for the range of the model, we present predictions for diffractive
dijets in ultra-peripheral pp and pPb collisions at the LHC. In these processes a quasi-real
photon emitted from a proton or nucleus interacts with a proton from the other beam.
Due to the larger invariant masses of the γp system in these processes, the contribution
from resolved photons is significantly increased. Thus UPCs is an excellent place to study
the gap suppression in photoproduction. The results demonstrate that a measurement of
photoproduced diffractive dijet cross sections in pp collisions would provide very strong
constraints on our dynamical rapidity gap survival model, as the effects are much more pro-
nounced than with HERA kinematics. The distinct features of the model are well accessible
within the kinematical limits for UPCs at LHC. If such a measurement is not feasible due
to the pure QCD background, a measurement in pPb collisions would be sufficient to
confirm the factorization breaking in diffractive photoproduction and provide constraints
on the underlying mechanism.

Future work consists of opening up for different photon PDFs in the photoproduction
framework, improving the DIS description in Pythia 8 and merging the two regimes in a
consistent manner. The first allows for probing additional theoretical uncertainties of the
photoproduction framework, the second allows for probing the double ratios of photopro-
duction to DIS cross sections for diffractive dijets. The merging of the two regimes would
allow for full event generation of all photon virtualities needed for future collider studies.
Similarly a combination of the current model and the Angantyr model for heavy ions is
planned, such that eA and ultraperipheral UPCs in AA collisions could be probed as well.
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Abstract: The transverse, spatial structure of protons is an area revealing fundamental
properties of matter, and provides key input for deeper understanding of emerging collec-
tive phenomena in high energy collisions of protons, as well as collisions of heavy ions. In
this paper eccentricities and eccentricity fluctuations are predicted using the dipole formu-
lation of BFKL evolution. Furthermore, first steps are taken towards generation of fully
exclusive final states of γ∗A collisions, by assessing the importance of color fluctuations in
the initial state. Such steps are crucial for the preparation of event generators for a future
electron-ion collider. Due to the connection between an impact parameter picture of the
proton structure, and cross sections of ep and pp collisions, the model parameters can be
fully determined by fits to such quantities, leaving results as real predictions of the model.



1 Introduction

In the research program at the Large Hadron Collider (LHC) and the Relativistic Heavy
Ion Collider (RHIC), collisions of ultra relativistic heavy ions are hypothesized to result
in the creation of a quark-gluon plasma (QGP) with partonic degrees of freedom. One of
the main avenues for investigating and characterizing this plasma consists of measurements
of azimuthal correlations between particle pairs separated in rapidity, connecting particle
emission angles to the initial geometry of the collision. Non-trivial correlations reflecting
collective properties were first observed in gold–gold and copper–copper collisions at RHIC
[1], but has since been investigated also in lead–lead (PbPb) collisions at the LHC [2–4].
Such non-trivial azimuthal correlations had at that point already been hypothesized to be a
signal for hydrodynamic behavior [5], or, even earlier, to involve microscopic dynamics of
overlapping ”quark tubes” or strings [6].

Similar results have been obtained in smaller collision systems such as proton–lead (pPb)
[7], deuteron–gold [8], and, perhaps most surprisingly, in proton–proton (pp) [9]. At-
tempts to observe similar behavior in even smaller collision systems, e.g. e+e−, has, while
carrying interesting prospects, so far not produced positive results [10]. Even though the
discovery of collectivity in pp is almost ten years old, the origin of such correlations in small
collision systems is still highly debated (see ref. [11] for a recent review), and its resolution
is among the top priorities for the future heavy ion program at LHC [12]. One possibil-
ity is that the correlations in these small collision systems are due to coherence effects [13]
or initial state correlations [14]. Another is a repetition of the argument from heavy ion
collisions, where the observed collective behavior is a hydrodynamic response to the initial
partonic spatial configuration [15]. A picture where a hydrodynamic “core” coexists with a
non-hydrodynamic “corona” has been shown by the EPOS model [16, 17] to provide good
descriptions of collectivity even in small collision systems.

The possibility of a hydrodynamic (or in fact any other) response to an initial geometric
configuration of partons, poses a challenge to the traditional strategies for pp event gener-
ators, such as Pythia 8 [18] or Herwig 7 [19], both based on perturbative QCD (pQCD)
with no obvious way to extract a spatial configuration for which to calculate a response.
Attempts to calculate such a structure [20–22] generally involve assuming a certain spatial
distribution of partons in the proton and, using the eikonal approximation, then trans-
ferring this structure to a spatio-temporal structure of the multiple partonic interactions
(MPIs). The immediate drawbacks of such an approach are that (a) such models will in
general contain parameters which need to be fitted to the same type of particle correlations
as they wish to predict, and (b) assuming a spatial distribution of partons in a proton will
generally contain many ad hoc elements.

Even though the spatial distribution of partons in a proton cannot be assessed ab initio, the
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evolution of said distribution can be calculated perturbatively in the formalism of Mueller
[23, 24]. At high energies, average properties will retain little dependence on the initial
configuration, i.e. be mostly dependent on the evolution. Since the transverse substructure
of the colliding protons (or virtual photons) can be linked to total or semi-inclusive cross
sections, any model parameters can be tuned to such quantities, and leave any further
estimation of collective effects as real predictions of the model. Attempts to predict the
elliptic flow in pp collisions using an implementation of Mueller’s model was provided
in 2011 [25], showing v2,3 comparable to values found from PbPb at RHIC and LHC
energies.

This paper is concerned with presenting a new Monte Carlo implementation of Mueller’s
model, study its description of cross sections in pp and γ∗p collisions, in order to provide
estimates on parton level geometries in pp, proton–ion (pA) and ion–ion (AA) collisions,
linked to collective phenomena. Mueller’s model has been implemented as a Monte Carlo
several times before, as it is not only useful for calculating spatial distributions of partons,
but in fact has much wider applications due to the equivalence of the Mueller formal-
ism with B-JIMWLK (Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and
Kovner) [26–33] evolution (see section 2). Such an implementation makes direct intro-
duction of effects beyond the leading logarithmic approximation possible, e.g. conserva-
tion of energy and momentum without imposing kinematical constraints on the splitting
kernel [34]. This makes the implementation attractive for estimation of basic quantities
dominated by small x processes (e.g. cross sections) in cases where little guidance from data
exists. In this paper (see section 7) we will also apply the formalism to extract Glauber–
Gribov (GG) color fluctuations in γ∗p collisions, in order to take the initial steps towards
a generation of electron–ion (eA) collisions within the Angantyr framework [35, 36] –
a possibility which is foreseen to aid the preparation of an eA program currently being
planned [37].

Earlier implementations of the Mueller dipole model include the public Oedipus [38] and
Dipsy [39,40] codes, as well as a private implementation by Kovalenko et. al. [41]. All im-
plementations treat only gluons in the evolution, as will this work. The implementation in
this paper is similar to the implementation in Dipsy in some respects, but differs in other,
while bearing less resemblance to the other two. The key differences between most of the
used approaches, lies in the treatment of effects beyond leading order. In section 2 a more
detailed overview is given, but worth mentioning already here, is the treatment of sub-
leading Nc (number of colors) effects in the evolution, leading to saturation in the cascade.
In Dipsy, this is addressed through so-called swing mechanisms [42, 43], which suppresses
the contribution from large dipoles in dense environments by replacing them with small
dipoles. In this paper we consider only sub-leading Nc effects in the collision frame, by
including multiple interactions in a way consistent with unitarity. Thus we make no at-
tempt at treating saturation effects sub-leading in Nc in the cascade, as the focus is rather to
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study how well one can do with an approach that includes only a minimal set of sub-leading
corrections. Effects included in this paper is energy-momentum conservation and recoil ef-
fects (which are beyond leading log) and confinement (which is a non-perturbative effect).
This also separates our approach from the IP-Glasma approach [44], which includes Nc
suppressed gluon saturation effects in the initial configuration explicitly, and evolve using
B-JIMWLK.

On a more technical note, the approach presented in this paper is implemented within
the larger framework of the Pythia 8 Monte Carlo event generator. This first of all means
that the implementation will become publicly available,¹ and to aid reproducibility and
transparency, a large part of the manuscript, as well as appendix 10, are devoted to the
details of the implemented model. Our approach is simplistic in the sense that only a
minimal amount of corrections to Mueller’s original model has been added, and where
ambiguities have arisen, the simplest possible choice has been taken.

The structure of the paper is as follows: After this introduction, the pQCD model of
Mueller is introduced. Then follows a description on how observables are calculated within
the Good-Walker framework as well as a definition of the observables related to the sub-
structure of protons. The next section describes the overall features of the Monte Carlo
implementation, before we proceed to the results on cross sections, eccentricities and color
fluctuations in processes with incoming virtual photons. Lastly, a section is devoted to
conclusions and forthcoming work.

2 Proton substructure evolution

In this section we will outline the theoretical basis of the initial state evolution approach
used in subsequent sections, and briefly review its relation to other approaches. The theo-
retical basis is the well known dipole QCD model by Mueller et. al. [23, 24].

2.1 Dipole evolution in impact parameter space

We consider in general a picture with a projectile with a dipole structure incident on a
target. In the simplest case, the projectile is just a single dipole r12, spanned between the
coordinates r⃗1 and r⃗2, in impact parameter space. The probability at leading order for this
dipole to branch when evolved in rapidity (y), is

dP
dy

= d2⃗r3
Ncαs

2π2
r212

r213r
2
23

≡ d2⃗r3 κ3. (IV.1)

¹From a future version of Pythia, larger than version 8.300, yet to be determined. See
https://home.thep.lu.se/Pythia for up-to-date information.
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Here r⃗3 is the transverse coordinate of the emitted gluon and κ3 is used as a short-hand for
the splitting kernel. An observable O known initially, will after an infinitesimal interval dy
have the expectation value (denoted by a bar), assuming unitarity:

Ō(y+ dy) = dy
∫

d2⃗r3 κ3 [O(r13)⊗ O(r23)] + O(r12)

[
1 − dy

∫
d2⃗r3 κ3

]
, (IV.2)

where ⊗ denotes the evaluation of the observable O in the two dipole system r13, r23. In
the limit dy → 0 this becomes:

∂Ō
∂y

=

∫
d2⃗r3 κ3 [O(r13)⊗ O(r23)− O(r12)] . (IV.3)

Remarkably, eq. (IV.3) allows for the evolution of any observable calculable in impact pa-
rameter space. In the case of S-matrices in impact parameter space, the evaluation in
the two dipole system reduces to a normal product in the eikonal approximation. Thus
O(r13) ⊗ O(r23) → S(r13)S(r23). Changing to scattering amplitudes, T, by substituting
T ≡ 1 − S, one obtains:

∂⟨T⟩
∂y

=

∫
d2⃗r3 κ3 [⟨T13⟩+ ⟨T23⟩ − ⟨T12⟩ − ⟨T13T23⟩] . (IV.4)

This is the B-JIMWLK equation hierarchy [26–33] in impact parameter space, which, as
shown already by Mueller [45], can be generated directly from eq. (IV.1).

2.2 Non–linear evolution, the color glass condensate and saturation

Equation (IV.4) includes a non-linear term, ⟨T13T23⟩, and the treatment of this term is
defining for many of the various approaches dealing with initial state evolution at low x.

Removal of the non-linear term yields the BFKL (Balitsky, Fadin, Kuraev and Lipatov)
equation [46, 47], which correctly sums all of the leading logarithms in energy (or, more
precisely in rapidity (αs · y)n) to all orders. Other than simply neglecting it, the sim-
plest treatment of the non-linear term is by a mean-field approach, where it factorizes as:
⟨T13T23⟩ → ⟨T13⟩⟨T23⟩. This approximation yields the BK (Balitsky and Kovchegov)
equation [26, 48].

The non-linear term is connected to saturation of the cross section. This is particularly
evident from the BK equation, which is briefly discussed in the following. The dipole-
proton scattering cross section is σ12 ≡

∫
d2b⃗ 2⟨T⟩ (see section 3.1), and directly from

eq. (IV.4):
∂σ̄12

∂y
=

∫
d2⃗r3 κ3

[
σ13 + σ23 − σ12 −

1
2
σ13σ23

]
. (IV.5)
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Here, the first two terms corresponds to a branching of dipole r12 to two dipoles, r13, r23
and the scattering of each of the new dipoles with the proton. The third subtracts the con-
tribution from the initial r12 dipole, as it is destroyed in the creation of the two new dipoles.
The last term has a negative sign, thus the non-linear term can be seen as a reduction, or
saturation, of the dipole-proton cross section, in particular for large y. The saturation of
the cross section corresponds directly to a double scattering contribution, making the re-
sult consistent with unitarity, and we note that the term formally carries an extra factor of
αs/Nc w.r.t. BFKL, and is thus color suppressed.

Color suppressed saturation effects beyond the mean field approximation of the BK equa-
tion are often treated in the Color Glass Condensate (CGC) framework [49,50], an effective
theory for QCD at high gluon densities. High energy nucleons or nuclei are here treated
as classical gluon fields. This allows expressing the dipole-target scattering matrix in terms
of Wilson lines [51]:

S12 =
1
Nc

⟨V†
1V2⟩, (IV.6)

where subscripts (1, 2) denote the transverse coordinates of the quark and anti-quark in
the projectile dipole, keeping in line with the notation introduced above. The Wilson lines
describe the multiple scattering of the quark and antiquark in the dipole, off a classical color
field in the target. The key ingredient is to note that the field can be evolved according to
B-JIMWLK. This is not a trivial statement, but shall here simply be taken as fact, and the
evolution of S12 can be obtained directly from eq. (IV.4):

∂S12

∂y
=

∫
d2⃗r3κ3

[
1
N2

c
⟨V†

1V3V
†
3V2⟩ −

1
Nc

⟨V†
1V2⟩

]
. (IV.7)

From this treatment, where no assumption of individual emissions is made, it is directly
seen that the non-linear term is suppressed by a factor 1/N2

c , and the CGC formalism
thus handles saturation effects in the cascade correctly. The reason not to use the CGC
formalism in this paper, is due to the approximation of the target by a classical field. Since
all small-x gluons in the CGC approach are radiated directly from the classical source,
some fluctuations from successive emissions are omitted. As the goal of this paper is to
study fluctuations in the initial geometry associated with flow fluctuations, we want to go
beyond this approximation.

It is, however, possible to perform a more phenomenological assessment of the effect of
gluon saturation in the cascade, which we will use in section 4.4 to introduce a toy model
for saturation. Equating proton form factors calculated in the DGLAP formalism and
the dipole formalism, indicates that the dipole-proton cross section is proportional to the
squared dipole radius [52], σdip ∼ r2G(x,Q2 ∼ 1/r2), with G the gluon momentum
density of the proton. This means that while small dipoles are unaffected by the non-linear
term, it becomes highly important for large dipoles. This introduces a new length scale, the
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1
r12

2 3
r34
4 →

1

2 3

4
r14

r23

Figure IV.1: Schematic view of two colliding gluon dipoles. The initial dipoles denoted r12 and r34 are allowed to interact via
two-gluon exchange. This results in the creation of two new dipoles, r14 and r23 and a connection of the two dipole
chains. The lines r13 and r24 are not drawn, but enters in eq. (IV.9).

saturation length (or equivalently a saturation scale) rs(x) ∼ 1/Qs, which must depend on x
to reflect the increase in the dipole-proton cross section with decreasing x. Thus the dipole-
proton cross section should depend on the scaling variable r/rs(x) for large r, a property
known as geometric scaling, see e.g. [53].

2.3 The Mueller dipole model

Several approaches have been proposed to utilize the simple, but powerful evolution equa-
tion introduced in eq. (IV.4). What they all have in common, is that the saturation behavior
introduced by the non-linear term is approximated in some way. Here we will focus on
the Mueller dipole model which is particularly suitable for calculation of geometric quan-
tities. Usually, eq. (IV.4) is solved as an initial value problem: given a scattering matrix
at small initial rapidity (y0), it determines the resulting scattering matrix at any y ≥ y0.
Note however, that eq. (IV.3) is applicable for any type of observable calculable in impact-
parameter space, notably observables linked to the geometry of the partonic initial state.
As an example, consider the average vertex coordinate position, ⟨z⟩, where z is either the x
or y coordinate of a dipole. For a single dipole ⟨z⟩ = (z1+z2)/2, for the two dipole system
⟨z⟩ = (z1 + z2 + z3)/3, where the two dipoles has a common point z3, and directly:

∂⟨z⟩
∂y

=

∫
d2⃗r3κ3

(
1
3
z3 −

1
6
(z1 + z2)

)
. (IV.8)

For more complicated geometric observables, such as eccentricity (see section 3.2), the an-
alytic expressions become quite involved, and must be handled observable by observable.
They are, however, quite easy to handle in a Monte Carlo, where any O can be evaluated
event by event, and the expectation value extracted from a large statistics sample.

The starting point for the model, is the evolution of an Onium (or γ∗ → qq) state in
transverse space and rapidity, following eq. (IV.1). Instead of calculating average quantities
directly from the evolution equation, Monte Carlo events are generated, by performing a
probabilistic evolution of a given initial state, corresponding to a collision event performed
by an experiment. The calculational details of performing such an evolution are deferred
to section 4 and appendix 10. It is, however, important to note here the approximation of
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this evolution, namely that all dipoles in the dipole-chain radiate independently, removing
the non-linear effect from the cascade itself.

After a full evolution in rapidity, a single dipole will have evolved to a chain of dipoles, each
of which are allowed to interact with dipoles from another evolved system through gluon
exchange. The lowest order interaction between two dipoles, at amplitude level, is single
gluon exchange, resulting in two gluon exchange at cross section level. This cross section
can be related to the elastic amplitude (cf. section 3.1) through the optical theorem. The
dipole-dipole cross section depends on the distances between the interacting dipoles (the
enumeration of dipoles follows figure IV.1) as [54]:

dσdip

d2b⃗
=
α2
s CF

Nc
log2

[
r13r24

r14r23

]
→α2

s
2

log2
[
r13r24

r14r23

]
≡ fij, (IV.9)

where the arrow indicates that the ’t Hooft large-Nc limit² is taken to reach line 2 of
eq. (IV.9), which then defines fij. The ’t Hooft large-Nc limit is taken in order to en-
sure consistency with the leading logarithmic approximation in the (BFKL) evolution. The
distances rij are indicated in figure IV.1, except for r13 and r24, the distances between (anti-
)color-(anti-)color pairs (1,3) and (2,4). Note that the dipole-dipole interaction is formally
1/N2

c suppressed, but that this is not directly visible from fij as defined in line 2 of eq. (IV.9).

A single collision can contain several dipole-dipole scatterings, equivalent to MPIs in a
standard parton language. Assuming that the individual scatterings are uncorrelated, the
contribution from each scattering exponentiates, resulting in the unitarized scattering am-
plitude for a single event (see section 3.1):

T(⃗b) = 1 − exp

−
∑
ij

fij

 . (IV.10)

An expansion of the exponent into a power series results in factors of (
∑

ij fij)
n. In the ’t

Hooft limit, each part of the expansion of the exponent comes with factors of (1/N2
c )

n.
These higher order terms correspond to the non-linear terms from eq. (IV.4) when counting
factors of 1/N2

c . Formally, one can count two-gluon exchanges and compare to the evolu-
tion kernel, which comes with a factor Ncαs ∼ 1. Thus in the collision frame, the dipole
model with unitarization of the scattering amplitude gives a formalism which correctly re-
sums 1/N2

c suppressed terms. In Regge terminology, each scattering fij can be viewed as
a Pomeron exchange. The first term in the expansion corresponds to single Pomeron ex-
change, and the latter terms to multi-Pomeron exchanges. The scattering amplitude can

²The ’t Hooft large-Nc limit is the limit where factors of αSNc are kept fixed while factors of 1/N2
c are

suppressed.
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thus also be viewed as a resummation of all possible Pomeron exchanges in the collision
frame.

2.4 Dipole evolution beyond leading order

Significant formal progress has been made in the pursuit of systematic next-to-leading order
(NLO) in αs corrections to the BK equation [55] and the full B-JIMWLK hierarchy [56–
58]. Numerical studies of NLO BK [59] have, however, shown that the equation becomes
unstable for some values of the initial conditions, making it yet unsuitable for a full Monte
Carlo implementation. Recent work by Ducloué et. al. [60] have shown that, for a specific
choice of the initial scattering matrix, some problems of unphysical results can be overcome
in the dilute-dense limit, by reformulating the NLO evolution equation w.r.t. rapidity of
the dense target. This gives hope that a future improvement of the model, implemented
as a Monte Carlo in this paper, could include formal improvements beyond leading order,
but at this point it is not deemed feasible.

An approach for going beyond leading color in the cascade, which is also suited for Monte
Carlo implementation, is the so-called ”swing” mechanism, introduced by Avsar et. al. [43,
61]. This can be understood as an extension of the identification of multiple interactions in
the collision frame with Pomeron loops, as presented in the previous section. Since loops
cannot be formed during the BFKL-like evolution, only loops cut in the collision frame
are included. The problem is then posed as equivalent to forming 1/N2

c suppressed dipole
configurations, by allowing dipoles to reconnect in such a way that the formalism becomes
frame independent. This is another viable path for future extensions beyond leading order.
Further work on the formalism is needed, however. Currently only a 2 → 2 dipole swing
has been thoroughly studied, which is not enough to make the formalism fully frame inde-
pendent. Going beyond 2 → 2 is a full study by itself, and not considered in the present
paper.

In this paper we instead choose to include corrections beyond (formal) leading-log arising
from energy–momentum conservation. It is well known that the leading-log BFKL equa-
tion, derived in the high-energy limit, will get sizable corrections at collider energies [62].
From studies of the full next-to-leading log BFKL [63, 64], it is shown that contributions
beyond leading log are very large, and a sizable amount are related to energy-momentum
conservation [65]. In a Monte Carlo such corrections can be implemented directly, see
details in appendix 10. Related are non-eikonal corrections. Non-eikonal corrections arise
due to the large but finite energy available during the cascade. In the CGC approach this
can be understood as sub-leading effects to infinite Lorentz dilation of the projectile, which
are troublesome but manageable analytically [66]. In a Monte Carlo implementation of the
dipole model, the finite energy can be treated as recoil effects in the dipole splittings.
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A non-perturbative effect from confinement is also included in our simulation. This must
be done both in the cascade, where large dipoles must be suppressed, and in the interac-
tion, where the range of the interaction must be limited to take confinement into account.
Following ref. [42], this is done by replacing 1/p2

g in the Coulomb propagator implicitly
entering eq. (IV.9) by 1/(p2

g + M2
g ), where Mg can be taken as a confinement scale, or a

fictitious gluon mass. This changes the expressions for the splitting kernel and the dipole–
dipole interaction probability, the full expressions are written in section 4.

3 From substructure to observables

The following section is dedicated to the introduction of the framework used for linking
partonic substructure to physical observables, such as cross sections and flow coefficients.
First, we describe the Good–Walker formalism for calculating cross sections for particles
with an inner structure, from obtained scattering amplitudes, and secondly, the apparent
scaling of flow coefficients with initial state eccentricity seen in heavy ion collisions is ex-
plained.

3.1 The Good–Walker formalism and cross sections

The Good-Walker formalism is a method of calculating cross sections of particles with
a well-defined wave function. It includes a normalized and complete set of eigenstates
{|ψi⟩} of the imaginary part of the scattering amplitude (neglecting the real part, which is
vanishing at high energies), denoted T̂(⃗b) (related to the Ŝ-matrix through T̂ ≡ 1−Ŝ), with
eigenvalues T̂(⃗b)|ψi⟩ = Ti(⃗b)|ψi⟩. These scattering states have equal quantum numbers,
but differ in masses. The wave function of the incoming beams can thus be expressed in
terms of the above eigenstates, and written in short-hand notation as

|ψI⟩ = |ψp, ψt⟩ =
Np∑
p=1

Nt∑
t=1

cpct|ψp, ψt⟩ (IV.11)

with |ψp,t⟩ denoting the projectile and target wave functions, respectively, and cp,t the ex-
pansion coefficients. The scattered wave function is found by operating with the transition
matrix on the incoming wave function,

|ψS⟩ = T̂(⃗b)|ψI⟩ =
∑
p,t

cpct Tp,t(⃗b)|ψp, ψt⟩ , (IV.12)
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and from these definitions, the profile function for elastic scattering (at fixed Mandelstam
s) can be defined:

Γel(⃗b) =⟨ψS|ψI⟩ =
∑
p,t

|cp|2|ct|2 Tp,t(⃗b)⟨ψp, ψt|ψp, ψt⟩

=
∑
p,t

|cp|2|ct|2 Tp,t(⃗b) ≡ ⟨T(⃗b)⟩p,t , (IV.13)

where we have defined an average over projectile and target states in the last equality and
suppressed indices on T inside the average (which is done in all the following, unless specif-
ically noted otherwise). Thus we obtain the cross sections and elastic slope in the eikonal
approximation (again also at fixed Mandelstam s),

σtot =2
∫

d2b⃗Γ(⃗b) = 2
∫

d2b⃗ ⟨T(⃗b)⟩p,t, (IV.14)

σel =

∫
d2b⃗|Γ(⃗b)|2 =

∫
d2b⃗ ⟨T(⃗b)⟩2

p,t, (IV.15)

Bel =
∂

∂t
log

(
dσel
dt

) ∣∣∣
t=0

=

∫
d2b⃗ b2/2 ⟨T(⃗b)⟩p,t∫

d2b⃗ ⟨T(⃗b)⟩p,t
. (IV.16)

In eqs. (IV.14–IV.16) we have implicitly assumed a particle wave function ⟨ψ|ψ⟩ = 1. In
cases where the wave function is not normalizable, one has to take into account the wave
function in the above cross sections. This includes processes with photons, where the wave
function is well-defined in pQCD for high virtualities. The total γ∗p cross section would
thus require an additional integration over wave function parameters:

σγ
∗p(s) =

∫ 1

0
dz
∫ rmax

0
rdr
∫ 2π

0
dϕ
(
|ψL(z, r)|2 + |ψT(z, r)|2

)
σtot(z, r⃗), (IV.17)

with z the fractional momentum carried by the quark, r the distance between the quark
and anti-quark, ψL,T the longitudinal and transverse parts of the photon wave function
and σ(z, r⃗) the dipole cross section calculated from the elastic profile function, eq. (IV.14).
The photon wave function implemented in our approach is given in eqs. (IV.25–IV.26) and
the discussion for γ∗A is continued in section 7.

3.2 Eccentricity scaling of flow observables

Anisotropic flow is measured as momentum space anisotropies and quantified in flow co-
efficients (vn), obtained by a Fourier expansion of the azimuthal (ϕ) spectrum:

dN
dϕ

∝ 1 + 2
∑
n

vn cos [n(ϕ−Ψn)] , (IV.18)
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with Ψn the symmetry plane of the nth harmonic. For a hydrodynamical expansion, it
has been shown that v2 and v3 are proportional to the initial state eccentricity in the cor-
responding harmonic, vn ∝ ϵn, to a very good approximation [67], with the constant
of proportionality depending on the properties of the QGP transporting the initial state
anisotropy to the final state. A similar relation may be expected when a pressure gradient is
obtained without a thermalized or hydrodynamized plasma [22, 68]. In the following, the
eccentricities will therefore be taken as a proxy for flow observables, noting that the model
imposed for the response may deviate from this linear scaling behavior. In pp and pA
collisions this type of behavior becomes very apparent, due to the dominance of non-flow
effects,³ in particular at small event multiplicities. Non-flow mechanisms aside, it is clear
that no matter what the actual response is, measurable observables will be affected by large
deviations in predicted eccentricities.

We follow the usual definition of the initial anisotropy or participant eccentricity [69,70]:

ϵn =

√
⟨r2 cos(nϕ)⟩2 + ⟨r2 sin(nϕ)⟩2

⟨r2⟩
. (IV.19)

Here r and ϕ are usual polar coordinates, with the origin shifted to the center of the distri-
bution. From eq. (IV.19), higher order cumulants can be calculated:

ϵ2
n{2} = ⟨ϵ2

n⟩, (IV.20)

ϵ4
n{4} = 2⟨ϵ2

n⟩2 − ⟨ϵ4
n⟩, (IV.21)

4ϵ6
n{6} = ⟨ϵ6

n⟩ − 9⟨ϵ4
n⟩⟨ϵ2

n⟩+ 12⟨ϵ2
n⟩3, (IV.22)

33ϵ8
n{8} = 144⟨ϵ2

n⟩4 + 18⟨ϵ4
n⟩2 + 16⟨ϵ6

n⟩⟨ϵ2
n⟩ − 144⟨ϵ4

n⟩⟨ϵ2
n⟩2 − ⟨ϵ8

n⟩. (IV.23)

In nuclear collisions, the normal participant nucleon eccentricity is used as as a baseline.
The notion of “participating” is, however, a model dependent statement. We use the defini-
tion from Angantyr [35, 36], which defines participating nucleons as either “inelastically”
or “absorptively” (inelastic non-diffractively) wounded, see appendix 11 for a brief review.
For pp collisions, and for fluctuations in nuclear collisions, we follow Avsar et. al. [25],
and define a participant parton eccentricity (though somewhat modified from the cited ex-
ploratory work). Assuming that the hydrodynamic evolution takes place at the end of the
perturbative parton cascade, the participant parton eccentricity should be evaluated at this
point in the evolution. In section 6.1 this participant parton eccentricity will be compared
to a more purist initial state approach, where the final state parton cascade is not included.
This is meant to inform a discussion about what the notion of an “initial state” really ought
to entail.

Parton level eccentricities are, however, not infrared safe. Consider the simple example of
a soft gluon emission at the same impact parameter point as its mother. Such an emission

³Including correlations from jets and due to particle decays.
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will double count this spatial point at parton level, but disappear after hadronization, which
will place two such partons inside the same hadron. To improve this, all contributions are
weighted by a factor p⊥/(p⊥+p⊥min), where p⊥min = 0.1 GeV ensures that considerably
soft gluons will not double count.

Normalized symmetric cumulants will also be studied. Such quantities eliminate the de-
pendence on the magnitude of the flow coefficients, and should thus remove the response
factor between flow harmonics and eccentricities, and directly probe the substructure [71].
They are defined as:

NSC(n,m) =
⟨v2

nv2
m⟩ − ⟨v2

n⟩⟨v2
m⟩

⟨v2
n⟩⟨v2

m⟩
≈ ⟨ϵ2

nϵ
2
m⟩ − ⟨ϵ2

n⟩⟨ϵ2
m⟩

⟨ϵ2
n⟩⟨ϵ2

m⟩
, (IV.24)

where the last approximate equality indicates the removal of the response. Especially inter-
esting for this study is NSC(3, 2), it being sensitive to initial-state fluctuations, namely the
geometric correlation between ϵ2 and ϵ3, the elliptical and triangular parts of the Fourier
expansion.

Finally it is noted that, since the model is implemented in a full event generator able to
generate full final states for pp, pA and AA collisions, it is possible to investigate the
event geometry as a function of final state multiplicity with the same acceptance as the
experiment.

4 Monte Carlo implementation

In this section, the Monte Carlo implementation of Mueller’s model is briefly described.
The full details are given in appendix 10. First, the details of the various initial states are
described, then some assumptions on the cascade and the interaction are described, and
lastly, some geometric properties of the evolution are presented.

4.1 The initial states

The new implementation is applicable for both virtual photon and proton beams. A photon
state is represented by a single dipole, with a wave function given as,

|ψL(z, r)|2 =
6αem

π2

∑
q

e2qQ
2z2(1 − z)2K2

0

(√
z(1 − z)Qr

)
(IV.25)

|ψT(z, r)|2 =
3αem

2π2

∑
q

e2qQ
2 [z2 + (1 − z)2] z(1 − z)K2

1

(√
z(1 − z)Qr

)
, (IV.26)
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where we include the three lightest (massless) quarks. Here z is the longitudinal momentum
fraction carried by the quark, (1 − z) the longitudinal momentum fraction carried by the
anti-quark, r is the distance between them, Q2 the photon virtuality and Ki the modified
Bessel functions. For protons, the wave function is not known. In stead it is represented by
three dipoles in an equilateral triangle configuration and normalized to unity. The lengths
of the initial dipoles are allowed to fluctuate on an event-by-event basis, chosen from a
Gaussian distribution with mean r0, and width rw.

4.2 The dipole evolution

To implement eq. (IV.1) as a parton shower, it is modified by a Sudakov factor:

dP
dy d2⃗r3

=
Ncαs

2π2
r212

r213r
2
23

exp

(
−
∫ y

ymin

dyd2⃗r3
Ncαs

2π2
r212

r213r
2
23

)

≡ Ncαs

2π2
r212

r213r
2
23

Δ(ymin, y) , (IV.27)

allowing for a trial emission from each dipole in the cascade. The strategy of “the winner
takes it all” is then employed, such that only the trial emission with the lowest rapidity is
chosen as a true branching. This lowest rapidity then becomes the minimal rapidity in the
next (trial) emission. The process is reiterated until none of the trial emissions are below a
maximal rapidity, governed by the energy of the collision,

pp : ypmax = log

(√
s

mp

)
, (IV.28)

γ∗p : yp,γ
∗

max = log

(
W
m0

)
, (IV.29)

with mp the proton mass, m0 a reference scale set to 1 GeV, and W,
√
s the γ∗p and pp

center-of-mass (CM) energies, respectively. Note that eq. (IV.29) is an approximation to
the actual rapidity available for the dipole formed by a virtual photon. The “true” rapid-
ity is not well-defined for virtual photons, as it depends not only on W, but also on Q2

and momentum fractions carried by the quark and anti-quark ends of the dipole. This
introduces different rapidity ranges available for either end of the dipole, complicating the
evolution further. Equation (IV.29) was chosen as the simplest possible rapidity range.

If confinement is taken into account (as described in section 2.4), the evolution equation
is modified accordingly:

dP
dy d2⃗r

=
Ncαs

2π2
1

r2max

[
r⃗13

|r13|
K1(|r13|/rmax)−

r⃗23

|r23|
K1(|r23|/rmax)

]2

Δ(ymin, y), (IV.30)
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Table IV.1: The input parameters used in this section.

Parameter Value Meaning
r0 [fm] . Mean of normally distributed initial dipole sizes
rw [fm] . Width of normally distributed initial dipole sizes
rmax [fm] . Maximally allowed dipole size (confined evolution only)
αs . Value of fixed strong coupling

with K1 the modified Bessel functions of the first kind and rmax a maximal radius of the
initial dipole, left as a tunable parameter.

4.3 Geometric properties of the dipole evolution

Given a specific parameter set, table IV.1, the probability distribution in rapidity for the
first emission, dP/dy, is shown in figure IV.2. This distribution has a mean at around two
units of rapidity. Thus, on average, a new emission is assigned a rapidity of roughly two
units larger than the mother (or emitter) dipole. It is worth noting that the inclusion of
confinement effects slightly increases the mean as compared to the unconfined distribution.
This is caused by the additional suppression of large dipoles, requiring large dipoles to be
discarded in the evolution and an emission at a larger rapidity to be tried.

In each step of the dipole evolution a mother dipole is split into two daughters. Figure IV.3
shows the distribution in sizes of the smaller and larger dipole, scaled w.r.t. their mothers’
size for three different evolutions (ymax = 4, 8, 12). Here, it is evident that on average the
larger dipole retains the size of the mother, while the distribution of the smaller is much
broader. At lower ymax there is a bump in the distribution at around 30-40 of the mothers
size, while this bump is less pronounced at larger maximal rapidity.

Figure IV.4 shows the corresponding average and standard deviation in the lengths of all the
daughter dipoles scaled w.r.t. the length of their mothers’, as a function of maximal rapidity
of the evolution. As stated above, it is clear that while the larger of the two daughter dipoles
can be taken to be identical to the mother dipole, the size of the smaller dipole has larger
fluctuations. The average size of the smaller dipole is, however, fixed at roughly a third of
the mother dipole for all ymax.

After a full evolution, an initial proton consisting of three dipoles will have evolved to a
larger set of dipoles of mostly smaller sizes than the initial dipoles, cf. figure IV.5. From
these two figures it is evident that the effect of confinement plays a large role in the evolu-
tion, effectively reducing the number of large dipoles in the final configuration. Thus, as
σdip ∼ r2, confinement is expected to play a large role when evaluating the cross sections.
Confinement also introduces more activity – or hot spots – around the endpoints of the
dipoles.
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Figure IV.2: The probability distribution in rapidity for unconfined (a) and confined (b) dipole-evolution. The box shows the
average and spread of the distributions.

4.4 Pascal approximation for dipole evolution

The full dipole evolution can be approximated based on the geometric observation above.
On average one dipole splitting happens per two units of rapidity, and the lengths of the
two resulting dipoles after the splitting, are approximately equal to and one third the size of
the mother dipole respectively. This behavior is tabulated in table IV.2 for four generations
of evolution. Similar results have been observed within the Dipsy framework, although
their dipole swing slightly increases the size of the smaller dipole in a branching [72] to half
of the size of the mother dipole.

The number of dipoles in table IV.2 follows the coefficients of the binomial theorem, with
the number in column n row k being equal to

(n
k

)
, and can thus be arranged to form

Pascal’s triangle. The total number of dipoles after a given number of generation, as well
as the number of dipoles of a certain size, can be quickly approximated this way. Knowing
the positions of the initial dipoles and the emitted dipole sizes, positions of all dipoles can
also be inferred.

To exploit further these simple relations in the dipole evolution, we have created an alter-
native toy-model denoted the Pascal approximation. Here, the step size in rapidity (Δy)
and the size of the smaller dipole (rs = frm) in a branching are implemented as tunable
parameters, with rm the size of the mother dipole and f a tunable fraction. The number of
steps taken in total is calculated from the step size, Nsteps = ybmax/Δy with b = p, γ∗ and
ymax given in eqs. (IV.28–IV.29). To mimic the recoil effects in the full dipole evolution,
a Gaussian smearing of the daughter lengths is introduced with mean µ = rm, rs for the
larger and smaller daughters, respectively. Knowing the lengths of the mother and daughter
dipoles, they are placed in transverse space by calculating the angles of the triangle spanned
by the endpoints of the three (connected) dipoles.
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Figure IV.3: The scaled lengths of the daughter dipoles w.r.t. the mother dipole as a function of maximal rapidity for unconfined

(a,c) and confined (b,d) dipole-evolution. Figures (a,b) shows the larger of the daughter dipoles, while figures (c,d)
shows the smaller of the daughter dipoles. The parameters used in the dipole evolution are the same as presented
in table IV.1.

This simple approximation is useful for introducing toy-models for confinement and sat-
uration effects, as basic quantities like total number of dipoles after a given evolution, can
be calculated analytically. A crude model for saturation (and to some degree confinement)
based on the arguments of a saturation length (rs ∼ 1/Qs) given in section 2.2, is intro-
duced by requiring the length of the emitted dipoles to not exceed a tunable maximally
allowed cutoff, rmax. If this occurs, the branching is discarded and the next step in rapidity
is tried. Once the full evolution has occurred, each of the dipoles are allowed to inter-
act using the dipole-dipole scattering amplitude given in eq. (IV.9) (or eq. (IV.31) for the
confined version).

In fig IV.6(a) the average number of dipoles in a single proton after a full evolution to
maximal rapidity y is shown. The same parameters as given in table IV.1 are used, while the
parameters f,Δy are extracted from figures IV.2 and IV.3. It is evident that the Pascal model
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Figure IV.4: The scaled lengths of the daughter dipoles w.r.t. the mother dipole as a function of maximal rapidity for unconfined

(a) and confined (b) dipole-evolution. The parameters used in the dipole evolution are the same as presented in
table IV.1.

has a different slope than the full dipole model, with the effect of the crude saturation model
introduced clearly seen at large ymax. Here, the Pascal model results in a smaller average
number of dipoles as compared to the full dipole model. As the most direct effect of sub-
leading color effects is removal of soft (low p⊥ corresponding to large r) gluons in the high
energy limit, this is what is expected. When pp cross sections are studied in section 5.2, we
will use this toy model to investigate whether inclusion of saturation effects is necessary.

In figure IV.6 (b) the dipole configuration of an evolved proton for ymax = 8.86 is shown.
This has more features in common with full, unconfined dipole evolution than full, con-
fined dipole evolution, with dipoles being more randomly distributed, than focused around
hot spots.

A practical advantage of the Pascal approximation, besides being a toy model for testing ap-
proaches to saturation, is its computational speed. For simple cascade-quantities like num-
bers of dipoles, results can be calculated analytically. With inclusion of geometry, event-
by-event results can be generated approximately a factor of 1000 faster, for large maximal
rapidity (ymax ≥ 10). It thus serves as a decent replacement for the full dipole evolution
model for calculation of cascade properties with limited computational resources. For full
calculations of amplitudes and cross sections, the efficiency gain is not nearly as large, as in
that case the bottleneck is the calculation of all fij in eq. (IV.9).

4.5 Dipole-dipole interactions

The dipole-dipole interactions are defined to occur at rapidity zero and given by eq. (IV.9).
If confinement is introduced in the splitting kernel (eq. (IV.30)), one also has to change
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Figure IV.5: An initial state proton consisting of three dipoles in an equilateral triangle configuration after a full evolution at 7

TeV (corresponding to ymax = 8.86). (a) has been evolved without confinement, while (b) has been evolved with
confinement. The parameters of table IV.1 have also been applied in this evolution.

the interaction probability in order to make the event generation consistent. This modifies
eq. (IV.9) to

fij =
α2
s

2

[
K0

(
r13

rmax

)
+ K0

(
r24

rmax

)
− K0

(
r14

rmax

)
− K0

(
r23

rmax

)]2

, (IV.31)

where K0 is the modified Bessel function and rmax the maximally allowed size for a dipole
in the evolution.

The choice of collision frame, however, is not trivial. Obviously, no observables should
depend on the frame-choice of the collision. In practice, the choice does matter, as no sub-
leading color corrections are included in the dipole evolution. Previous studies have shown
that for symmetric systems, e.g. pp collisions, the optimal frame choice is the center-of-
mass (CM) frame [73]. This is also utilized in our approach, cf. eq. (IV.28), where both
beams are evolved the same distance in rapidity. In asymmetric systems, such as γ∗p or
pA systems, the CM frame lies more towards the heavier of the two objects, and it has
been previously argued that the optimal frame here would be the rest frame of the heavier
beams [73]. This, however, is not the choice we have taken. The maximal rapidity chosen
in eq. (IV.29) is found in what we call the center-of-rapidity frame. Here, both beams are
evolved the same distance in rapidity, similarly to what is chosen in symmetric collision
systems. As already stated, this work does not attempt to include sub-leading color effects
in the evolution, thus frame-independence is not possible to obtain. Hence the simplest
choice has been made to use the same frame for all systems, i.e. the center-of-rapidity frame
given in eqs. (IV.28–IV.29).
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Table IV.2: Approximate behavior of dipole evolution for four generations of dipoles. The number of dipoles in column n row
k is equal to the binomial coefficient

(n
k

)
.

y =  y =  y =  y =  y = 
r     
r/3     
r/9     
r/27     
r/81     
Ndip     

4.6 Assigning spatial vertices to MPIs

In order to utilize the formalism developed so far in real pp, pA and AA events, the dipole
cascade is matched to the Pythia 8 MPI model [74]. This allows for evaluation of geometric
initial state quantities, such as eccentricities (see section 3.2), at fixed number of charged
hadrons in the final state, using a similar definition of charged particles as the experiments.
The Pythia 8 MPI model considers pp collisions, treating all partonic sub-collisions as
separate 2 → 2 QCD scatterings, which are uncorrelated up to momentum conservation.
Other factors present in the MPI model is a rescaling of the parton density between each
scattering, preservation of valence quark content and a sophisticated treatment of beam
remnants [75].

In the MPI framework, the sub-collisions and their kinematics are selected using the normal
2 → 2 QCD cross section. But since this cross section diverges at low p⊥, the expression
is regulated using a parameter, p⊥0:

dσ2→2

dp2
⊥

∝
α2
s (p2

⊥)

p4
⊥

→
α2
s (p2

⊥ + p2
⊥0)

(p2
⊥ + p2

⊥0)
2 . (IV.32)

For matching of vertices to each individual partonic sub-collision, it is also useful to note
that MPIs are generated in decreasing order of p⊥, starting from a (process-dependent)
maximal scale. This decreasing order is generated from a Sudakov-like expression of the
form:

dP
dp⊥i

=
1
σND

dσ

dp⊥i
exp

[
−
∫ p⊥i−1

p⊥i

1
σND

dσ

dp′⊥
dp′⊥

]
, (IV.33)

with dσ/dp⊥i given by eq. (IV.32). The impact-parameter of the collision is also taken
into account in the evolution by connecting the average number of MPIs to the overlap
O(b) of the two colliding protons. This introduces additional factors of O(b)/⟨O(b)⟩ in
eq. (IV.33) along with the need to select the impact parameter consistently.⁴ Furthermore,
new partons are generated by initial- and final-state radiation.

⁴Here ⟨O⟩ ≡
∫
d2b⃗O(b)/

∫
d2b⃗ [1 − exp(−kO(b))], where k is constrained by the ratio of the damp-

ened 2 → 2 QCD cross section in equation (IV.32) to the total non-diffractive cross section.
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Figure IV.6: (a) The average number of dipoles inside a proton after a full evolution to maximal rapidity y. (b) An initial state

proton consisting of three dipoles in an equilateral triangle configuration after a full evolution with the Pascal model
at 7 TeV (corresponding to ymax = 8.86).

Recently, a method of assigning space-time information to the MPIs in Pythia 8 was intro-
duced [22]. Here, the transverse coordinates are sampled from a two-dimensional Gaussian
distribution defined by the overlap of the mass distributions of the two colliding protons.
The width of the Gaussian is a free parameter (which should not be too far from the proton
radius) and a mean equal to the impact parameter chosen in the MPI framework. Initial-
and final-state radiation are then treated as small displacements of the selected anchor points
of the MPIs. This introduces and additional smearing of an MPI vertex whenever a parton
is radiated off from the partons involved in the MPI. The smearing is done using another
Gaussian with a width of σ⊥/p⊥, where σ⊥ is a parameter with default value 0.1 GeV·fm.

Using the dipole framework to generate space-time vertices requires (as with the Gaussian
model) some assumptions, as this matching can not be derived from first principles. In
order to obtain a reasonable matching, the following is noted:

• Each branch of the (projectile) dipole cascade can be identified as a virtual emission,
which goes on shell if, and only if, it collides with a corresponding virtual emission
from the target.

• Each proton–proton collision has many potential sub-collisions between all combi-
nations of virtual emissions. We order the sub-collisions in terms of contribution to
total cross section, thus the MPI with largest p⊥ is identified with the dipole-dipole
scattering with the largest fij.

The concrete matching is done by first generating two dipole cascades, and allowing them to
collide with the same impact parameter used in the generation of the MPIs. This produces
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a list of possible dipole–dipole collisions, each with an interaction strength fij. As the MPIs
are generated (from hardest to softest), they are each assigned a vertex sampled from this
list with a weight equal to fij, normalized to the summed dipole-dipole interaction strength
(and not the unitarized interaction). The vertex is simply given as the mean of the transverse
coordinates of the dipoles in the interaction. Once a set of dipoles have been assigned to an
MPI, they are both flagged as used, and cannot initially be re-used to ensure a reasonable
spread. In cases where the list runs out of interactions containing only unused dipoles, the
dipoles are allowed to re-interact, though not with the same dipole as initially.

As opposed to the default model, vertices are now selected from a distribution which event-
by-event is asymmetric, and contains ”hot spots” with large activity, as shown in figure IV.5
(b) for the full evolution including confinement effects.

The matching of largest fij to hardest MPI requires further discussion, as one could argue
the opposite. The dipole-dipole scattering amplitude is driven by the distances between the
endpoints of the interacting dipoles, as indicated in figure IV.1. One can argue that small fij
corresponds to small distances, which in turn corresponds to large p⊥ of the gluons emitted
in the interaction. Hard MPIs would with this reasoning correspond to small fij. This is
indeed the choice made in the Dipsy event generator for exclusive final states [40], but
opposite to the choice made above. We do, however, also note that the exclusive final states
generated by Dipsy describes p⊥ spectra of charged particles poorly, in particular the high-
p⊥ part of the distributions vastly overshoots data. We therefore refrain from associating
the dipole sizes directly to the p⊥ of emerging partons, but rather give larger attention to
the cross section. We note that large fij interactions dominate the cross sections. A guiding
principle is therefore to ensure that such interactions are always identified with an MPI, by
assigning it first.

There are several possible future improvements of the matching technique. A small im-
provement of the existing technique, could include to also identify initial state radiation
with emissions going on shell, and assign them vertices from the cascade as such. Going
beyond improvement of matching techniques, would be a full re-evaluation of the MPI
model, with the dipole cascade and interactions as a starting point. Instead of creating a
completely new model like Dipsy, it should be possible to use the dipole model to improve
the existing model. A first step would be to replace σND in eq. (IV.33) with a dynamically
calculated cross section, event-by-event. Secondly, the parameter p⊥0 in eq. (IV.32) could
be re-evaluated in terms of the dipole model. The physical interpretation of p⊥0 in the
MPI model, is that of a color screening scale. The perturbative treatment of eq. (IV.33)
would naively break down at some minimal scale ∼ ℏ/rp ∼ ΛQCD, where rp is the (color
screening) size of a proton, left as a free parameter. In the dipole model, this color screening
length could be identified as either the transverse size of the cascade after the evolution, or
the length of the largest color connected dipole chain. In that way the energy dependence
of p⊥0 would also come for free, instead of having to assume a power-law dependence, as
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is the default assumption in Pythia 8.

Heavy ion collisions

The method described above can be directly applied to heavy ion collisions as they are
modeled in the Angantyr framework for heavy ion collisions in Pythia 8 (see appendix
11 for a brief review, and refs. [35, 36] for a full description). In the Angantyr model, sub-
collisions are chosen using a Glauber-like approach. Sub-collisions are in turn associated
with one out of several types of pp events, depending on the properties of the sub-collision.
Since all these events are generated using the MPI model described above, the generalization
is only a matter of generating vertices for each sub-collision in its local coordinate system,
and then moving them to the global coordinate system defined by the Glauber calculation.

5 Results I – comparing cross sections

In this section we present results on integrated cross sections for pp and γ∗p collisions. For
pp we present results for both the dipole evolution model and for the Pascal model, while
for γ∗p we focus our attention on the dipole model. The main purpose of this section is
tuning: the model parameters have to be estimated by comparisons with data, preferably
data that we do not aim to make predictions for in later sections.

It is thus not the aim of this section to be able to describe the cross sections perfectly –
but more generally, to get an overall agreement between model and data, especially at LHC
energies, where we aim to make predictions for the substructure observables.

More dedicated models are available to describe the cross sections at all energies, from the
GeV range to the TeV range, results of which are shown alongside results from the dipole
model in the pp section. The most widespread model is based on the 1992 total cross section
fit by Donnachie and Landshoff (DL) [76] and the models for elastic and diffractive cross
sections by Schuler and Sjöstrand (SaS) [77]. Another, more recent model by Appleby
et. al. (ABMST) [78] is more complex than SaS, and able to describe latest LHC data
better. The models are both implemented in Pythia 8, with some additions to the original
models [79]. In this paper we compare to the original models, and not those adapted to
Pythia 8.
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Figure IV.7: The total photon-proton cross section, σγ∗p
tot , as a function of squared photon-proton center-of-mass energy, W2,

for several virtualities (a). Note that the distributions for the two highest virtualities (Q2 = 60, 120 GeV2) have
been scaled with a factor of 0.3, 0.1, respectively, for better visibility. (b) shows the ratio MC/data as a function of
squared center-of-mass energy, W2, for the five different virtualities.

5.1 Results for γ∗p

We begin with the results on photon-proton total cross sections. Here, we compare the
dipole evolution model to data obtained from H1 [80] at different energies and virtuali-
ties. We note that the photon wave function implemented only includes the three lightest
quarks, and none of the vector meson states present at low Q2. Thus we expect the results
to be less precise at low virtualities, where the probability for the photon to fluctuate into a
hadronic state becomes non-negligible. Similarly, the masses of the quarks should be taken
into account if the argument of the Bessel functions become close to the squared quark
masses, i.e. if

z(1 − z)Q2 ≃m2
q (IV.34)

occurring in the limits z → 0, 1 or if Q2 small. The contribution from c-quarks are ne-
glected for simplicity, the uncertainty arising from this approximation is discussed at the
end of the section.

The H1 data presents results on the proton structure function F2(x,Q2) at a large range
of virtualities and energies. This is translated into a photon-proton total cross section as
follows:

σγ
∗p

tot =
4π2αemℏ2c2

Q2 F2(x,Q2) (IV.35)

with the CM energy given as W2 = Q2(1 − x)/x and ℏc a unit conversion factor.
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Table IV.3: The parameter values obtained when tuning to the σγ∗p
tot data set and the χ2 obtained for the two models.

γ∗p
Parameter unconfined confined
r0 [fm] . .
rmax [fm] - .
rw [fm] . .
rγ

∗
max [fm] . .
αs . .
χ2/Ndof (shown Q2 values) . .
χ2/Ndof (full H data set) . .

It is evident from figure IV.7 that we undershoot data at lowQ2. At intermediate virtualities
the model does a fairly good job, while at the highest virtuality probed the prediction
overshoots data with roughly 50. In order to quantify the performance of the models, a
χ2 test has been performed, taking into account the errors of the measurement:

χ2 =
∑
i=W2

(D[W2]−M[W2])2

σ2
D[W2]

+ σ2
M[W2]

(IV.36)

with D denoting the cross section measured in data at a given squared energy W2, M the
model prediction for that squared energy and σ2

D,M the variance of the data and model
predictions, respectively.

The model has been tuned with the Professor2 framework [81], and the parameters are
shown along with the χ2/Ndof in table IV.3. The parameters of the tune are reasonable,
giving a initial dipole size roughly of order 1 fm with a width of the Gaussian fluctuations
at around 0.1 fm. Adding confinement allows for a slightly larger initial dipole size, as the
largest dipoles in the evolution will be suppressed as compared to the unconfined model,
while also the upper integration limit on the photon is allowed to increase when turning
on confinement. The width of the fluctuations and the strong coupling appear not to be
affected by the confinement effect. Taking the full H1 data set into account, the confined
model gives a reasonableχ2/Ndof , and performs slightly better than the unconfined model.

Since the charm contribution to the γ∗p cross section has been neglected, an assessment of
the uncertainty arising from this approximation should be made. Adding massless charm
quarks shifts the total γ∗p cross section upwards by 67, estimated by the ratio:

e2u + e2d + e2s + e2c
e2u + e2d + e2s

− 1 = 4/6. (IV.37)

This rise in cross section can be tuned away in a way similar to the procedure described
above. Adding quark masses (lighter quark masses neglected) reduces the contribution.
The reduction is larger for smaller Q2. The quantitative effect of adding masses was studied
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Figure IV.8: The total pp cross section as a function of

√
s for the dipole (a) and Pascal (b) models. Both show the confined

and unconfined versions in solid blue and dashed red lines, respectively. Both figures show the ABMST (solid green
lines) and SaS+DL (solid magenta lines) for comparison.

in ref. [72]. For small Q2 the decrease compared to the massless charm case is ∼ 15%
and for large Q2 the decrease is ∼ 40%. Both represent untuned values. A conservative,
untuned estimate of the uncertainty in figure IV.7 from neglecting (massive) charm quarks
is therefore up to ∼ 25%. Retuning will allow for shifting the cross section upwards in the
lowQ2 region where the values in figure IV.7 undershoots, improving the overall agreement.

5.2 Results for pp

In figure IV.8 we show the total cross section as a function of CM collision energy for both
the full dipole model (a) and the Pascal model (b). Both figures show results using the
confined (solid blue lines) and unconfined (dashed red lines) models as well as the ABMST
(solid green lines) and SaS+DL model (solid magenta lines). It is evident that the full dipole
model undershoots data at low

√
s, whereas it agrees with data at roughly

√
s ≥ 102 GeV,

with the confined model having a smaller χ2/Ndof (cf. table IV.4) than the unconfined
model using only this data set. The Pascal model, figure IV.8 (b), shows an overall shift
towards higher cross sections as compared to the full dipole model, thus describing the
lower energies well while slightly overshooting the higher energies. With only this data
set, both Pascal models have a lower χ2/Ndof than the dipole models. As explained in
section 4.4, the key difference between the models, is the introduction of gluon saturation
by suppressing dipoles with r > rs ∼ 1/Qs, thus indicating that 1/N2

c suppressed saturation
effects in the evolution becomes important for pp. In both figures, it is evident that both
the SaS+DL and ABMST models perform better, not surprising as these models have been
created to reproduce (a subset of ) this data.
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Figure IV.9: The elastic pp cross section as a function of

√
s for the dipole (a) and Pascal (b) models. Both show the confined

and unconfined versions in solid blue and dashed red lines, respectively. Both figures show the ABMST (solid green
lines) and SaS+DL (solid magenta lines) for comparison.

In figure IV.9 we show the elastic pp cross section for the full dipole model (a) and the Pascal
model (b). Neither of the dipole models are able to describe this cross section, being roughly
50 below data in the entire energy range, except for the very last bins, i.e. at LHC energies.
The Pascal model, however, agrees with data at lower energies better than the full model,
again an indication towards 1/N2

c suppressed saturation in the cascade being an important
effect if both the total and elastic cross sections are to be described simultaneously. Also
here, the two dedicated models describe the elastic data better than the dipole and Pascal
models, with the SaS+DL model deviating from the data at LHC energies, while ABMST
describes data in the entire energy range. This is partly due to a modification of the elastic
slope in the SaS model, and partly due to the additional trajectories included in the ABMST
model: where SaS+DL only contains a single Pomeron in the description of the elastic cross
section, ABMST has two – along with additional terms not dominating at these energies.
This of course introduces more freedom to the model, thus a better agreement with data at
high energies.

The last result is the elastic slope at t = 0, shown in figure IV.10. Second to the total cross
section, this is the most important distribution for us to describe, as this is sensitive to the
internal structure of the proton, i.e. the actual impact parameter value used in the calcu-
lation, while e.g. the elastic cross section is only sensitive to the average impact parameter.
Figure IV.10 again shows the results for the full dipole model (a) and the Pascal model (b).
Here, both models are undershooting the data by roughly 50 in the entire energy range,
except that the dipole model is able to describe data in the very last bin. Also here, the
ABMST and SaS+DL models predictions are closer to the data than the dipole and Pascal
models.

Also evident from figure IV.10, is that the suppression of dipoles with r > rs has little effect
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Figure IV.10: The elastic slope for pp collisions as a function of

√
s for the dipole (a) and Pascal (b) models. Both show the

confined and unconfined versions in solid blue and dashed red lines, respectively. Both figures show the ABMST
(solid green lines) and SaS+DL (solid magenta lines) for comparison.

for lower energies, with the effect only visible at LHC energies. Instead we expect that the
introduction of a running strong coupling would aid in the description of the data. This
introduction would have to appear in two places: in the dipole evolution and in the dipole-
dipole scattering. A larger strong coupling in the evolution decreases the average step size
in rapidity and increases the average size of the emitted dipoles, thus allowing for a larger
number of larger dipoles at the end of the evolution. This, along with the increased dipole-
dipole scattering cross section with increased strong coupling, would essentially increase
all the cross sections, and thus also the elastic slope. The scale choice in such a running
coupling would not be obvious, however, and we thus postpone the inclusion of a running
coupling to future work.

The combined results on σel, σtot and the elastic slope deserves a further comment. From
the optical theorem the differential elastic cross section is:

dσel
dt

=
σ2
tot

16π
(1 + ρ2). (IV.38)

Neglecting the real part of the amplitude puts ρ = 0. The left hand side is often approx-
imated by an exponential: dσel/dt = exp (Bel · t), giving σel = σ2

tot/(16πBel) when
integrated over t. The results in figures IV.8, IV.9 and IV.10 are not in agreement with this
simple proposition. This can either mean that the exponential approximation is not a good
one (which is manifestly true for large |t|), or that Bel can not be adequately calculated by
a Fourier transform of T(b).

Table IV.4 shows the parameters obtained when tuning to all three observables (σtot, σel,Bel)
using Professor2. We also show the χ2/Ndof for three data sets of various sizes. It is strik-
ing that the inclusion of the elastic cross section to the χ2-calculation swaps the behavior of
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Table IV.4: The parameter values obtained when tuning to the σtot, σel, Bel data set and the χ2 obtained for the different
models.

Full dipole model Pascal model ABMST SaS+DL
Parameter unconfined confined unconfined confined
r0 [fm] . . . .
rmax [fm] - . . .
rw [fm] . . . .
αs . . . .
fr - - . .
Δy - - . .
χ2/Ndof : σtot . . . . . .
χ2/Ndof : σtot, Bel . . . . . .
χ2/NDof : σtot, Bel, σel . . . . . .

the full dipole model – without the elastic data set, the confined model has a lower χ2/Ndof

than the unconfined model, while the opposite is true with the inclusion of the elastic cross
section. This swap is caused by the first two data points in the elastic cross section, where
the unconfined version of the full dipole describes data slightly better than the confined
version. The parameters obtained with the tunes again show the behavior observed in γ∗p:
adding confinement allows for an increased initial dipole size and slightly larger fluctuations
around this size. The initial dipole size seems reasonable for both the confined dipole model
and the unconfined Pascal model, giving sizes of the order r0 ∼ 0.7−1. fm also confirmed
by Dipsy (r0 ∼ 0.7 fm) and proton charge radii measurements (giving roughly r0 ∼ 0.9
fm). Thus the unconfined dipole model seems to be giving too small initial dipole sizes and
the confined Pascal model too large. This behavior is, however, balanced by the increased
αs for the unconfined dipole model and the decreased value for the confined model.

As already stated, the inclusion of a running strong coupling is expected to improve results
for both the dipole and Pascal model. Saturation in the dipole cascade is also expected to
have an effect, as the Pascal model in general has a lower χ2 than the dipole model. As
we currently are aiming to describe proton substructure at the TeV scale, we can, however,
ignore the small deviations from σtot and Bel at lower energies for the moment.

6 Results II – eccentricities in small and large systems

In this section we turn our attention to predictions related to the geometry of an event. The
parton-level eccentricities of both small and large systems are examined using the matching
between the dipole model and the MPI framework described as in section 4.6. Results from
the dipole model⁵ are shown along with the default models of Pythia 8: in pp collisions,

⁵We do not show eccentricities calculated using the Pascal approximation, as it is, at this point, mainly
intended as a toy model for studying effects of gluon saturation from an imposed saturation scale. If the Pascal
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the default scheme of Pythia 8 is a transverse placement according to a 2D Gaussian, while
for larger systems two default Pythia 8 methods are available – the usual Glauber approach
and the 2D Gaussian pp model extended to larger systems. In order to compare to data,
all events are hadronized with Pythia 8 after the parton-level eccentricities are calculated.
Results are presented and in a single case compared to data from ALICE [82]. Parton level
eccentricities were calculated with a p⊥ weighting, cf. section 3.2, and events accepted if
they passed the ALICE high-multiplicity trigger. Eccentricities and normalized symmetric
cumulants are presented as a function of average central multiplicity (|η| < 0.8).

Recall from section 4.6 that Pythia 8 includes a p⊥-dependent Gaussian smearing of parton
vertices in the initial- and final-state shower. It is not clear from first principles whether
such effects should be included in the calculation of geometric quantities or not. Consider,
on one hand, creation of a QGP at early times, right after the collision. Here a parton
shower will not be able to influence the geometry of the event, before a hydrodynamic
response should be taken into account. On the other hand, one can imagine a system with
large gradients (such as a small collision system) which will take time to hydrodynamize,
and will therefore be influenced by geometric fluctuations from the final state shower as
well. It is important to note, however, that no QGP is assumed in any results presented
below as no QGP is assumed in neither Pythia 8 nor Angantyr.

Opening up for a discussion, we show results in figure IV.11 with and without shower. It is
evident that the eccentricities are vastly affected by the models. First consider the simplest
case, i.e. placing all MPIs in the proton center and not introducing any shower smearing.
This gives no eccentricity as expected, cf. solid black line in figure IV.11. Symmetric distri-
butions, such as the 2D Gaussian shower smearing and the MPI vertex assignment, should
in principle give no eccentricity. But, as we are sampling only a finite number of MPIs from
such symmetric distributions, an eccentricity does appear for these models, cf. dashed red
and dashed black lines of figure IV.11. The two methods overlap, thus the exact same effect
can be introduced with either (a) no MPI vertex assignment with a Gaussian smearing from
the shower or (b) a Gaussian MPI vertex assignment and no shower smearing. That the two
overlap is not so surprising as both are Gaussian smearings, and applying such a smearing
during the shower or assigning it to the MPIs should make no difference: both methods
give rise to a more lenticular overlap region of the two colliding protons.

Applying Gaussian smearing twice, i.e. both in the MPI vertex assignment and during
the shower smears the lenticular shape from the MPI assignment slightly, thus causing the
eccentricity to drop, cf. the solid red line in figure IV.11. The largest effect on the eccentricity
is seen when purely considering MPI vertex assignment with the dipole model, cf. the
dashed blue line in figure IV.11. The eccentricity with the dipole model is approximately
twice as large as with the Gaussian model, thus indicating that event-by-event asymmetries

approximation should be used for studies of eccentricities, we should point out that the large spread in daughter
sizes as seen in figure IV.4 must be incorporated, in order to provide reasonable estimates for flow fluctuations.
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Figure IV.11: The eccentricities in pp collisions obtained with the several different options: No MPI vertex assignment and no
shower smearing (solid black lines), no MPI vertex assignment, with shower smearing (dashed black lines), the 2D
Gaussian MPI vertex with/without shower smearing (solid/dashed red lines, respectively) and the dipole model MPI
vertex assignment with/without shower smearing (solid/dashed blue lines).

in the initial state gives rise to larger fluctuations and thus larger eccentricities. Adding the
Gaussian shower smearing on top of the dipole model, solid blue line of figure IV.11, washes
out some of these features – i.e. makes the almond shape of the overlap region rounder.

Figure IV.12 shows the eccentricities ϵ2,3{2} in three different systems. Beginning with ϵ2
we observe in pp that an asymmetric proton state gives rise to a larger eccentricity than
the symmetric proton state, also shown in figure IV.11, ranging from 0.5 at low multiplicity
to roughly 0.4 at higher. The same decrease is observed in the symmetric proton, albeit
with eccentricities roughly 20 less than with the asymmetric state. Proceeding to larger
systems, pPb andPbPb, it is evident that the same trend is seen: the dipole model gives rise
to larger ϵ2 than the symmetric model. The Glauber model, however, is consistently larger
than the other two models at low multiplicity, while all three models appear to approach the
same eccentricity at higher multiplicities. Thus it becomes evident that the proton initial
state does have an effect on eccentricities, and that it is especially evident in low-multiplicity
events, e.g. peripheral PbPb collisions.

Unfortunately, the low-multiplicity events are often marred by large non-flow effects. Mea-
suring the eccentricities with higher-order cumulants can remove some of the contributions
from non-flow, thus making it easier to compare data to models. We present results for ϵ2
with higher-order cumulants in appendix 12, as the results are similar in shape as figure
IV.12, but differ in normalization. Figure IV.12 (b) show ϵ3{2} for all three systems. Here,
it becomes more difficult to distinguish between the models in symmetric systems, while a
large discrepancy between the Glauber approach and the other two is seen in pPb.

Another feature seen in figure IV.12 is that the dipole model gives roughly the same results
for ϵ2,3 in both pp and pPb collisions. If one assumes that the response functions are
the same for the two systems (however one may have obtained these response functions,
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Figure IV.12: The second (b) and third (c) order eccentricities using two-particle cumulants for pp, pPb,PbPb collisions (solid,

dashed, dotted, respectively) using the Glauber (black), Gaussian (red) and dipole (blue) models.

QGP or by string-string interactions), the ratio of pPb to pp eccentricities should thus be
comparable to the ratio of flow coefficients measured with the ALICE detector. This ratio
is shown in figure IV.13 for the second-order eccentricity. Both the Gaussian and dipole
models are compatible with the ALICE data, however, so we cannot presently discriminate
between the two. Additional measurements of the flow coefficients in low-multiplicity
events are thus required in order to discriminate between models in this observable.

Figure IV.13 (b) shows the normalized symmetric cumulant, NSC(3, 2). This has been
constructed to study the correlations between the eccentricities and normalized to the un-
correlated eccentricities in order to remove the effects of the response function. ALICE
reports that all three systems have the same NSC(3, 2) at the same average multiplicity, in-
dicating that the correlation between the flow coefficients are the same in different collision
systems. We observe no such effect. Focusing on the dipole model, the correlations appear
equal in magnitude for pp and pPb, but PbPb results are consistently below the smaller
systems. Results for the Gaussian model shows no similarities at all between systems, as
the pPb NSC(3, 2) is positive, while pp and PbPb are negative. Thus the normalized
symmetric cumulants for pPb systems would be an ideal place to discriminate between the
symmetric and asymmetric initial state. PbPb results for all three models are in agreement
with IP-Glasma predictions presented in the ALICE paper. The main difference between
the dipole model and the IP-Glasma approach is the inclusion of saturation in the cascade
of the latter. As the two approaches give similar results, we do not find that saturation plays
a large role in this observable.
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Figure IV.13: (a) The ratio of second order eccentricities obtained in pPb w.r.t. the baseline pp sample using the Gaussian (red)

and dipole (blue) models. Data points calculated from ALICE figures [82]. (b) The normalized symmetric cumulants
NSC(3, 2) for pp, pPb,PbPb collisions (solid, dashed, dotted, respectively) using the Glauber (black), Gaussian
(red) and dipole (blue) models.

6.1 Flow fluctuations in pPb collisions

Recently, CMS presented results on multi-particle correlations using higher-order particle
cumulants in pPb collisions [83]. Ratios of the flow-coefficients based on these cumulants
were presented, including the first measurements of the ratio of v3{4}/v3{2} in pPb. In
figure IV.14 we show the predictions for the ratios with the confined dipole model and the
default Gaussian model as a function of multiplicity. Both models reasonably reproduce
the shape seen in the elliptical ratio, figure IV.14 (a) showing v2{4}/v2{2}, while the nor-
malization of the dipole model is slightly better than with the Gaussian model. For the
triangular ratio, figure IV.14 (b), both models appear to undershoot data at high multi-
plicities, where data is available. As opposed to model predictions presented in the CMS
paper [84,85], our predictions have not been applied a 10 ad hoc increase in normalization.
And where the model predictions presented in [84, 85] predicts roughly the same ratio for
both ϵ2 and ϵ3, neither the dipole nor the Gaussian model predicts the same normalization
for the two ratios, cf. the height of figure IV.14 (a) and (b) differs.

Figure IV.15 shows the higher-order cumulant ratios for elliptic flow as a function of the
lower-order ratio presented in figure IV.14 (a). For higher order cumulants, the Gaussian
model predicts purely imaginary values for even powers of the cumulants, hence it has been
left out of the figures. The dipole model, however, is able to describe data reasonably well.
The dipole predictions decrease with decreasing v2{4}/v2{2} ratio in figure IV.15 (a), while
being roughly constant at unity in figure IV.15 (b). This is in accordance with the model
predictions presented by CMS [86], assuming a non-Gaussian model for the initial state.
We note that the eccentricities presented with the dipole model here are (a) based on a
pQCD model, and (b) related to final state multiplicities calculated in the same acceptance
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Figure IV.14: Ratios of vn{4}/vn{2} with n = 2 (a) and n = 3 (b) as measured by CMS as function of multiplicity in pPb

collisions, compared to eccentricity ratios calculated with the Gaussian and the dipole models.

as the experiment.

7 Results III – dynamic color fluctuations in Glauber calculations

A general feature of several models describing both collisions of protons and of nuclei, is
the notion of interacting nucleons and nuclear sub-collisions, calculated in the formalism
of Glauber [87, 88]. The basic formalism is mainly concerned with calculating the full AA
scattering matrix or amplitude from knowledge of the nucleon-nucleon amplitude and spa-
tial positions. Multiple interactions between nucleons factorize in transverse coordinates,
so in the eikonal limit the S-matrix for scattering between two nuclei A and B becomes:

Ŝ(AB)(⃗b) =
A∏

i=1

B∏
j=1

Ŝ(NiNj)(⃗bij), (IV.39)

where i and j denote the individual nucleons, b⃗ is the nucleus–nucleus impact parameter
and b⃗ij is the nucleon–nucleon impact parameter. We will here consider the simplifying
case where only one projectile (either p or γ∗, called n below) collides with a nucleus (A),
which reduces eq. (IV.39) considerably:

T̂(nA)(⃗b) = 1 −
A∏

i=1

Ŝ(nNi)(⃗bni) = 1 −
A∏

i=1

(1 − T̂(nNi)(⃗bni)). (IV.40)

If no fluctuations in the interaction are included, the projectile-nucleon elastic amplitude
can be inserted, and the total and elastic cross sections can be calculated directly from
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Figure IV.15: Correlations between higher order flow harmonics as measured by the CMS experiment, compared to correlations

between higher order eccentricity ratios calculated in the dipole model.

eqs. (IV.14–IV.15). If fluctuations for projectile and target are included, as calculated for
example in the dipole model, the amplitude will depend on the states of target (ti) and
projectile (p) respectively. As shown in section 3.1, the elastic amplitude can be calculated
as an average over all states. In ref. [89] it was pointed out that in the evaluation of such an
average, the projectile must remain frozen in the same state throughout the passage of the
target. Similar to eq. (IV.13) the elastic profile function (at fixed Mandelstam s) for a fixed
state (k) of the projectile scattered on a single target nucleon (all states) becomes:

Γk(⃗b) = ⟨ψS|ψI⟩ = ⟨ψk, ψt|T̂(⃗b)|ψk, ψt⟩ = (ck)2
∑
t

|ct|2Ttk(⃗b)⟨ψk, ψt|ψk, ψt⟩

= (ck)2
∑
t

|ct|2Ttk(⃗b) ≡ ⟨Ttk(⃗b)⟩t, (IV.41)

where previously suppressed indices k and t on T are spelled out for clarity. For a projectile-
nucleus collision, with the projectile frozen in the state k, the relevant projectile-nucleon
(nNi) amplitude becomes:

⟨T(nNi)
ti,k (⃗bni)⟩t ≡ T(nNi)

k (⃗bni). (IV.42)

In the short hand notation on the right hand side, the average over the repeated index
t is suppressed. This is the amplitude used to determine which nucleons are “wounded”
in a collision. If the purpose is to determine which nucleons participate in the collision
either elastically or inelastically, the differential wounded cross section can be calculated
with the normal differential pp total cross section as an ansatz, dσtot/d2b⃗ = 2⟨T⟩p,t from
eq. (IV.14). Since the projectile should be frozen in the state k, the expression for T from
eq. (IV.42) is inserted to the differential pp total cross section. This just recovers the normal
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total projectile-nucleon cross section:

dσtot

d2b⃗
= 2⟨Tk⟩p = 2⟨⟨Tt,k⟩p⟩t = 2⟨T⟩p,t. (IV.43)

In a Monte Carlo, the number of wounded nucleons can then be generated by assigning
each projectile or nucleon a radius of

√
σtot/2π, where the expression in eq. (IV.43) has

been integrated over d2b⃗ to give σtot. Normally one is not interested in the number of
wounded nucleons including elastic interaction, but rather those that contribute to particle
production (i.e. where there is a color exchange). A usual approach is to just use the inelastic
cross section in place of σtot in the Monte Carlo recipe. This does, however, not account
fully for color fluctuations, as the inelatic cross section is modified when averaging over
target states with a frozen projectile. Instead of directly using the inelastic cross section in
the Monte Carlo, the modified cross section should be used. This cross section was dubbed
the “wounded cross section” in ref. [35], and can be constructed by generalizing the inelastic
cross section, using eq. (IV.42). The inelastic cross section can from eqs. (IV.14–IV.15) be
directly written down as:

dσinel

d2b⃗
= 2⟨T(⃗b)⟩p,t − ⟨T(⃗b)⟩2

p,t. (IV.44)

When the frozen projectile is taken into account by inserting T from eq. (IV.42), the usual
expression is now not recovered, but the average over targets must be made before squaring
the second term:

dσw

d2b⃗
= 2⟨Tk(⃗b)⟩p − ⟨T2

k (⃗b)⟩p = 2⟨T(⃗b)⟩t,p − ⟨⟨T(⃗b)⟩2
t ⟩p, (IV.45)

with internal indices again suppressed in the last equality. In a Monte Carlo this can be
generated as above, now only by inserting σw in place of σtot.

Generalizing this procedure to γ∗A collisions requires additional considerations. Starting
from the elastic profile function for γ∗p, a contribution from the photon fluctuating to a
dipole state must be included. Examining only the hadronic (non–VMD) components of
the photon state, gives:

|γ∗⟩ ∼ c1|qq⟩+ c2|qqg⟩+ higher order Fock states (IV.46)

where quark helicities have been neglected. We keep only the first (leading order) term, as
the higher order Fock states are included in the dipole evolution. Thus with a photon wave
function given in eqs. (IV.25–IV.26), we obtain:

|γ∗⟩ =
∫

dz
∫

d2⃗r
(
|ψL(z, r)|2 + |ψT(z, r)|2

)
|ψI(r, z)⟩, (IV.47)
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with |ψI⟩ a dipole state. The elastic profile is now:

Γel(⃗b) =
∫

dz
∫

d2⃗r ⟨ψS(z, r⃗)|T̂(⃗b)|ψI(z, r⃗)⟩⟨ψI(z, r⃗)|γ∗⟩

=

∫
dz
∫

d2⃗r (|ψL(z, r⃗)|2 + |ψT(z, r⃗)|2)⟨T(⃗b)⟩p,t. (IV.48)

The wounded cross section for γ∗A collisions can now be defined. The first interaction is
calculated using the photon wave function in the elastic profile function, leading directly
to:

dσw

d2b⃗
=

∫
dz
∫

d2⃗r (|ψL(z, r⃗)|2 + |ψT(z, r⃗)|2)(2⟨T(⃗b)⟩t,p − ⟨⟨T(⃗b)⟩2
t ⟩p). (IV.49)

This first interaction has now turned to photon from a superposition of all dipole states
into a single, specific dipole (or vector meson). This is the state that the projectile should
be frozen to throughout the passage of the nucleus: the first interaction chooses a specific
dipole state |ψI⟩z,⃗r with given z and r⃗. This reduces the elastic profile function for the
secondary interactions to the well known eq. (IV.13), from which a differential wounded
cross section has already been calculated (eq. (IV.45)).

Thus, in a Monte Carlo, the number of wounded nucleons can be generated with the
following method:

• First by selecting, for each event, a dipole with r and z corresponding to the wave
function weight, wγ in eq. (IV.85)

• Secondly, testing if any nucleons are hit including the photon wave function nor-
malization proportional to αem (i.e. according to eq. (IV.48))

• If any nucleons are hit, then subsequently testing all (other) nucleons, w.r.t. the
dipole-target weight (i.e. eq. (IV.13))

In the following section, color fluctuations from the introduced dipole model (where T(⃗b)
can be evaluated directly from eq. (IV.10)) are compared to a parametrized approach for
fluctuations in pp collisions and γ∗p collisions, and finally for γ∗A.

7.1 Color fluctuations in pp, γ∗p and γ∗A collisions

Fluctuations in the pp cross sections, to estimate the influence of fluctuations in pA colli-
sions, are often parametrized using [90–92]:

P(σ) = ρ
σ

σ + σ0
exp

(
−(σ/σ0 − 1)2

Ω2

)
, (IV.50)
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Figure IV.16: (a) Fluctuating cross section in pp at

√
s = 5 TeV, compared to a GG fit (eq. (IV.50)) and a log-normal fit (eq. (IV.87)).

(b) Fluctuating cross section in γ∗p at W2 = 5000 GeV2 and various Q2, calculated with the dipole model (the
double peak structure for Q2 = 20 GeV2 is a statistical fluctuation). The cross section is shown on a logarithmic
horizontal axis, to assess the log-normal approximation (cf. eq. (IV.87)).

where σ0 and Ω are parameters, and ρ is a normalization constant. In ref. [35] is was found
that a log-normal distribution (see eq. (IV.87) in appendix 11) describes fluctuations gen-
erated by a dipole approach better. In figure IV.16 (a) both parametrizations are compared
to the fluctuating total cross section in pp at

√
s = 5 TeV, integrated over d2b⃗.

While the log-normal distribution does better in capturing the skewness of the distribution,
none of the two parametrizations fully describes the distribution. The problem increases
in γ∗p for several reasons. First of all, any parametrization must include the correct de-
pendence on DIS kinematics, which changes the average cross section, cf. figure IV.16 (b).
Here is shown the cross section distributions for three values of Q2 all with W2 = 5000
GeV2 with a logarithmic first axis. This allows for a by-eye assessment of the validity of
a log-normal fit, as a log-normal distribution is Gaussian with such choice of axes. It is
seen directly that fluctuations in the high-σ tails are too large to be described by such a
parametrization.

Instead of the parametrization approach, the wounded cross section can be calculated di-
rectly from the dipole evolution. This also allows for simultaneous calculation of both the
part including electromagnetic contributions, and the pure dipole part (given z and r), as
introduced in the previous section. This allows directly for a calculation of the distribution
of wounded nucleons in a γ∗A collision, as shown in figure IV.17. In the figure, the nu-
cleus is taken to be Au-197, colliding with a virtual photon with W2 = 5000 GeV2 for a
range of Q2 values, compatible with projected EIC design [37]. Two methods of calculating
wounded nucleons are presented: the full treatment using a frozen wave function, where
the photon wave function has collapsed to a dipole state when probed by the first collision,
and the naive black disk approach, where the photon re-forms after the full collision and
no fluctuations are included. In such a treatment, the cross section for additional collisions
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Figure IV.17: Number of wounded nucleons in a γ∗Au collision with W2 = 5000 GeV2 and a range of Q2, comparing a
treatment with the projectile wave function (denoted wf. in legend) frozen throughout the passage of the nucleus,
to a naive black disk approach.

has an additional factor α2
em compared to the frozen treatment, from the normalization of

the wave function. It is directly visible that a full treatment is necessary in order to provide
reasonable phenomenological projections for a new collider.

8 Conclusion and outlook

One of the main challenges for the understanding of collective effects, is to grasp how
the well-known understanding of flow results from heavy ion collisions can be transferred
to collision of protons with protons and heavy nuclei. In this paper we have presented a
Monte Carlo implementation of Mueller’s dipole model with several sub-leading correc-
tions, and with all parameters of the model fixed to total and semi-inclusive cross sections
calculated within the Good-Walker formalism. This model thus allows for the calculation
of proton substructure without tuning any model parameters to observables sensitive to
said substructure.

The current implementation of the model includes:

• BFKL evolution of projectile and target states, be it protons or photons, in rapidity
and impact parameter space.
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• Sub-leading corrections in the evolution:

1. Energy-momentum conservation.

2. Non-eikonal corrections in terms of dipole recoils.

3. Confinement effects by the introduction of a fictitious gluon mass.

• Projectile–target interactions using the unitarized amplitude, which in a Regge field
theory language corresponds to multi-Pomeron exchange and Pomeron loops.

• Matching to the Pythia 8 MPI model, in order to assign spatial vertices to produced
partons in pp collisions.

• Generalization to heavy ion collisions through the Angantyr framework.

Besides the implementation of the dipole model, a simpler version has been provided, based
on the geometric properties of the dipole evolution. This model, denoted the Pascal ap-
proximation, allows for easy insertion of saturation toy-models, thus giving a handle on
the importance of such effects. From the comparisons to the total and semi-inclusive cross
sections we observe that 1/N2

c suppressed gluon saturation in the cascade is important, if
both the total and elastic cross sections are to be described simultaneously.

We have shown that given simple, but reasonable, assumptions of a final–state response
(from e.g. hydrodynamics or interacting strings), the eccentricities produced with the im-
plementation provides a reasonable description of flow data from the ALICE and CMS
experiments. This includes non-trivial observations such as ratios between pA and pp flow
coefficients at fixed event multiplicity, normalized symmetric cumulants in different sys-
tems, and ratios between different order flow harmonics in pA collisions. All are signatures
which cannot be described in a simpler model, where the spatial structure of MPIs are as-
sumed to be distributed according to a rotationally symmetric distribution. We want to
stress that even though we have here chosen flow-type observables to illustrate the effect
of the space-time structure of the initial state on observations of collective effects, effects
linked to enhancement of strangeness and baryon production [93–95] and even modifi-
cations of jets in high multiplicity pp collisions [96, 97] are expected to be influenced as
well.

Lastly, we have provided the initial steps towards the generation of fully exclusive final
states in electron-ion collisions, by determining the importance of color-fluctuations in the
collisions with virtual photons. We have shown that previous parametrizations from pp
collisions do not fully capture the color-fluctuations predicted by the dipole formulation
of BFKL evolution, and thus argue that it is better to calculate the cross sections directly
from the dipole model – which has not been possible in the Angantyr model before this
work. Secondly, we stress that the collapse of the photon wave function at first interaction
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provides a larger number of wounded nucleons as compared to the black disk approxima-
tion. Each of the wounded nucleons are expected to give rise to final state activity, thus
more complicated final states are expected with the proper treatment as opposed to the
naive expectations.

The implemented dipole model can be improved in several ways, including:

• Running αs in the dipole evolution and in the scattering, which will capture some
of the NLO corrections in αs.

• On longer term, an inclusion of full NLO-BK should be the goal, though further
theoretical development is needed first.

• Gluon saturation effects in the cascade, which are 1/N2
c suppressed, such as those

included in the CGC formalism. To maintain the current treatment of the effect of
gluon branchings in the cascade (as opposed to CGC), this could be included by the
introduction of a simple swing mechanism, e.g. a mock 2 → 1 dipole recombina-
tion.

• Several improvements are expected w.r.t. the initial dipole configuration in protons
and photons, as well as in the wave functions of these particles. This includes adding
the VMD contribution to the photon wave function, to be able to study lower Q2

and vector meson production in various processes.

• New ways of treating MPIs in pp collisions by fully merging the dipole approach with
more traditional approaches are foreseen. It is our hope that this could provide new
tools to improve understanding of particle production mechanisms across collision
systems.

Detailed understanding of the interplay between the proton geometry, color suppressed
saturation effects and the response of final state interactions in hadronic and heavy ion col-
lisions, is crucial for the understanding of collectivity and particle production mechanisms.
Since detailed understanding requires tools which are both accessible and transparent, it is
our hope that the detailed treatment presented here, and the accompanying open Monte
Carlo implementation, can help facilitate this process.
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10 Appendix: The dipole model

Below we go through the details of the dipole model not included in sections 2.3 and 4.

We here work with light cone momenta,

p± = E± pz, (IV.51)

and can thus define the rapidity as

y =
1
2
log

(
p+
p−

)
= log

(
p+
p⊥

)
, (IV.52)

with the latter equality valid for massless particles. Hence we can express the lightcone
momenta in terms of dipole p⊥ and rapidity,

p± = p⊥ exp(±y). (IV.53)

The p⊥ of a dipole can be related to its size through p⊥ ∼ ℏ/r.

The dipole-dipole scatterings are defined to occur at rapidity zero. Thus the evolution of the
beams begin at rapidity y = ±ymax and evolve to zero, i.e. with negative rapidity steps. For
technical reasons, the actual evolution is easier to implement with positive steps in rapidity.
Thus the internal rapidity used in the code (and in the next section) is negated w.r.t. the
rapidity defined in eq. (IV.52):

yMC =− y = log

(
p⊥
p+

)
⇒ (IV.54)

p± =p⊥ exp(∓yMC). (IV.55)

where in the forthcoming sections we will skip the subscript MC.

224



1

2

r12 →r12

2

1
r13

r23

3
→ → → · · ·

Figure IV.18: Schematic view of a dipole splitting. The initial dipole is spanned by partons 1 and 2, that emits a new parton
(3), thus creating two new dipoles: the dipole spanned by partons 1 and 3 and the dipole spanned by partons 2
and 3. This can be succeeded by additional splittings as indicated by the additional figures following the arrows.

10.1 Mueller’s dipole branching

We begin by examining the dipole splitting function,

dP
dy d2⃗r

=
Ncαs

2π2
r212

r213r
2
23
, (IV.56)

where r⃗ is the transverse location of the emitted parton 3 from the original dipole spanned
by partons 1, 2 and rij the length of the dipoles, also shown in figure IV.18. In order to turn
this into a dipole evolution, a Sudakov factor, Δ(ymin, y), restricting emission between ymin

and y, has to be introduced. The full dipole splitting kernel then reads,

dP
dy d2⃗r

=
Ncαs

2π2
r212

r213r
2
23

Δ(ymin, y), (IV.57)

For event generation to proceed, we need to find an overestimate for the above splitting
probability. The Sudakov factor is included via the veto algorithm, and is thus neglected in
the expressions below.

First we sample a transverse location of the emitting dipole. Assuming partons 1 and 2
located in the (x, y)-plane at r⃗1 = (0, 0) and r⃗2 = (1, 0) with length r12 = 1 fm, while the
emitted parton is located at r⃗3 = (rx, ry), we can write the splitting probability as,

dP
dy drx dry

=
Ncαs

2π2
r212

(r2x + r2y )((r2,x − rx)2 + r2y )

=
Ncαs

2π2
1

(r2x + r2y )((1 − rx)2 + r2y )
, (IV.58)

where in the second step we have inserted the values for r2,x = 1 fm and r212 = 1 fm2,
but suppressed dimensions. These dimensions are suppressed throughout the section. This
distribution is symmetric around rx = 1/2 fm and ry = 0 fm, so the limits of integration
can be changed from rx/y ∈]−∞,∞[ to rx ∈ [−∞, 1/2] and ry ∈ [−∞, 0].
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The above splitting probability can be overestimated by the function,

dP1

dy drx dry
=

Ncαs

2π2
2

(r2x + r2y )(r2x + r2y +
1
4)
. (IV.59)

Changing to cylindrical coordinates we obtain,

dP1

dy r dr dϕ
=

Ncαs

2π2
2

r2(r2 + 1
4)
, (IV.60)

which can be integrated from a minimal dipole size, ρ. Thus we obtain,

dP1

dy
=

4Ncαs

π
log

(
1 +

1
4ρ2

)
. (IV.61)

Without energy ordering, the minimal dipole size ρ has to be fixed to a number larger than
zero to avoid the distribution from blowing up. Here, energy the ordering is introduced by
ordering of positive lightcone momenta [39]. Again relating the transverse momentum of
the dipole to its size, gives an expression for ρ related to the kinematics of the parent dipole
(p),

p3
+ ≤ pp+ ⇒ p3

⊥e
−y =

1
ρ
e−y ≤ pp+ ⇒ ρ ≥ e−y/pp+. (IV.62)

This expression is then used in eq. (IV.61),

dP1

dy
=

4Ncαs

π
log

(
1 +

(pp⊥)
2

4
e2y
)
. (IV.63)

This overestimate cannot trivially be integrated, so we find yet another,

dP2

dy
=

4Ncαs

π
log

[
e2y
(

1 +
(pp⊥)

2

4

)]
≡ 4Ncαs

π
log
[
e2yA

]
(IV.64)

which is both integrable and invertible. We take into account the Sudakov factor by using
the Veto algorithm, and thus the rapidity can be sampled from this distribution by

yi = 1/2
√

[log(A) + 2yi−1]
2 − π log(R1)/(Ncαs)− 1/2 log(A), (IV.65)

where R1 is a uniformly distributed random number.

From eq. (IV.61) we can sample both r and ϕ,

ϕ =2πR2, (IV.66)

r =

√
1
4

ρ2R3

(ρ2 + 1/4)R3 − ρ2R3
, (IV.67)
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with R2,R3 two new random numbers. Here we should note that we’ve changed the inte-
gration limits, such that any rx = r cos(ϕ) > 1/2 must be rejected in the event generation.
Half of the remaining events should be mirrored to rx → 1 − rx, and this should be taken
into account in the overestimate dP1/dy drxdry as well, such that

dP1

dy drxdry
=
Ncαs

2π2
2

(r2x + r2y )(r2x + r2y +
1
4)

→

Ncαs

2π2

[
1

(r2x + r2y )(r2x + r2y +
1
4)

+
1

((1 − rx)2 + r2y )((1 − rx)2 + r2y +
1
4)

]
.

(IV.68)

The events are weighted to the correct distributions with,

wr =
(r2x + r2y + 1/4)((1 − rx)2 + r2y + 1/4)

((1 − rx)2 + r2y )((1 − rx)2 + r2y + 1/4) + (r2x + r2y )(r2x + r2y + 1/4)
, (IV.69)

wy =
log(1 +

(pp⊥)2

4 e2y)
2y+ log(A)

, (IV.70)

such that if wrwy < R4 the event is rejected and the process is reiterated.

The evolution of an initial dipole thus goes as follows. Firstly, a trial emission from the
initial dipole is performed according to eq. (IV.56). If the rapidity y0 of this emission
is below the maximally allowed rapidity, then the trial branching is accepted, thus two
new dipoles are created. Trial emissions are then allowed from each of these dipoles using
ymin = y0 in eq. (IV.56). This creates two new emissions with rapidities y1,2. But here only
the dipole with the smallest rapidity is accepted. Thus after the second iteration we have
three dipoles, from each of which trial emissions are created and only the emission with the
smallest rapidity is accepted, thus creating an additional dipole. The process is reiterated
until no trial emissions are produced below the maximally allowed rapidity. The process is
visualized in figure IV.18.

The choice of p⊥ of the emitted parton is not obvious. Here we assign the parton the largest
p⊥ of the system,

p3
⊥ =

1
min(r13, r23)

. (IV.71)

Ordering of lightcone momenta

We here rely on approximate energy conservation through ordering of p+. This has al-
ready been discussed in the above, where we found the cutoff for small dipoles in the event
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generation of r, eq. (IV.62). Thus we have implemented energy conservation as

p3
+ ≤ pp+, (IV.72)

which implies a rapidity-dependent cutoff for smaller dipoles.

Momentum conservation is introduced through the ordering of p−,

p3
− ≥ max(p1

−, p
2
−), (IV.73)

where it should be noted that this requirement is applied after the recoils have been taken
into account. This choice also sets an upper bound for the dipole size through

p3
− ≥ pp− ⇒ p⊥ey3 =

1
r
ey3 ≥ pp− ⇒ r ≤ ey3

p−
(IV.74)

Recoil effects

The recoil of the emitted parton is shared equally between the partons spanning the emitting
dipole. Energy conservation requires that the energy of the emitter after the emission of a
new dipole equals the energy of the emitter before the collision minus the recoil,

pafter+ = pbefore+ − precoil+ . (IV.75)

The recoil cannot be determined from first principles thus have to make an ansatz. The
choice here is also from [39],

p1,recoil
+ =

r23

r13 + r23
p3
+

p2,recoil
+ =

r13

r13 + r23
p3
+ (IV.76)

thus the recoil on parton 1 depends on the length of the dipole spanned by partons 2, 3
and vice versa. Energy conservation is satisfied in the event generation by always requiring
that pi,recoil+ ≤ pi,before+ .

The recoil will also affect the p⊥ of the emitter. Here the choice is

pi,after⊥ = max

(
pi⊥,

1
ri3

)
, (IV.77)

where i = 1, 2 are the initial partons and 3 is the emitted parton.
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Changing both the p⊥ and p+ of the emitter thus also requires us to change the rapidity of
the emitter for consistency,

yi,after = log

(
pi,after⊥

pi,after+

)
. (IV.78)

Note here that the rapidity of the parent after the recoil will always be larger than the
rapidity of the parent dipole before the recoil. This is because p+ after the recoil is always
smaller than p+ before the recoil, while the p⊥ is after the recoil is always larger than or equal
to the p⊥ before the recoil. Because of this, we must require that the rapidity of the emitters
after the recoil is smaller than the rapidity of the emitted gluon, y1,after, y2,after ≤ y3.

Effects of confinement

Here it should be noted that the modified Bessel functions behave as K1(x) ∼ 1/x for small
arguments, while falling off exponentially at large arguments, K1(x) ∼

√
π/x exp(−x).

Thus the confined distribution is overestimated by the unconfined distribution, and the
introduction of confinement only adds an additional weight f(confined)/f(unconfined)
that vetoes events with large dipole sizes.

10.2 Initial states

The initial dipole configuration depends on the particle. Here we present two types: a
proton sampler and a photon sampler. The difference here lies both in the number of
initial dipoles (three for protons, one for photons) and in the wave function of the particle
itself.

Protons

The initial state proton is not known from QCD, but instead has to be described by some
phenomenological model. At rest, it consists primarily of three valence quarks, which we
can view as endpoints of the initial dipoles. The configuration of these dipoles, however, is
not known, thus we here work with a single scenario: An equilateral triangle.

We allow the dipole length to be distributed according to a Gaussian of mean r0 and width
σr, such that the length of the initial dipoles is given as:

r = r0 + rwRg (IV.79)

with Rg a Gaussian random number. The center of the triangle is fixed at origo.
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Photons

The wave function used in this work is presented in eqs. (IV.25–IV.26). The full cross section
for γ∗p is then given as

σγ
∗p(s) =

∫ 1

0
dz
∫ rmax

0
rdr
∫ 2π

0
dϕ
(
|ψL(z, r)|2 + |ψT(z, r)|2

)
σ(z, r⃗), (IV.80)

with σ(z, r⃗) the dipole-dipole scattering cross sections given in equations (IV.14-IV.16). The
dipole-dipole scattering cross section goes roughly as the square of the size of the largest
dipole, σ(z, r⃗) ∼ r2, thus an overestimate of the γ∗p cross section can be found by sampling
the parameters from the following distributions, we obtain

z =R1, (IV.81)
ϕ =2πR2 (IV.82)
r =rmaxR3, (IV.83)

σOγ∗p =
2πrmax

N

N∑
i=1

r3i
(
|ψL(zi, ri)|2 + |ψT(zi, ri)|2

)
(IV.84)

The maximal value obtained in the sum is kept to accept or reject the integrand in the
algorithm, where first and zi, ri are chosen and then accepted w.r.t.

wγ =
r3i
(
|ψL(zi, r)|2 + |ψT(zi, ri)|2

)
(max. value)

. (IV.85)

If this weight is less than a new random number, wγ < R4, the event is rejected. If kept,
the event is given a weight w = σOγ∗p/r

2
i to take into account the overestimation of the

dipole-dipole scattering cross section.

11 Appendix: The Angantyr model for heavy ion collisions

The Angantyr model for heavy ion collisions is based on the following four components:

• Firstly, the position of the nucleons inside the nuclei has to be determined.

• Secondly, the number of interacting nucleons and binary NN collisions has to be
calculated within the Glauber-Gribov (GG) formalism.

• Thirdly, the contribution to the final state of each interacting nucleon has to be
determined. Here Angantyr uses the wounded nucleon model by Białas, Bleszyński
and Czyż [98].

230



• Lastly, any hard partonic subcollision has to be modeled, thus introducing the con-
cepts of primary and secondary absorptive interactions.

Each of the four components will here be shortly reviewed. For the full explanation, see
[35, 36].

The nucleon distribution is generated using a Woods-Saxon potential:

ρ(r) =
ρ0
(
1 + wr2/R2)

1 + exp ((r− R)/a)
(IV.86)

with ρ(r) the radial density of the nucleons, R the radius of the nucleus, a the skin width
and w the Fermi parameter, introducing a varying density but set to zero in Angantyr.
The A nucleons are thus generated randomly according to P(⃗ri) = ρ(⃗ri)d3⃗ri, assuming
isospin invariance, such that p = n. Angantyr uses the hard core assumption, such that
a new position for a nucleus is tried if the distance to its neighbors falls below twice the
hard-core radius Rh. Once the nuclear distributions are set up, the impact parameter of the
collision is sampled using a Gaussian distribution. This information is then passed the GG
framework, which determines the fluctuations of the target and projectiles.

The fluctuations arise because of fluctuations in the proton wave function. Because the wave
function enters in the cross section calculations and because it is assumed that the projectile
state is frozen during its interaction with the target, these fluctuation are then translated
into fluctuating cross sections. In the dipole model, the probabilistic nature of the dipole
evolution gives rise to different dipole configurations before the collisions, thus giving rise
to different dipole-dipole interactions and hence integrated cross sections. Angantyr uses
a probability distribution for the cross section in pA extracted from Dipsy:

Ptot (log σ) =
1

Ω
√

2π
exp

[
− log2 (σ/σ0)

2Ω2

]
, (IV.87)

⟨T(⃗b, σ)⟩ =T0Θ

(√
σ

2πT0
− b
)
, (IV.88)

with σ =
∫
d2b⃗⟨2T(⃗b)⟩ and eq. (IV.88) describing a slightly modified version of the elastic

scattering amplitude. The parameters σ0,Ω,T0 are tuned to data. For AA the fluctuations
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are instead determined by a Gamma function,

P(r) =
rk−1e−r/r0

Γ(k)rk0
, (IV.89)

T(⃗b, rp, rt) =T0(rp + rt)Θ

√(rp + rt)2

2T0
− b

 , (IV.90)

T0(rp + rt) =
(

1 − exp

[
−
π(rp + rt)2

σt

])α
, (IV.91)

where P(r) determines fluctuations in the nucleon radius rp and rk. T(⃗b, rp, rt) again de-
scribes a slightly modified elastic amplitude with an opacity T0 depending on the radii of
both the target and projectile. Here, the parameters σt, α, k, r0 are tuned to data. The
number of wounded target nucleons in pA collisions is then determined by

dσWt

d2b⃗
=1 − ⟨⟨Spt⟩2

t ⟩p, (IV.92)

with Spt the S-matrix for a given target (t) and projectile (p) state. Subscript on the brackets
determines averages over one side only. In AA collisions Angantyr distinguishes between
absorptively and diffractively wounded nucleons, with the former dominating given by,

dσabs

d2b⃗
=1 − ⟨S2

pt⟩pt, (IV.93)

and the latter determined by generating the auxiliary states p′, t′ for both target and pro-
jectile, and from these determining the number of wounded target states with either t or t′

from eq. (IV.92), i.e. using either Spt′ or Spt in the derivation. Non-negative probabilities
are ensured by shuffling when to use t, t′.

Once the number of wounded target and projectile states has been determined, the wounded
nucleon model is used to create final-state partons,

dNch

dη
=wpF(η) + wtF(−η), (IV.94)

with the functions F(±η) determined from the MPI framework of Pythia 8. Each nucleon
in the target (and projectile) is allowed to interact several times, similar to an ordinary pp
collision containing several MPIs. Thus the pairs of projectile-target nucleons are ordered
w.r.t. their impact-parameter bµν . The list is iterated over several times in order to determine
which pairs give rise to a primary absorptive scattering, and which are secondary. Once a
pair has been selected, the MPI framework of Pythia 8 is used to generate an event, and
the pair is marked as having interacted in a primary interaction. If the pair is again chosen
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to interact, it will be marked as a secondary interaction. After the determination of the
absorptive interactions, the diffractive ones are chosen by iterating the list several times,
thus creating primary and secondary diffractive interactions. An already wounded nucleon
cannot be further excited, but an unwounded nucleon can participate in several diffractive
interactions, until itself becomes wounded.

After the determination of the absorptive and diffractively primary and secondary inter-
actions, each of the events are passed to Pythia 8 and the parton-level events are stacked
on top of each other. The Pythia 8 description of single-diffractive events are modified to
look like non-diffractive ones, to describe the secondary absorptive events, while diffrac-
tive primary and secondary events remain unmodified. We are thus left with a large set
of parton-level events that can be passed to the hadronization framework of Pythia 8 and
further analyzed.

12 Appendix: Additional eccentricity figures

In this section, we show additional eccentricity figures not presented in the main body of
the text. Figure IV.19 (a-c) shows ϵ2 using higher-order cumulants in the evaluation. It
is evident that the eccentricities are the same regardless of the number of particles used in
the calculation, except for the effects from lack of statistics in the high-multiplicity tail for
both the pp and pPb figures. Figure IV.19 (d) shows the normalized symmetric cumu-
lant NSC(4, 2). This cumulant is positive in the entire multiplicity range, consistent with
measurements in ALICE. Here, it is evident that discrimination between models would
be possible in both pp and pPb collisions, as opposed to NSC(3, 2) where discriminatory
power was not evident in pp collisions.

For completeness, we also show the eccentricities ϵ1,3 obtained in pp collisions with and
without shower smearing in figure IV.20. Both are shown to give an estimate of the effects
on the size of the additional terms in the Fourier expansion of the flow coefficients.
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Figure IV.19: (a-c) The eccentricity ϵ2 with higher order cumulants {4, 6, 8}. (d) The normalized symmetric cumulant NSC(4, 2)

as a function of average multiplicity for pp, pA,AA systems.
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Figure IV.20: ϵ1,3{2} shown for different MPI vertex assignments with and without the shower smearing.
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