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Populärvetenskaplig Sammanfattning 

I Sverige kommer nästan hälften av den elektricitet som produceras från vattenkraft. 
Dock är mängden vatten i kraftverksdammarnas tillrinningsområden inte jämnt 
fördelad över hela året. Under de kalla vintermånaderna faller nederbörden oftast i 
form av snö som samlas på marken. Detta frusna vatten blir inte tillgängligt för 
energiproducenterna förrän snön smälter på våren, under vårfloden. Detta kan skapa 
en situation där det finns brist på vatten för att producera el under vintern, då både 
behovet och energipriset är högt, och ett överskott under våren och sommaren då 
behovet och priset är lägre. Kraftverksoperatörer försöker därför minimera denna 
asymmetriska fördelning genom att lagra så mycket som möjligt av vattnet från 
vårfloden i sina reservoarer för att kunna använda det för elproduktion under det 
kommande vinterhalvåret. 

Hydrologiska säsongsprognoser, dvs. vattenflödesprognoser som är längre än två 
veckor men kortare än ett år, är viktiga för kraftbolagen när de planerar sin 
verksamhet. De måste veta hur mycket lagringsutrymme som de måste göra 
tillgängligt och när detta måste ske, så att de kan maximera sin användning av de 
vattenresurser som frigörs under vårfloden. SMHIs nuvarande hydrologiska 
säsongsprognoser använder en klimatologisk strategi. Detta innebär att historiska 
observationer av nederbörd och temperatur från tidigare år (en s.k. historisk 
ensemble), oftast för perioden från början av februari till slutet av juli, används som 
drivdata för en hydrologisk datormodell. Hydrologiska modeller använder främst 
nederbörd och temperatur som indata för att beräkna hur det vatten som når 
markytan, via nederbörd eller snösmältning, transporteras genom marken för att så 
småningom nå en sjö eller ett vattendrag och påverka flöden och vattenstånd. Om 
antalet år i den historiska ensemblen är tillräckligt stort blir den resulterande 
prognosen klimatologisk (normal) till sin karaktär, d.v.s. den  presterar bra om 
vädret under prognosperioden avspeglar klimatet, är "normalt". Men om 
utvecklingen av väderförhållandena inte är "normalt" kommer säsongsprognosen att 
slå mer eller mindre fel.  

Målet med denna avhandling är att ta fram säsongsprognoser som kan presera bra 
även när vädret under prognosperioden avviker från det normala klimatet. Detta kan 
antas vara möjligt genom förekomsten av s.k. klimatmönster. Klimatmönster är 
tillfälliga men långvariga och återkommande fenomen i atmosfären som påverkar 
vädret på långa avstånd Antagandet är att olika klimatmönster styr variationerna i 
Sveriges vattenflöden under olika perioder av året och att information om dessa 
mönster kan användas för att förbättra hydrologiska säsongsprognoser. Genom att 
använda information om hur, var och när dessa klimatmönster påverkar flöden 
runtom i Sverige är det möjligt att utveckla ett nytt säsongsprognossystem. I detta 
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system kombineras tre nya metoder för säsongsprognoser till en multi-metod. De 
tre metoderna är: 

• Beräkna och använd statistiska samband som direkt kopplar vårflodens 
totala volym till klimatmönstren för att göra prognoser. I denna metod 
används alltså ingen hydrologisk modell. 

• Leta upp historiska år som kan antas representera vädret under det år 
prognosen gäller, t.ex. via likartade klimatmönster. Använd därefter 
uppmätt nederbörd och temperatur enbart från dessa år som indata till en 
hydrologisk modell. 

• Numera finns väderprognoser som sträcker sig upp till ett år framåt i tiden. 
Använd dessa meteorologiska säsongsprognoser på nederbörd och 
temperatur som indata till en hydrologisk modell. 

Fördelen med att använda olika modeller är att du utnyttjar principen ’massans 
vishet’. En enskild modell kan vara fel ibland men påverkan av detta fel minskar 
när prognosen kombineras med de från andra modeller. Detta resulterar i ett 
prognossystem som är mindre benäget att göra prognoser som är mycket felaktiga.  

Genom att jämföra det nya multi-modell prognossystemet med den nuvarande 
verksamhetsmodellen är det möjligt att testa det tidigare nämnda antagandet. 
Resultaten visar att det nya systemet presterar bättre än det nuvarande systemet över 
sextio procent av tiden. Dessutom visar det nya multi-modell prognossystemet en 
förbättrad förmåga att förutse "icke-normala" händelser och det kan även minska 
volymfelet med i genomsnitt två procentenheter. Dessa och andra resultat i denna 
avhandling tyder på att detta arbete har betydande fördelar för vattenkraftindustrin 
genom att leverera förbättrade prognoser för att stödja deras verksamhet. 

 

 

 

  



11 

Abstract 

In Sweden, almost half of the electricity produced comes from hydropower. 
However, the amount of water in the reservoir catchments is not evenly distributed 
throughout the year. During the colder months, precipitation usually falls as snow 
and accumulates into a snowpack. This frozen water is not available to the energy 
producers until the spring snow melt when as much as 70% of the annual discharge 
will be generated. This can create a situation where there is a shortage of water 
resources during the winter when demand and energy prices are high, and a surplus 
during the spring and summer when demand and prices are lower. Hydropower plant 
operators try to minimize this asymmetric distribution through regulation of 
reservoir storages and hydrological forecasts are crucial for this. 

However, the predominant method for hydrological seasonal forecasting the spring 
flood period in Scandinavia is the Ensemble Streamflow Prediction (ESP) approach. 
ESP uses historical observations of precipitation and temperature from previous 
years (a so-called historical ensemble) to force the hydrological model. The problem 
is that these forecasts are climatological in character, i.e. it performs well when the 
weather during the forecast period evolves normally, however if the development 
of weather conditions is not "normal", the season forecast will be more or less 
wrong. 

The thesis of this work is that this is possible to improve seasonal forecasts so that 
they still have skill even when the weather deviates from the normal climate during 
the forecast period. By better understanding what affects the variability in the 
hydrology and using that information to inform how to modifying or replace the 
ESP forecasting approach, it is possible to real skilful improvements over the ESP. 

In this work it is shown that selected teleconnection patterns are the leading source 
of variability in the seasonal river discharge volumes in Sweden. In the case of the 
spring flood period in northern Sweden, these are the North Atlantic Oscillation, 
Arctic Oscillation, and Scandinavian pattern. With the help of  information garnered 
by investigating these connections it is possible to modify different forecast 
modelling chains, that on their own show limited (if any) skill over ESP, and 
combine them into a multi-chain forecast system that does show skill over the ESP. 
A Multi-model ensemble of modelling chains made up of three different individual 
modelling chains, using a simple weighting scheme to combine them, is able to 
improve the general skill of spring flood volume forecasts and improve their ability 
to predict non-normal events. 
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Introduction  

Background 

The Scandinavian Peninsula has an abundance of water resources (e.g. Angelin, 
1981; Henriksen et al., 1998) and people have been exploiting these resources in 
numerous ways for centuries. The use of water as a source of energy first appears in 
the Swedish historical records around the 12th century with the introduction of the 
water wheel (e.g. Angelin, 1981; Greve, 2016). At first these were the relatively 
inefficient vertical axis ‘Norse mills’, used predominantly for small scale milling 
activities, but over time more efficient vertically mounted water wheels were 
introduced allowing for endeavours of a more commercial nature (e.g. Greve, 2016). 
With the increased energy demand and varied nature of the activities being powered 
by the water wheels there was an increased need to regulate the flow of water. Mill 
ponds and weirs allowed operators to modulate the flow to the water wheel and also 
permitted the limited storage of water for use when supply would otherwise be 
inadequate. These water regulation solutions were sufficient for local mill types e.g. 
grain, spinning, and sawmills, but they would not be suitable for the next 
technological jump in the exploitation of running water as an energy source – 
hydroelectric power or simply hydropower. 

The first hydroelectric installation in Sweden was at a spinning mill on the river 
Viskan in 1882 (Rundgren and Martna, 1989) where a water powered dynamo was 
used to provide the company with electric lighting (Vattenfall, 2019). Adoption was 
swift with many industries building their own plants very soon thereafter. However, 
it was not until the introduction of three-phase technology, allowing the 
transmission of electrical power over great distances, that hydropower became 
commercialised. At the end of the 19th century over 50 industrial hydropower plants 
were operating around Sweden (Vattenfall, 2019). Today, nearly half of Sweden’s 
electrical energy, approximately 65 TWh during a ‘normal’ year (Statistiska 
centralbyrån, 2018), comes from hydropower. However, out of today’s more than 
2100 hydroelectric power plants, with a total installed capacity of 16200 MW, just 
200 account for 94% of the total production. The vast majority of these are located 
in the northern part of the country and require large regulation reservoirs to operate 
efficiently. 



18 

 

Figure 1. Idealised schematic showing the typical inflows to reservoirs (top panel), generalised electricity demand 
(middle panel), and the normal annual production together with the inflows highlighting the phase shift between water 
resources and planned production (lower panel). (Modified with permission – translated text, 
Vattenregleringsföretagen, 2016). 

Managing hydropower production is highly complex in snow dominated regions 
like Sweden as the water resources are not distributed evenly throughout the year. 
Figure 1 summarises the overarching challenge operators are faced with, a mismatch 
between the natural supply and demand. During the colder months a large fraction 
of the precipitation falls as snow which is stored in the form of a snowpack. This 
water is not available for energy production until it melts in the spring when the 
temperature begins to rise again. This means that there is a potential lack of water 
to produce electricity during the winter when the demand is high and a surplus in 
the spring and summer when demand is low. Between 55 and 70% of the annual 
inflows to reservoirs in the larger hydropower producing rivers occur during the 
spring flood period which is typically between mid-April/early-May and the end of 
July. Hydropower operators try to minimize this asymmetric distribution and 
maximise their earning potential by storing water from the spring flood period in 
reservoirs for later use when demand is higher. 

The typical strategy in Sweden is to have reservoirs at around 90% capacity at the 
end of the spring flood while maintaining a balance between a sufficiently large 
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volume of water for optimal production and enough remaining capacity in the 
reservoirs for safe flood risk management (e.g. Olsson et al., 2016). This means that 
sufficient capacity needs to be made available in the reservoirs to store as much of 
the spring flood as possible. Hydrological seasonal forecasts are indispensable to 
water regulators both for estimating the volume of the coming spring flood and the 
onset date. However, in practice most of the reservoirs (not those with multi-year 
regulation capacity) are run down to the legally allowable level in preparation for 
the spring flood as the seasonal forecasts are not deemed to be reliable enough to 
estimate a more appropriate level. The industry would rather maximise the 
production leading up to the spring flood and risk not filling their reservoirs than 
running the risk of having to spill water due to insufficient available capacity. This 
strategy minimises the risk rather than maximises the potential and has been 
reasonably successful so far. However, market forces are compelling hydropower 
operators to be even more flexible in their strategies. In addition to their base supply 
role, hydropower is being called on to help modulate the inconsistent supply from 
other sources of production such as solar and wind power.       

Objective and Scope 
In light of the issues discussed in the previous chapter, the principal objective of this 
research is to improve upon the quality of operational hydrological seasonal 
forecasts in Sweden. To this end the following research goals are addressed: 

• To investigate whether the seasonal forecasts can be improved by 
modifying the current approach or substituting it for another. 

• To investigate whether there are any benefits of a multi-model approach to 
forecasting the spring flood volume (SFV) in Sweden.  

• To investigate whether Sweden can be divided into sub regions to which 
the seasonal forecasts can be optimised. 

• To investigate, identify, and understand the climatic drivers responsible for 
local hydrological variability. 

• To develop and evaluate a hydrological seasonal forecast prototype for 
operational forecasting of the SFV in Sweden. 

Dissertation Structure  

This dissertation is a “thesis by article” consisting of a summary and five appended 
papers. The summary begins with an introductory chapter that briefly presents the 
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background, objectives and scope of this dissertation. The second chapter is a 
literature review that provides the theoretical background for the dissertation. An 
overview of the study area, data and methods used in this research are presented in 
the third and fourth chapters. In chapter five the main results from the appended 
papers, together with a few findings not included in them, are summarised and 
discussed. The conclusions, implications, unresolved questions and future outlook 
are presented in chapter six. Finally, a post scriptum gives a summary of plans to 
operationalise the hydrological seasonal forecast prototype at the Swedish 
Meteorological and Hydrological Institute (SMHI). 

The research of this dissertation is distributed as follows in the appended papers: 

• Paper I investigates the predictability of the spring flood season at 29 
selected gauging stations across Norway using a multi-model statistical 
downscaling approach. Hindcasts of large scale climate variables from two 
General Circulation Models were downscaled to accumulated streamflows 
using a Canonical Correlation Analysis based linear regression. Three 
predictors are individually downscaled and pooled into a multi-model 
forecast for each station. 

• In Paper II selected hydrological seasonal forecast approaches and their 
benefits for making hydrological forecasts of the spring flood period in 
Sweden are briefly reviewed. Then, in this context, plans for a multi-model 
approach is discussed and a framework to achieve this is outlined. 

• Paper III is a preliminary assessment of the multi-model approach outlined 
in paper II. The different individual methods that would make up the multi-
model approach are compared to the climatological approach that is used 
operationally. 

• In Paper IV the relationships between the seasonal and interannual 
variability in Swedish streamflow and different climate circulation patterns 
are systematically investigated. This is done to identify, understand and 
quantify the climatic drivers behind this variability. Sweden is divided into 
five homogeneous regions of hydrological variability by hierarchical 
clustering. 

• Paper V presents the development and testing of a prototype hydrological 
seasonal forecast model. This paper utilises the knowledge gained from 
Papers I-IV and uses it to develop a hydrological seasonal forecast 
prototype which is tested by making hindcasts for the spring floods at 84 
gauging stations for the period 1981-2015. These hindcasts are evaluated 
against climatology and hindcasts made using the current operational 
forecast system at SMHI, by comparison with observations.  
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Literature Review 

Seasonal Forecasting 

Seasonal forecasts apply to predictions over intermediate time scales; longer than 
two weeks on the low end and out to about a year on the upper end (Doblas-Reyes 
et al., 2013). In meteorology this time scale bridges the gap between weather 
forecasting and decadal/climate predictions. People have long used environmental 
indicators such as climatic conditions, animal behaviour and celestial observations 
as predictors of changes in coming seasons (Inwards, 1892). Many such 
relationships were fanciful speculation but some were without a doubt the result of 
keen observations that have since been corroborated by science (e.g.  Goddard et 
al., 2001; Orlove et al., 2000). However, it is only with our ever growing 
understanding of these climate-environmental relationships that we have been able 
to progress from speculations to skilful predictions. 

Meteorological seasonal forecasting 

There is a common adage that states, “If you want to know what the weather will be 
like (insert time frame here), just look outside”. Frivolity aside, this phrase alludes 
to a core principle in forecasting, that initial conditions are a good source of 
predictability (e.g. Lorenz, 1969; Palmer and Anderson, 1994; Thompson, 1957; 
Wood et al., 2015; Wood and Lettenmaier, 2008; Yossef et al., 2013). However, 
‘memory’ in the atmosphere is short lived and any influence of these initial 
conditions will have greatly deteriorated within 5-10 days (Goddard et al., 2001). 
The main sources of predictability at longer time scales are the low frequency 
variations in boundary conditions like sea surface temperatures (SST), stratospheric 
processes, sea ice, snow cover and soil moisture (e.g. Miller and Wang, 2019; 
Shukla and Kinter, 2006; Smith et al., 2016; Yang et al., 2016). Anomalies in these 
boundary conditions, if large enough, can affect atmospheric circulations leading to 
atmospheric anomalies both locally and elsewhere (e.g. Doblas-Reyes et al., 2013; 
Miller and Wang, 2019). The time scales in the frequency of these boundary 
conditions offers a source of predictability that can extend far beyond that offered 
by the atmosphere alone (Charney and Shukla, 1981).  
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The two leading approaches to seasonal forecasting are statistical and dynamical 
modelling.  

• Regression models are the most commonly used statistical techniques and 
they are generally contingent on the SST boundary (Goddard et al., 2001). 
This approach, using SST as a predictor, has been successfully applied to 
numerous regions, e.g. South America (e.g. Ward and Folland, 1991; Uvo 
et al., 1998), North America (e.g. DelSole and Banerjee, 2017; Dias et al., 
2018; Fuentes‐Franco et al., 2018), Europe (e.g. Gerlitz et al., 2016; 
Johansson et al., 1998; Colman and Davey, 1999), Africa (e.g. Landman 
and Mason, 1999a, 1999b; Mutai et al., 1998; Sittichok et al., 2016; Tuel 
and Eltahir, 2018), Middle East (e.g. Choubin et al., 2018; Shirvani and 
Landman, 2018), and South East Asia and Australia (e.g. Deo et al., 2017; 
Qian et al., 2019; Wu and Yu, 2016; Yu et al., 2018). 

• Physical or dynamical models are predominantly based on numerical 
representations of physical processes which are either resolved at each of 
the model grid points or spectrally. Initially these types of models were 
applied regionally (e.g. Cane et al., 1986) but as our understanding of the 
climate system improved and computational capacity increased they began 
to be applied globally. Early generations of general circulation models 
(GCM) use prescribed SSTs that have been derived from statistical or 
dynamical predictions prior to their use in the GCM (e.g. Roeckner et al., 
1996). With time these later evolved to using modelled boundary 
conditions, an ocean model is coupled with the GCM which allows the 
boundary conditions and the atmosphere to evolve together (e.g. Johnson et 
al., 2019; Saha et al., 2014). 

A number of institutions around the world offer seasonal meteorological forecasts. 
These include, but not limited to, ECMWF, IRI, Météo France, the MetOffice and 
NCAR. These forecasts are generally initialised with observational information. 
This initial state is then perturbed to give an ensemble of initial states from which 
the model will evolve (e.g. Molteni et al., 1996; Molteni et al., 2011). This is done 
to better sample the uncertainties in the chaotic nature of the atmosphere. These 
forecasts are typically issued once a month and have a forecast horizon of several 
months (typically up to 15 months). These forecasts are of great benefit to a number 
of different fields and end-users including hydrological seasonal forecasters. 

However, GCM seasonal forecast skills are variable for different regions of the 
world, in particular seasonal forecasts for Scandinavia are not very skilful (e.g. 
Doblas-Reyes, 2010; Doblas-Reyes 2013). Weisheimer and Palmer (2014) 
investigated the reliability of the seasonal climate forecasts from the system 4 
version of the ECMWF seasonal forecast system (Figure 2). They developed a five 
category system for ranking the reliability of GCM forecasts based on reliability 
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diagrams. Their results show that overall the reliability performance of the ECMWF 
seasonal forecast system is poorer for precipitation forecasts than for temperature 
forecasts. The reliability category of precipitation forecasts over the Scandinavian 
region range from “not useful” to “dangerous” for dry winter and summer events, 
respectively, and “marginally useful” for wet winter and summer events. The 
reliability category of temperature forecasts for the same region range from 
“marginally useful” to “perfect” for cold winter and summer events, respectively, 
and “marginally useful” for warm winter and summer events. There is systematic 
evaluation of system 5, to this thesis author’s knowledge, at the time of writing. 

 

Figure 2. Reliability of system 4 seasonal forecasts for precipitation (the top four panels) and temperature (the lower 
four panels). (Composite of figures 4 and 5 taken from Weisheimer and Palmer, 2014) 
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Hydrological seasonal forecasting 

Society’s ever increasing demand and pressure on water resources over time has 
created a need for improved hydrological forecasts, both from a quality and forecast 
lead time perspective. Unlike the atmospheric system, the hydrological system has 
a ‘memory’ which is derived from the different storages within the system e.g. 
groundwater, lakes, snowpacks and glaciers. The sources of predictability for 
hydrological seasonal forecasts come from these initial hydrological conditions (e.g. 
Wood and Lettenmaier, 2008; Wood et al., 2016; Yossef et al., 2013), and also from 
knowledge of the climate during the forecast period i.e. seasonal meteorological 
forecasts (e.g. Bennet et al., 2016; Doublas-Reyes et al., 2013; Wood et al., 2016; 
Yossef et al., 2013). Hydrological seasonal forecasts attempt to leverage at least one 
of these sources of predictability to make skilful predictions of future streamflow. 
In practice there are two predominant approaches to making hydrological forecasts 
at the seasonal scale; statistical approaches and dynamical approaches. 

Statistical approaches  
Statistical approaches utilise empirical relationships between predictors and a 
predictand, typically streamflow or a derivative thereof (e.g. Garen, 1992; Pagano 
et al., 2009). These predictors can vary greatly in type from local hydrological 
storage variables like snow and groundwater storages (e.g. Robertson et al., 2013; 
Rosenberg et al., 2011), to local and regional meteorological variables (e.g. 
Còrdoba-Machado et al., 2016; Olsson et al., 2016), to large scale climate data such 
as El Niño-Southern Oscillation  indices (e.g. Schepen et al., 2016; Shamir, 2017). 
For the better part of the 20th century most operational seasonal forecasts in Europe 
and North America were directed to the elevated flows during the spring caused by 
snow melt and were made by the regression of seasonal streamflow volume on 
antecedent indicator variables like snow water equivalent or accumulated 
precipitation (e.g. Melin, 1937; Garen, 1992; Wood and Lettenmaier, 2002; Pagano 
et al., 2009). 

Around the beginning of the 21st century researchers began to link the seasonal 
variability of local streamflows to the variability in SSTs (e.g. Garen, 1992; Sadeghi 
et al., 2019; Seibert et al., 2017; Uvo and Graham, 1998). These studies found that 
anomalies in SSTs in different locations exhibited a teleconnection with 
streamflows in the US, China, Southern Africa and northern South America. For 
example, using this knowledge Uvo and Graham (1998) were able to construct a 
statistical model that regress monthly streamflow anomalies to monthly anomalies 
of Atlantic and or Pacific SSTs. Their results showed skill in predicting streamflows 
one season in advance. A study by Ionita et al. (2008) connected antecedent winter 
SSTs, land temperatures and precipitation anomalies to spring flood discharge in 
the Elbe River. Their findings showed that by combining the three predictands it 
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was possible to improve the forecast skill by considering the different predictands 
together instead of individually. 

Other studies have investigated the influence of remote climate drivers on local 
hydrometeorological variability (e.g. Álvarez-García et al., 2019; Ionita et al., 2015; 
Ionita et al., 2017; Kingston et al., 2006a and 2006b; Kingston et al., 2009). 
According to Kingston et al. (2009), the links between large scale climate patterns, 
land surface and hydrologic variability in regions like Sweden are not well 
understood. However, the effects of meteorological variables locally on streamflow 
are well understood and changes in precipitation and temperature at the seasonal 
scale over Sweden are connected to the low-frequency variations in some large scale 
climate circulation patterns (e.g. Wallace and Gutzler, 1981; Barnston and Livezey, 
1987; Hurrell, 1995). Work done in this thesis utilises information from these 
circulation patterns to modify and combine some of the approaches discussed above 
to improve the quality of hydrological seasonal forecasts in Sweden. 

Model-based approaches 
Dynamical approaches use a hydrological model, typically initialised with observed 
data up to the date the forecast should be issued so that the model state is a 
reasonable approximation of the initial hydrological conditions. The model is then 
forced with either historical observations or using data representative of the future 
meteorological conditions such as GCM forecasts (e.g. Crochemore et al., 2016; 
Olsson et al., 2016; Yuan, 2016; Yuan et al., 2013a, 2015, 2016). Some variations 
of the dynamical approach for seasonal hydrological forecast, used in this work, are 
described here.  

Historical ensembles 
The so-called ensemble streamflow prediction approach (ESP) where a hydrological 
model is forced using an ensemble of historical data (e.g. Day, 1985; Arheimer et 
al., 2011) is perhaps one of the most widely used methods of hydrological seasonal 
forecasting and is still the subject of new research. The hypothesis is that a well 
initialised and calibrated model forced with an ensemble of historical data is able to 
make skilful hydrological forecasts. This is typically true, by evolving the initial 
hydrological conditions into the future with historical forcing data it is possible to 
estimate the range of possible outcomes that represent a typical progression of 
events. However, this approach suffers if the conditions during the forecast period 
deviate from the normal (long-term average), especially for longer lead-times.  

Recent work has looked at conditioning the historical ensembles before using them. 
This means that time series, representing specific years, are selected out of the 
historical ensemble to make up a reduced ensemble of driving data before being 
used to force the hydrological model. The hypothesis is that it is possible to select a 
subset from the historical driving data, based on some objective selection criteria, 



26 

that is more representative of how the meteorological conditions will evolve over 
the forecast period. This conditioning can be done using GCM outputs (e.g. 
Crochemore et al., 2016), and climate indices or circulation pattern analysis (e.g. 
Beckers et al., 2016; Candogan Yossef et al., 2016). The consensus is that with 
appropriate selection criteria and a sufficiently large ensemble of historical data it 
is possible to improve forecast skill with respect to the ESP approach.   

Forecasted ensembles 
A related approach that has become common employs the outputs from GCMs to 
force the hydrological model. A successful system requires both accurate initial 
conditions such as soil moisture, snow cover (e.g. Koster et al., 2010) and upstream 
river flows (e.g. Yossef et al., 2013) and skilful seasonal predictions of the 
meteorological forcing data, typically precipitation and temperature, for the 
hydrological model (e.g. Yuan et al., 2013b). A typical forecast system that employs 
GCM outputs to drive a hydrological model consists of GCM input data (often 
downscaled or bias corrrected), a hydrological model that is well initialised using 
observations, and some form of post processing to derive the seasonal forecast 
product. 

One of the earliest attempts at using GCM outputs for hydrological forecasting was 
by Kim et al. (2000) who found overall decent agreement between simulated and 
observed discharge. However, low (high) flows were systematically overestimated 
(underestimated); this was primarily attributed to biases in the GCM forecasts for 
precipitation. Wood et al. (2002) proposed bias correction of the GCM forecasts by 
percentile-based mapping to minimise the effects of these biases. 

Since then the GCM based hydrological seasonal forecast systems have been 
extensively evaluated through a number of case studies (e.g. Wood and Lettemaier, 
2006; Li et al., 2008) and hindcast experiments (e.g. Wood et al., 2005; Mo et al., 
2012; Yuan et al., 2013; Bastola et al., 2013). Initially the use of GCM forecasts as 
inputs showed little to no improved skill over the historical approach (e.g. Wood et 
al., 2005) nevertheless as newer and more improved GCM products have become 
available so the skill of these GCM-hydrological seasonal forecast systems has 
improved (e.g. Luo et al., 2007; Yuan et al., 2011; Yuan et al., 2013). Additional 
techniques to improve the skill of these GCM-hydrological seasonal forecast 
systems have included using multi-model GCM ensembles as inputs to hydrological 
models (e.g. Yuan et al., 2011; Yuan et al., 2015; Ma et al., 2016), using multiple 
hydrological models to generate an ensemble of hydrological forecasts (e.g. Duan 
et al., 2007; Mo and Lettenmaier, 2014), bias correction of the GCM data before 
being used in the hydrological models (e.g. Wood et al., 2002; Yoon et al., 2012; 
Trambauer et al., 2015 e.g. Crochemore et al., 2016, Lucatero et al., 2017; Wood et 
al., 2002; Yuan et al., 2015), bias adjusting the hydrological model outputs (e.g. 
Lucatero et al., 2017) or a combination of both (e.g. Yuan et al., 2012).  
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Teleconnection Patterns and Indices 

Teleconnection patterns (TP) are large scale persistent and recurring patterns of 
circulation or air pressure anomalies that affect the intensity and location of the jet 
stream patterns (and other storm tracks), rainfall and temperature over a large 
geographical area. Consequently, teleconnection patterns have a significant 
correlation with the variability in some hydro-meteorological variables in 
geographically separated regions (Panagiotopoulos et al., 2002). Teleconnection 
pattern indices (TCI) are a numerical representation of the phase and relative 
strength of a TP. 

A common procedure used to identify teleconnection patterns and indices is the 
Rotated Principal Component Analysis used by Barnston and Livezey (1987). For 
each of the twelve calendar months, the leading unrotated empirical orthogonal 
functions are first determined from reanalysis geopotential height anomaly fields in 
the three-month period centred on the month in question. These are then rotated, 
using a Varimax rotation, to yield the rotated modes (TP) and their time series for 
that calendar month. The TCIs are calculated using a Least Squares solution on these 
time series after any spurious modes/TP, those with no apparent physical meaning, 
have been filtered out. The solution to this system of equations give the respective 
teleconnection indices which represent the combination of teleconnection patterns 
that account for the most spatial variance of the observed standardized anomaly field 
in the month. 

North Atlantic Oscillation (NAO) and Arctic Oscillation (AO)  

AO is the dominant variability pattern of sea level pressure, north of 20ºN, if 
seasonality is disregarded. It is characterized by a centre of atmospheric pressure 
action over the Arctic and another one, of opposite sign, centred at about 35-45°N 
zonally distributed (Thompson and Wallace, 1998, among many others). The NAO 
is defined as an oscillation of the atmospheric mass between the Iceland subpolar 
low and the Azores subtropical high (see Figure 3; Hurrell et al., 2003). There is a 
debate in the scientific community as to whether NAO is a regional expression of 
AO or not as there are large similarities in their spatial patterns and climate impacts 
over the Atlantic-European region (e.g. Ambaum et al., 2001; Deser, 2000; 
Thompson and Wallace, 1998, 2001). Nevertheless, over the North Atlantic AO is 
nearly indistinguishable from NAO (Polyakov and Johnson, 2000). 

AO and NAO are positively correlated with precipitation and temperature over 
Sweden. During positive (negative) AO/NAO conditions, the north Atlantic storm 
track is shifted northwards (southwards) over Scandinavia and the polar jet is 
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stronger (weaker) and more zonal (meridional) in nature (D'Aleo and Easterbrook, 
2016). This increases (reduces) the transport of mild and moist air masses from the 
Atlantic (Hurrell 1995) and limits (enhances) the intrusion of a cold polar trough 
over the region. During the summer (July-August) there is a westerly shift of the 
Azores high pressure centre which results in anticyclonic conditions over the 
Scandinavian Peninsula leading to a negative association with precipitation during 
these months (Bladé et al., 2012). 

 

Figure 3. Map of the NAO loading patterns for January, April, July, and October. The loading patterns are expressed 
as the temporal correlation between the monthly standardized height anomalies at each grid point and the 
teleconnection pattern time series valid for the specified month. (Climate Prediction Center, 2005a) 

East Atlantic Pattern (EA) 

The EA is structurally similar to NAO with south-eastwardly displaced centres of 
activity (see Figure 4; Barnston and Livezey, 1987). EA is generally positively 
correlated with precipitation and temperature over much of Sweden in most months. 
During positive EA conditions mild and moist air is drawn up from the Atlantic over 
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Europe and into Scandinavia. Furthermore, work by Comas-Bru and McDermott 
(2014) suggests that EA has a subtractive (additive) effect on the NAO-precipitation 
relationship over parts of central Sweden and lower half of the eastern seaboard (rest 
of the country) when the two teleconnection pattern indices (TPIs) have 
corresponding signs. When the TPIs have opposing signs there is a general additive 
effect on the NAO-precipitation relationship over the entire country. They argue 
that this is due to the shifting of their net centres of activity in the Atlantic-Eurasian 
domain EA appears to have little to no effect on the NAO-temperature relationship 
over Scandinavia.  

 

Figure 4. Map of the EA loading patterns for January, April, July, and October. The loading patterns are expressed as 
the temporal correlation between the monthly standardized height anomalies at each grid point and the teleconnection 
pattern time series valid for the specified month. (Climate Prediction Center, 2005b) 
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East Atlantic-Western Russia Pattern (EAWR) 

The EAWR consists of four anomaly centres of atmospheric pressure action located 
over the North Atlantic, Western Europe, the Caspian Sea/western Russia and 
northeast China respectively (see Figure 5; Climate Prediction Center, 2012a). It is 
positively correlated with temperature over most of Sweden during the winter and 
southern Sweden during the summer. EAWR is positively correlated with 
precipitation in the northern mountain region during the winter and negatively 
correlated with precipitation over southern Sweden and the coastal region in the 
north during winter and most of the country during the summer (e.g. Ionita, 2014; 
Lim, 2014). This is due to the blocking influence of the anticyclonic centre of 
activity over the North Sea between Scandinavia and the United Kingdom and the 
resulting north-westerly circulation over the Scandinavian Peninsula. 

 

Figure 5. Map of the EAWR loading patterns for January, April, July, and October. The loading patterns are expressed 
as the temporal correlation between the monthly standardized height anomalies at each grid point and the 
teleconnection pattern time series valid for the specified month. (Climate Prediction Center, 2005c) 
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Scandinavian Pattern (SCA) 

The SCA consists of an anticyclonic centre over the Scandinavian Peninsula and 
two other centres of opposite sign located over the north-eastern Atlantic/western 
Europe and central Siberia, respectively (see Figure 6). SCA is negatively correlated 
with precipitation and temperature over Sweden (Bueh and Nakamura, 2007). Its 
positive phase is associated with a blocking anticyclone over the Fenno-Scandinavia 
region which not only negatively affects precipitation but can also draw cooler air 
masses down over southern Sweden from Siberia and the polar region (Barnston 
and Livezey 1987). Similarly to EA, the work by Comas-Bru and McDermott (2014) 
suggests that SCA has an additive (subtractive) interference effect on the NAO-
precipitation relationship over the southwest coastal region of Sweden (rest of the 
country) when the TCIs have corresponding signs. When the TCIs have opposing 
signs there is a general additive effect on the NAO-precipitation relationship over 
the entire country due to the shifting of their net centres of activity in the Atlantic-
Eurasian domain. 

 

Figure 6. Map of the SCA loading patterns for January, April, July, and October. The loading patterns are expressed 
as the temporal correlation between the monthly standardized height anomalies at each grid point and the 
teleconnection pattern time series valid for the specified month. (Climate Prediction Center, 2005d) 
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Polar/Eurasia Pattern (POL) 

The POL (see Figure 7) is associated with variations in the circumpolar circulation 
and is positively correlated with the relative depth of the polar vortex and above 
normal air pressure values over most of the Eurasian region (Climate Prediction 
Center, 2012b; Panagiotopoulos et al., 2002). This above normal pressure 
suppresses precipitation due to reduced convective activity and possible blocking 
effects. 

 

Figure 7. Map of the POL loading patterns for January, April, July, and October. The loading patterns are expressed as 
the temporal correlation between the monthly standardized height anomalies at each grid point and the teleconnection 
pattern time series valid for the specified month. (Climate Prediction Center, 2005e) 
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Study Area and Datasets 

Study area 

 

Figure 8. Map showing the location of the hydrological gauging stations and sub-basins used in this work. The 
gauging stations used in Paper I (orange diamonds), the gauging stations used in Paper III (yellow dots), the gauging 
stations used in paper IV (red squares), and the sub-basins used in Paper V. 



34 

The study areas of interest in this dissertation are a collection of river basins situated 
on the Scandinavian Peninsula (Figure 8). In Paper I the study area comprises basins 
associated with 30 gauging stations across Norway (see Figure 1 in paper I). In 
Papers III - V study areas of interest are two gauging stations on the Vindel River 
(see Figure 1 in paper III), 64 unregulated gauging stations across Sweden (see 
Figure 1 in paper IV), and 84 gauging stations in Northern Sweden (see Figure 3 in 
paper V) respectively. The following paragraphs give a brief summary of the hydro-
meteorological climate of the study areas with special emphasis on Sweden. 

The Scandinavian Peninsula is a relatively long and narrow region in northern 
Europe. It ranges from the mild Öre Sound and southern Baltic Sea in the south 
(55.3°N) to the icy Barents Sea in the north (71.2°N) from the Norwegian fjords to 
the east (4.6°E), over the Scandinavian mountains and down to the Swedish coastal 
plains to the west (31°E). The Scandinavian Peninsula enjoys a surprisingly milder 
climate than its northern latitudes might suggest with temperatures that are 5-10°C 
above the latitudinal means. This is predominantly due to heat from the tropics being 
transported to the region by the North Atlantic thermohaline and Atlantic meridional 
overturning circulations (e.g. Rahmstorf, 2006). The short to medium term 
variability in the climate is driven by the teleconnection effects caused by the 
interplay between a number of climate circulation patterns over the Euro-Atlantic 
domain regulating the transport of moist air masses over Scandinavia as well as 
other local meteorological conditions (e.g. Barnston and Livezey, 1987; Comas‐Bru 
and McDermott, 2014; Hurrell et al., 2003; Rogers, 1997). 

Temperatures in Sweden are a function of season, latitude, elevation, and proximity 
to the coast. For the majority of the country the mean annual temperature, for the 
period 1961-1990, is above freezing, ranging from 8°C in the south to around zero 
in the north. In the highlands of northwest Norrland and parts of the Scandinavian 
mountain range the mean annual temperature can be as low as -3°C. The pattern for 
the mean annual evaporation follows closely the general pattern for mean annual 
temperature and ranges from between 500-600 mm per year in the south to less than 
100 mm per year in parts of the mountainous regions in the north. Winters tend to 
be long (shorter) and cold (milder) for much of the northern (southern) parts of the 
country while summers tend to be warm everywhere save some areas at high 
elevations.  

Precipitation normals for Sweden for the period 1961-1990 (SMHI, 2019) show that 
precipitation in Sweden is highest in the mountain regions and can be as high as 
2000 mm per year in some places. The interior of northern Sweden, the lowland 
areas of southern Sweden and the eastern seaboard are relatively dry in comparison 
due to the rain shadow effect caused by the Scandinavian mountains lying across 
the prevailing westerly airflow. Here the precipitation range is 500-700 mm per 
year. The south-western part of the country is less affected by this rain shadow effect 
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and the precipitation there can reach 1100 mm per year. In the south of Sweden, the 
amount of precipitation is highest in late summer and early autumn, and remains 
elevated until around February when there is a significant drop before slowly 
increasing again through to the end of summer. The intra-annual distribution of 
precipitation elsewhere in the country is similar to that in the south except that it 
does not remain elevated during the colder months but rather steadily declines until 
the end of winter.  

All these aspects, together with other physical factors and processes, contribute to a 
very heterogeneous hydrology. The natural discharge differs greatly from river to 
river but in general the larger rivers, by discharge, tend to be found in the northern 
two thirds of the country (Figure 9; SMHI, 2017). The farther northwards one goes, 
or the higher the elevation, the greater the fraction of winter precipitation that falls 
as snow. This means that for gauging stations with higher fractions of solid winter 
precipitation the annual hydrograph is characterised by low flows in the winter 
followed by a relatively short period of extreme discharge during the spring when 
the snow melts due to the warmer temperatures. By contrast, the annual hydrographs 
for gauging stations in southern Sweden are characterised by high flows during 
winter and low flows during the summer which is predominantly driven by seasonal 
changes in evapotranspiration. A mild spring melt signal preceding the low summer 
flow period is common for gauging stations that are inland or farther north.  

Discharge statistics for the larger rivers across Sweden are summarised in Figure 9. 
The width of the rivers denotes the magnitude of their discharge, the dark blue 
representing the mean annual discharge and the total width the mean annual 
maximum discharge. Additionally, boxes containing hydrographs show the 5th, 50th 
and 95th percentiles of selected annual hydrographs from unregulated gauging 
stations from five different regions across Sweden.  
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Figure 9. Map showing discharge statistics for the larger rivers across Sweden for the period 1961-1990. The total 
width of the rivers represents the mean annual maximum discharge and the dark blue sub-width the mean discharge 
(SMHI, 2017). Overlayed are the annual standardised hydrographs for unregulated rivers in five regions around the 
country, the median hydrograph is shown in red and the grey hydrographs represent the 5th and 95th percentiles.  
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Datasets 

For the sake of simplicity, the datasets used in this work are summarised in Table 1 
and briefly reported by type, the reader is referred to the appended papers for more 
details.  
Table 1. Summary of the data used in this work. (The reader is referred to the list of abbreviations, or relevant data 
sections, for the full variable names)  

Type Variables Dataset / 
Model Format 

Resolution 
Period Provider 

Temporal Domain 

Observations 

P, T PTHBV Gridded Daily Sweden 1961-
2015 

Swedish 
Meteorological and 
Hydrological 
Institute 

NAO, AO, 
EA, 
EAWR, 
SCA, POL 

_ Indices Monthly Northern 
Hemisphere 

1951-
2015 

Climate Prediction 
Center, US 

Q 

_ Point Daily Norway 1968-
2003 

Norwegian Water 
Resources and 
Energy Directorate 

_ Point Daily Sweden 1961-
2015 

Swedish 
Meteorological and 
Hydrological 
Institute 

Reanalysis mslp 

ERA-40 Gridded Daily 60N to 70N and 
5E to 25E 

1961-
2002 

European Centre for 
Medium-Range 
Weather Forecasts 

ERA-
Interim Gridded Daily 60N to 70N and 

5E to 25E 
2003-
2010 

European Centre for 
Medium-Range 
Weather Forecasts 

Hindcasts 

v, 10u, tp ECHAM5 Gridded Daily 30N to 72N and 
-75E to 75E 

1968-
2003 

International 
Research Institute 
for Climate and 
Society, US 

t850, 
u850, 
v850, 
q850, 
sshf, slhf, 
mslp, 
10u, 10v, 
2t, tp 

ARPEGE 
system 3 Gridded Daily 30N to 72N and 

-75E to 75E 
1982-
2010 

European Centre for 
Medium-Range 
Weather Forecasts 

ECMWF 
system 3 Gridded Daily 30N to 72N and 

-75E to 75E / 
55N to 70N and 
11E to 23E 

1982-
2010 

European Centre for 
Medium-Range 
Weather Forecasts 

ECMWF 
system 4 Gridded Daily 1981-

2015 

European Centre for 
Medium-Range 
Weather Forecasts 

 

Observation data 

Atmospheric 
Observed time-series of precipitation and temperature for Sweden are used in paper 
III and V. These data are sourced from the Precipitation and Temperature for 
Hydrologiska Byråns Vattenbalansavdelning (PTHBV) dataset maintained by 
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SMHI (Johansson, 2002). It is a gridded observation dataset created by optimal 
interpolation of meteorological station observations with elevation and wind taken 
into account. 

Data type:  Gridded observations 

Period:  1961-2015 

Temporal resolution: Daily 

Spatial resolution: 4km x 4km 

Domain:  Sweden 

Variables:  Precipitation (P) 

  Temperature (T) 

Source: Swedish Meteorological and Hydrological Institute 
(SMHI) 

 

Teleconnection indices used in papers III, IV, and V are sourced from the CPC, a 
member of the National Oceanic and Atmospheric Administration of the United 
States of America. CPC calculates these teleconnection indices by applying a 
Rotated Principal Component Analysis, similar to the approach used by Barnston 
and Livezey (1987), to monthly mean standardized height anomalies (500 hPa) from 
the NCEP/NCAR reanalysis dataset. 

Data type:  Teleconnection indices 

Period:  1951-2015 

Temporal resolution: Monthly means 

Variables:  North Atlantic Oscillation (NAO) 

  Arctic Oscillation (AO) 

East Atlantic Pattern (EA) 

East Atlantic/Western Russia pattern (EAWR) 

Scandinavian pattern (SCA) 

The Polar/Eurasia pattern (POL) 

Source:  Climate Prediction Center (CPC) 
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Hydrological 
The gauging stations used in this work are selected according to the following the 
four criteria:  

1. Degree of regulation: Stations with the least regulation are preferred to 
ensure that the streamflow is as near to natural as possible. 

2. Length of time series: Stations with longer time series are preferred to allow 
for more robust analyses. 

3. Number of missing data: Stations with fewer missing data are preferred to 
minimise data filling effects influencing the study results. 

4. Geographic location: Stations were selected to maximise the geographical 
coverage of Sweden. 

Inflows measured at 30 selected gauging stations across Norway for the period 
1968-2003. These data are available from the Norwegian Water Resources and 
Energy Directorate (NVE) who operate the gauging stations (more information visit 
https://www.nve.no). Homogenisation and quality control of the data was 
performed by NVE. 

Data type:  Observations 

Period:  1968-2003 

Temporal resolution: Daily 

Spatial resolution: 30 gauging stations across Norway (see Figure 8) 

Variables:  Inflows (Q) 

Source: Norwegian Water Resources and Energy Directorate 
(NVE) 

 

Inflows measured at 142 selected gauging stations across Sweden for the period 
1961-2015. These data are available from the Swedish Meteorological and 
Hydrological Institute (SMHI) who operate and or maintain the data from these 
gauging stations (more information visit https://www.smhi.se or 
https://vattenweb.smhi.se). Homogenisation and quality control of the data was 
performed by SMHI. 

Data type:  Observations 

Period:  1961-2015 

Temporal resolution: Daily 

Spatial resolution: 142 gauging stations across Sweden (see Figure 8) 

Variables:  Inflows (Q) 
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Source: Swedish Meteorological and Hydrological Institute 
(SMHI) 

Reanalysis data 

Mean sea level pressure (mslp) from two different reanalysis datasets, ERA40 
(Uppala et al., 2005) and ERA-Interim (Dee et al., 2011) are used in paper III to 
select analogue years. Data from these two datasets were appended to each other to 
obtain a single re-analysis dataset that spanned the whole period from 1961-2010. 
These data are available from the European Centre for Medium-Range Weather 
Forecasts (ECMWF), for more information visit http://www.ecmwf.int. 

Dataset:  ERA-40 

Data type:  Re-analysis 

Period:  1961–2002 

Temporal resolution: Daily 

Spatial resolution: 0.75º x 0.75º 

Domain: 60ºN to 70ºN and 5ºE to 25ºE (see Figure 1a in Paper 
III) 

Variables:  Mean sea level pressure (mslp) 

Dataset:  ERA-Interim 

Data type:  Re-analysis 

Period:  2003–2010 

Temporal resolution: Daily 

Spatial resolution: 0.75º x 0.75º 

Domain: 60ºN to 70ºN and 5ºE to 25ºE (see Figure 1a in Paper 
III) 

Variables:  Mean sea level pressure (mslp) 

Source:  European Centre for Medium-Range Weather 
Forecasts (ECMWF) 
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Seasonal hindcast data 

ECHAM4.5 and ECHAM5 
Hindcasts of large scale circulation fields from the ECHAM4.5 (Roeckner et al., 
1996) and ECHAM5 GCMs (Roeckner et al., 2003) are used as predictors in paper 
I. The International Research Institute for Climate and Society (IRI) at Columbia 
University maintains and runs their own versions of the ECHAM4.5 ECHAM5 
models. 

Available online from http://iridl.ldeo.columbia.edu/index.html 

Model:  ECHAM5 and ECHAM5  

Boundry conditions: Prescribed seas surface temperatures 

Data type:  Hindcast 

Period:  1968-2003 

Season:  Jan-Feb-Mar 

Temporal resolution: Daily. These data are aggregated by taking the 
seasonal mean of the ensemble median 

Spatial resolution: 2.5º x 2.5º 

Domain: 30ºN to 72ºN and -75ºE to 75ºE (see Figure 1a in 
Paper III) 

Variables:  Meridional wind velocity at 850 hPa (v850) 

  Total precipitation (tp) 

  Zonal wind stress (u) 

Source: International Research Institute for Climate and 
Society (IRI) 

 

ARPEGE 
Hindcasts of large scale circulation fields from the ARPEGE atmospheric model 
(Déqué et al., 2004) are used as predictors in paper III. ARPEGE is developed and 
maintained by Meteo France, however these data were sourced through the 
ECMWF where copies of the data are hosted, for more information visit 
http://www.ecmwf.int. 

Model:  ARPEGE system 3 
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Boundary conditions: The variable-resolution (0.33–2°) ORCA ocean 
model 

Data type:  Hindcast 

Period:  1982-2010 

Season:  Jan-Aug 

Temporal resolution: Daily. These data are aggregated by taking the 
seasonal mean of the ensemble median. 

Spatial resolution: 0.75º x 0.75 º 

Domain: 30ºN to 72ºN and -75ºE to 75ºE (see Figure 1a in 
Paper III) 

Variables:  2 metre temperature (2t) 

10 metre meridional wind velocity (10v) 

10 meter zonal wind velocity (10u) 

Mean sea level pressure (mslp) 

Surface sensible heat flux (sshf) 

Surface latent heat flux (slhf) 

Total precipitation (tp) 

Temperature at 850 hPa (t850) 

Specific humidity at 850 hPa (q850) 

Meridional wind velocity at 850 hPa (v850) 

Zonal wind velocity at 850 hPa (u850) 

Geopotential height at 850 hPa (z850) 

Source: European Centre for Medium-Range Weather 
Forecasts (ECMWF) 

 

ECMWF IFS 
Hindcasts of P and T as well as large scale circulation fields from the ECMWF IFS 
(Integrated Forecast System) are used as predictors in paper III and V. ECMWF 
IFS is developed and maintained by ECMWF, for more information visit 
http://www.ecmwf.int. 

Model:  ECMWF system 3 cycle 31r1 
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Boundry conditions: The HOPE ocean model with 1° x 1° spatial resolution 

Data type:  Hindcast 

Period:  1982-2010 

Season:  Jan-Aug 

Temporal resolution: Daily. Those data used as predictors in the SE 
modelling chain are aggregated by taking the seasonal 
mean of the ensemble median  

Spatial resolution: 1º x 1º (DE) and 2º x 2º (SE) 

Domain: 55ºN to 70ºN and 11ºE to 23ºE (DE) (see Figure 1a in 
Paper III) 

30ºN to 80ºN and -75ºE to 75ºE (SE) (see Figure 1b 
in Paper III) 

Variables:  2 metre temperature (2t) 

10 metre meridional wind velocity (10v) 

10 meter zonal wind velocity (10u) 

Mean sea level pressure (mslp) 

Surface sensible heat flux (sshf) 

Surface latent heat flux (slhf) 

Total precipitation (tp) 

Temperature at 850 hPa (t) 

Specific humidity at 850 hPa (q) 

Meridional wind velocity at 850 hPa (v) 

Zonal wind velocity at 850 hPa (u) 

Geopotential height at 850 hPa (z) 

 

Model:  ECMWF system 4 cycle36r4 

Boundary conditions: The NEMO ocean model with 1° x 1° spatial 
resolution with equatorial refinement 

Data type:  Hindcast 

Period:  1981-2015 
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Season:  Jan-Aug 

Temporal resolution: Daily. Those data used as predictors in the SE 
modelling chain are aggregated by taking the seasonal 
mean 

Spatial resolution: 0.5º x 0.5º (DE) and 1º x 1º (SE) 

Domain: 55ºN to 70ºN and 11ºE to 23ºE (DE) (see Figure 3b in 
Paper V) 

30ºN to 80ºN and -75ºE to 75ºE (SE) (see Figure 3a 
in Paper V) 

Variables:  2 metre temperature (2t) 

10 metre meridional wind velocity (10v) 

10 meter zonal wind velocity (10u) 

Mean sea level pressure (mslp) 

Surface sensible heat flux (sshf) 

Surface latent heat flux (slhf) 

Total precipitation (tp) 

Temperature at 850 hPa (t) 

Specific humidity at 850 hPa (q) 

Meridional wind velocity at 850 hPa (v) 

Zonal wind velocity at 850 hPa (u) 

Geopotential height at 850 hPa (z) 

Source: European Centre for Medium-Range Weather 
Forecasts (ECMWF) 
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Models and Methods 

Diverse methods for hydrological seasonal modelling, analysis, and evaluation were 
used in this work. This chapter presents and briefly describes these. The reader is 
referred to the appended papers for more detail. 

Rainfall-runoff model based ensemble modelling chains 

In this section, the hydrological rainfall-runoff model used in this work and three 
different hydrological modelling chains that utilise it are presented. A modelling 
chain, for the purpose of this work, is the cascade of nested steps that need to be 
performed to produce a forecast. The hydrological model is presented first followed 
by the modelling chains. 

HBV 

The rainfall-runoff model used in this work is the Hydrologiska Byråns 
Vattenbalansavdelning hydrological model (HBV). It is a semi-distributed 
conceptual rainfall-runoff model which includes numerical descriptions of 
hydrological processes at the basin scale. HBV was originally developed at SMHI 
in the early 1970s (Bergström, 1976) to assist hydropower operations and it is still 
the hydrological model of choice for the industry in Sweden. Since its development 
model has also proved itself to be a useful for work related to dam safety, water 
supply, flood warnings and climate change studies (SMHI, 2016). Operational or 
scientific applications of the HBV model have been reported from more than 40 
countries around the world (SMHI, 2016). The general water balance in the HBV-
96 model can be expressed as: 

 𝑃 − 𝐸 − 𝑄 = 𝑑𝑑𝑡 ሺ𝑆𝑃 + 𝑆𝑀 + 𝑈𝑍 + 𝐿𝑍 + 𝐿𝑉ሻ 
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where, 

P = precipitation  E = evapotranspiration 

Q = runoff   SP = snow pack 

SM = soil moisture  UZ = upper groundwater zone 

LZ =lower groundwater zone  LV = lake volume 

The model is normally forced with daily observations of P, T and monthly estimates 
of potential evapotranspiration. The model consists of subroutines for 
meteorological interpolation, snow accumulation and melt, evapotranspiration 
estimation, soil moisture accounting procedure, routines for runoff generation and 
finally, a simple routing procedure between sub-basins and in lakes. Basins with 
considerable elevation ranges can be subdivided into elevation zones which, if 
needed, can be further divided into different vegetation zones (e.g., forested and 
non-forested areas). These subdivisions are made for the snow and soil moisture 
routines only. The model structure of HBV-96, with the most important 
characteristics, is presented schematically in Figure 10. For a more comprehensive 
model description readers are referred to Lindström et al. (1997). 
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Figure 10. Schematic presentation of the HBV-96 model for a single basin (Lindström et al., 1997). 

Historical ensemble modelling chain (HE) 

The HE, also referred to as ensemble streamflow prediction or ESP in the literature 
(e.g. Day, 1985), is the predominant modelling chain used for making operational 
seasonal forecasts of reservoir inflows within the hydropower sector in Sweden. 
Figure 11 shows a schematic of the HE modelling chain used in this work. The 
modelling chain follows three steps: 
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1. A well-calibrated set-up of the HBV rainfall-runoff model is initialized by 
running it up to the forecast issue date, typically in February, using observed 
meteorological data (T, P). This is done to ensure that the HBV model states 
reflect the current hydrological conditions in the basin with respect to e.g. 
streamflow, snow pack and soil moisture at the time of the forecast 
initialisation. 

2. The initialised model from step 1) is then forced with catchment time series 
of T and P from all available historical years prior to the current one, which 
covers the period from the forecast issue date until the end of July. The time 
series of each historical year represents one possible weather evolution and 
results in one possible spring-flood volume (SFV) estimate.  

3. The results from step 2) make up the HE. The nature of this modelling chain, 
using all available historical years of observations, means that the forecast 
evolution from the initial model states is climatological in nature. This 
climatological forecast which may be expressed in terms of percentiles with 
different probabilities. Though, in current practice, as well as in this study, 
the median value of SFV is considered as the spring flood forecast. The 
spin-up period used is from 01-01-1961 to “present”. As each new forecast 
is made, the initial conditions (i.e. model state) are saved and these are used 
when spin-up for the next forecast date is performed. In this work, the HE 
is thus made up of all historical years from 1961 to “present”. This means 
that the HE has 40 members in 2000 and increases in size by one member 
for each year thereafter (paper III). However, in paper V, a cross-validation 
protocol is used which results in a fixed sized ensemble using data from all 
available years excluding those data for the year for which the hindcast is 
being made. 
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Figure 11. Schematic diagram of the historical ensemble modelling chain. 

Analogue ensemble modelling chain (AE) 

The use of analogues has been widely used as a downscaling methodology since 
Zorita and von Storch (1999). The hypothesis is that similar large-scale atmospheric 
patterns can result in similar meteorological conditions. The objective is to identify 
historical years with similar large-scale circulation conditions as the current year, 
up to the forecast issue date, and then assume that their subsequent weather 
evolutions are likely realisations over the coming forecast period. In this work a 
period of 1 to 8 months prior to the forecast initialisation date is used to identify the 
analogue years. The motivation for this is that this period covers the period when 
snow is accumulated in the catchments and that similar climate behaviour during 
this period could induce similar snow accumulation. With snow being the major 
contributor to the SFV, years that have similar large-scale circulation conditions 
during the winter period should have similar sized snowpacks and thus similar 
SFVs. 

Compared with the HE modelling chain, this approach aims at identifying a reduced 
ensemble of data from analogue years with which the AE forecast will be made. To 
restrict the large number of degrees of freedom of the atmospheric circulation, that 
would require an unreasonable number of years in the historical data set, two 
methods are used for the selection of the analogue ensemble. The first one is based 
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on teleconnection climate indices and the second on circulation patterns. Thus, the 
AE is the same as the HE with the added step, after step 2), that once the historical 
ensemble forecasts is calculated, only those ensemble members corresponding to 
the identified analogue years are retained to make up the AE.  

 

Figure 12. Schematic diagram of the AE modelling chain where TCIs are used for analogue selection. 

Analogue selection based on teleconnection pattern indices (TCI) 
The prospect of using climate indices for identifying analogue years in a 
hydrological forecasting context is not a new one (e.g. Hamlet and Lettenmaier, 
1999) but it is relatively rare. As mentioned in the previous section, the hypothesis 
is that it is possible to select analogue years from the historical driving dataset by 
comparing the TCIs in the period leading up to the forecast initialisation with the 
same period in previous years and selecting those that are similar to force a 
hydrological model. Other investigations in this work connects the following three 
TCIs with the SFV in northern Sweden (see section Climate-streamflow 
connections and paper IV): 
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• NAO/AO: positively correlated with P and T over Sweden for most of the 
year. For P, the relationship switches to a negative correlation during the 
months of July and August (see section North Atlantic Oscillation (NAO) 
and Arctic Oscillation (AO)). 

• SCA: negatively correlated with P and T and has been shown to modify, 
strengthen or weaken, the teleconnection effects of AO/NAO on P over 
Scandinavia (see section Scandinavian Pattern (SCA). 

• EA: positively correlated with P and T for much of the year and has also 
been shown to modify the teleconnection effects of AO/NAO on P over 
Scandinavia (see section East Atlantic Pattern (EA). 

In Paper III, the analogue years are classified based on the indices’ historical mean 
value TCIM and standard deviation TCIS for six months prior to the forecasts 
initialisation date. The current year, with its certain TCI-value, is classified as above 
normal if TCI>TCIM+TCIS, below normal if TCI<TCIM-TCIS and normal if TCIM-
TCIS≤TCI≤TCIM+TCIS. The same classification is done for the corresponding 
periods in each of the years in the historical archive. If the classification of the three 
different indices is in agreement with the index classification for the year in question 
for the forecast, the specific historical year is selected as an analogue year. If no 
analogue years are identified, then analogue years are sought using an agreement 
with two indices. The number of identified analogue years range between 1 and 19 
with the average number being 7. 

In Paper V, an improved approach for selecting analogues is employed (Figure 12). 
The mean TCI of AO and SCA is calculated for the period from October to the 
forecast date minus one month, to replicate the delay in real-time teleconnection 
indices being published e.g. the period would be October-November-December-
January if the forecast date was in March. This is done for all years in the 
climatological ensemble. If the values of these indices are considered to be 
coordinates then their positions can be plotted in Euclidean space. An analogue year 
is defined to be those years whose positions in the resulting AO-SCA Euclidean 
plane that are within a distance of 0.2 from the Euclidean position of the forecast 
year. The limit of 0.2 is an arbitrary value found, through an iterative process, to 
give a good balance between precision and the chance of finding an analogue. The 
analogues are replicated so that the number of ensemble members is the same as 
that in the HE. If no analogue years are identified then the HE is used instead. 

Analogue selection based on circulation patterns (CP) 

Circulation-pattern (CP) analysis is a commonly used tool in climatological and 
meteorological studies (Hay et al., 1991; Wilby and Wigley 1994). It was initially 
applied to explain climate variability at a large scale (Barry and Perry, 1973) and 
later on widely developed to downscale GCM output to local climate in e.g. climate 
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change studies (Wetterhall et al., 2006; Yang et al., 2010). The use of CP to select 
analogues is used in paper III only.  

The method is generally applied to reliable upper-air data at multi-grid, e.g. sea level 
pressure and geopotential height, to explain recorded observations of e.g. P and T. 
By differentiating historical observations into several representative CPs, each CP 
is supposed to represent specific climate conditions in the study area. The CPs are 
defined based on either professional knowledge of atmospheric motions (subjective 
classification) or statistical characteristics derived from the observations (objective 
classification). As the subjective classification is only available in a limited number 
of regions, the objective classification has been widely developed and used. The 
objective classification is a semi-automated or automated technique that pertains to 
mathematical approaches, e.g. hierarchical methods (Johnson, 1967), k-means 
methods (Mac-Queen, 1967), cluster analysis (Kyselý and Huth, 2005) and 
correlation methods (Yarnal, 1984). 

The method used in this work uses fuzzy-rule-based classification, built on the 
concept of fuzzy sets (Zadeh, 1965), of MSLP reanalysis data (see Table 1) to 
determine the circulation patterns common to the region in the three or six months 
prior to the forecast initialisation date. An analogue year is defined as any historical 
year for which the two dominant CPs in the months prior to the forecast date are the 
same as those found for the year in question. (see paper III for more details). The 
analogues are then used in the same manner as the TCI analogue approach i.e. 
replicated so that the number of ensemble members is equal to those in the HE and 
the HE is used if no analogues can be identified.  

Dynamic ensemble modelling chain (DE) 

The DE, Figure 13, is similar to the HE except that the hydrological model is not 
forced with historical data in step 2) but rather by an ensemble of seasonal forecasts 
of daily P and T from the ECMWF IFS (see Table 1). This is done by mapping the 
daily meteorological forecasts (see Table 1) from the GCM grid onto the HBV sub-
catchments. The resulting sub-catchment average P and T forecasts are used to force 
the HBV model from the same initial state as used in the current HE procedure i.e. 
following the HE procedure but with forecasts instead of historical years in step 2. 
Again, the final forecast used in the evaluation is defined by the ensemble median. 

In Paper V the P and T forecasts from the ECMWF IFS are bias adjusted before 
being used to force the HBV model. The bias adjustment method used is a version 
of the distribution based scaling approach (DBS; Yang et al., 2010) which has been 
adapted for use on seasonal forecast data. DBS is a quantile mapping bias 
adjustment method where meteorological variables are fitted to appropriate 
parametric distributions (e.g. Berg et al., 2015; Yang et al., 2010). 



53 

 

Figure 13. Scematic diagram of the dynamic ensemble modelling chain. The dashed box shows the bias correction 
step that is present in the modelling chain used in paper V but is not present in the modelling chain used in paper III. 

Statistically downscaled ensemble modelling chain (SE) 

Statistical downscaling is a widely accepted methodology used to connect coarse-
scale climate data output from GCM to local-scale variables. In this work, large-
scale circulation variables are statistically connected to the SFV. The method 
employed to establish the statistical relationship among the variables are the 
multivariate procedures known as canonical correlation analysis (CCA; see section 
Canonical Correlation Analysis) and Singular Value Decomposition (SVD; see 
section Singular Value Decomposition) analysis. Both methods isolate sets of 
mutually orthogonal pairs of spatial patterns that maximize the squared temporal 
correlation (the former) or covariance (the latter) between two physical variables.  

These analyses can be used to derive specific prediction or specification models for 
particular points in one variable’s field (the predictand; SFV in this work) based on 
the spatial pattern and/or on the evolution patterns of the anomalous values in the 
other field (the predictor). From the singular vector pairs, the temporal expansion 
series of each field can be obtained by projecting the data onto the appropriate 
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singular vector (Bretherton et al., 1992). The relationship between the variables is 
generated by calculating the matrix of regression coefficients which relates the 
values of the predictor singular mode temporal amplitudes to the individual points 
in the predictand field. 

 

Figure 14. Scematic diagram of the statistical downscaled ensemble modelling chain. 

In this work, hindcasts for the predictors and historical observations for the 
predictands are used to define the statistical relationship between them i.e. to 
calibrate the model. To maximise the robustness of the forecast, multiple forecasts 
are made with different predictors resulting in an ensemble forecast. In Paper I a 
CCA approach with three large scale climate variables is used; alternatively in 
Papers III and V the SVD approach is used with three and four predictors, 
respectively (Figure 14). The reader is referred to the relevant papers for more 
details. 
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It should be noted that whereas the other methods generate daily discharge time 
series over the spring flood period, from which SFV is estimated, the SE method 
directly forecasts the SFV. Therefore forecasts from the SE method give 
information about the volume of the spring flood only; they do not provide 
information about the evolution of the flood profile. 

Canonical Correlation Analysis 
Canonical correlation analysis (CCA) is a statistical method, first developed by 
Hotelling (1936), for exploring the relationship between two multi-dimensional 
datasets. It estimates two linear transformation coefficients, one from each dataset, 
such that the data are maximally correlated in the transformed space (e.g. Barnett 
and Preisendorfer, 1987; Sun et al., 2009). In Paper I, CCA is used to construct a 
statistical regression model to downscale output fields from a GCM directly to 
seasonal streamflows for multiple gauging stations in Norway. 

A CCA regression model can be constructed by first calculating the matrix of 
regression coefficients (S) which relate the values of the predictor canonical mode 
temporal amplitudes (U) to the individual values in the predictand field (Z). These 
coefficients are given by the vector product Sm,z= (UmZz), where m is the canonical 
mode index and z is the spatial index of the elements. That is to say that Sm,z links 
the predictor side of the canonical mode m to point z in the predictand field (Z). The 
CCA model regression equation can then be written in matrix notation as 𝑍መ = 𝑈′𝑆 
(Uvo, 1998).  

The three CCA models in paper I are constructed using the Climate Predictability 
Tool (CPT) developed at IRI. The CPT is a software package (Mason and Tippet, 
2015) for constructing seasonal climate forecast models, performing model 
validation, and producing forecasts given updated data. 

Singular Value Decomposition 
Singular value decomposition (SVD) is the generalization of the eigen 
decomposition of matrices that are not square or symmetrical. SVD isolates sets of 
mutually orthogonal pairs of spatial patterns that maximize the squared temporal 
covariance between two physical variables (e.g. Cheng and Dunkerton, 1995; Uvo 
et al., 1998). The SVD of the cross-covariance matrix (Cyz) between the predictor 
and predictand fields is given by 𝐴 = 𝐺௞𝜎𝐻′௞, where σ are the eigenvalues, Gk and 
Hk are the predictor and predictand eigenvectors respectively, and k is the number 
of modes. The pair of eigenvectors describes spatial patterns for each field that have 
overall covariance given by the corresponding eigenvalue. SVD is used in paper V 
to identify which of the GCM output fields is suitable as predictors and to construct 
a regression model to downscale these predictors directly to SFV. 
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In order to identify which predictors to use they are first divided into one of three 
groups; pressure related fields, humidity related fields, and temperature related 
fields. Then the members of each group are ranked according to the strength of their 
relationship with the predictand (SFV). This ranking is based on the normalised 
squared covariance (NSC) which is defined by Wallace et al. (1993) as: 

 

𝑁𝑆𝐶௞ = ඨ 𝜎௞ଶ∑ ∑ 𝑣𝑎𝑟௜𝑣𝑎𝑟௝௝௜  

where, vari and varj are the variances at the ith and jth grid points in the predictor 

field and predictand fields respectively and σk are the eigenvalues of the kth mode. 

The construction of the SVD regression model is similar to the construction of the 
CCA regression model described in the preceding section.  

Multi-model ensemble of modelling chains (ME) 

The ME is the next step in the modelling chain concept hierarchy where individual 
modelling chains are combined into a single multi-chain forecast system. This falls 
under the umbrella of what is often referred to as multi-modelling in the literature. 
The hypothesis is that by applying the notion of the “wisdom of the crowd” to 
forecasting it is possible to improve forecast skill. Basically, it assumes that the 
larger errors in one model will be offset by smaller errors in the other models 
resulting in a forecast with better skill overall. This approach is not new in 
hydrological forecasting and has been successfully applied numerous times (e.g. 
Duan et al., 2007; Ma et al., 2016; Mo and Lettenmaier, 2014; Wanders et al., 2019; 
Yuan et al., 2011; Yuan et al., 2015). 

In this work, the forecast ensembles from the individual modelling chains are 
combined into an ME in three different ways (see papers III and V for more details): 

• Using the ensemble median of the middle ranked modelling chain as the 
forecast. 

• Weighting the individual models using simple fractional weights, based on 
their individual performance, such that the weights added up to one. 

• Simply pooling the individual modelling chain ensembles into one large 
ensemble.  
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The reason for using these simple techniques is due to the lack of data points, the 
longest series have a total of 35 spring flood events per sub-basin and forecast 
initialisation date (see paper V). This lack of data with which to derive informed 
weights excludes more sophisticated methods such as Bayesian model averaging 
(e.g. Kleiven and Steinsland, 2018) or machine learning (e.g. Zaherpour et al., 
2019). 

Bootstrapping 

Bootstrapping is a resampling technique that allows for the estimation of the 
precision of any sample statistic such as a validation metric. By calculating the 
validation metrics on randomly sampled subsets of the population data it is possible 
to calculate the confidence intervals for these metrics which are an inference of their 
true values for the population (Efro, 1992). In Papers I and V bootstrapping is used 
to ascertain whether the validation metrics from the cross validation hindcast 
experiments are significant or not. The rational for doing this is that the length of 
the data series are limited and in the case of Paper I a simpler k-fold cross validation 
is employed and not a more complete leave-one-out cross validation, where the data 
is repeatedly divided up until all possible combinations have been explored (Kohavi, 
1995), so resampling would be required to better estimate the distribution of the 
validation scores.  

Cross Validation 

Model performance in Papers I and V are estimated using cross validation. K-fold 
cross validation divides the datasets up into k mutually exclusive subsets of roughly 
equal size. The modelling experiments are then carried out k-times, each time a 
different subset is used as the testing dataset while the remaining subsets are used 
as the training data. An estimation of model performance is then calculated on the 
results from the different modelling experiments. Leave-one-out cross validation 
(LOOCV) is the logical extreme of the k-fold cross validation where the number of 
subsets is equal to the number of data points. The advantages with this approach are 
that it is relatively easy to implement and that it offers a more robust method of 
evaluating model performances when the datasets are small. A drawback is that the 
procedure can be time consuming as the modelling must be performed many times. 
Figure 15 shows graphically how the data is divided into the training and testing 
subsets.  
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In Paper I the data is divided into seven subsets, k=7, and the regression model is 
repeatedly trained using the data from six of these subsets and the resulting models 
are used to make hindcasts for the remaining years. In Paper V a LOOCV protocol 
is used for the modelling experiments i.e. k=1. 

 

Figure 15. Division of the data into training and testing subsets. This example uses k=1 i.e. a LOOCV protocol. 

Principal Component Analysis 

Principal component analysis (PCA) is a multivariate technique developed by 
Pearson (1901), although Hotelling (1933) is often the one credited, that provides a 
way to covert complex data into simplified linearly uncorrelated principle 
components of variance using orthogonal transforms. If the PCA is performed 
successfully the resulting data will still retain much of the original information while 
the original dimensionality has been greatly reduced.  

PCA was applied in Paper IV in two ways. The first is as a filter to increase the 
signal to noise ratio by retaining the components that contained 90% of the 
explained variance in the hydrological data before clustering; this use of orthogonal 
solutions as the input for the cluster analyses is common practice and convenient 
(e.g. Uvo and Berndtsson, 1996). The second is as a method to determine 
connections between the different teleconnection patterns and streamflow for every 
hydrological period and homogeneous hydrological region. For each homogeneous 
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hydrological region and hydrological period, a PCA was performed to the data 
matrix composed by the time series of the streamflow composite (average of the 
streamflow of all stations belonging to the homogeneous hydrological region) and 
the time series of the accompanying TP periods. A biplot of the first two PCA modes 
was used to identify within all TPs and TP periods, the ones that were most strongly 
related to the hydrological region and period in question. 

Cluster Analysis 

The goal in Paper IV is to identify, quantify and understand the climatic drivers that 
govern the variability in seasonal hydrology in Sweden. To this end it is necessary 
to divide Sweden into homogeneous hydrological regions, and this is done by cluster 
analysis. This method groups variables that are linearly related to each other into 
subsets by developing ‘dendrograms’, tree-like hierarchical diagrams which show 
the familial relationships among all the variables in a dataset (Krumbein and 
Graybill 1965). The correlation matrix is used as a foundation for discriminating the 
levels of relatedness between the variables. Starting with one or more highly 
correlated pairs of attributes, the connections between these and the remaining 
variables are computed to develop a hierarchy of interrelations showing the degree 
of connection within the dataset. 

The hierarchical cluster analysis is done using Ward’s algorithm (Ward, 1963). The 
clusters are validated by correlating the individual records with the cluster mean, by 
physical understanding of the geographical expression of the clusters and by using 
silhouettes. Silhouettes are a graphical aid based on the comparison of the 
dissimilarity of the members of each cluster and the mean silhouette width gives a 
measure for the clustering solution’s validity (Forgy, 1965; Rousseeuw, 1987). 

A composite monthly series and a monthly hydrograph of long term average 
streamflow are created for each cluster. These composite time series, which are 
derived from the average of the normalised time series composing the cluster, are 
used as the representation of the streamflow for the correspondent cluster in later 
analyses. The benefit with using a composite is that it acts as a generalised time 
series for the entire cluster and thus is not biased toward any individual time series. 
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Wavelet Analysis 

In Paper IV the temporal variability of the hydrological periods (HP) and TP periods 
were analysed by means of continuous wavelet transform (CWT). The wavelet 
analysis (Morlet et al., 1982a and 1982b; Grossmann and Morlet, 1984; Grossmann 
and Morlet, 1985) can analyse both the time and frequency variations of a non-
stationary time series. The wavelet analysis decomposes a time series into scale 
components which discriminate between the oscillations at different time scales. 
Wavelet analysis retains information regarding the occurrence of non-stationary 
events in both the time and frequency domains, unlike other spectral techniques such 
as the Fourier and Gabor transforms, highlighting localized intermittent 
periodicities. Furthermore, it is possible to provide information about the level of 
significance by varying the period in accordance to short or long time scale 
oscillations (Grinstead et al. 2004). 

A wavelet function is characterized by a zero mean and its localization in both 
frequency and time. The Morlet (Ψ0) wavelet was used in this study since it is 
efficient in extracting features, maintaining a good balance between frequency and 
time information (Grinstead et al., 2004). It is defined as: 

 Ψ଴ሺ𝜂ሻ = 𝜋ିଵ ସൗ 𝑒௜ఠబఎ𝑒ିఎమ ଶൗ  

 

where, η and ω0 are time and frequency respectively, both non-dimensional. The 
CWT of a discrete data series X, with N elements, is defined as the convolution of 
xn with a scaled and translated version of the wavelet Ψ0(η). When normalized to 
have unit energy, it might be compared to the CWT of other variables and assumes 
the form: 

 

𝑊௡௑ሺ𝑠ሻ = ඨ𝛿𝑡𝑠 ෍ 𝑥௡ᇲே
௡ᇲୀଵ 𝛹∗ ቈሺ𝑛ᇱ − 𝑛ሻ𝛿𝑡𝑠 ቉ 

 

where, s is the wavelet scale, n is the localized time index, and * indicates the 
complex conjugate (Torrence and Compo 1998; Grinsted et al., 2004). The wavelet 
spectrum is then defined as the square of the amplitude of the transform: |Wn(s)|2 
(Torrence and Compo, 1998). The statistical significance level of the CWT is 
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estimated by comparing the calculated spectra with the spectrum of the red noise as 
suggested by Torrence and Compo (1998). 

The relationships between the temporal variability of the TP periods and the HPs 
were investigated using Cross Wavelet Transforms (XWT). The XWT between two 
data series xn and yn is defined by Grinsted et al. (2004) as the product between the 
CWT of one variable and the complex conjugate of the CWT of the other variable 
(WXY=WXWY*), and the cross-wavelet power as the absolute value of the XWT 
(|WXY|). The local relative phase between the TP period and the HP is represented by 
the complex argument of the XWT. The XWT shows the periods and frequencies in 
which the individual CWTs both have high power plus the local phase between 
them. 

To avoid the pitfalls of XWT analysis identified by Maraun and Kurths (2004), the 
wavelet transform coherence (WTC) was used. This is a measure of the coherence 
between the signals from the individual CWT (Grinsted et al., 2004), and can be 
thought of as the local correlation between the wavelet transform of each time series 
used in the XWT. Therefore, while a XWT identifies periods and times when the 
two variables are oscillating, the WTC enhances the periods and time when the 
variables are locally correlated. As such, WTC is able to highlight periods and times 
when the two variables were correlated, even if the power of their oscillation is not 
strong. Results of these analyses are presented in form of a diagram Period vs Time 
with colours representing the power intensity and arrows representing the relative 
local phase. Horizontal arrows pointing to the right indicates that the TP period and 
the hydrological variability are in-phase and pointing to the left that they are in anti-
phase. Vertical arrows indicate that one variable time series leads the others by 90° 
(Grinsted et al., 2004). 
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Validation metrics  

The validation metric used to estimate model performance in this dissertation are 
briefly presented in table below. 
Table 2. The validation metrics used to evaluate the multi-model performance. The threshold for skill is 50 for FY+ and 
0 for all the other metrics. 

Name Equation Description 

Mean absolute error skill 
score (MAESS)  𝑴𝑨𝑬𝑺𝑺 = 𝟏 − 𝑴𝑨𝑬𝒇𝑴𝑨𝑬𝒓 

where f is the modelled forecast and r 
reference forecast. 

Measure of the model’s general 
performance; it quantifies the relative 
forecast error against a reference 
forecast.  

Frequency of Years (FY+) 𝑭𝒀ା = 𝟏𝟎𝟎𝒏 ෍ 𝑯𝒚𝒏
𝒚ୀ𝟏 , 

where y is the timestep and n is the total 
number of timesteps. H is the Heaviside 
function defined by 𝐻௬ = ቊ0,  𝐴𝐸௥௬  <  𝐴𝐸௙௬1,  𝐴𝐸௥௬  >  𝐴𝐸௙௬ , 
where AE is the absolute error, y is the 
timestep, f is the modelled forecast, and r 
reference forecast. 

Measure of the model’s general 
performance; it quantifies how often 
the forecast outperforms a reference 
forecast. 

Nash-Sutcliffe efficiency 
(NSE; Nash and Sutcliffe, 
1970)) 

𝑵𝑺𝑬 = 𝟏 − ∑ ቀ𝑺𝑭𝑽𝒓𝒚 − 𝑺𝑭𝑽𝒇𝒚ቁ𝟐𝒏𝒚ୀ𝟏∑ ൫𝑺𝑭𝑽𝒓𝒚 − 𝑺𝑭𝑽𝒓൯𝟐𝒏𝒚ୀ𝟏  

where SFV is the springflood volume, y is 
the timestep, n the total number of 
timesteps, f is the modelled forecast, and r 
reference forecast. 

Measure of the model’s general 
performance; it quantifies the model’s 
residual variance against a reference 
forecast’s variance. 

Relative operating 
characteristic skill score 
(ROCSS) 

𝑹𝑶𝑪𝑺𝑺 = 𝟐 ∗ 𝑨𝑼𝑪 − 𝟏, 
where AUC is the area under the curve 𝐴𝑈𝐶 = ෍ ሺ𝐹𝑅௬ − 𝐹𝑅௬ିଵሻሺ𝐻𝑅௬ + 𝐻𝑅௬ିଵሻ2 ,௡ାଵ

௬ୀଵ  

where FR is the false alarm rate, HR is the 
hit rate, y is the timestep, and n the total 
number of timesteps. 

Measure of the model’s probabilistic 
performance; it quantifies the model’s 
ability of the discriminate between an 
event and a non-event given a 
specific threshold. 

Interquartile range skill 
score (IQRSS) 𝑰𝑸𝑹𝑺𝑺 = 𝟏 − 𝑰𝑸𝑹𝒇𝑰𝑸𝑹𝒓 

where IQR is the interquartile range, f is 
the modelled forecast, and r reference 
forecast. 

Measure of the forecast sharpness, it 
quantifies the relative spread in the 
forecast against a reference forecast. 

Uncertainty sensitivity (U) 𝑼 = 𝟏 − 𝟔 ∑ 𝒅𝟐𝒏𝒚ୀ𝟏𝒏ሺ𝒏𝟐 − 𝟏ሻ, 
where d denotes the difference in the ranks 
of the IQR and AE, y is the timestep, and n 
the total number of timesteps. 

Measure of the model’s sensitivity to 
uncertainty; it quantifies the 
correlation between forecast 
sharpness and absolute error 
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Results and Discussion 

Different forecasting approaches were investigated and developed in this work with 
the aim of improving the performance of seasonal forecasts of the spring flood 
inflow volumes to Swedish hydropower reservoirs. These approaches can be 
divided into two general categories: the individual modelling chains, and multi-
models comprising combinations of these individual modelling chains. The main 
findings are presented in this chapter. For further details the reader is directed to the 
appended papers. 

The individual modelling chains 

Historical ensemble 

Table 3 gives an overview of the HE approach’s ability to predict the inflow volume 
of the spring flood in 84 sub-basins in Sweden (paper V). It presents skill scores and 
the number of sub-basins, as a percentage, where the HE performs better than 
climatology. The reported skill scores are the median results for the 84 sub-basins 
aggregated by cluster. The n+ values indicate the percentage of sub-basins where the 
HE exhibits skill over climatology and those in brackets show the percentage of sub-
basins for which these results are significant at the 0.1 level. 

These results show that the general performance of the HE approach is best when 
the lead times are shorter i.e. those forecasts which are initialised later in the year. 
The MAE skill scores (MAESS) and change in NSE (ΔNSE) suggest the HE 
approach has little to no skill over climatology with respect to forecast error and 
interannual variability for forecasts initialised in January and February. However, 
the results typically improve with each initialisation. 

There is a marked jump in the general skill going from forecasts initialised in 
February to those initialised in March. The interpretation for this is that the snow 
pack is more developed by this time. The skill achieved by such an approach is 
mainly leveraged from the initial hydrological conditions i.e. information relating 
to the water stores within the catchment at the time the forecast is initialised. In the 
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context of this work, it is information related to the snow pack that is of greatest 
value. Snow melt is a majority contributor to the inflow volumes during the spring 
melt period in Sweden. HE achieves similar results for all sub-basins with those 
results in S2 being the weakest. 
Table 3. Cross-validated median skill scores, bootstrapped N = 10 000, for HE with respect to climatology, aggregated 
by forecast initialisation month and cluster for the 84 sub-basin used in paper V. The n+ values indicate the percentage 
of sub-basins where the HE performs better than climatology averaged over all 84 sub-basins. n+ values in brackets 
show the percentages of the sub-basins for which these scores are statistically significant at the 0.1 level. The skill 
threshold is 0 for MAESS and ΔNSE, while the skill threshold for FY+ is 50. 

 MAESS FY+ ΔNSE 
 n+ (%)  n+ (%)  n+ (%) 

S1 

Jan -0.02 56 (0) 48.3 56 (0) -0.10 40 (0) 

Feb 0.01 60 (0) 50.4 56 (0) -0.03 52 (4) 

Mar 0.06 84 (0) 54.9 80 (0) 0.05 80 (0) 

Apr 0.08 80 (20) 55.8 80 (0) 0.10 72 (16) 

May 0.17 88 (36) 58.6 84 (24) 0.24 88 (36) 

S2 

Jan -0.15 5 (0) 42.6 5 (0) -0.32 0 (0) 

Feb -0.08 26 (0) 44.5 26 (0) -0.20 26 (0) 

Mar 0.02 68 (0) 49.6 37 (0) 0.03 58 (11) 

Apr 0.09 84 (26) 52.8 63 (0) 0.14 74 (21) 

May 0.16 89 (37) 57.4 26 (37) 0.24 89 (26) 

S3 

Jan -0.12 15 (0) 44.6 18 (0) -0.31 10 (0) 

Feb 0.02 55 (13) 49.1 45 (3) -0.05 40 (10) 

Mar 0.15 88 (33) 54.5 75 (15) 0.22 85 (43) 

Apr 0.21 88 (50) 57.4 78 (20) 0.32 88 (50) 

May 0.25 93 (60) 60.6 90 (33) 0.41 90 (65) 
 

The ROCSS in Table 4 shows that the HE approach does show general skill over 
climatology at discriminating between below normal (lower tercile, LT), near 
normal (middle tercile, MT), and above normal (upper tercile, UT) events for all 
forecast initialisations. This suggests that HE already offers some, albeit limited, 
benefit over climatology for the early forecast initialisations by being better at 
discriminating between below, near, and above normal events. It is interesting to 
note that the HE has better skill at discriminating below normal events than above 
normal events. The probable explanation for this is that there is a cold and dry bias 
in the historical driving data. The typical precipitation and temperatures from the 
period that the historical data spans, 1961 to ‘present’, are lower than those for the 
period 1981-2010 or 1981-2015, the periods used in this work. The cause of this 
bias is not investigated in this work, however the working hypothesis is that it is due 
to some combination of climate change and NAO switching to positive trend in the 
early 1980s. 
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Table 4. Cross-validated median ROCSS, Bootstrapped (N = 10 000), aggregated by forecast initialisation month for 
the 84 sub-basin used in paper V. The n+ values indicate the percentage of sub-basins where the HE performs better 
than climatology averaged over all 84 sub-basins. n+ values in brackets show the percentages of the sub-basins for 
which these scores are statistically significant at the 0.1 level. LT = lower tercile, MT = middle tercile, UT = upper tercile, 
and the skill threshold is 0. 

 Jan Feb Mar Apr May 

ROCSS 

LT 
 0.23 0.42 0.57 0.63 0.69 

n+ (%) 90 (21) 99 (56) 100 (91) 100 (95) 100 (99) 

MT 
 0.08 0.11 0.11 0.18 0.24 

n+ (%) 72 (0) 72 (1) 76 (5) 85 (8) 92 (9) 

UT 
 0.11 0.26 0.46 0.53 0.62 

n+ (%) 69 (9) 93 (28) 99 (59) 100 (79) 100 (95) 

Analogue ensemble 

When the skill of the two AE variants are tested for skill over HE, in two sub-basins, 
it is found that the approach which uses CP analysis as the selection criteria performs 
better than the other TCI-based version. Table 5 gives the relative improvement (RI; 
see paper 3 for more details) and FY+ values of forecasts made for two unregulated 
sub-basins in the Ume River system. Although this is a study with a limited sample, 
the CP variant shows improved values for forecasts initialised in January and March 
for both sub-basins and validation measures. While the TCI variant is only able to 
show improved values in the FY+ measures for one of the sub-basins. 
Table 5. Relative improvement RI (%) and frequency of years with a better performance FY+ (%) of the two different 
AE forecasting approaches TCI and CP for two sub-basins in the Vindeln River. The results are with reference to the 
climatological ensemble HE (boldface indicates better performance than HE). The skill threshold is 0 for RI and 50 for 
FY+. 

 
Jan Mar May 

Average 
Sorsele Vindeln Sorsele Vindeln Sorsele Vindeln 

TCI 
RI -6.6 -9 -1.2 -10.4 -6.6 -21.9 -9.3 

FY+ 55 45 64 45 55 45 52 

CP 
RI 1.4 13 19.2 36.2 -9.9 -31.3 4.8 

FY+ 75 75 70 80 33 33 61 
 

These results are encouraging in that they suggest that improvements are possible, 
especially for the longer lead-times. However, the CP variant of the AE is not easily 
implementable in an operational setting. The reanalysis data that are used to select 
the analogues have a two month delay in their release which makes a third of the 
period, on which the analysis is performed, unavailable. Additionally, the CP 
analysis would be more difficult to automate, due to its complexity, compared to the 
much simpler TCI analysis for selecting analogues. 
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Table 6. Cross-validated median skill scores, bootstrapped N = 10 000, for the TCI version of AE with respect to HE, 
aggregated by forecast initialisation month and cluster for the 84 sub-basin used in paper V. The n+ values indicate the 
percentage of sub-basins where the HE performs better than climatology averaged over all relevant sub-basins. n+ 
values in brackets show the percentages of the sub-basins for which these scores are statistically significant at the 0.1 
level. The skill threshold is 0 for MAESS and ΔNSE, while the skill threshold for FY+ is 50. 

 
MAESS FY+ ΔNSE 

 n+ (%)  n+ (%)  n+ (%) 

S1 

Jan -0.02 44 (0) 47.5 40 (4) -0.05 20 (0) 
Feb -0.03 48 (0) 45.7 36 (8) -0.02 48 (0) 
Mar -0.07 4 (0) 40.8 20 (0) -0.14 4 (0) 
Apr -0.02 36 (0) 45.9 20 (0) -0.07 20 (0) 
May -0.07 8 (0) 49.6 56 (4) -0.11 0 (0) 

S2 

Jan 0.01 37 (5) 39.9 32 (0) 0.01 53 (5) 
Feb -0.03 21 (0) 42.1 26 (0) -0.04 26 (0) 
Mar -0.05 5 (0) 42.1 37 (5) -0.11 0 (0) 
Apr -0.03 26 (0) 40.6 26 (0) -0.04 37 (0) 
May -0.01 26 (5) 46.3 26 (5) -0.02 42 (0) 

S3 

Jan -0.01 45 (0) 49.8 60 (10) -0.01 48 (3) 
Feb -0.09 5 (0) 46.1 30 (3) -0.19 5 (0) 
Mar -0.08 3 (0) 49.1 53 (3) -0.16 3 (0) 
Apr -0.03 40 (0) 47.1 33 (3) -0.06 28 (5) 
May -0.04 38 (0) 50.7 57 (5) -0.07 28 (0) 

 

Table 6 show the results from a more systematic analysis of AE skill over 84 sub-
basins, including those reported in Table 5. These results are limited to the TCI 
version of the AE approach as the CP version was not considered due to it not being 
ready for production. The results for the three different performance scores show a 
similar general trend for each type and in all clusters, the AE tends to perform best 
in forecasts initialised earlier or later in the season i.e. January and May, rather than 
those initialised mid-season. In general, AE does not appear to offer much improved 
skill over HE. The percentage of sub-basins for which the AE shows skill over the 
HE never exceeds 50% for MAESS, once for ΔNSE (forecasts initialised in January 
for sub-basins in cluster S2), and four times for FY+ (forecasts initialised in May and 
January, March, and May for sub-basins in cluster S1 and S3 respectively). 

This would imply that the results in Table 5 should be seen as being either atypical 
or at the upper end of the result envelope. However, the fact that the CP analysis is 
related to the TCI analysis, where both endeavour to separate the atmospheric 
circulation into mutually exclusive subcomponents, it would suggest that there is 
scope for improvement in the TCI approach. 
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Dynamical ensemble 

Table 7 gives an overview of the DE approach’s ability to predict the inflow volume 
of the spring flood in 84 sub-basins in Sweden. DE tends to outperform HE in all 
clusters for forecasts initialised early in the season with respect to FY+. This skill 
then drops as the season progresses. The entirely negative median MAESS results 
suggest that DE has no skill over HE with respect to forecast volume error in 
general. However, there appear to be a relatively high percentage of sub-basins for 
which DE has skill over HE, especially in cluster S3. Furthermore, there are a small 
percentage of sub-basins in all clusters and initialisation months, save March and 
April in cluster S2, where this skill is statistically significant. This pattern is similar 
for ΔNSE albeit more so. This suggests that the DE performs well for some sub-
basins while performing significantly worse for others. HBV is well calibrated and 
as such is not the cause of this conflicting results. This would indicate, predictably, 
that the fault is with the meteorological driving data from the GCMs. 
Table 7 Cross-validated median skill scores, bootstrapped N = 10 000, for DE with respect to HE, aggregated by 
forecast initialisation month and cluster for the 84 sub-basin used in paper V. The n+ values indicate the percentage of 
sub-basins where the HE performs better than climatology averaged over all relevant sub-basins. n+ values in brackets 
show the percentages of the sub-basins for which these scores are statistically significant at the 0.1 level. The skill 
threshold is 0 for MAESS and ΔNSE, while the skill threshold for FY+ is 50. 

 
MAESS FY+ ΔNSE 

 n+ (%)  n+ (%)  n+ (%) 

S1 

Jan -0.09 36 (8) 50.3 48 (4) -0.16 40 (8) 

Feb -0.08 32 (8) 48.9 48 (0) -0.17 36 (8) 

Mar -0.16 20 (0) 46.1 32 (0) -0.27 16 (0) 

Apr -0.09 20 (4) 50.6 56 (0) -0.14 28 (0) 

May -0.02 40 (4) 40.7 16 (0) 0.01 64 (24) 

S2 

Jan -0.39 37 (5) 56.4 89 (16) -1.03 42 (16) 

Feb -0.28 37 (5) 55.2 79 (11) -0.70 53 (21) 

Mar -0.28 32 (0) 54.0 63 (11) -0.72 42 (11) 

Apr -0.18 37 (0) 51.1 47 (16) -0.43 42 (11) 

May -0.12 21 (11) 43.8 16 (5) -0.26 32 (11) 

S3 

Jan -0.03 68 (15) 52.6 65 (8) -0.05 65 (28) 

Feb -0.02 50 (10) 52.3 50 (10) -0.05 63 (15) 

Mar -0.04 43 (8) 47.1 33 (5) -0.08 40 (15) 

Apr -0.05 33 (5) 47.4 40 (8) -0.14 30 (3) 

May -0.01 55 (10) 44.1 25 (5) -0.03 48 (15) 
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These modest results are not uncommon in the literature but neither are they the 
norm. For example, Mackay et al. (2015) found no advantage over climatology 
using seasonal forecasts from the UK Met Office global seasonal forecast system 
(version 5) as forcing data to predict groundwater levels in the UK three months 
into the future. Whereas, Thober et al. (2015) were able to show skill over ESP when 
using the North American Multi-Model Ensemble (NMME) as forcing data for 
seasonal soil moisture and drought prediction over Europe. These, and other works, 
show that the forecast skill can vary considerably based on the target variable being 
forecasted, the geographical location for which the forecasts are made, and the 
source of the forcing data. This suggests that it may be possible to improve the 
performance of the DE modelling chain by using a different forcing dataset. 
However, this was not investigated further as model skills over the Scandinavian 
domain are known to be generally low in the current and past generations of GCMs 
(e.g. Doblas-Reyes, 2010; Doblas-Reyes 2013). 

Statistical downscaling  

The predictability of forecasting the SFV in selected basins across Norway using 
CCA to downscale seasonal forecasts of large scale climate variables directly to 
SFV is investigated in paper I. Initially the models are applied to 30 stations 
concurrently however this has mixed success (Table 8; not shown in paper I). From 
the positive NSE values it can be seen that the performance of the multi-model 
statistical downscaling is better than climatology for 23 of the 30 stations; however 
only five of these results are significant at the 0.05 level. This suggests that trying 
to find a set of predictors that can be applied successfully to all stations is not 
feasible.  

However, if the models, using the same predictors, are applied to a subset of 10 
stations the results show a marked improvement in their performance (see Table 1 
in paper I). The explanation for this is that the selected stations are predominantly 
situated close to the coast or on the windward side of the Scandinavian mountains 
i.e. an ad hoc clustering. Here the hydrology is heavily influenced by the westerly 
winds that transport moisture in from the Atlantic over the Scandinavian Peninsula. 
The performance results for the individual statistical downscaling models, those that 
use meridional velocity at 850 hPa and total precipitation from ECHAM5 as 
predictors, are often higher than those for the combined multi-model; however these 
results are not all statistically significant while the multi-model results mostly are. 
This would imply that although these individual models generally match the 
observed data, the use of these models alone may result in overfitting. The 
consequence for this being significantly reduced skill when the model is applied to 
new data. 
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Table 8. Cross-validated Spearman rank correlation (R2) and Nash-Suttcliffe Efficiency (E) scores, bootstrapped 
n=5000, for the multi-model statistical downscaling forecasts of the SFV in 30 unregulated sub-basins across Norway. 
Values statistically significant at the 0.05 level are marked with bold text.  

Sub-basin Area R2 NSE Sub-basin Area R2 NSE 
 (km2)    (km2)   

Austenaa 286 0.02 0.00 Landbru 60 0.37 0.29 

Berget 211 0.01 -0.01 Målset 8 0.03 0.02 

Bulken 1100 0.23 0.21 Myrkdalsvatn 157 0.21 0.19 

Eggafors 653 0.17 0.15 Nautsundvatn 219 0.06 0.06 

Femundsenden 1770 0.01 -0.02 Nybergsund 4410 0.01 -0.01 

Fetvatn 89 0.32 0.27 Oyungen 238 0.12 0.12 

Flakvatn 1790 0.00 -0.04 Polmak 14200 0.00 -0.05 

Fustvatn 530 0.08 -0.01 Rinna 88 0.13 0.13 

Grosettjern 7 0.03 0.03 Risefoss 738 0.29 0.25 

Grunnfoss 898 0.31 0.25 Roeykenes 50 0.02 0.02 

Haugland 135 0.01 0.00 Sandvenvatn 464 0.17 0.16 

Holen 229 0.36 0.29 Sjödalsvatn 473 0.11 0.11 

Hovefoss 232 0.27 0.22 Stordalsvatn 127 0.14 0.13 

Junkerdalselv 422 0.19 0.17 Strandå 23 0.00 -0.04 

Krinsvatn 205 0.06 0.06 Viksvatn 505 0.23 0.22 
 

These mixed results show that there is room for improvement. One conspicuous 
omission in these studies is the lack of initial condition information taken into 
account by the forecasts. Snow melt is a majority contributor to the SFV but any 
information regarding how much water is already stored in the snowpack prior to 
the forecast is not used. This omission becomes more pronounced the later in the 
season (see paper III) when the snowpack has developed and the initial conditions 
start to become the dominant source of predictability. 

An overview of the SE approach’s ability to predict the inflow volume of the spring 
flood in 84 sub-basins in Sweden are presented in Table 9. However, for these 
results the SE is applied to sub-basins that have been clustered, GCM predictors are 
from the ECMWF IFS (see Table 1), and data about the initial conditions are 
included as a predictor in the form of modelled snow depth. The SE tends to 
outperform the HE in forecasts initialised early on. The MAESS results show clear 
skill over the HE, with respect to volume error, in January-February-March and 
January-February for clusters S2 and S3 respectively. However, this is not true for 
cluster S1. The pattern is similar for ΔNSE. The FY+ results suggest that neither the 
SE nor the HE have the advantage over the other in clusters S1 and S2 while the SE 
does consistently outperform the HE in cluster S3 albeit modestly. These result are 
in agreement with the findings in paper III. 
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It can be seen that the SE performs best in the clusters where snow processes are 
more dominant i.e. S2 and S3. The reason for this is that the relationship between the 
GCM predictors and the local hydrological processes are “persevered” through the 
snowpack. The evolution of the snowpack is relatively slow which means that any 
predictive teleconnection signal is long-lived and thus more exploitable. The poor 
performance results can, in part, be explained by the SE’s Achilles heel - training 
data. The SE is a regression based approach and as such requires a lot of data to 
properly train the models. The models used in this work are restricted to 34 years of 
training data, at the most, so it is likely that the full natural variability of the system 
has not been sampled. The SE has the tendency to produce forecasts that diverge 
considerably from the observations if the forecasted conditions are outside those 
encountered in the training period. This risk is not trivial due to the relatively short 
training datasets. 
Table 9. Cross-validated median skill scores, bootstrapped N = 10 000, for SE with respect to HE, aggregated by 
forecast initialisation month and cluster for the 84 sub-basin used in paper V. The n+ values indicate the percentage of 
sub-basins where the HE performs better than climatology averaged over all relevant sub-basins. n+ values in brackets 
show the percentages of the sub-basins for which these scores are statistically significant at the 0.1 level. The skill 
threshold is 0 for MAESS and ΔNSE, while the skill threshold for FY+ is 50. 

 

MAESS FY+ ΔNSE 

 n+ (%)  n+ (%)  n+ (%) 

S1 

Jan -0.02 40 (0) 54.1 56 (16) 0.00 44 (12) 

Feb -0.03 44 (0) 49.6 44 (8) -0.02 36 (4) 

Mar -0.07 32 (0) 45.9 44 (0) -0.06 44 (4) 

Apr -0.02 36 (4) 49.6 40 (0) -0.02 44 (8) 

May -0.22 8 (0) 52.8 72 (8) -0.38 20 (0) 

S2 

Jan 0.10 95 (16) 49.3 42 (16) 0.22 100 (26) 

Feb 0.09 89 (5) 49.6 58 (5) 0.20 100 (11) 

Mar 0.01 58 (5) 48.3 58 (5) 0.01 58 (0) 

Apr -0.02 47 (11) 49.0 47 (5) -0.05 53 (0) 

May -0.14 16 (5) 51.4 58 (21) -0.29 21 (0) 

S3 

Jan 0.08 80 (13) 54.5 70 (20) 0.20 88 (30) 

Feb 0.04 70 (5) 50.1 48 (8) 0.13 85 (8) 

Mar -0.06 33 (3) 52.9 65 (5) -0.03 48 (5) 

Apr -0.09 30 (8) 52.3 60 (8) -0.17 43 (8) 

May -0.20 13 (0) 53.8 65 (8) -0.45 13 (3) 
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The spatio-temporal influence of atmospheric 
teleconnection patterns on hydrology in Sweden 

The results from the individual modelling chains show that, although they have 
some promising performances, there was still scope for improvement. In line with 
the recommendations made in paper II, highlighted by the results from paper I and 
paper III, a systematic investigation of the relationship between large scale 
atmospheric circulation patterns and hydrological seasonal variability is carried out.  

Clustering of Swedish hydrology 

To facilitate an investigation of these relationships a cluster analysis of monthly 
streamflow data from 64 gauging stations in unregulated systems across Sweden 
was performed. This is done to identify homogeneous hydrological regions to 
differentiate between the different hydrological processes involved which greatly 
simplify the task at hand by reducing the complexity of the analyses. 

Standardised monthly data from 64 unregulated gauging stations, filtered for noise 
by means of a PCA so that 90% of the original variance is retained, is clustered by 
hierarchical cluster analysis. This resulted in the five unique clusters shown in 
Figure 16 which are in general agreement to solutions obtained by other studies (e.g. 
Gottschalk, 1985; Kingston et al., 2011). An average silhouette width of 0.52 and 
high correlations between the individual cluster members and their cluster mean 
(0.79 ± 0.025; p < 0.01) further support the robustness of the clustering solution 
obtained. 

The clusters can be divided into two general groups based on their annual 
hydrographs. The northern group (S1, S2 and S3), where the hydrological regimes 
are dominated by snow processes, have annual hydrographs that are characterised 
by a period of low flow during the winter months followed by the spring flood peak 
that recedes thereafter back down to the winter low flows. The southern group (R1 
and R2), where the hydrological regimes are predominately dominated by rain 
processes, have annual hydrographs that are characterised by high flows during the 
winter months and low flows during the summer months. Although R1 has a distinct 
snow melt feature in the annual hydrograph, the general form is that of the rain-
dominated southern group and is therefore classified as such. 
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Figure 16. Location of the five clusters, composite annual hydrograph (black bars) for each cluster and the climate 
patterns that exhibit statistically significant correlation (p < 0.01) with the seasonal streamflow for the individual 
seasons. 

The annual hydrographs for each cluster are divided up into distinct hydrological 
periods with similar hydrological activity. This gives the following five different 
hydrological periods: 

• Accumulation Period (AP): the low flow period, during the winter months, 
during which precipitation is accumulated in the basin in the form of a 
snowpack. 

• Spring Flow Period (SFP): the months following winter where the 
streamflow is significantly elevated due to the melting snowpack. 

• Post Flood Period (PFP): the months between the SFP and the AP where 
the streamflow is steadily declining from the elevated levels during the SFP. 
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• High Flow Period (HFP): the period of above average streamflow during 
the winter months due to relatively high amounts of precipitation, thaw and 
rain on snow processes, and depressed evapotranspiration rates. 

• Low Flow Period (LFP): the period of below average streamflow during the 
summer months due to the elevated evapotranspiration rates. 

Climate-streamflow connections 

Monthly teleconnection pattern indices are averaged into periods of differing lead 
times and persistence intervals, including one that is concurrent to the hydrological 
period. A PCA is performed on the data matrix comprised of a HP and the associated 
teleconnection pattern persistence periods (TP period). A biplot of the first two PCA 
modes is used to identify those TPs and their periods that are most related to the 
cluster and HP in question. The Spearman rank correlation coefficient between the 
time series of the selected TPs and that of the streamflow composite are calculated. 
Only TP periods with correlation coefficients significant at the 0.01 level are 
retained for further analysis. Figure 17 (also summarised in Figure 16) show which 
teleconnection patterns are related to each HP in the different clusters, the 
persistence and lead time of these TP periods and the correlation coefficients of 
these relationships.  

For example, Figure 17 panel S3 shows that for the S3 cluster, the streamflow during 
the SFP is negatively correlated (-0.51) to the mean SCA index during the eight 
months prior to the SFP and positively correlated to the mean NAO (0.58) and AO 
(0.57) indices during the seven months prior to the SFP. The physical explanation 
for this is that it is during this time that the snowpack, a major contributor to the 
SFV, is being generated. These teleconnection patterns have a known impact on the 
local weather within the S3 cluster which, in turn, has an impact on the evolution of 
the snowpack. It follows, therefore, that the mean of the teleconnection indices 
would offer information on the weather conditions that were prevalent during that 
period. 

It is notable that only the PFP in all three snow dominated clusters (S1, S2, and S3) 
do not exhibit a significant correlation between the antecedent climatic conditions 
and the inflow volumes during the PFP. This is not because the inflow volumes are 
not contingent on the antecedent conditions but rather that the signal from these 
conditions are diluted by signals from the concurrent conditions. For example, the 
PFP in cluster S1 shows a significant correlation with the concurrent POL 
teleconnection pattern suggesting that the weather conditions during the PFP have 
a greater impact on the inflow volumes during this period.  
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Figure 17. The Spearman rank-order correlation coefficients for the TP periods and the hydrological periods at the 
0.01 level for S3, S2, S1, R2 and R1. The gap between the hydrological period and the bars indicate the lead time in 
months (bars within the hydrological period are concurrent with the hydrologic season) and the length of the bars 
represent the persistence of the TP period in months. 

Time-Frequency Analysis 
With the TP periods of interest identified in the previous section, a more complete 
understanding of the relationship between the teleconnection patterns and the 
streamflow variability is gained with the help of CWT, XWT, and WTC analyses. 
These clarify how and when the inter-annual flow variability may be associated to 
the variability in TPs. 

For the sake of brevity, and in keeping in with the rest of this chapter, the results 
presented in this section concentrate on the SFP in the Northern Group, starting with 
a detailed presentation of the results from cluster S3 followed by a general summary 
for the three clusters making up the Northern Group. The reader is referred to paper 
IV for more results. 
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Figure 18. Plots of the Cross-Wavelet Transform (left column) and Wavelet Transform Coherence (right column) 
between the composite flows for cluster S3 during the spring flow period and the concomitant SCA (top row), AO 
(L0:P7) (central row) and NAO (L0:P7) (bottom row). Colours indicate power intensity in the left column and 
correlation in the right column as expressed in the bars to the right of each plot. 

The CWT of the SFP in cluster S3 during the SFP (see Figure 6d in paper IV) shows 
two dominant active oscillation periods. The first has a period of about 2-year and 
is most active during the 1990’s, the second has a period of 4 to 8-years and is most 
active between the late 1960’s and the mid 1970’s. 

The XWT and WTC of the SFP and selected TP periods in S3 (Figure 18) show that 
both centres of action are connected (in-phase) to the AO L0:P7 (the seven months 
antecedent to the SFP – see Figure 17; see paper IV for more details) activity, 
likewise for NAO L0:P7. However, the concomitant SCA is only connected (in anti-
phase) to the activity centre with a 2-year period. The phase indicates whether the 
variabilities in the TP and the HP are positively (in-phase) or negatively (in anti-
phase) correlated. 
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The results of the wavelet analyses between annual flow variability and climate 
variability show that, in general, different climatic processes affect the river flows 
in different regions of Sweden at different periods. The variability of the SFP in 
clusters S3 and S2 is connected to AO, NAO and SCA variability up to eight months 
prior to the SFP. It is interesting to note that it is the preferred oscillation period (2 
to 4-years) of NAO, AO and SCA that has the strongest signal i.e. greatest influence 
on the variability in the SFP in clusters S3 and S2. In the case of cluster S1, the 
variability of the SFP is predominantly connected to NAO and SCA and it is the 
longer preferred oscillation period (6 to 8 years) that has the strongest signal. This 
shows that the variability of the SFP is clearly connected to the long-term variability 
of NAO. The short period variability is mostly connected to SCA up to 2 months 
before the season. This is probably due to the eastern placement of S1 that makes 
the Baltic Sea its main source of moisture.  

Streamflows during the SFP are a combination of baseflow, lake out-flows and 
snowpack ablation. The strongest signal during this period is undeniably the amount 
of water released when the snowpack ablates during the spring. Positive (negative) 
AO and NAO indices have a positive (negatively) influence on temperatures and 
precipitation amounts during the winter. This, in turn raises (lowers) groundwater, 
lake, and snowpack storages which results in higher (lower) streamflow in the SFP. 
On the other hand, SCA negatively (positively) influences precipitation by 
hindering (allowing) mild and moist air masses to be transported over Sweden. This 
is due to the influences of associated blocking anticyclones over Fennoscandia. 

Multi modelling chain ensembles (ME)  

In this section, the results related to the ME approach are presented. Initially, results 
that do not take advantage of the findings presented in the previous section are 
presented e.g. the sub-basins are not grouped into clusters and analogues are not 
selected using the periods for which the TCIs and SFV are most strongly correlated. 
These are then followed by results for MEs that do take those findings into account. 
The different ME models are differentiated by a subscript identifying which 
individual modelling chains are included in that ME e.g. MEhds refers to a ME 
comprising the HE, DE, and SE modelling chains.  

Table 10 gives performance results for two conceptually straightforward ME 
approaches: a median approach where the middle member in the ranked forecast 
ensemble is used as the multi-model deterministic forecast, and a weighted multi-
model. The weighting scheme employed is simple set ratios based, for each forecast 
date, based on the individual model’s performances during a historical period. The 
two MEs are one “optimized” MEads (referred to as NEW in paper III) that uses AE, 
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DE and SE (where the CP approach version of AE is used for the January and March 
forecasts and TCI version of AE for the May forecasts), and one “operational” MEhds 
that substitutes AE for HE (referred to as OPE in paper III; the reader is referred to 
paper III for more details). 
Table 10. Relative improvement RI (%) and frequency of years with a better performance FY+ (%) for the median and 
weighted multi-model approaches, as compared with the climatological ensemble HE (boldface indicates better 
performance than HE). The skill threshold is 0 for RI and 50 for FY+. 

 

Median Weighted 

MEads MEhds MEads MEhds 

RI FY+ RI FY+ RI FY+ RI FY+ 

Jan 
Sorsele 20.9 50 25.3 56 20.1 55 18.2 55 

Vindeln 5.8 50 12.5 56 15.7 64 12.9 55 

Mar 
Sorsele 5.9 60 -4.2 56 13.3 64 -7.2 55 

Vindeln -0.1 60 -10.7 43 3.8 55 -10 45 

May 
Sorsele 3.7 55 7.9 67 -5 55 -0.6 64 

Vindeln -15.6 36 -5.2 33 23.3 36 -13.5 27 

Average 3.4 52 4.3 52 4.1 55 0 50 

 

Overall, the ME forecasts show some improvement over HE with the performance 
for individual forecast months and stations showing similar, at times better, results 
to the best performing individual methods (see paper III). This is due to the effect 
of single forecasts that are very wrong being either eliminated or minimised, 
depending on the multi-model modelling chain. The weighted MEads outperforms 
HE in all months and sub-basins except for forecasts initialised in May for Vindeln 
and has mixed RI results after the January forecast. MEads shows slightly better 
average performance over its median counterpart. MEhds shows similar results with 
the median MEhds having the best average RI while the weighted MEhds has the best 
FY+. 

Although these results are from a preliminary feasibility study with limited data and 
overall basic versions of the modelling chains used, they do show that a multi-model 
approach has improved skill over any individual modelling chain. This suggests that 
a multi-model is preferable to any single modelling chain when making seasonal 
forecasts, at least for the spring flood period in Scandinavia. 

Changing our focus from specific sub-basins to a more regional perspective. Figure 
19 is a three dimensional plot showing the relative skills of the different modelling 
chains and possible ME combinations with respect to FY+, ΔNSE, and MAESS 
averaged by cluster and over all initialisation dates used in paper V. These results 
show that, in general, the multi-models with fewer modelling chains tend to perform 
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worse than those with more, and that an ME that includes the full HE is often 
preferable to one that includes AE.  

It is interesting to note that there appears to be a general neat differentiation between 
the different groups of models i.e. individual modelling chains, MEs with two 
modelling chains, and those with three modelling chains. However, in cluster S2 the 
DE performs significantly worse than the other individual models, so much so that 
it could not be plotted in the same frame as the rest in Figure 19, and all MEs that 
include it suffer accordingly. The only exception being MEhs. The result is two 
general groups of models in skill space which suggests that it is not as clear that 
MEs with three modelling chains are preferred in cluster S2 as they are for clusters 
S1 and S3. The results, going forward, are presented per cluster rather than by sub-
basin. This is for the sake of brevity and that the sub-basins, within the same cluster, 
tend to have similar responses. 

 

Figure 19. A 3D plot of the different skill scores for the different ME variants considered averaged across all forecast 
initialisation dates. The subscripts denote the modelling chains that comprise the ME; h = HE, a = AE, d = DE, and S 
= SE. Note that the DE is not shown in the panel for cluster S2 as it is outside the plot limits. 
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The naïve general skill (using climatology as a reference) of the two MEs, MEhds 
and MEads, and HE to predict the SFV for the 84 sub-basins used in paper V are 
summarised in Table 11. These two MEs are those with three modelling chains and 
have been shown in Figure 19 to be those which perform best across all clusters. 
The results are aggregated across all sub-basins and clusters for each initialisation 
month. The percentage of sub-basins where the hindcasts outperform climatology 
is also shown (n+); the values in brackets are the percentage of sub-basins for which 
the results are statistically significant. 

The performance measures for each of the three approaches are positively related to 
the relative timing of the hindcasts i.e. hindcasts initialised in any month are 
generally more (less) skilful than the hindcasts initialised in the preceding 
(following) months. This can be expected as the further away in time from the spring 
flood that the hindcast is initialised, increasing the lead time, the less the initial 
hydrological conditions contribute to predictability and the more uncertain the 
forcing data become (e.g. Wood et al., 2016; Arnal et al., 2017). 

With respect to general skill and the ability to capture the interannual variation 
shown by the observations, the two multi-models tend to perform better than HE 
with MEhds typically having the best performance. This is especially so when we 
consider the percentage of the sub-basins where this improved performance is 
statistically significant. The gap between HE and the two multi-models in MAESS, 
NSE, and percentage of sub-basins with improved performance over climatology 
tends to get smaller as the season progresses while the gap in the percentage of sub-
basins where improved performance is statistically significant appears to grow, at 
least early in the season. However, when considering the forecast’s ability to 
discriminate between below normal, near normal, and above normal SFVs then the 
HE holds an advantage over the two prototypes especially when it comes to 
identifying near normal events from all forecast initialisation dates and, to a lesser 
extent, below normal events for the later forecasts. The two multi-models are better 
at identifying above normal events for all forecasts except those initialised in May 
where the ability of the HE is comparable. The advantage displayed by the HE to 
identify near normal events is to be expected due to its climatological nature while 
the advantage with respect to the below normal events might again be attributed to 
the cold bias in the historical forcing data. These results suggest that the MEads is 
the preferred variant of ME. 



80
 

Ta
bl

e 
11

. C
ro

ss
-v

al
id

at
ed

 m
ed

ia
n 

sk
ill 

sc
or

es
, b

oo
ts

tra
pp

ed
 N

 =
 1

0 
00

0,
 fo

r 
H

E,
 M

E a
ds

, a
nd

 M
E h

ds
 w

ith
 r

es
pe

ct
 to

 c
lim

at
ol

og
y,

 a
gg

re
ga

te
d 

by
 fo

re
ca

st
 in

iti
al

is
at

io
n 

m
on

th
 a

nd
 

cl
us

te
r f

or
 th

e 
84

 s
ub

-b
as

in
 u

se
d 

in
 p

ap
er

 V
. T

he
 n

+ 
va

lu
es

 in
di

ca
te

 th
e 

pe
rc

en
ta

ge
 o

f s
ub

-b
as

in
s 

w
he

re
 th

e 
H

E 
pe

rfo
rm

s 
be

tte
r t

ha
n 

cl
im

at
ol

og
y 

av
er

ag
ed

 o
ve

r a
ll 

84
 s

ub
-b

as
in

s.
 

n+
 v

al
ue

s 
in

 b
ra

ck
et

s 
sh

ow
 th

e 
pe

rc
en

ta
ge

s 
of

 th
e 

su
b-

ba
si

ns
 fo

r w
hi

ch
 th

es
e 

sc
or

es
 a

re
 s

ta
tis

tic
al

ly
 s

ig
ni

fic
an

t a
t t

he
 0

.1
 le

ve
l. 

Th
e 

sk
ill 

th
re

sh
ol

d 
is

 0
 fo

r M
AE

SS
, Δ

N
SE

, a
nd

 
ΔR

O
C

SS
, w

hi
le

 th
e 

sk
ill 

th
re

sh
ol

d 
fo

r F
Y+

 is
 5

0.
 

 
M

AE
SS

 
Δ

N
SE

 
Δ

R
O

C
SS

 
 

n+  (
%

) 
 

n+  (
%

) 
LT

 
M

T 
U

T 
 

n+  (
%

) 
 

n+  (
%

) 
 

n+  (
%

) 

H
E 

Ja
n 

-0
.0

9 
25

 (1
) 

-0
.2

4 
17

 (0
) 

0.
23

 
90

 (2
1)

 
0.

07
 

70
 (0

) 
0.

10
 

68
 (1

1)
 

Fe
b 

0.
00

 
51

 (6
) 

-0
.0

7 
42

 (5
) 

0.
41

 
99

 (5
2)

 
0.

11
 

69
 (1

) 
0.

26
 

92
 (2

7)
 

M
ar

 
0.

09
 

80
 (1

7)
 

0.
13

 
77

 (2
3)

 
0.

55
 

10
0 

(8
7)

 
0.

10
 

73
 (5

) 
0.

44
 

99
 (5

6)
 

Ap
r 

0.
15

 
85

 (3
5)

 
0.

22
 

85
 (3

5)
 

0.
62

 
10

0 
(9

2)
 

0.
17

 
85

 (7
) 

0.
51

 
10

0 
(7

5)
 

M
ay

 
0.

21
 

90
 (4

9)
 

0.
32

 
90

 (4
9)

 
0.

68
 

10
0 

(9
8)

 
0.

23
 

92
 (1

0)
 

0.
61

 
10

0 
(9

2)
 

M
E a

ds
 

Ja
n 

0.
00

 
50

 (2
) 

0.
00

 
55

 (1
) 

0.
31

 
99

 (3
0)

 
-0

.0
1 

48
 (0

) 
0.

20
 

80
 (1

8)
 

Fe
b 

0.
06

 
73

 (2
0)

 
0.

11
 

76
 (2

1)
 

0.
39

 
99

 (5
1)

 
0.

08
 

74
 (0

) 
0.

36
 

96
 (4

2)
 

M
ar

 
0.

11
 

86
 (2

5)
 

0.
20

 
87

 (3
6)

 
0.

47
 

10
0 

(7
6)

 
0.

07
 

61
 (4

) 
0.

47
 

10
0 

(6
0)

 
Ap

r 
0.

20
 

95
 (6

1)
 

0.
32

 
94

 (6
4)

 
0.

60
 

10
0 

(9
0)

 
0.

16
 

83
 (5

) 
0.

52
 

10
0 

(7
9)

 
M

ay
 

0.
22

 
96

 (6
7)

 
0.

36
 

98
 (6

8)
 

0.
66

 
10

0 
(9

4)
 

0.
18

 
82

 (8
) 

0.
56

 
10

0 
(7

6)
 

M
E h

ds
 

Ja
n 

0.
02

 
60

 (6
) 

0.
03

 
63

 (5
) 

0.
32

 
10

0 
(3

1)
 

0.
00

 
51

 (0
) 

0.
22

 
83

 (2
4)

 
Fe

b 
0.

08
 

80
 (2

5)
 

0.
14

 
85

 (2
9)

 
0.

41
 

99
 (5

7)
 

0.
07

 
69

 (1
) 

0.
38

 
99

 (4
4)

 
M

ar
 

0.
14

 
90

 (3
2)

 
0.

24
 

92
 (4

5)
 

0.
51

 
10

0 
(8

1)
 

0.
07

 
61

 (5
) 

0.
48

 
10

0 
(6

4)
 

Ap
r 

0.
19

 
94

 (5
6)

 
0.

32
 

93
 (6

2)
 

0.
60

 
10

0 
(9

0)
 

0.
17

 
88

 (5
) 

0.
54

 
10

0 
(8

0)
 

M
ay

 
0.

24
 

98
 (7

4)
 

0.
39

 
96

 (7
6)

 
0.

67
 

10
0 

(9
4)

 
0.

18
 

85
 (1

0)
 

0.
60

 
10

0 
(8

8)
 

  
 



81
 

Ta
bl

e 
12

. C
ro

ss
-v

al
id

at
ed

 m
ed

ia
n 

sk
ill 

sc
or

es
, b

oo
ts

tra
pp

ed
 N

 =
 1

0 
00

0,
 fo

r M
E h

ds
 w

ith
 re

sp
ec

t t
o 

H
E,

 a
gg

re
ga

te
d 

by
 fo

re
ca

st
 in

iti
al

is
at

io
n 

m
on

th
 a

nd
 c

lu
st

er
 fo

r t
he

 8
4 

su
b-

ba
si

n 
us

ed
 in

 p
ap

er
 V

. T
he

 n
+ 

va
lu

es
 in

di
ca

te
 th

e 
pe

rc
en

ta
ge

 o
f s

ub
-b

as
in

s 
w

he
re

 th
e 

H
E 

pe
rfo

rm
s 

be
tte

r t
ha

n 
cl

im
at

ol
og

y 
av

er
ag

ed
 o

ve
r a

ll 
84

 s
ub

-b
as

in
s.

 n
+ 

va
lu

es
 in

 b
ra

ck
et

s 
sh

ow
 

th
e 

pe
rc

en
ta

ge
s 

of
 th

e 
su

b-
ba

si
ns

 fo
r 

w
hi

ch
 th

es
e 

sc
or

es
 a

re
 s

ta
tis

tic
al

ly
 s

ig
ni

fic
an

t a
t t

he
 0

.1
 le

ve
l. 

Th
e 

sk
ill 

th
re

sh
ol

d 
is

 0
 fo

r 
M

AE
SS

, Δ
N

SE
, a

nd
 Δ

R
O

C
SS

, w
hi

le
 th

e 
sk

ill 
th

re
sh

ol
d 

fo
r F

Y+
 is

 5
0.

 

 
M

AE
SS

 
FY

+  
Δ

N
SE

 
Δ

R
O

C
SS

 

 
 

n+  (
%

) 
 

 
n+  (

%
) 

 
 

n+  (
%

) 
LT

 
M

T 
U

T 
 

n+  (
%

) 
 

n+  (
%

) 
 

n+  (
%

) 

S1  

Ja
n 

0.
04

 
68

 (2
4)

 
55

.7
 

76
 (1

2)
 

0.
15

 
76

 (3
2)

 
0.

02
 

68
 (0

) 
-0

.0
5 

40
 (0

) 
0.

06
 

68
 (0

) 
Fe

b 
0.

05
 

72
 (2

0)
 

56
.0

 
72

 (1
2)

 
0.

14
 

92
 (3

2)
 

-0
.0

3 
32

 (0
) 

0.
02

 
60

 (0
) 

0.
07

 
84

 (0
) 

M
ar

 
0.

02
 

80
 (1

2)
 

55
.0

 
72

 (1
6)

 
0.

08
 

80
 (1

6)
 

-0
.0

6 
16

 (0
) 

-0
.0

4 
32

 (0
) 

0.
01

 
48

 (0
) 

Ap
r 

0.
04

 
72

 (1
2)

 
57

.5
 

84
 (1

6)
 

0.
09

 
76

 (2
8)

 
-0

.0
1 

44
 (0

) 
-0

.0
1 

56
 (0

) 
0.

04
 

80
 (0

) 
M

ay
 

0.
02

 
64

 (1
2)

 
53

.7
 

64
 (1

6)
 

0.
06

 
84

 (1
6)

 
-0

.0
7 

28
 (0

) 
-0

.0
5 

24
 (0

) 
-0

.0
1 

32
 (0

) 

S2  

Ja
n 

0.
11

 
95

 (4
7)

 
60

.2
 

89
 (3

7)
 

0.
32

 
10

0 
(5

3)
 

0.
05

 
63

 (0
) 

-0
.0

6 
37

 (0
) 

0.
13

 
84

 (1
6)

 
Fe

b 
0.

12
 

95
 (3

7)
 

61
.4

 
10

0 
(2

6)
 

0.
31

 
10

0 
(5

8)
 

0.
00

 
53

 (0
) 

-0
.0

4 
42

 (0
) 

0.
14

 
89

 (1
6)

 
M

ar
 

0.
06

 
79

 (2
6)

 
60

.2
 

84
 (3

7)
 

0.
13

 
79

 (2
6)

 
-0

.0
3 

26
 (0

) 
-0

.0
1 

47
 (0

) 
-0

.0
1 

47
 (0

) 
Ap

r 
0.

05
 

74
 (2

1)
 

58
.5

 
79

 (2
1)

 
0.

12
 

74
 (4

7)
 

-0
.0

3 
11

 (0
) 

0.
00

 
63

 (0
) 

0.
02

 
63

 (0
) 

M
ay

 
0.

05
 

79
 (2

6)
 

57
.0

 
95

 (5
) 

0.
09

 
79

 (4
2)

 
0.

00
 

37
 (0

) 
-0

.0
5 

37
 (0

) 
0.

01
 

53
 (0

) 

S3  

Ja
n 

0.
12

 
10

0 
(5

3)
 

61
.2

 
98

 (2
8)

 
0.

33
 

63
 (5

) 
0.

14
 

95
 (1

5)
 

-0
.0

7 
23

 (0
) 

0.
13

 
85

 (1
8)

 
Fe

b 
0.

08
 

90
 (1

5)
 

57
.8

 
85

 (2
3)

 
0.

21
 

95
 (4

5)
 

0.
01

 
68

 (0
) 

-0
.0

5 
33

 (0
) 

0.
13

 
98

 (1
0)

 
M

ar
 

0.
05

 
68

 (1
0)

 
54

.7
 

75
 (1

0)
 

0.
12

 
92

 (4
5)

 
-0

.0
4 

15
 (0

) 
-0

.0
4 

35
 (0

) 
0.

07
 

85
 (3

) 
Ap

r 
0.

04
 

65
 (1

8)
 

55
.1

 
75

 (2
3)

 
0.

10
 

93
 (6

2)
 

-0
.0

1 
35

 (0
) 

0.
01

 
57

 (0
) 

0.
01

 
57

 (0
) 

M
ay

 
0.

04
 

73
 (1

5)
 

56
.1

 
73

 (1
5)

 
0.

06
 

96
 (7

6)
 

-0
.0

1 
43

 (0
) 

-0
.0

2 
35

 (0
) 

-0
.0

2 
25

 (0
) 

 



82 

Table 13 shows the skill scores for MEhds to predict the SFV for the 84 sub-basins 
used in paper V with respect to HE. The results are aggregated across all sub-basins 
per clusters for each initialisation month, similar to the previous table. The 
performance measures are negatively related to the relative timing of the hindcasts, 
i.e. hindcasts initialised in any month are generally more (less) skilful than the 
hindcasts initialised in the following (preceding) months. This too can be expected 
as the closer in time to the spring flood that the hindcast is initialised, decreasing 
the lead time, the more the initial hydrological conditions contribute to predictability 
and the more skilful the HE becomes. This means that the relative error on which 
any improvement can be made is reduced and thus the skill scores are expected to 
drop. With respect to MAESS, the median MEhds shows skill over HE in all clusters 
and for all forecast initialisation dates. The percentage of sub-basins where the 
MEhds has kill over the HE is well over 50%. The percentage of these sub-basins for 
which the skill is statistically significant at the 0.1 level range between 10 and 53%. 
The HE does not show any significant skill over the MEhds. Furthermore, the FY+ 
scores show that the MEhds outperforms the HE more often than not for the majority 
of sub-basins in all clusters and for all forecast initialisation dates. The percentage 
of the sub-basins for which this is statistically significant 5% and 37%. This suggests 
that there is motivation to prefer the MEhds over the HE with respect to forecast 
volume errors.  

Similarly, the NSE results suggest there is motivation to prefer that MEhds over the 
HE with respect to capturing the interannual variability. The MEhds outperforms the 
HE for the vast majority of the sub-basins with the percentage of sub-basins for 
which this result is statistically significant ranging between 5% and 76%.  

The results considering the MEhds ability to discriminate between below normal, 
near normal, and above normal SFVs are very similar to those discussed from Table 
11. The HE holds an advantage over MEhds when it comes to identifying near normal 
events and below normal events, while the MEhds is better at identifying above 
normal events for all forecasts except those initialised in May where the ability of 
the HE is comparable. The explanation for this, too, is the same i.e. the 
climatological nature of the HE and the cold bias in the historical forcing data 
accounting for the HEs better performance. 
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The operational prototype 

The findings of this work raises the prospect for an operational prototype for 
forecasting the spring flood inflow volumes to hydropower magazines in Sweden. 
With support from actors in the Swedish hydropower industry, namely the water 
regulation authority Vattenregleringsföretagen and the research funding group 
HUVA (hydrologiskt utvecklingsarbete, EnergiForsk), a prototype was developed 
using the methods discussed in the previous sections. 

 

Figure 20. Schematic of the multi-model forecast system. The three individual model chains that are included in the 
multi-model are (from left to right) the DE model chain (red lines), the SE model chain (orange lines), and the HE 
(dark blue lines) or AE (light blue lines) model chain. The dashed boxes labelled (a) and (b) indicate the parts of the 
system that have non-trivial changes from the multi-model utilised in paper III. 

The prototype is a three modelling chain multi-model which comprises the HE, DE, 
and SE modelling chains (Figure 20). The development of this ME prototype is 
based on the results presented above while making allowances for real world 
technical requirements and limitations. This means that the CP version of AE is 
excluded from the prototype due to the two month delay in the availability of some 
required data and that some steps still require manual intervention. The prototype is 
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a MEhds variant of the ME but can be switched to the MEads if desired. The relatively 
similar performances between the two variants and the belief that the AE can be 
improved further made it clear that it is prudent to include such a switch to minimise 
cost changing the preferred variant in the future. This means that there will be 
limited resources needed and negligible impact on the operational aspects when 
such a change is made. 

Year-round forecasting: preliminary assessment  

In light of the encouraging results already presented, and interest from the 
hydropower industry in Sweden, a preliminary assessment of whether adapting the 
seasonal forecasting methods developed in this work to making seasonal forecasts 
all year round is beneficial. This preliminary assessment concentrates on the AE 
approach as it offers an opportunity to further improve it. There is little scope for 
improving the performance of the HE approach, in this assessment, due to its 
performance being contingent on the model used and quality of the driving data. 
Additionally, the skill of year round seasonal forecasts using ECMWF driving data 
together with hydrological models in Sweden is already being investigated in a 
number of research projects e.g. EUPORIAS (FP7 Grant Agreement 308291) and 
S2S4E (Horizon 2020 Grant Agreement 776787). Assessing the SE approach is too 
large a task to be accommodated in the scope of this assessment.  

The selection of analogues is performed in much the same way as described 
previously in this work, in particular the approach described in paper V. In the case 
of the TCI approach, a simple correlation analysis between seasonal inflow volumes 
and teleconnection indices identified NAO and SCA as the two teleconnection 
patterns that typically have the greatest impact on streamflow in the Ume River 
throughout the year. The former having a positive correlation with inflow volumes 
and the latter a negative correlation. This finding is in line with the findings reported 
in section Climate-streamflow connections. Although, a more thorough analysis 
would be needed before any future work in this direction is pursued. One non-trivial 
difference between these AE modelling chains and those described in earlier 
sections is that the AE and HE are pooled together to create an ensemble that retains 
the spread of the HE but which weights the ensemble to median towards that of the 
AE. The thinking is that this would harness the benefits of the different approaches 
while minimising their weaknesses. This new method is referred to as the modified 
AE approach going forward in this section. 

Table 13 and Table 14 show the results of the impacts of modelled seasonal inflow 
volumes using the TCI version of the modified AE approach aggregated over all 12 
sub-basins in the Ume River. The results for the CP version are not presented as 
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they are very similar to those for the TCI version and doing so would be redundant. 
The results show that the TCI version of the AE modelled inflow volumes 
conditioned using teleconnection analysis tend to show skill over the HE now. On 
average, modelled inflow volumes made using teleconnection index conditioned 
forcing data outperform the HE 62% of the time. Furthermore, the mean absolute 
error skill scores (MAESS) suggest that the modified AE shows skill at reducing 
error in inflow volumes too. The average MAESS is modest but positive for all 
initialisation months suggesting that the teleconnections have an impact on the 
inflow volumes for most of the sub-basins throughout the year. 
Table 13. Cross-validated median MAESS, bootstrapped N = 10 000, for the modified TCI version of the AE forecasts 
with respect to HE averaged over all sub-basins in the Ume River. The threshold for skill is 0. (Blue shading) indicate 
the relative skill the AE exhibits over the HE i.e. darker = more skill and lighter = less skill. (Red shading) indicate the 
relative lack of skill the AE exhibits over the HE i.e. darker = less skill and lighter = more skill.  

  Lead time (months) 
  1 2 3 4 5 6 7 8 9 

Jan -0.013 -0.022 0.002 -0.033 0.002 -0.033 0.005 0.004 -0.003 
Feb 0.004 0.003 0.002 0.006 0.007 0.002 0.007 0.007 0.006 
Mar -0.041 0.045 0.002 -0.013 -0.009 -0.014 0.010 -0.006 -0.008 
Apr 0.025 -0.008 -0.001 0.014 0.000 0.011 -0.010 0.004 0.011 
May 0.060 0.025 0.036 0.021 0.044 0.054 0.005 0.009 0.025 
Jun 0.048 0.025 0.018 0.025 0.022 0.029 0.022 0.031 0.023 
Jul 0.015 0.007 -0.002 0.003 0.002 0.029 0.004 0.026 0.011 
Aug 0.016 0.007 0.009 0.010 0.008 0.009 0.013 0.011 0.010 
Sep 0.009 0.008 0.003 0.013 -0.007 0.001 0.012 0.015 0.011 
Oct 0.003 0.004 0.006 0.003 0.002 0.004 0.005 0.000 0.005 
Nov 0.009 0.008 0.014 0.018 0.017 0.016 0.011 0.012 0.012 
Dec 0.008 0.009 0.008 0.010 0.007 0.002 0.005 0.009 0.008  

 
Table 14. Cross-validated median FY+, bootstrapped N = 10 000, for the modified TCI version of the AE forecasts with 
respect to HE averaged over all sub-basins in the Ume River. The threshold for skill is 50. (Blue shading) indicate the 
relative skill the AE exhibits over the HE i.e. darker = more skill and lighter = less skill. (Red shading) indicate the relative 
lack of skill the AE exhibits over the HE i.e. darker = less skill and lighter = more skill. 

  Lead time (months) 
  1 2 3 4 5 6 7 8 9 
Jan 44.4 50.0 50.0 44.4 50.0 50.0 50.0 50.0 50.0 
Feb 55.6 50.0 50.0 55.6 55.6 50.0 55.6 55.6 55.6 
Mar 44.4 55.6 50.0 50.0 50.0 50.0 55.6 50.0 55.6 
Apr 50.0 50.0 50.0 55.6 50.0 50.0 50.0 50.0 50.0 
May 55.6 55.6 55.6 55.6 55.6 61.1 55.6 55.6 55.6 
Jun 61.1 55.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6 
Jul 50.0 55.6 50.0 50.0 50.0 55.6 50.0 55.6 50.0 
Aug 55.6 55.6 55.6 55.6 55.6 55.6 55.6 61.1 55.6 
Sep 61.1 55.6 55.6 55.6 50.0 55.6 61.1 61.1 61.1 
Oct 61.1 61.1 72.2 66.7 61.1 61.1 61.1 55.6 66.7 
Nov 66.7 66.7 72.2 77.8 83.3 77.8 77.8 77.8 77.8 
Dec 66.7 66.7 66.7 72.2 72.2 61.1 66.7 72.2 66.7 
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The modified AE tends to outperform the HE least often for simulations initialised 
early in the year and most often in the later months of the year (see Table 14). This 
result is a surprise and the reason for it is not obvious, however one can speculate 
that the seasonal inflow volumes in the later part of the calendar year are more 
affected by variances in the antecedent climatic state than inflow volumes towards 
the beginning of the calendar year. This is especially true for the spring flood period, 
and to a lesser extent the following months, where the inflow volumes are almost 
entirely contingent on the snowpack i.e. initial conditions. The largest 
improvements in the volume error appear to be achieved for forecasts initialised 
around the middle of the year. This implies that the teleconnection impact of NAO 
and SCA on inflow volumes is greatest then. This is to be expected as previous 
results in this work connects these two TPs in the antecedent months and the spring 
flood period. 

These results show that a modified AE approach has the potential to make skilful 
forecasts at other times of the year and suggests that some version of the multi-
modelling approaches from this work would have added value outside of the scope 
of this study. 
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Conclusions and Outlook 

• To investigate whether the seasonal forecasts can be improved by modifying 
the current approach or substituting it for another. The skill of the 
hydrological seasonal forecasts of the SFV can be improved for specific 
sub-basins, initialisation date, and or modelling chain. However, of the 
three general individual modelling chains investigated in this work, none is 
able to show any general skill over the HE.  

• To investigate whether Sweden can be divided into sub regions to which the 
seasonal forecasts can be optimised. Sweden’s hydrology can be divided 
up into five regions of homogeneous hydrological variability. A northern 
group, consisting of three regions where the hydrology is dominated by 
snow processes, and a southern group, consisting of two regions where the 
hydrology is dominated by rain processes. 

• To investigate, identify, and understand the climatic drivers responsible for 
local hydrological variability. It is shown that large scale climate patterns 
such as NAO, AO, SCA, EA, EAWR and POL are the drivers of the 
seasonal hydrological variability in the five different regions identified by 
the cluster analysis. The persistence of these large scale climate patterns 
either leading up to or concurrent with different hydrological periods have 
been connected with the variability in said hydrological period and the 
physical chain of causality identified. Additionally, using this information 
can successfully be used to improve the performance of seasonal forecasts. 

• To investigate whether there are any benefits of a multi-model approach to 
forecasting SFV in Sweden. This work shows that a multi-model tends to 
perform better than an individual modelling chain. Furthermore, it shows 
that a multi-model comprising of all three of the alternative modelling chain 
types considered in this work i.e. AE/HE, DE, and SE, can improve the 
general skill of seasonal forecasts of the SFV. In addition to being able to 
improve general skill with respect to volume error and capturing interannual 
variability, a multi-model can also improve the forecast’s ability to detect 
events that are above normal and, for forecasts initialised early in the 
season, those that are below normal.  
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• To develop and evaluate a hydrological seasonal forecast prototype for 
operational forecasting of the SFV in Sweden. A prototype forecast system 
has been developed to forecast the SFV in Sweden’s seven largest 
hydropower producing river systems. Stakeholders in the hydropower 
industry have shown keen interest in the prototype. 

Looking forward, using the results of this thesis as a datum, there are a couple of 
avenues of inquiry that should be pursued. The first is to try to improve the analogue 
modelling chain. In this work the analogues were selected on past knowledge of the 
climate state only. In paper IV it was shown that knowledge of the climate state 
leading all the way to the forecast date is required to maximise the explained 
variance. By using seasonal forecast data from NWPs such as ECMWF-IFS it 
should be possible to calculating climate indices for the period for which climate 
indices are lacking. These new forecasted climate indices can be used together with 
historical indices to calculate the persistence of the required climate pattern over the 
optimal periods identified in paper IV. 

Secondly, in this thesis only one hydrological model was used, HBV. Future studies 
should investigate whether there is a benefit of adding other hydrological models. 
There are numerous other models that have differing modelling approaches that 
could improve these types of seasonal forecasts in general and the prototype in 
particular.     
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