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Bias-corrected Common Correlated Effects
Pooled estimation in dynamic panels

Ignace De Vos1,2 and Gerdie Everaert2

1Lund University, Department of Economics
2Ghent University, Department of Economics

Abstract

This paper extends the Common Correlated Effects Pooled (CCEP) estimator to
homogeneous dynamic panels. In this setting CCEP suffers from a large bias when the
time span (T ) of the dataset is fixed. We develop a bias-corrected CCEP estimator
that is consistent as the number of cross-sectional units (N) tends to infinity, for T
fixed or growing large, provided that the specification is augmented with a sufficient
number of cross-sectional averages, and lags thereof. Monte Carlo experiments show
that the correction offers strong improvements in terms of bias and variance. We apply
our approach to estimate the dynamic impact of temperature shocks on aggregate
output growth.

Keywords: Factor augmented regression, multi-factor error structure, common correlated
effects, dynamic panel bias
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1 Introduction
Error cross-sectional dependence is one of the major themes in recent panel data economet-
rics. It is well documented that neglecting such dependencies can distort inference or even
lead to inconsistent estimates (see Andrews, 2005; Sarafidis and Robertson, 2009; Sarafidis
and Wansbeek, 2012, for details). One of the leading approaches to model cross-sectional
dependence is by assuming a multi-factor error structure, in which cross-section units are
simultaneously influenced by a limited number of unobserved common factors, to which
they can respond with different intensities. The common factors may reflect business cycle
fluctuations, technological progress, risk and liquidity premia or other global trends and
shocks that affect all cross-sectional units in the panel with a potentially differential impact
across units arising from differences in institutions, absorptive capacity, technological rigidi-
ties, innate ability, preferences, risk aversion, social background, etc. (see for instance Ahn
et al., 2001; Moon and Perron, 2007; Eberhardt and Teal, 2011; Sarafidis and Wansbeek,
2012, for examples). Not accounting for unobserved global variables or shocks results in
inconsistent estimates when the omitted factors are correlated with the included regressors.

A popular estimation technique for panel data models with a multi-factor error structure
is the Common Correlated Effects (CCE) estimator introduced by Pesaran (2006). This
consists of augmenting the model with the cross-sectional averages (CSA) of the observed
variables such that asymptotically - as the cross-sectional dimension N →∞ - the effect of
the common factors is eliminated. Both a mean group and a pooled version are suggested,
depending on whether the slope coefficients are assumed to be heterogeneous (variable)
or homogeneous (constant) over cross-sectional units. Under the more general assumption
of slope heterogeneity, the mean group (CCEMG) estimator is calculated as the average
of the individual CCE slope coefficient estimates. The pooled (CCEP) estimator yields
efficiency gains when the slope coefficients are homogeneous over cross-sectional units.
Under the appropriate set of assumptions, the CCEMG and the CCEP estimators are
consistent as N → ∞ for either the time series dimension T fixed or T → ∞. Building
on the results in Pesaran (2006), the CCE approach is shown to be robust to various
generalizations (see e.g. Kapetanios et al., 2011; Pesaran and Tosetti, 2011; Chudik et al.,
2011; Harding and Lamarche, 2011). The computational straightforwardness of the CCE
approach in combination with its robustness has led to numerous applications in many
areas of economics and beyond.

The CCE methodology is well developed in the static model but was originally not
intended for use in dynamic settings. Dynamic models are, however, common in practice
since many (economic) variables tend to react slowly to changes in their determinants and
hence display considerable persistence over time. Typically a lagged dependent variable
is added to the empirical specification to account for these dynamics. However, this has
important consequences for the properties of the CCE estimators. A first complication
arises in the approximation of the common factors. Chudik and Pesaran (2015) show that
the combination of dynamics and coefficient heterogeneity requires that an infinite number
of lagged CSA should be added to the model to eliminate the factors. As this is not feasible
in finite samples, they suggest to let the number of CSA grow with T . The implications of
dynamics for approximating the common factors in models with homogeneous slope coef-
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ficients have not yet been studied. Secondly, Everaert and De Groote (2016) show that in
a dynamic setting the CCEP estimator is inconsistent as N → ∞ with T fixed, and that
its asymptotic bias tends to be much larger than the standard dynamic panel data bias
(Nickell, 1981) of the FE estimator in the absence of common factors. Especially when
persistence is high, the CCEP estimator remains notably biased even for a moderately long
time dimension T up to 50 periods. Monte Carlo simulations further show that the small
sample properties of the CCEP estimator are not very sensitive to the size of N . Similar
results are obtained by Chudik and Pesaran (2015) for the CCEMG estimator. Hence, in
dynamic panels it is mainly the time series dimension that should be sufficiently large to
allow for reliable CCE estimation and inference. This is problematic especially for estimat-
ing micro-level dynamic models where N tends to be large and T is typically (very) small,
for instance when estimating dynamic employment equations with firm-level data (see e.g.
Carlsson et al., 2013; Eriksson and Stadin, 2017), but also in macro-level panels, where
although T tends to be larger than or similar to N the available time span is in many cases
smaller than what is needed to make the bias negligibly small. In an attempt to reduce the
small T bias, Chudik and Pesaran (2015) suggest the recursive mean adjustment of So and
Shin (1999) or the split-panel jackknife of Dhaene and Jochmans (2015). Although these
approaches succeed in mitigating the bias, they are unable to resolve the issue for short-T
panels. Despite these two important complications, the CCE approach is increasingly used
to estimate dynamic panel data models with common factors in a variety of empirical set-
tings, including - among many others - development economics (Temple and Van de Sijpe,
2017); economic growth (Minniti and Venturini, 2017); international economics (Wu and
Wu, 2018); the economics of inequality (Madsena et al., 2018); environmental economics
(Tao, 2018).

This paper considers the CCEP approach to estimate a homogeneous dynamic panel
data model. We first show that, in contrast to the heterogeneous slope model, only a finite
number of lagged CSA are required to eliminate the factors from the error terms. We next
remove the finite T bias of the CCEP estimator by deriving a bias-corrected alternative
(referred to as CCEPbc) based on large N analytical bias expressions allowing for mul-
tiple common factors and exogenous variables. We show that, when correctly specified,
the resulting estimator is consistent as N → ∞ with T fixed or T → ∞. Monte Carlo
simulations show that CCEPbc provides considerable improvements (both in terms of bias
and variance) over the original CCEP estimator and is practically unbiased in all of the
considered settings. Moreover, CCEPbc is found to outperform both (i) alternative bias-
adjusted CCEP estimators and (ii) the bias-corrected least squares with interactive fixed
effects estimator of Moon and Weidner (2017), which is the main alternative to the CCEP
methodology in dynamic panels. We further find that a (bootstrap) hypothesis test based
on the CCEPbc estimator has an actual size close to the desired nominal level, even when
T is small.

The remainder of this paper is structured as follows. Section 2 outlines the model
and assumptions. In Section 3 we extend the CCEP estimator to homogeneous dynamic
panel data models and derive an expression for its finite T inconsistency that will be used in
Section 4 to construct a bias-corrected CCEP estimator. Monte Carlo simulation results are
presented in Section 5. In Section 6 we use our CCEPbc approach to estimate the dynamic
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impact of temperature shocks on aggregate output growth in a panel of 125 countries.
Section 7 concludes. Proofs and additional results are collected in an Online Supplement.

Before proceeding we introduce some notation that will be used throughout the paper.
For a T × c matrix A, ‖A‖ = [tr (AA′)]1/2 denotes the Euclidian (Frobenius) matrix
norm, tr(·) the trace, rk(·) the rank, vec(·) is the vectorization operator and (A′A)† is the
Moore-Penrose pseudo-inverse of A′A. A −p subscript corresponds to the p-period lag of
the respective variable or matrix so that A−p = LpA, where L is the lag operator.

2 Model and assumptions
Consider the following first-order dynamic panel data model

yit = αi + ρyi,t−1 + x′itβ + eit, (1)
eit = γ ′ift + εit, (2)

for i = 1, ..., N and t = 1, ..., T and where yit is the observation on the dependent variable
for unit i at time t, αi is an unobserved individual effect, xit an individual-specific kx × 1
column vector of strictly exogenous regressors and eit a multi-factor error term that is
composed of an m × 1 vector of unobserved common factors ft with heterogeneous factor
loadings γi and an idiosyncratic error term εit. The unknown parameters ρ and β are
assumed to be homogeneous over cross-sectional units i and bounded by a finite constant.
For notational convenience we assume yi0 known.

Following Pesaran et al. (2013) we also exploit information regarding the unobserved
common factors that is shared by variables other than yit and xit. To this end consider a
kg × 1 vector of individual-specific strictly exogenous covariates git that have no effect on
the dependent variable yit but that are driven by the same factors ft that affect yit. The
individual-specific covariates and other variables are collected in the k × 1 column vector
zit = [x′it,g′it]

′, with k = kx + kg, and are assumed to be generated as

zit =
[
xit
git

]
= cz,i +

p∑
l=1
λlzi,t−l + Γ′ift + vit, (3)

where cz,i is a k × 1 column vector of unobserved individual effects, p denotes the autore-
gressive order of zit, λl is a k × k matrix of coefficients corresponding to lags l = 1, . . . , p
of zit, Γi is a m× k matrix of factor loadings and vit a k× 1 vector of idiosyncratic errors.
The assumption that p is equal for all variables in zit is for notational convenience only
and can easily be relaxed within the current notation by interpreting p as the maximum
lag length and setting some of the parameters in λl equal to zero.

We make the following assumptions:

Assumption 1. (Idiosyncratic errors) The εit and vit are i.i.d. across i and t with
E(εitvjs) = 0k×1, E(ε4

it) <∞ and E(‖vit‖4) <∞ for all i, j, t and s. In particular,

εit ∼ IID(0, σ2
ε), vit ∼ IID(0k×1,Ωv),

with σ2
ε > 0 and Ωv a positive definite k × k matrix.
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Assumption 2. (Common factors) The ft are covariance stationary with absolute summable
autocovariances, E(‖ft‖4) < ∞ and they are distributed independently of εis, vis, γi and
Γi for all i, t and s.

Assumption 3. (Factor loadings) The γi and Γi are i.i.d. across i, independent of εjt,
vjt and ft for all i, j and t, with E(‖γi‖

4) <∞ and E(‖Γi‖4) <∞. In particular,

γi = γ + ηi, ηi ∼ IID(0m×1,Ωη), (4)
Γi = Γ + νi, vec(νi) ∼ IID(0mk×1,Ων), (5)

where E(‖η′i ⊗ ν ′i‖) ≥ 0 and Ωη, Ων are bounded m×m and km×km matrices respectively.

Assumption 4. (Rank condition) The (1 + k)×m matrix C = [γ,Γ]′ has rk(C) = m.

Assumption 5. (Stationarity) |ρ| < 1 and the the elements in λl are such that λ(L) =
Ik −

∑p
l=1 λlL

l is invertible. The process of yit was initiated in the infinite past.

For future reference, we let kw = 1 + kx and stack the model in eqs.(1)-(2) over time as

yi = αiιT + wiδ + Fγi + εi, (6)

where δ = [ρ,β′]′ and wi = [yi,−1,Xi] are kw × 1 and T × kw, and Xi = [xi1, . . . ,xiT ]′,
yi = [yi1, . . . , yiT ]′, yi,−1 = [yi0, . . . , yi,T−1]′, F = [f1, . . . , fT ]′, εi = [εi1, . . . , εiT ]′ and ιT is a
T × 1 column vector of ones. Similarly specify Gi = [gi1, . . . ,giT ]′ and Zi = [Xi,Gi].

3 CCEP estimation in dynamic panels
Pesaran (2006) developed the CCE approach in a static model with strictly exogenous
regressors and showed that under Ass.4 the differential effects of the unobserved factors
can be eliminated as N → ∞ by augmenting the model with the CSA of the observables.
In this section, we first review whether the CSA still serve as suitable proxies for the factors
in homogeneous dynamic panels. We next show that, in contrast to the static case, the
CCEP estimator is inconsistent when N →∞ and T fixed by deriving its bias expression
that will be used in Section 4 to construct a bias-corrected CCEP estimator.

3.1 Cross-sectional averages as proxies for the common factors
Rewriting eqs.(1)-(3) as

ρ (L) yit = αi + x′itβ + γ ′ift + εit,

λ (L) zit = cz,i + Γ′ift + vit,

where ρ(L) = 1− ρL and λ(L) = Ik −
∑p
l=1 λlL

l, and taking CSA yields

ρ (L) ȳt = ᾱ + x̄′tβ + γ ′ft +Op(N−1/2), (7)
λ (L) z̄t = c̄z + Γ′ft +Op(N−1/2), (8)
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with the affix notation on ȳt used to denote the CSA ȳt = 1
N

∑N
i=1 yit and similarly for all

other series. Under Ass.4 that C has full column rank, we can solve for ft to obtain

ft = (C′C)−1 C′
([
ρ(L) −(β∗)′

0 λ (L)

] [
ȳt
z̄t

]
−
[
ᾱ
c̄z

])
+Op

(
1√
N

)
, (9)

with β∗ = [β′,0′kg×1]′. Eq.(9) shows that as N → ∞ the factors can be approximated by
the CSA of yit and zit as well as a finite number of their lags determined by the orders
of the polynomials ρ(L) and λ(L). This result differs from the heterogeneous dynamic
model considered by Chudik and Pesaran (2015) who find that an infinite number of lags
is required in this case.

The intuition behind the above result is that in the presence of dynamics the lags are
needed to separate the contemporaneous factor from its past realizations within the CSA.
This is necessary to approximate ft in function of observables as N → ∞. To see this,
consider the simple case of model (1)-(2) with one factor and β = 0. The CSA of yit can
then be written as

ȳt = ᾱ + γ̄ft + ε̄t + ρ

(
ᾱ

1− ρ + γ̄f+t−1 + ε̄+
t−1

)
, (10)

= ᾱ

1− ρ + γ
[
ft + ρf+t−1

]
+Op(N−1/2), (11)

so that it is not only a function of the factors at time t, a constant and an Op(N−1/2)
term, but also of the past realizations of the factors through f+t−1 = ∑∞

l=0 ρ
lft−l−1. Solving

the contemporaneous factor ft from (11) would therefore still depend on the unobservable
f+t−1 so a proxy cannot be constructed from it. However, noting that the term inside the
brackets of (10) equals ȳt−1, subtracting ρȳt−1 from (10) yields

ȳt − ρȳt−1 = ᾱ + γft +Op(N−1/2), (12)

so that the past factor realizations are cut out and this equation can be solved for ft as a
function of observables, estimable parameters and an Op(N−1/2) term. The combination
of observables can then be used to project out the factors at time t as N →∞. A similar
reasoning holds for zit as well. This clearly illustrates the difference with the static case in
Pesaran (2006), where the absence of dynamics implies that ρ = 0 so that the CSA do not
contain the past factors and, hence, lags are not required to separate them from ft.

REMARK 1. The requirement that we have to know the order of λ(L) may be unfor-
tunate in practice as p is typically unknown (and may also differ over variables included
in zit). Decisions on p imply assumptions about the autoregressive order of zit that may
be hard to verify since the observed persistence in zit may stem from serially correlated
factors ft or from λ(L) 6= Ik. However, as more time series observations become available
the factor approximation should not suffer from including too many lags p∗ > p of z̄t.
Hence, in practice it may be convenient to choose p∗ = bT 1/3e as in Chudik and Pesaran
(2015), with bxe denoting the integer part of x, to make the CCEP estimator robust to
misspecification of p while ensuring that the number of lags does not increase too fast in
T and sufficient degrees of freedom are available.

6



3.2 Dynamic CCEP estimator
In light of the discussion in the previous section, construct the following T × c matrix
Q = [ιT , ȳ, ȳ−1, Z̄, . . . , Z̄−p∗ ] and augment the model in eq.(6) as

yi = wiδ + Qκi + ei, (13)

where the CSA in Q serve to control for the common factors absorbed in the error terms
ei, and κi are parameters to be estimated along with the slope coefficients of interest
δ = [ρ,β′]′. Assuming that T ≥ kw + c (estimability) and setting pooling weights to N−1,
the dynamic CCEP estimator for δ in eq.(13) is

δ̂ =
(

N∑
i=1

w′iMwi

)−1 N∑
i=1

w′iMyi, (14)

where M = IT −H and H = Q(Q′Q)†Q′ is the projection on Q.
The dynamic CCEP estimator in eq.(14) controls, as N → ∞, for the unobserved

factors provided that the rank condition (Ass.4) holds and the model is augmented with a
sufficient number (p∗ ≥ p) of lagged CSA. However, despite controlling for the factors, the
inclusion of the CSA induces a new finite T bias term. The following theorem provides an
analytical expression of the asymptotic bias of the dynamic CCEP estimator for N → ∞
and T fixed conditional on the factors and CSA.

Theorem 1. Suppose that p∗ ≥ p and Ass.1-5 hold, and let C be the σ-algebra gener-
ated by the common factors and [ȳ, Z̄, . . . , ȳ−p∗ , Z̄−p∗ ]. The CCEP estimator in eq.(14) is
inconsistent as N →∞ and T fixed with its asymptotic bias conditional on C given by

plim
N→∞

δ̂ = m (δ) = δ − σ2
ε

T
Σ−1υ(ρ,H), (15)

with υ(ρ,H) = υ(ρ,H)q1, q1 = [1,01×kx ]′, υ(ρ,H) = ∑T−1
t=1 ρ

t−1∑T
s=t+1 hs,s−t and hs,s−t is

the element on row s and column s − t of H. Σ = limN→∞
1
NT

∑N
i=1 w′iMwi is given in

(C-7) of the Online Supplement. Letting Sx = [0kx×1, Ikx ]′, eq.(15) can be decomposed as

plim
N→∞

(ρ̂− ρ) = − 1
T

σ2
ε

σ2
y̆−1

υ(ρ,H), (16)

plim
N→∞

(
β̂ − β

)
= −ζ plim

N→∞
(ρ̂− ρ), (17)

with σ2
y̆−1

= plimN→∞
y̆′−1y̆−1
NT

, ζ = (S′xΣSx)−1S′xΣq1 and where y̆−1 = Mx[y′1,−1, . . . ,y′N,−1]′,
Mx = M− X̆(X̆′X̆)−1X̆′, X̆ = M[X′1, . . . ,X′N ]′ and M = IN ⊗M.

Theorem 1 extends the results in Everaert and De Groote (2016), who consider a model
with one factor and no additional covariates, to a model with multiple factors and exogenous
regressors. Also in this more general setting, the asymptotic bias of the CCEP estimator
is not caused by the factor structure but it is induced by projecting the data on Q as
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this induces weak endogeneity in the transformed lagged dependent variable and hence
inconsistency of the autoregressive parameter ρ̂ for finite T , as shown in eq.(16). Concerning
the coefficients of the exogenous regressors, eq.(17) reveals that the bias of β̂ is a fraction
−ζ of the bias of ρ̂, with ζ being the CCEP estimates (as N →∞) when regressing yi,−1 on
Xi. As such, the direction of the distortion in β̂ is determined by the correlation between
yi,−1 and Xi given by ζ, but it is the inconsistency of ρ̂ that creates bias for the entire
coefficient vector. The inconsistency in ρ̂ is therefore the principal driver of the overall
bias, and we study it in more detail in Section A.2 of the Online Supplement. The most
important conclusions of that analysis are:

• The asymptotic bias is expected to be negative for ρ > 0.

• The asymptotic bias is a stochastic variable because it depends on the projection
matrix H, which is a random matrix even as N →∞.

• The absolute value of the asymptotic bias is, ceteris paribus, increasing in the per-
sistence ρ and the number of CSA (columns of Q), and decreasing in T and in the
importance of the factors when there is more than one factor.

The key practical implication of Theorem 1 is that there is a trade-off associated with
augmenting the model with the CSA. On the one hand, to control for the unobserved
common factors, a sufficient number of CSA should be included such that the rank condition
is satisfied and p∗ > p. Simulation evidence further suggests that even when the rank
condition is satisfied, using additional CSA improves factor approximation in finite N
samples (see Section 5). On the other hand, in finite T settings, the augmentation generates
a bias term that increases in magnitude with the number of CSA. As such, whereas adding
CSA is beneficial to treat the common factor problem, it can simultaneously be detrimental
for the finite T properties of the CCEP estimator. Our objective in the next section is to
resolve this trade-off by removing the bias induced by projecting out the CSA.

4 Bias-corrected dynamic CCEP
In what follows we develop a bias-corrected CCEP estimator based on the analytical bias
expression for N → ∞ and T fixed presented in eq.(15) of Theorem 1, and derive its
asymptotic distribution.

4.1 Bias correction procedure
The CCEPbc estimator δ̂bc can be obtained as the vector δ0 that satisfies

δ̂ − m̂(δ0) = 0kw×1, (18)

with m̂(·) the feasible version of the asymptotic bias expression in eq.(15),

m̂(δ0) = δ0 − T−1σ̂2
ε(δ0)Σ̂−1

υ(ρ0,H), (19)

8



where Σ is replaced by its sample analog Σ̂ = 1
NT

∑N
i=1 w′iMwi and the unknown variance

σ2
ε is substituted by the function

σ̂2
ε(δ0) = 1

N(T − c)

N∑
i=1
‖M (yi −wiδ0)‖2 . (20)

The traditional estimator for σ2
ε based on the uncorrected CCEP error terms êi = yi−wiδ̂

is inconsistent for finite T due to the inconsistency of δ̂, but by constructing σ̂2
ε(·) as a

function of the parameters of interest, solving (18) implies that we use a bias-adjusted
estimator for σ2

ε as well. In summary, the CCEPbc estimator is

δ̂bc = arg min
δ0∈χ

1
2
∥∥∥δ̂ − m̂(δ0)

∥∥∥2
, (21)

with χ ⊆ Rkw . This optimization problem is easily managed by standard numerical solvers
and requires very little additional programming besides computing the CCEP estimates
δ̂. The solution δ̂bc is equivalent to the vector of parameters that follows from inverting
δ̂ = m̂(δ) so that we can alternatively write the CCEPbc estimator as δ̂bc = m̂−1(δ̂).
Notice how eq.(21) implies that the bias adjustment can be seen as a minimum distance
estimator, or a GMM approach that employs the bias-corrected orthogonality conditions in
(18) to estimate the population parameters. To make this point explicit, straightforward
manipulations in (18) give

δ̂ − m̂(δ0) = (δ − δ0) + Σ̂−1
[

1
NT

N∑
i=1

w′iM(Fγi + εi) + bε(δ0)
]

= 0kw×1, (22)

with bε(δ0) = T−1σ̂2
ε(δ0)υ(ρ0,H). This shows that the moment conditions underlying

CCEPbc in eq.(21) are identical to those of the CCEP estimator, except for the bε(δ0)
term which corrects for the finite T bias. In this sense our approach is similar in spirit to
ideas presented in Chudik and Pesaran (2017). Also note that Bun and Carree (2005) use
a similar approach to obtain a bias-corrected FE estimator in dynamic panel data models
without common factors.

REMARK 2. The CCEPbc estimator outlined above is a generally applicable method in
the sense that it does not require the number of factors to be known. In the single factor
setting, eqs.(16)-(17) can be simplified to obtain more efficient restricted bias corrections.
We present two alternative restricted CCEPbc estimators in Section A.3 of the Online
Supplement.

4.2 Asymptotic properties and inference
The CCEPbc estimator presented in eq.(21) builds on the orthogonality conditions in
eq.(22) to estimate the population parameters of interest. We show in theorem 3 of the
Online Supplement that these moment conditions are satisfied as N → ∞ at δ0 = δ and
that the CCEPbc estimator is thus consistent as N →∞ and T fixed

δ̂bc − δ −→p 0kw×1. (23)
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As such, in dynamic models the proposed correction restores the largeN finite T consistency
of the CCEP estimator established by Pesaran (2006) in a static setting.

The finite T distribution of the CCEPbc estimator is generally intractable due to the
presence of nuisance parameters, unless one makes the very stringent assumption that
m = 1 + k (see e.g. Karabiyik et al., 2017, for more details). In the next theorem, we
establish asymptotic normality for the CCEPbc estimator in the general m ≤ 1 + k case
letting (N, T )→∞.
Theorem 2. Let Ass.1-5 hold and suppose that p∗ ≥ p and χ ⊆ Rkw is compact such that
|ρ0| < 1 with δ ∈ χ. Then, as (N, T )→∞ it holds that δ̂bc −→p δ, and provided T/N → 0

√
NT (δ̂bc − δ) d−→ N

(
0kw×1, Σ̇

−1ΦΣ̇−1)
, (24)

with Σ̇ and Φ defined in eqs.(D-30) and (D-53) of the Online Supplement respectively.
Theorem 2 establishes that the CCEPbc estimator is asymptotically normally dis-

tributed as (N, T ) → ∞ and that it enables unbiased inference provided T/N → 0. This
requirement on the relative growth rate of N and T stems from estimating the factors with
the CSA and it is identical to what Pesaran (2006) and Karabiyik et al. (2017) require for
unbiased inference with CCEP in the static model.

The asymptotic variance in eq.(24) can consistently, as (N, T )→∞, be estimated by

Ω̂ = (∆̂
′
∆̂)−1∆̂

′
Φ̂∆̂(∆̂

′
∆̂)−1, (25)

where ∆̂ = Ja(δ̂bc) and Ja(·) is the Jacobian presented in eq.(A-2), and with Φ̂ =
1
NT

∑N
i=1 q̂iq̂′i, q̂i = w′iMêi + σ̂2

ε(δ̂bc)υ(ρ̂bc,H) and êi = yi −wiδ̂bc.
In practice, in particular in settings when T is not large, the bootstrap provides a con-

venient alternative to (25) for estimating the finite sample variance of δ̂bc. To that end, we
follow Kapetanios (2008) and obtain bootstrap samples by resampling whole cross-sectional
units with replacement from the original dataset. In particular, let B0 = [a1, . . . , aN ] be
the original dataset, with ai = [di,−p∗ , . . . ,diT ]′ and dit = [yit, z′it]′. Bootstrap sample
j = 1, . . . , J is generated by drawing N indices with replacement from (1, . . . , N), and
collecting the ai corresponding to these indices in Bj. This resampling scheme is valid as
N → ∞ and preserves both the dynamics and the assumed factor structure in the data.
The distribution of δ̂bc is then simulated by applying CCEPbc to each of the J boot-
strap datasets [B1, . . . ,BJ ] to obtain the corresponding coefficient vectors [δ̂bbc,1, . . . , δ̂

b

bc,J ].
Inference can then be made using the bootstrapped variance-covariance matrix

Ω̂b = lim
J→∞

1
J − 1

J∑
j=1

(
δ̂
b

bc,j − δ̄
b

bc

)(
δ̂
b

bc,j − δ̄
b

bc

)′
, (26)

with δ̄bbc = 1
J

∑J
j=1 δ̂

b

bc,j the average of the estimates over the J samples.
REMARK 3. Lemmas 14-15 in the Online Supplement show that, in contrast to the
CCEPbc estimator, the asymptotic distribution of the uncorrected CCEP estimator in
eq.(14) features bias terms unless both N/T → 0 (due to the finite T bias in theorem
1) and T/N → 0 (due to estimation of the factors). As this is clearly a contradiction,
bias correction is crucial for reliable inference with the CCEP approach despite that the
estimator is consistent as (N, T )→∞ in the dynamic model.
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5 Monte Carlo Simulation
In this section we use Monte Carlo simulations to investigate the small sample properties
of our bias-corrected CCEP estimator and compare its performance to the original CCEP
estimator and a number of alternative methods proposed in the literature.

5.1 Design
We generate data for yit and zit according to the model in eqs.(1)-(3) assuming a single
explanatory variable xit (kx = 1) and one additional variable git (kg = 1) that has no impact
on yit but provides additional information about the common factors. We set β = 1− ρ to
normalize the long-run impact of xit to one and assume λ(L) = (1− λL)I2 which restricts
the autoregressive order of xit and git to be at most one (p = 1). This implies that the one
period lagged CSA x̄t−1 should be added to the CCE orthogonalization matrix in settings
where λ 6= 0 (and preferably also ḡt−1 when git is used as an additional variable).

The m common factors are generated as

fjt = θfj,t−1 + µjt,

with µjt ∼ N (0, (1− θ2)/m) for every j = 1, . . . ,m. The reason for dividing the variance
by m is to prevent the factors from dominating the model as their number m rises. We
will conduct experiments with m = 1 and m = 2.

The fixed effects are generated as αi ∼ N (0, σ2
α) and cz,i ∼ N (0, σ2

cI2) and the idiosyn-
cratic errors as εit ∼ N (0, 1− ρ2) and vit ∼ N (0, (1− λ2)I2). The variance parameters σ2

α

and σ2
c are set such that the contributions of the fixed effects to the variance of yit and zit

equal that of their respective idiosyncratic innovations (εit and vit). The factor loadings in
the DGPs of yit, xit and git are generated as

Ci =

γ
′
i

Γx′
i

Γg′
i

 =

γ1,i γ2,i
Γx

1,i Γx
2,i

Γg
1,i Γg

2,i

 ∼ IIDU

 [0, γu] [0, γu − 3/5]
[0, 1] [0, 0.2]

[−0.6, 0] [−1.4, 0]

 ,
when m = 2 or with the second column set to zero in case m = 1. The upper bound γu
is calibrated such that the relative importance of the factors and the idiosyncratic errors
in the total variance of yit, denoted RI, is either 1 or 3. RI = 1 corresponds to cases
where the factors have a normal influence on yit whereas RI = 3 is a scenario where
the factors are very influential. The specific values for the upper and lower bounds of the
uniform distributions for the loadings in Ci are sufficiently different to ensure that the rank
condition is satisfied and that the full set of CSA contains enough independent information
about the common factors.

Experiments are conducted for combinations of the following parameter values: ρ ∈
{0.4; 0.8}, RI ∈ {1; 3} and λ ∈ {0; 0.6}. The autoregressive parameter θ in the DGP of
the factors is set to 0.6 in all experiments to account for the fact that factors are often
persistent in practice. We consider ρ = 0.8, λ = 0, m = 1 and RI = 1 our baseline scenario.
This is a challenging setting for our bias-correction procedure as the large autoregressive
parameter ρ will result in a considerable bias for the CCEP estimator. We generate datasets
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with N = (25, 50, 100, 500, 1000, 5000) and T = (10, 15, 20, 30, 50, 100). As such, next to a
typical macro panel dimension (N small and T small to moderate) we also consider a more
micro panel perspective (N large and T small). In order to conserve space we will report
only a few relevant combinations of N and T in each table.

We initialize yi,−50, zi,−50 and fj,−50 at zero and discard the first 50 observations to
neutralize initial conditions. We generate 2000 datasets for each combination of N and T
and calculate performance measures including median bias, root mean squared error (rmse)
and actual size. Although analytical variance expressions are available for some estimators,
to make fair comparisons we obtain standard errors using a bootstrap approach for each of
the considered estimators. Following Kapetanios (2008) we resample cross-sectional units
as a whole as described in Subsection 4.2. The advantage of this scheme is that it preserves
both the persistence and the cross-sectional dependence in the data and is valid even when
T is small. We calculate actual test size using bootstrap standard errors based on 150
bootstrap samples. The reported actual size is the false rejection probability of a t-test at
the 5% nominal significance level. Results for the CCEPbc estimator with standard errors
estimated using (25) are available upon request.

We summarize and discuss our main findings below. We start with some baseline
results for estimating ρ and β using various estimators and sample sizes. Next, we focus on
a number of interesting aspects with respect to estimating ρ by considering changes to the
baseline design and alternative setups for the bias corrections. Since differences between
estimators are more pronounced for large N we mostly report tables for N = 500 in the
main text. Small N versions (N = 25) are provided in Section E of the Online Supplement,
while in Section F we fix T = 10 and plot the behavior of CCEPbc as N grows very large
to assess its behavior as N →∞.

5.2 Baseline results
We start our discussion with a comparison of the performance of our CCEPbc estimator
to various alternative estimators in the baseline scenario where ρ = 0.8, λ = 0, m = 1 and
RI = 1. The CCEP estimator is included as the benchmark estimator. Inspired by Chudik
and Pesaran (2015), we also consider two alternative bias-corrected CCEP estimators as
direct comparisons to our approach, i.e., the recursive mean adjustment (denoted CCEPrm)
proposed by So and Shin (1999) and the split-panel jackknife correction (denoted CCEPjk)
of Dhaene and Jochmans (2015). We find that CCEPrm provides no improvement over
CCEP in any scenario so we exclude it from the tables. In our baseline scenario, the CCEP
estimator and the various bias corrections thereof make no use of the additional git variable
or lags of the exogenous variables (which is in line with λ = 0) in the orthogonalization
matrix. Finally, we consider Moon and Weidner’s (2017) bias-corrected version of the least
squares with interactive effects estimator of Bai (2009). This estimator (denoted FLSbc) is
implemented selecting the correct number of factors (2 in our baseline scenario due to the
presence of fixed effects) and a bandwidth for the bias correction equal to 4 (which is the
optimal choice based on the simulation results of Moon and Weidner for high persistence
settings).

The results in Table 1 show that the original CCEP estimator has a severe negative

12



Table 1: Monte Carlo results for ρ and β : baseline design
Results for ρ̂

bias rmse size

Estimator (N,T) 10 20 30 50 10 20 30 50 10 20 30 50
CCEP 25 -0.385 -0.176 -0.109 -0.061 0.417 0.188 0.118 0.067 0.90 0.92 0.90 0.81

100 -0.391 -0.176 -0.112 -0.062 0.417 0.185 0.115 0.064 1.00 1.00 1.00 1.00
500 -0.397 -0.183 -0.113 -0.062 0.421 0.189 0.116 0.063 1.00 1.00 1.00 1.00
5000 -0.396 -0.179 -0.111 -0.062 0.417 0.186 0.114 0.063 1.00 1.00 1.00 1.00

CCEPbc 25 -0.004 0.000 0.000 0.000 0.151 0.064 0.038 0.022 0.06 0.08 0.06 0.06
100 -0.003 0.001 0.000 -0.001 0.100 0.031 0.017 0.011 0.08 0.04 0.04 0.06
500 0.000 0.001 0.000 0.000 0.057 0.014 0.008 0.005 0.06 0.04 0.05 0.04
5000 0.000 0.000 0.000 0.000 0.015 0.004 0.002 0.002 0.02 0.05 0.05 0.05

CCEPjk 25 0.027 0.037 0.028 0.014 0.358 0.124 0.074 0.037 0.40 0.31 0.30 0.25
100 0.044 0.045 0.032 0.015 0.325 0.110 0.063 0.028 0.51 0.53 0.55 0.46
500 0.031 0.036 0.031 0.016 0.315 0.108 0.058 0.025 0.63 0.72 0.78 0.73
5000 0.045 0.040 0.035 0.016 0.312 0.105 0.059 0.024 0.66 0.84 0.92 0.90

FLSbc 25 -0.261 -0.067 -0.029 -0.012 0.276 0.089 0.054 0.033 0.37 0.04 0.04 0.04
100 -0.271 -0.076 -0.038 -0.019 0.271 0.084 0.043 0.022 0.97 0.72 0.49 0.27
500 -0.280 -0.079 -0.038 -0.018 0.270 0.083 0.041 0.020 0.99 0.99 1.00 0.98
5000 -0.283 -0.077 -0.037 -0.018 0.270 0.081 0.040 0.019 1.00 1.00 1.00 1.00

Results for β̂
CCEP 25 -0.033 -0.011 -0.006 -0.002 0.058 0.033 0.024 0.018 0.09 0.07 0.06 0.06

100 -0.033 -0.010 -0.005 -0.002 0.042 0.018 0.013 0.009 0.29 0.11 0.07 0.06
500 -0.033 -0.011 -0.005 -0.002 0.038 0.014 0.008 0.004 0.73 0.40 0.18 0.09
5000 -0.033 -0.010 -0.005 -0.002 0.036 0.012 0.005 0.002 0.97 0.94 0.76 0.33

CCEPbc 25 -0.001 0.000 -0.001 0.000 0.052 0.031 0.024 0.018 0.04 0.05 0.07 0.06
100 0.001 0.000 0.000 0.000 0.026 0.015 0.012 0.009 0.05 0.05 0.05 0.06
500 0.000 0.000 0.000 0.000 0.012 0.007 0.005 0.004 0.04 0.05 0.05 0.05
5000 0.000 0.000 0.000 0.000 0.004 0.002 0.002 0.001 0.04 0.06 0.04 0.06

CCEPjk 25 0.014 0.012 0.006 0.003 0.097 0.041 0.029 0.020 0.25 0.13 0.11 0.08
100 0.018 0.013 0.008 0.003 0.056 0.025 0.016 0.011 0.33 0.22 0.14 0.10
500 0.019 0.011 0.008 0.003 0.044 0.017 0.011 0.006 0.52 0.43 0.35 0.17
5000 0.019 0.012 0.008 0.004 0.041 0.016 0.009 0.004 0.69 0.81 0.84 0.70

FLSbc 25 -0.016 0.001 0.000 0.001 0.051 0.036 0.029 0.022 0.04 0.03 0.03 0.02
100 -0.021 -0.003 -0.002 0.000 0.032 0.016 0.012 0.009 0.18 0.05 0.03 0.03
500 -0.023 -0.004 -0.002 -0.001 0.027 0.009 0.006 0.004 0.62 0.15 0.08 0.06
5000 -0.022 -0.004 -0.002 -0.001 0.025 0.006 0.003 0.001 0.89 0.54 0.25 0.09

Note: (i) Reported are simulation results for estimating ρ and β in the baseline case (ρ = 0.8, β = 0.2, λ = 0, m = 1). The factor
has a contribution to the variance of the dependent variable that is equal to that of the idiosyncratic errors (RI = 1). (ii) CCEPbc
is the bias-corrected CCEP estimator. CCEPjk is the jacknife CCEP correction and FLSbc is the bias-adjusted least squares with
interactive effects estimator supplied with the correct number of factors (m + 1). CCEP estimators do not use ḡt and include no
lags of x̄t. (iii) The size column reports actual test size for t-tests based on bootstrap standard errors estimated with 150 bootstrap
samples.
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small T bias for ρ of which a fraction is carried over to the estimates for β. When T = 10,
the bias for ρ̂ amounts to -0.4, while the more moderate time series dimensions of T = 20
and T = 30 still result in biases of -0.18 and -0.11, respectively. Even for T = 50, the
bias of −0.06 should not be neglected as this implies seriously distorted inference. Figure
1 further visualizes this in a setting with N = 500 and shows that even for T = 100 the
CCEP estimator will suffer from some bias and hence unreliable inference. Although the
CCE approach relies on N →∞, the results show that biases are more or less stable over
alternative values of N . Experiments for ρ = 0.4 (see Table E-1 in the Online Supplement)
confirm that the absolute value of the bias of the CCEP estimator is increasing in ρ.

The main takeaway from Table 1 is that our bias-corrected CCEP estimator is (nearly)
unbiased in all of the considered sample sizes and hence offers a strong improvement over
the original CCEP estimator. Interestingly, CCEPbc also provides a considerable variance
reduction whenever N > 25. This is due to the fact that the bias of the CCEP estimator is
stochastic, as discussed below Theorem 1, which contributes to its variance. The combina-
tion of bias removal and variance reduction implies that the rmse of the CCEPbc estimator
is always much lower than that of the CCEP estimator, even for moderately large T . The
behavior of CCEPbc for N = 500 and varying T is also visualized in Figure 1, showing that
in contrast to the CCEP estimator our corrected version is correctly centered. In Figure
F-1 of the Online Supplement we set T = 10 and let the cross-section size N grow large
to illustrate the behavior of CCEPbc as N → ∞ and T fixed. The plot reveals that the
corrected estimator is indeed consistent as N → ∞, which is clearly not the case for the
uncorrected estimator. CCEPbc also offers substantial improvements regarding inference.
In contrast to the CCEP, its actual size is always close to the nominal 5% level. As all
of these findings hold for each of the considered sample sizes, the CCEPbc is not only an
appropriate small T estimator but should also be preferred over CCEP for larger values
of T . Moreover, Table 1 shows that the performance of the CCEPbc estimator is not too
sensitive to the size of N . As such, it is even applicable in a sample as small as N = 25
and T = 10.

The alternative bias-adjusted estimators offer some alleviation of the bias but appear
less effective compared to CCEPbc. The FLSbc still has a considerable negative small T
bias for ρ, while the CCEPjk is able to remove a lot of bias but at the cost of a much larger
variance. Accordingly, these alternatives have a much larger rmse compared to CCEPbc,
which should be preferred even for larger T due the more effective correction. Since the
bias for β̂ is a fraction of that for ρ̂, also β̂ is not correctly centered for the alternative
estimators and the test size for this coefficient is generally distorted, whereas in the case
of CCEPbc it is at the desired 5% level. Similar results are obtained in the low persistence
scenario (see Table E-1 in the Online Supplement), but differences between estimators are
smaller since there is less bias to correct for.
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Figure 1: Monte Carlo results for ρ: comparison of CCEP and CCEPbc over T for N = 500
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Notes: Reported are simulation results for estimating ρ in the baseline case when N = 500 (see notes Table 1). Dotted
red lines indicate the population parameter value (ρ = 0.8). The boxplot ‘whiskers’ extend to the most extreme data
point which is no more than 1.5 times the interquartile range from the box.
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5.3 Number of factors and their strength
In this section we analyze the performance of CCEPbc when varying the number of factors
(m is 1 and 2) and their strength (RI is 1 and 3). Table 2 reports simulation results for
N = 500. Small N results are provided in Table E-2 of the Online Supplement. Next to the
CCEP estimator and its bias corrections that do not use the CSA of git when approximating
the factors, we now also include CCEP variants that do use git and denote them by adding
the (+g) suffix.

The results in Table 2 show that the performance of CCEP and of its bias corrections
is not very sensitive to the number of factors or their strength. Only when we drive up
the factor strength in the presence of two factors (see the lower right panel of Table 2), we
note a slight increase in the bias of our CCEPbc approach. Table 3 further summarizes
the behavior of CCEPbc for various sizes of N and T with two strong factors. The top
panel reveals that even though the small T bias clearly decreases as N grows, it results
in distorted inference unless N is much larger than T . The explanation for this finding is
that even though the rank condition is exactly satisfied (2 observables for 2 factors) the
information in ȳt and x̄t may not be sufficiently distinct to effectively remove two strong
factors in finite N settings. In this case CCEP will have an additional finite N bias term
which is not taken into account by our CCEPbc estimator.

Although the remaining bias in the presence of two strong factors disappears as N
increases further (see Figure F-4 in the Online Supplement), we find that the inclusion
of ḡt is a highly effective solution in finite samples. The additional information on the
factors that is added through including ḡt yields a notable improvement in the finite N
performance of the CCEPbc approach in the lower right panel of Table 2. This is further
demonstrated in the lower panel of Table 3 which shows that the CCEPbc(+g) estimator
suffers less bias compared to CCEPbc and has an adequate actual size for all combinations
of N and T .

The above discussion shows that additional covariates can have a beneficial effect on
CCE-type estimators when factors are very influential in the model, even in cases where the
rank condition is already satisfied. However, comparing the bias of the CCEP estimator to
that of CCEP(+g) in Table 2 also confirms our theoretical finding that adding more CSA
to the orthogonalization matrix increases the bias of the uncorrected CCEP estimator.
Fortunately, the CCEPbc adjustment is effective in removing this bias. For less influential
factors (RI = 1) the only downside is a relative loss in efficiency compared to not using
git. Finally, comparing CCEP(+g) over different factor strengths confirms our claim (see
discussion below Theorem 1) that more influential factors (i.e., increasing RI from 1 to 3)
do not change the bias in the one factor case (upper panel) but it will reduce the bias when
more than one factor is present (lower panel).

5.4 Dynamics in zit
In this section we allow for dynamics in zit (setting λ = 0.6) to analyze the importance
of including lagged CSA to adequately capture the common factors. Table 4 reports the
main results in a setting where factors are strong (RI = 3) and N = 500. Results for
N = 25 are reported in Table E-3 of the Online Supplement. We let CCEP and CCEPbc
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Table 3: Monte Carlo results for ρ : CCEPbc estimators with two highly influential factors
bias size

(N,T) 10 20 30 50 100 10 20 30 50 100
CCEPbc

25 0.014 0.019 0.017 0.017 0.016 0.08 0.12 0.09 0.16 0.27
100 0.012 0.013 0.012 0.012 0.011 0.13 0.10 0.14 0.24 0.42
500 0.006 0.006 0.005 0.005 0.004 0.10 0.08 0.12 0.17 0.28
5000 0.001 0.001 0.001 0.001 0.001 0.04 0.06 0.06 0.06 0.08

CCEPbc(+g)
25 0.006 0.008 0.006 0.006 0.006 0.05 0.08 0.05 0.06 0.09
100 0.004 0.003 0.002 0.002 0.002 0.07 0.04 0.05 0.06 0.06
500 0.000 0.001 0.000 0.001 0.000 0.06 0.04 0.05 0.05 0.05
5000 0.000 0.000 0.000 0.000 0.000 0.02 0.05 0.05 0.05 0.05
Notes: (i) Reported are simulation results for estimation and inference on the ρ coefficient.
Data for this experiment are generated with ρ = 0.8, β = 0.2, m = 2 and λ = 0. Factors
have a contribution to the total variance of the dependent variable that is 3 times that of the
idiosyncratic errors (RI = 3). (ii) CCEPbc is the unrestricted corrected CCEP estimator.
The ‘(+g)’ indicates that ḡt was included in the orthogonalization matrix. No lags of x̄t and
ḡt are used. (iii) The test size (size) is for a t-test using bootstrap standard errors based on
150 samples.

with suffix notation _p1 denote the estimators that are correctly specified with one lag
of Z̄ = [X̄, Ḡ] added to the orthogonal projection matrix M. The suffix notation _pT
is used to indicate the inclusion of pT = bT 1/3c lags while _p0 denotes the misspecified
variant without lags of Z̄. We report results for CCEP-type estimators that add the CSA
of git to avoid that the results are driven by using an insufficient number of covariates
to proxy for the common factors. The correctly specified FLSbc and jackknife correction
are included as alternative estimators. Note that some estimators cannot be implemented
when T = 10 due to insufficient degrees of freedom (because of the larger number of CSA
used for orthogonalization).

The simulation results for the misspecified CCEPbc_p0 estimator reveal that it per-
forms well when m = 1 but that it is not correctly centered when m = 2, despite the use
of ḡt. Especially when T is large, the bias that remains in the latter case results in large
size distortions. This suggests that the lag of ȳt holds enough information to deal with the
unobserved components in the single factor case but that it is not sufficient to control for
multiple strong factors without lags of x̄t (and ḡt). The correctly specified CCEPbc_p1
estimator instead performs much better, with an adequate size for all values of T . This
confirms that the approximation of the factors requires the number of lagged CSA to be
equal to the AR lag order (p) of the exogenous variables. When p is unknown, we have sug-
gested to follow the approach of Chudik and Pesaran (2015) and specify the number of lags
as p∗ = bT 1/3e to let them grow with T as a precaution against misspecification. As this
implies orthogonalization on a large number of CSA, the resulting bias of the uncorrected
CCEP_pT estimator is very large. CCEPbc_pT is however highly effective in removing
the distortions and has an adequate size. The price paid for this robustness is that the
larger number of CSA translates in a substantially higher variance compared to the cor-
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Table 4: Monte Carlo results for ρ : dynamics in zit with strong factors (N = 500)

bias rmse size bias rmse size bias rmse size bias rmse size

one factor

T = 10 T = 20 T = 30 T = 50

CCEP_p0(+g) −0.600 0.610 0.99 −0.253 0.261 1.00 −0.146 0.150 1.00 −0.076 0.078 1.00
CCEP_p1(+g) −0.685 0.713 0.95 −0.271 0.280 1.00 −0.152 0.157 1.00 −0.078 0.079 1.00
CCEP_pT (+g) - - - −0.336 0.349 0.99 −0.203 0.210 1.00 −0.091 0.093 1.00
CCEPbc_p0(+g) 0.000 0.090 0.05 0.000 0.017 0.03 −0.001 0.009 0.04 0.000 0.005 0.04
CCEPbc_p1(+g) −0.001 0.140 0.03 0.001 0.020 0.02 0.000 0.009 0.03 0.000 0.005 0.04
CCEPbc_pT (+g) - - - 0.001 0.029 0.02 −0.001 0.013 0.03 0.000 0.006 0.03
CCEPjk_p1(+g) - - - 0.140 0.227 0.27 0.088 0.124 0.43 0.039 0.050 0.58
FLSbc −0.269 0.257 0.98 −0.058 0.065 0.99 −0.029 0.032 0.99 −0.014 0.015 0.95

two factors

T = 10 T = 20 T = 30 T = 50
CCEP_p0(+g) −0.655 0.661 1.00 −0.290 0.296 1.00 −0.170 0.174 1.00 −0.091 0.092 1.00
CCEP_p1(+g) −0.779 0.794 0.99 −0.320 0.328 1.00 −0.179 0.183 1.00 −0.089 0.090 1.00
CCEP_pT (+g) - - - −0.400 0.409 1.00 −0.246 0.251 1.00 −0.105 0.107 1.00
CCEPbc_p0(+g) −0.034 0.096 0.13 −0.018 0.028 0.24 −0.013 0.017 0.35 −0.009 0.011 0.45
CCEPbc_p1(+g) 0.007 0.155 0.06 0.000 0.021 0.03 −0.001 0.010 0.04 0.000 0.005 0.05
CCEPbc_pT (+g) - - - 0.001 0.033 0.03 −0.001 0.014 0.04 0.000 0.006 0.05
CCEPjk_p1(+g) - - - 0.134 0.233 0.48 0.106 0.146 0.71 0.050 0.062 0.81
FLSbc −0.528 0.519 1.00 −0.174 0.172 1.00 −0.069 0.073 0.99 −0.021 0.023 0.97
Notes: (i) Reported are simulation results for estimating the ρ coefficient. Data for this experiment are generated with ρ = 0.8,
β = 0.2 and λ = 0.6. The contribution of the factors to the total variance of the dependent variable is 3 times that of the
idiosyncratic errors (RI = 3). We display results for estimating ρ with N = 500. (ii) CCEP is the Pooled CCE estimator and
CCEPbc its unrestricted bias-correction. CCEPjk represents the jacknife corrected CCEP and FLSbc is the bias-corrected least
squares with interactive effects estimator supplied with the correct number of factors (m + 1). All CCEP estimators additionally
include ḡt to project out the factors. CCEP estimators with a p0, p1 or pT suffix respectively include no, one or bT 1/3c lags of x̄t

and ḡt in the orthogonalization matrix. (iii) The reported test size (size) is for a t-test using bootstrap standard errors based on
150 samples.

19



rectly specified CCEPbc_p1. As expected, this difference disappears as T grows. Results
for small N (see Table E-3 in the Online Supplement) are highly similar (with marginally
larger biases) but whenever bias remains it has a much smaller impact on inference.

6 Temperature shocks and economic growth
In this section we apply our bias-corrected CCEP estimator to identify the dynamic effects
of temperature shocks on aggregate output growth. In line with the recent literature (see
e.g., Dell et al., 2012; Colacito et al., 2018) we consider the benchmark dynamic model

git = αi + ρgi,t−1 + β1Tit + β2Ti,t−1 + uit, (27)

where git is per-capita real output growth and Tit is temperature. The lagged dependent
variable gi,t−1 is included to capture output growth persistence, while lagged temperature
Ti,t−1 is added to discriminate between permanent and transitory output effects. The con-
temporaneous impact of a transitory 1◦C rise in temperature on output growth is measured
by β1. If β2 = −β1, the impact on output growth is reversed in the next period (or periods if
ρ > 0) such that the level of output (eventually) bounces back, i.e., the cumulative growth
effect (β1 + β2)/(1 − ρ) = 0. There is no (complete) reversal if β2 6= −β1, which implies
that the level of output is permanently affected by a transitory temperature shock. Typ-
ically no additional variables are included because most economic and political variables
are potentially affected by weather variables, such that including them as controls implies
that the estimates do not capture all relevant channels through which weather affects the
economy.

The strategy in the recent climate-economy literature (see Dell et al., 2014, for an
overview) is to exploit random variation in weather events over time within countries to
identify its causal effects. Country fixed effects αi are included to isolate weather effects
from time-invariant characteristics, while time fixed effects (possibly interacted with region
dummies) are added to neutralize common shocks. In panels with a relatively short time
span, the latter avoids that the estimates pick up spurious correlation between global trends
in weather and growth. However, time fixed effects impose a homogeneous reaction (within
regions) to common shocks. We allow for a more general heterogeneous response by letting
uit take the multi-factor structure specified in eq.(2).

Data are taken from Dell et al. (2012), who have collected yearly output growth and
annual average temperatures for an unbalanced panel of 125 countries over the period 1961-
2003. We follow their approach of allowing the temperature effects to be different for ‘rich’
and ‘poor’ countries (defined as having above respectively below-median PPP-adjusted per
capita GDP). We further split the time dimension into two subperiods since weather effects
may have become either larger (due to intensification) or smaller (due to adaptation) in
recent years (Dell et al., 2014). This results in a balanced sample of 93 countries over the
period 1962-1982 and 118 countries over the period 1983-2003. As this makes the time
series dimension relatively short (T = 21), at least much smaller than N , this is the ideal
setting to illustrate our CCEPbc estimator.

Estimation results are presented in Table 5. Beginning with the left panel for the first
part of the sample, the FE estimates in column (1) confirm the finding of Dell et al. (2012)
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that temperature shocks have a significantly negative effect on output growth only in poor
countries, where a transitory 1◦C rise in temperature reduces output growth in the same
year by about 2 percentage points. Moreover, output does not significantly bounce back in
the year after the shock, resulting in a 1.67% permanent decrease in output. The CCEP
estimates in column (2) show a highly similar contemporaneous impact, but the coefficient
on Ti,t−1 increases substantially, even to the extent that temperature shocks only have a
temporary impact on output. The bounce-back effect is, however, only significant at the
10% level of significance. Theorem 1 implies that the CCEP estimates of ρ and β2 are
expected to be downward biased, while β1 should be unbiased. This is because gi,t−1 is
not correlated with future temperature shocks (which show no significant persistence) and
negatively correlated with current shocks, such that the CCEP estimates ζ of gi,t−1 on Tit
and Ti,t−1 in eq.(17) are expected to show a zero value for Tit and a negative value for Ti,t−1.
The CCEPbc estimation results reported in column (3) indeed show an upward adjustment
of the coefficients on gi,t−1 and Ti,t−1. In particular, the coefficient on Ti,t−1 turns significant
at the 5% level of significance, reinforcing the finding that temperature shocks only have a
transitory impact on output.

Table 5: Temperature shocks and economic growth

N=93, 1962-1982 N=118, 1983-2003

FE CCEP CCEPbc FE CCEP CCEPbc
(1) (2) (3) (4) (5) (6)

gi,t−1 0.17 0.15 0.24 0.18 0.07 0.22
(0.07)∗∗ (0.08)∗ (0.08)∗∗∗ (0.08)∗∗ (0.06) (0.07)∗∗∗

Rich countries

Tit 0.17 0.47 0.48 0.13 0.47 0.44
(0.45) (0.53) (0.52) (0.20) (0.39) (0.37)

Ti,t−1 −0.30 −0.35 −0.39 0.44 0.09 0.08
(0.33) (0.55) (0.54) (0.22)∗∗ (0.34) (0.32)

Poor countries

Tit −2.08 −1.94 −1.93 −1.26 −1.11 −1.24
(0.57)∗∗∗ (0.79)∗∗ (0.80)∗∗ (0.45)∗∗∗ (0.66)∗ (0.68)∗

Ti,t−1 0.69 1.76 1.84 0.83 0.30 0.57
(0.69) (0.91)∗ (0.92)∗∗ (0.33)∗∗ (0.66) (0.68)

Implied cumulative growth effects (β1 + β2)/(1− ρ)

Rich countries −0.16 0.14 0.12 0.70 0.60 0.66
(0.83) (0.98) (1.05) (0.37)∗ (0.64) (0.68)

Poor countries −1.67 −0.21 −0.12 −0.53 −0.87 −0.87
(0.75)∗∗ (1.17) (1.27) (0.44) (0.85) (0.94)

Notes: The dependent variable git is the growth rate of per-capita real GDP, Tit is the average annual temperature. Both
subsamples include a balanced sample of countries. The FE specifications include country, region×year and poor×year fixed
effects (see Dell et al., 2012, for region composisitions). Rich and Poor are defined as countries having above respectively
below-median PPP-adjusted per capita GDP in the first year of the sample. The CCEP estimators use the contemporaneous
and one-year lagged CSA of git, Rich×Tit and Poor×Tit. Bootstrapped standard deviations are reported in brackets.
***/**/* denote significance at the 1/5/10 percent level respectively.
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Turning to the results for the second part of the sample reported in columns (4)-(6),
temperature shocks again only have a negative impact in poor countries, but this now
turns out to be more moderate. The contemporaneous impact decreases from roughly -2
to around -1.2, suggesting that there may be some adaptation in more recent years. Note
that the FE estimates now reveal a significant bounce-back effect while this is not the
case for the CCEP and CCEPbc estimators. However, the three estimators agree that
there is no significant permanent impact of temperature shocks on output. Concerning our
bias-correction method, it is interesting to note that the CCEP estimate for ρ reported
in column (5) is only 0.07 and not significant, while its bias-corrected estimate in column
(6) is 0.22 and highly significant. Moreover, the coefficient on Ti,t−1 roughly doubles when
bias-correcting the CCEP estimator, but given the relatively large standard error it is not
significant.

7 Conclusion
In this article we extend the CCEP estimator designed by Pesaran (2006) to dynamic
homogeneous panel data models and develop a bias-corrected version that eliminates its
finite T bias. We first show that in homogeneous dynamic panels, the unobserved common
factors can be effectively approximated by CSA of the observed data provided that a
sufficient number of observables is available (rank condition) and an appropriate number
of lagged CSA is added to the model. This number of lags should coincide with the
autoregressive order of the observed data. We next derived the asymptotic bias expression
for N →∞ of the CCEP estimator and used this to devise a bias-corrected estimator. We
show that the resulting CCEPbc estimator is consistent as N → ∞, both for T fixed or
T →∞.

Extensive Monte Carlo experiments show that, when appropriately specified, CCEPbc
performs very well and is superior to the original CCEP estimator and to alternative
corrections available in the literature. More specifically, CCEPbc is found to be nearly
unbiased across all of the sample sizes and designs we considered. Hence, it offers a strong
improvement over the severely biased CCEP estimator. This is especially the case when
T is small but even holds true for large T . Interestingly, CCEPbc also provides a notable
variance reduction compared to the original CCEP estimator. This is due to the fact that
the stochastic bias of the latter also drives up its variance. Moreover, using bootstrapped
standard errors, the actual size of CCEPbc was found to be close to the 5% nominal
level. The Monte Carlo simulations further show that it is important to include a sufficient
number of CSA of observables in the model. First, the number of observables is important
to satisfy the rank condition, but even when this already holds it is beneficial in terms
of bias correction and inference to add CSA of additional observables when these hold
information about highly influential common factors. Second, the simulation results confirm
our theoretical finding that lagged CSA should be added to the model in line with the
autoregressive order of the observables. In case the autoregressive order is unknown, letting
the number of lags grow with T was found to be a robust approach.
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Supplement to "Bias-corrected
Common Correlated Effects Pooled
estimation in dynamic panels"
by Ignace De Vos and Gerdie Everaert

Section A of this supplement (i) provides the Jacobian matrix for the CCEPbc estimator,
(ii) provides an additional discussion on the asymptotic bias of the CCEP estimator for the
autoregressive parameter ρ, (iii) develops two restricted CCEPbc estimators for the single
factor setting and (vi) reports Monte Carlo evidence comparing the performance of the
restricted and unrestricted CCEPbc estimators. Section B introduces important notation
and preliminary results for the proofs presented in Sections C and D. Section C presents
proofs for N →∞ and fixed T , and Section D presents proofs for (N, T )→∞. Section E
contains additional Monte Carlo simulation results for the unrestricted CCEPbc estimator.

A Additional results and discussions

A.1 Jacobian
Consider that the CCEPbc estimator in eq.(21) is equivalent to

δ̂bc = arg min
δ0∈χ

1
2 ‖ϕ(δ0)‖2 , (A-1)

with ϕ(δ0) given by

ϕ(δ0) = 1
NT

N∑
i=1

w′iMyi − Σ̂δ0 + 1
T
σ̂2
ε(δ0)υ(ρ0),

and υ(ρ0) = υ(ρ0,H)q1. As such, the CCEPbc estimator employs the orthogonality con-
dition ∇(δ0) = 0, with ∇(δ0) the gradient evaluated at δ0,

∇(δ0) = Ja(δ0)′ϕ(δ0),

and Ja(δ0) is the kw × kw Jacobian matrix in the sample evaluated at δ0,

Ja(δ0) = 1
T

[
(υ(ρ0)⊗ σ̇′) +

(
σ̂2
ε(δ0)q1 ⊗ υ̇′

) ]
− Σ̂, (A-2)

with

σ̇ = ∂σ̂2
ε(δ0)
∂δ0

= 2 T

T − c
Σ̂
(
δ0 − δ̂

)
, (A-3)

υ̇ = ∂υ(ρ0)
∂δ0

=
(
T−1∑
t=1

(t− 1)ρt−2
0

T∑
s=t+1

hs,s−t

)
q1. (A-4)
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A.2 Discussion on the asymptotic bias of the CCEP estimator ρ̂
In order to gain a better understanding of the driving forces behind the asymptotic bias of
the CCEP estimator for the autoregressive parameter ρ in eq.(1) of the main text, we first
derive the following corollary result to Theorem 1 (with notation introduced in (C-37)).

Corollary 1. Under the conditions of Theorem 1 and conditional on C, the asymptotic
bias of ρ̂ is

plim
N→∞

(ρ̂− ρ) = −

[
A(ρ) +D(ρ, H̃)

]
[
B(ρ)− E(ρ, H̃) + TC

] = −ψ(ρ, H̃, C), (A-5)

with

• A(ρ) = 1
1−ρ

(
1− 1

T
1−ρT

1−ρ

)
, D(ρ, H̃) = ∑T−1

t=1 ρ
t−1∑T

s=t+1 h̃s,s−t,

• B(ρ) = T
1−ρ2

(
1− 1

T
1+ρ
1−ρ −

2ρ
T 2

1−ρT

(1−ρ)2

)
, E(ρ, H̃) = 1

1−ρ2

[
c− 1 + 2ρD(ρ, H̃)

]
,

where h̃s,s−t denotes the element on row s and column s − t of H̃ = Q̃(Q̃′Q̃)†Q̃′, with
B = IT − ιT ι′T/T and Q̃ = BQ the matrix of CSA in deviation of its column means, and

C = plim
N→∞

β′Ωx̆β + Λ′Ωf̆Λ + 2β′Ωx̆,̆fΛ
σ2
ε

, (A-6)

with Ωx̆ = (X+
−1)′MXX+

−1/NT , Ωf̆ = (F+
−1)′MXF+

−1/NT and Ωx̆,̆f = (X+
−1)′MXF+

−1/NT .
Variables with a + superscript are defined as X+ = (1− ρL)−1X.

The expression in eq.(A-5) shows that the inconsistency of the CCEP estimator ρ̂ is
determined by the interplay of (i) the numerator, which is the covariance between the
defactored lagged dependent variable y̆−1 = MXy−1 and the error term ε, and (ii) the
denominator, which is the signal that remains in the lagged dependent variable after or-
thogonalizing the data on the CSA Q through the M matrix. We elaborate below.

First consider the covariance terms in the numerator. The correlation between y̆−1 and
ε originates from projecting out the nuisance parameters using the orthogonalization ma-
trix M. The term A(ρ) is induced by the within transformation (time-demeaning implied
by including ιT in Q) and also appears in bias expressions for the FE estimator in dynamic
models without common factors (see Nickell, 1981), whereas the additional orthogonaliza-
tion on the CSA induces the CCEP-specific term D(ρ, H̃). The latter is stochastic as in
fixed T settings the matrix H̃ depends, through the CSA, on the particular realization of
the factors. This is the reason for why we need to condition on the σ-algebra C to derive
Theorem 1. We expect D to be negative and smaller in magnitude1 than A, which is posi-
tive. Hence, the asymptotic bias is expected to be negative, with the orthogonalization on

1This is because D is a reweighing of the sum
∑T−1

t=1
∑T

s=t+1 h̃s,s−t = −(c − 1)/2 < 0 in function of
ρ. With positive weights (ρ > 0) it is therefore likely that D < 0. Similarly, A + D is a reweighing of∑T−1

t=1
∑T

s=t+1 hs,s−t = (T − c)/2 > 0 such that we can expect this sum to be positive when ρ > 0.

2



the CSA counteracting the A term in the numerator of (A-5) and therefore reducing the
bias in absolute terms.

The second determinant of the bias is the denominator, which denotes the variation
that remains in the lagged dependent variable after multiplying the model through with
M. The C-term represents the remaining variation due to the presence of exogenous
regressors and factors, expressed relative to σ2

ε , whereas B and E relate to the variation
due to ε. The positive B term is again a shared term with the FE estimator due to the
within transformation, whereas the −E term (which is negative) indicates that additional
variation is lost compared to the FE estimator by orthogonalizing on the CSA. Including
CSA will similarly reduce C. Hence, when the set of CSA cut out a relatively large amount
of variation, the denominator of eq.(A-5) may decrease faster than the induced reduction
in the numerator and hence result in a larger bias. For a given number of factors and
regressors, increasing the number of CSA used by the CCEP estimator is therefore likely to
increase its asymptotic bias. This is confirmed by the Monte Carlo simulations in Section 5
of the main paper. Finally, since we can show that MF+

−1 →p 0T×1 for m = 1 (see Lemma
4) the second and last term in the numerator of C drop out in single factor settings. As
such, an increase in the importance of the factors will, ceteris paribus, increase the signal
in the model and reduce the asymptotic bias of the CCEP estimator, but only when more
than one factor is present.

A.3 Restricted bias corrections for models with a single factor
The procedure outlined in Section 4 of the main paper is a generally applicable method
in the sense that it does not require the number of factors to be known. In the single
factor setting, eq.(A-5) of Corollary 1 can be used to develop more efficient restricted bias
corrections, denoted CCEPbcr. Below we outline two alternative CCEPbcr estimators,
depending on whether the dynamic model includes additional covariates or not.

Firstly, in a model with a single common factor (m = 1) and no covariates (β = 0), the
bias expression (A-5) simplifies considerably as C = 0 for N → ∞. This is convenient as
it is the presence of the C-term that makes bias correction from eq.(A-5) infeasible due to
its dependence on the unobservable sums X+

−1 and F+
−1. Furthermore, the bias expression

for ρ̂ no longer depends on σ2
ε , such that ρ is the only unknown parameter in eq.(A-5). In

this setting, the CCEPbcr estimator δ̂bcr1 can be obtained as

δ̂bcr1 = arg min
|ρ0|<1

1
2
∥∥∥ρ̂− ρ0 + ψ(ρ0, H̃, 0)

∥∥∥2
. (A-7)

Secondly, adding exogenous regressors implies that C 6= 0 but if the single factor as-
sumption is maintained we get the relatively simple form

C = plim
N→∞

β′Ωx̆β

σ2
ε

, (A-8)

which through Ωx̆ also depends on the unknown parameter ρ and on the infinite sum of
explanatory variables X+

−1 = ∑∞
l=0 ρ

lX−1−l. In a finite sample, the latter can be approxi-
mated by the truncated sum X̂+

−1 =
[
X̂+′

1,−1, . . . , X̂+′
N,−1

]′
where X̂+

i,−1 = J−1Xi,−1, and

3



J is a T × T matrix with ones on the main diagonal and −ρ on the first sub-diagonal.
The variance-covariance matrix is then estimated as Ω̂x̆(ρ) = X̂+

−1
′
MXX̂+

−1/NT . Further
substituting σ̂2

ε(·) as defined in (20) for σ2
ε , the estimator for C is

Ĉ (δ) = β′Ω̂x̆(ρ)β
σ̂2
ε(δ) , (A-9)

which is, conditional on the unknown parameters ρ and β, a function of the observed data
only. Hence, in this setting the CCEPbcr estimator δ̂bcr2 is

δ̂bcr2 = arg min
δ0∈χ,|ρ0|<1

1
2
∥∥∥δ̂ − δ0 + ν̂ψ(ρ0, H̃, Ĉ (δ0))

∥∥∥2
, (A-10)

where ν̂ =
[
1,−ζ̂ ′

]′
and ζ̂ = (S′xΣ̂Sx)−1S′xΣ̂q1. This bias correction should perform

well when the single factor assumption is true and the approximation of X+
−1 is not too

inaccurate. Note that the truncation implies that δ̂bcr2 is inconsistent for finite T , but in
practice the bias may be negligible (depending on the size of ρ). In case more than one
factor is present, eq.(A− 9) can be a poor approximation of C and lead to additional bias,
especially when the factors have a large overall influence on the model (relative to σ2

ε).

A.4 Finite sample properties of CCEPbc versus CCEPbcr
In this section we compare the performance of the unrestricted bias correction CCEPbc
to that of the restricted version CCEPbcr δ̂bcr2 derived in Section A.3 for a model with
covariates and a single factor. As in the Monte Carlo simulation experiment presented in
the main text, we also report results for variants that add the additional CSA ḡt to the
orthogonalization matrix.

Table A-1 compares the performance of the CCEPbc estimator to that of CCEPbcr
in settings with one and two common factors. The distinction between these scenarios
is of interest since CCEPbcr is derived under the assumption that only one factor is
present whereas CCEPbc is applicable irrespectively of the number of factors (provided
that the rank condition is satisfied). In general, we find that CCEPbcr is a fairly accurate
bias-correction method, even in the case of two factors. Comparing the unrestricted and
restricted version shows some trade-off between bias and variance, though. CCEPbc dom-
inates in terms of bias correction but has a downside that the estimator Σ̂ used in eq.(18)
introduces uncertainty in small samples. CCEPbcr has a smaller variance as it imposes a
specific form for the denominator in (A-10) but is less effective as a bias correction method
because of the truncation error made in the estimation of C and the resulting finite T
inconsistency. Because this bias is offset by the lower variance (in rmse terms) in small
samples (also see Table A-2 for N = 25), CCEPbcr may still be an interesting alternative
to CCEPbc. As N grows large, however, this relative efficiency only compensates for bias
when the single factor assumption is true (see upper panel of Table A-1) or when the factors
are not too strong in case m > 1 (see lower left panel of Table A-1). Moreover, as a result
of the inconsistency for finite T , CCEPbcr displays a size distortion especially when N is
large. For the unrestricted version, inference is reliable in all settings (although this may
require adding ḡt), but at the cost of a higher variance.
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B Notation, definitions and preliminary results

B.1 Notation
We first introduce some notation that will be used later on. In what follows we define
K = 1 + k, kw = 1 + kx and we set p = 1 for convenience but note that generalizations
follow straightforwardly. With p = 1 model (1)-(3) can be written in VAR(1) form[

1 −(β∗)′
0k×1 Ik

] [
yit
zit

]
=

[
αi
cz,i

]
+
[
ρ 01×k

0k×1 λ

] [
yit−1
zit−1

]
+
[
γ ′i
Γ′i

]
ft +

[
εit
vit

]
, (B-1)

with β∗ = [β′,01×kg ]′ and the associated more compact form

A0dit = cd,i + ΘLdit + Cift + uit,

where cd,i = [αi, c′z,i]′, dit = [yit, z′it]′, uit = [εit,v′it]′ are K × 1 vectors and

A0
(K×K)

=
[

1 −(β∗)′
0k×1 Ik

]
, Θ

(K×K)
=
[
ρ 01×k

0k×1 λ

]
, Ci

(K×m)
=
[
γ ′i
Γ′i

]
.

Since A0 is invertible,

dit = A−1
0 cd,i + A−1

0 ΘLdit + A−1
0 Cift + A−1

0 uit,

which can be rewritten further as

(IK −Θ∗L)dit = c∗d,i + C∗i ft + u∗it,
Θ(L)dit = c∗d,i + C∗i ft + u∗it,

where the terms with an asterisk are defined as Θ∗ = A−1
0 Θ and with Θ(L) = IK −Θ∗L.

Then, as Θ(L) is invertible by Assumption 5 we obtain the reduced form

dit = Θ−1(L)c∗d,i + Θ−1(L)C∗i ft + Θ−1(L)u∗it,
= c̈d,i + (C̈i ⊗ IK)′ f̌t + üit, (B-2)

with üit = Θ−1(L)u∗it, c̈d,i = Θ−1(L)c∗d,i, f̌t = vec(f ′t⊗Θ−1(L)) isK2m×1 and C̈i = vec(C∗i )
is Km× 1. Its cross-section average is

d̄t = c̈d + (C̈⊗ IK)′ f̌t + üt, (B-3)

where üt = Θ−1(L)ū∗t , ū∗t = 1
N

∑N
i=1 u∗it, c̈d = Θ−1(L)c̄∗d, C̈ = vec(C̄∗) and C̄∗ =

1
N

∑N
i=1 C∗i . Stack the observations over time into the T × K matrix Di = [di1, . . . ,diT ]′

and let D = [d̄1, . . . , d̄T ]′ be its cross-section average. Next, define

Qi
(T×c)

= [ιT ,Di, . . . ,Di,−p∗ ], Q
(T×c)

= 1
N

N∑
i=1

Qi = [ιT ,D, . . . ,D−p∗ ], (B-4)
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with c = 1 +K(1 + p∗) the number of columns of Qi and Q. Also, defining

F̌
(T×1+K2m(1+p∗))

= [ιT , F̌0, F̌−1, . . . , F̌−p∗ ] (B-5)

with F̌0 = [f̌1, . . . , f̌T ]′, F̌−1 = [f̌0, . . . , f̌T−1]′, F̌−p∗ = [f̌1−p∗ , . . . , f̌T−p∗ ]′ and so on, and

P̈i
(1+K2m(1+p∗)×1+K(1+p∗))

=
[

1 (ι′1+p∗ ⊗ c̈′d,i)
0K2m(1+p∗)×1 I1+p∗ ⊗ (C̈i ⊗ IK)

]
, P̈ = 1

N

N∑
i=1

P̈i. (B-6)

Given that C∗i = A−1
0 (C + [ηi,νi]′) by Ass.3 we have also

P̈i = P + P̌i, (B-7)

with

P =
[

1 (ι′1+p∗ ⊗ 0′K×1)
0K2m(1+p∗)×1 I1+p∗ ⊗ (Ċ⊗ IK)

]
, P̌i =

[
1 (ι′1+p∗ ⊗ 0′K×1)

0K2m(1+p∗)×1 I1+p∗ ⊗ (C̃i ⊗ IK)

]
,

and where Ċ = vec(A−1
0 C) and C̃i = vec(A−1

0 [ηi,νi]′).
With the definitions above, the T × c matrix of observations is

Qi = F̌P̈i + Üi, (B-8)

such that the observed matrix of cross-section averages can similarly be decomposed into

Q = F̌P̈ + Ü, (B-9)

where

Üi
(T×c)

=


0 ü′i1 . . . ü′i,1−p∗
... ... ... ...
0 ü′iT . . . ü′i,T−p∗

 , Ü
(T×c)

= 1
N

N∑
i=1

Üi =


0 ü′1 . . . ü′1−p∗
... ... ... ...
0 ü′T . . . ü′T−p∗

 . (B-10)

Next, we express all the regression variables in the model in terms of Qi by defining the
k × kx, c× 1 and c× kw selector matrices

Sx
(k×kx)

=
[

Ikx

0kg×kx

]
, Sy

(c×1)
=

 0
1

0(c−2)×1

 , Sw
(c×kw)

=


02×1 02×kx

0k×1 Sx
1 01×kx

0c−(3+k)×1 0c−(3+k)×kx

 , (B-11)

such that

yi = QiSy = F̌P̈iSy + ÜiSy, (B-12)
wi = QiSw = F̌P̈iSw + εi, (B-13)

where notably εi is a T × kw matrix given by

εi = ÜiSw = [%+
i,−1, V̇iSx], (B-14)

with V̇i = [v̇i,1, . . . , v̇i,T ]′ and v̇i,t = λ(L)−1vi,t. Also, with %i = εi + V̇iβ
∗ we have

%+
i,−1 = ε+

i,−1 + V̇+
i,−1β

∗, a T × 1 vector.
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B.2 Rotating the projection matrix
To proceed with the terms involving the projector H, we extend the approach of Karabiyik
et al. (2017) to dynamic settings. To that end, let T be aK×K orthogonal matrix such that
(C̄∗)′T = [C̄m, C̄−m], with C̄m the full rank m×m partitioning of (C̄∗)′, and C̄−m is the
m× (K−m) matrix containing the remaining K−m columns. Let Ū∗ = [ū∗1, . . . , ū∗T ]′ such
that Ū∗m and Ū∗−m are the corresponding partitioning that follows from Ū∗T = [Ū∗m, Ū∗−m].
Next, we introduce the k(1 + p∗)× k(1 + p∗) rotation matrix R. First, let

B =
[

C̄−1
m −C̄−1

m C̄−m
0(K−m)×m IK−m

]
= [Bm,B−m]. (B-15)

In what follows it is convenient to set p∗ = 1 in order to save on notation. However, we note
that the results generalize directly. The matrices R̃, T̃ and R, defined next, are in general2
of dimension K(1+p∗)×K(1+p∗), K(1+p∗)×K(1+p∗) and 1+K(1+p∗)×1+K(1+p∗)
respectively. In the p∗ = 1 case we then have

R∗
(2K×K)

=
[

IK
−(Θ∗)′

]
, R̃

(2K×2K)
=
[
R∗,0K×KIK

]
, T̃

(2K×2K)
=
[

TB 0K×K
0K×K IK

]
,

and, accounting for the row of constants in Q,

R =
[

1 01×2K

02K×1 R̃T̃

]
.

Next, since by Lemma 1 the distribution of the CCEP estimator, or all its components, is
invariant to the presence of the fixed effects, we can, without loss of generality, simplify
notation by setting cd,i = 0K×1 for all i such that c̈d = 0K×1. Making use of (B-9) we then
get the following restructuring of Q

QR = F̌P̈R + ÜR = [ιT ,F,0T×(K−m), F̌−1(C̈⊗ IK)] + [0T×1, Ūm, Ū−m, Ü−1],

where Ūm = Ū∗mC̄−1
m , Ū−m = Ū∗−m − Ū∗mC̄−1

m C̄−m and Ü−1 = [ü0, . . . , üT−1]′. The matrix
N rearranges the columns conveniently as follows

QRN = [ιT ,F, F̌−1(C̈⊗ IK),0T×(K−m)] + [0T×1, Ūm, Ü−1, Ū−m].
2To illustrate: for any p∗ we have, with L(1+p∗) denoting a (1 + p∗)× (1 + p∗) matrix of zeros with ones

on the first lower sub-diagonal

R̃
(K(1+p∗)×K(1+p∗))

= IK(1+p∗) − (L(1+p∗) ⊗ (Θ∗)′), T̃
(K(1+p∗)×K(1+p∗))

=
[
Ip∗ ⊗TB 0Kp∗×K

0K×Kp∗ IK

]
,

and

R =
[

1 01×K(1+p∗)
0K(1+p∗)×1 R̃T̃

]
.
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Note that F̌−1(C̈ ⊗ IK) is a full column rank matrix (rk(F̌−1(C̈ ⊗ IK)) = K) such that
rk([F, F̌−1(C̈⊗ IK),0T×(K−m)]) = K +m ≤ c− 1 = 2K.3 When m < K, the final K −m
columns of QRN are degenerate as

∥∥∥[Ūm, Ü−1, Ū−m]
∥∥∥ = Op(N−1/2) by Lemma 2. Hence,

post-multiplying by DN = diag(ι′(1+K+m),
√
Nι′(K−m))

Q0 = QRNDN = [ιT ,F, F̌−1(C̈⊗ IK),0T×(K−m)] + [0T×1, Ūm, Ü−1,
√
NŪ−m] = F0 + Ū0,

with F0 = [F∗,0T×(K−m)] and F∗ = [ιT ,F, F̌−1(C̈ ⊗ IK)] is a T × (1 + K + m) full rank
matrix. Additionally, Ū0 = [Ū0

m, Ū0
−m], Ū0

m = [0T×1, Ūm, Ü−1] and Ū0
−m =

√
NŪ−m.

Therefore, we obtain for the rotated Q matrix with F+
u = [F∗, Ū0

−m]

Q0 = F0 + Ū0 = [F∗, Ū0
−m] + [Ū0

m,0T×(K−m)] = F+
u +Op(N−1/2), (B-16)

since
∥∥∥Ū0

m

∥∥∥ = Op(N−1/2) and
∥∥∥Ū0
−m

∥∥∥ = Op(1) by Lemma 2. Hence, in contrast to Q, the
columns of Q0 are non-degenerate even in casem < K, which, given that H = Q(Q′Q)†Q =
Q0(Q′0Q0)−1Q0 will now allow us to evaluate the limit of H.

Finally, it is convenient to define the selector matrices

Sm =
[

I1+K+m
0(K−m)×(1+K+m)

]
, S−m =

[
0(1+K+m)×(K−m)

IK−m

]
, (B-17)

such that we obtain the following key identities that will be used throughout the appendix

F∗ = F̌P̈RNSm, (B-18)
Ū0
m = ÜRNSm, (B-19)

Ū0
−m =

√
NÜRNS−m. (B-20)

B.3 Preliminary results
Assume that Ass.4 holds and p∗ ≥ p. Define next R0 as follows

R0 =

 01×K
R∗

0K(p∗−p)×K

 ,
3In general, for any p∗ we have

QR = F̌P̈R + ÜR = [ιT ,F,0T×(K−m),F−1,0T×(K−m), . . . ,F−(p∗−1),0T×(K−m), F̌−p∗(C̈⊗ IK)]
+ [0T×1, Ūm, Ū−m, Ūm,−1, Ū−m,−1, . . . , Ūm,−(p∗−1), Ū−m,−(p∗−1), Ü−p∗ ],

and

QRN = [ιT ,F, . . . ,F−(p∗−1), F̌−1(C̈⊗ IK),0T×((K−m)(p∗−1))]
+ [0T×1, Ūm, . . . , Ūm,−(p∗−1), Ü−p∗ , Ū−m, . . . , Ū−m,−(p∗−1)],

with rk([F, . . . ,F−(p∗−1), F̌−p∗(C̈⊗ IK),0T×(K−m)(p∗−1)]) = K +mp∗ ≤ c− 1 = K(1 + p∗).
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such that we can write

QR0T = F[C̄m, C̄−m] + [Ū∗m, Ū∗−m].

This gives, multiplied by Bm defined in (B-15),

QR0TBm = F + Ūm, (B-21)

such that we also have the following important relation

Ūm = ÜR0TBm. (B-22)

Solving (B-21) for F and multiplying by M gives

MF = M(QR0TBm − Ūm),

which in turn, given that by definition MQ = 0T×c, leads to the following key result

MF = −MŪm. (B-23)
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C Analysis for N →∞ and T fixed

C.1 Statement of lemmas
Lemma 1. Suppose that Ass.5 holds and a vector of constants ιT is included in Q. Then,
the CCEP estimator in eq.(14), or its components w′iMwi and w′iMyi are invariant to αi
and cz,i for all sample sizes. If additionally Ass.2 holds then it is equivalent to evaluate
(14) with E(F̌) = 0 for all N and T .

Lemma 2. Let Ass.1 and 5 hold. Then, as N →∞ and T fixed,∥∥∥Ü∥∥∥ = Op(N−1/2),
∥∥∥Ū∗∥∥∥ = Op(N−1/2), (C-1)∥∥∥Ūm

∥∥∥ = Op(N−1/2),
∥∥∥Ū0

m

∥∥∥ = Op(N−1/2),
∥∥∥Ū0
−m

∥∥∥ = Op(1). (C-2)

Lemma 3. Let c be the number of columns in Q. For any N →∞ and c <∞,

‖H‖ ≤M, (C-3)

irrespective of m, with M a finite constant.

Lemma 4. Let Ass.1-5 hold and suppose that m = 1 and p = 0, then,

MF+
−1 −→p 0T×1 as N →∞. (C-4)

Lemma 5. Let Ass.1-5 hold and suppose that p∗ ≥ p, then, as N →∞

AF = 1
N

N∑
i=1

w′iMF
T

γi = Op (Nω) , (C-5)

with ω = −1 in case m = 1, p = 0 and ω = −1/2 otherwise.

Lemma 6. Let Ass.1-3 and 5 hold, then,

Σ̂ = 1
N

N∑
i=1

w′iMwi

T
= Op(1), (C-6)

for all N and T .

Lemma 7. Let Ass.1-3 and 5 hold. Then, as N →∞,

Σ̂ = Σ +Op(N−1/2),

with

Σ = (vec(Ikw)′ ⊗ Ikw)
(
Ikw ⊗

[
Σε + (S′w ⊗ S′w) ΣP̈(F̌′ ⊗ F̌′)

]
T−1vec (M)

)
, (C-7)

and where Σε = E(ε′i ⊗ ε′i) and ΣP̈ = E(P̈′i ⊗ P̈′i).
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Lemma 8. Let Ass.1-5 hold and suppose that p∗ ≥ p. Then, for σ̂2
ε evaluated at δ0 6= δ

with ‖δ − δ0‖ <∞, as N →∞,

σ̂2
ε (δ0) = σ2

ε − σ2
εc1υ(ρ,H)′(δ − δ0) + c2(δ − δ0)′Σ(δ − δ0) +Op(N−1/2), (C-8)

with c1 = 2/(T − c) and c2 = T/(T − c). When evaluated at δ0 = δ,

σ̂2
ε(δ) = 1

N(T − c)

N∑
i=1
ε′iMεi +Op(N−1), (C-9)

and also

σ̂2
ε(δ) −→p σ2

ε , (C-10)

for σ̂2
ε(·) defined in eq.(20).

C.2 Proof of lemmas
C.2.1 Proof of Lemma 1

Let D0 = IT − ιT ι′T/T and consider that D0 = D′0 and D0D0 = D0. Then, with (B-12)-
(B-13) we can write the components of the CCEP estimator in (14) as

w′iMyi = S′wQ′iMQiSy = S′wQ′iD0QiSy − S′wQ′iD0Q(Q′D0Q)†Q′D0QiSy, (C-11)
w′iMwi = S′wQ′iMQiSw = S′wQiD0QiSw − S′wQ′iD0Q(Q′D0Q)†Q′D0QiSw. (C-12)

Next, making use of (B-8) and (B-5)

D0Qi = D0(F̌P̈i + Üi) = [D0ιT ,D0F̌0, . . . ,D0F̌−p∗ ]P̈i + D0Üi,

=
[
0T×1,D0[F̌0, . . . , F̌−p∗ ][I1+p∗ ⊗ (C̈i ⊗ IK)]

]
+ D0Üi (C-13)

because D0ιT = 0T×1, and therefore also for the CSA

D0Q = D0(F̌P̈ + Ü) =
[
0T×1,D0[F̌0, . . . , F̌−p∗ ][I1+p∗ ⊗ (C̈⊗ IK)]

]
+ D0Ü. (C-14)

By consequence of (C-13) and (C-14), the right hand side of (C-11)-(C-12) is devoid of
the fixed effects such that both w′iMyi and w′iMwi are invariant to their presence for all
sample sizes. Additionally, since from Ass.2 and 5 follows E(D0F̌) = 0, by (C-13) and
(C-14) we can without loss of generality evaluate (C-11)-(C-12) assuming E(F̌) = 0.

C.2.2 Proof of Lemma 2

From the definition we have Ū∗ = [ū∗1, . . . , ū∗T ]′ such that its t-th row can be written as
ū∗t = N−1∑N

i=1 u∗it = N−1∑N
i=1 A−1

0 uit, where A−1
0 always exists and has fixed and finite

entries. From Ass.1 follows E(uit) = 0 and therefore E(ū∗t ) = 0. Consider now the variance

V ar (ū∗t ) = E

(
1
N

N∑
i=1

u∗it

) 1
N

N∑
j=1

u∗jt

′ = E

(
1
N2

N∑
i=1

u∗itu∗′it

)
,
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= A−1
0

(
1
N2

N∑
i=1

E(uitu′it)
)

(A−1
0 )′ = A−1

0

(
1
N2

N∑
i=1

Ωu

)
(A−1

0 )′ = O
( 1
N

)
,

because by Ass.1 the uit are independent over i and the entries of Ωu =
[
σ2
ε 0′k×1

0k×1 Ωv

]
are

bounded for all i. Consequently, ‖ū∗t‖ = Op(N−1/2) and
∥∥∥Ū∗∥∥∥ = Op(N−1/2). Consider next

Ü defined in (B-10) and let ξq = [0, ü′q, ü′q−1, . . . , ü′q−p∗ ]′ be its q-th row. Since its entries
are defined as üt = Θ−1(L)ū∗t , with Θ−1(L) a fixed and stable lag polynomial by Ass.5
such that üt is stationary, it follows from the above that ‖üt‖ = Op(N−1/2) and E(ξq) = 0.
This in turn implies that E

∥∥∥ξq∥∥∥2
= ∑p∗

l=0E(ü′q−lüq−l) ≤ O(N−1), which establishes that∥∥∥ξq∥∥∥ = Op(N−1/2) and
∥∥∥Ü∥∥∥ = Op(N−1/2). Combining this result with eqs.(B-19), (B-20)

and (B-22) gives ∥∥∥Ūm

∥∥∥ ≤ ∥∥∥Ü∥∥∥ ‖R0‖ ‖T‖ ‖Bm‖ = Op(N−1/2),∥∥∥Ū0
m

∥∥∥ ≤ ∥∥∥Ü∥∥∥ ‖R‖ ‖N‖ ‖Sm‖ = Op(N−1/2),∥∥∥Ū0
−m

∥∥∥ ≤ √N ∥∥∥Ü∥∥∥ ‖R‖ ‖N‖ ‖S−m‖ = Op(1),

which ends the proof.

C.2.3 Proof of Lemma 3

Recall that Q = F̌P̈ + Ü is a T × c real stochastic matrix with T ≥ c and Ü = Op(N−1/2)
by Lemma 2. Let r be the rank of Q and note that r0 = rk(F̌P̈) ≤ r depending on m and
k. Despite that r0 ≤ r, Feng and Zhang (2007) show that r a.s.→ c as N →∞ irrespective of
r0 (also see Karabiyik et al., 2017). Accordingly, rk(H) a.s.→ c with N → ∞ such that, by
the property rk(H) = tr(H) of idempotent matrices, also tr(H) a.s.→ c. Consider next the
matrix norm of H. Given the above

‖H‖ =
√
tr (HH′) =

√
tr (H) =

√
c, (C-15)

and therefore H is bounded for any N irrespective of r0 since c does not depend on N .

C.2.4 Proof of Lemma 4

Suppose that p = 0, m = 1 and write the one period lag of (1) as

(1− ρL)yi,t−1 = αi + x′i,t−1β + γift−1 + εi,t−1,

= (αi + c′z,iβ
∗) + (γi + β∗′Γ′i)ft−1 + (εi,t−1 + v′i,t−1β

∗),
= α∗i + γ∗i ft−1 + ε∗i,t−1,

where x′i,t−1β = z′i,t−1β
∗ = c′z,iβ

∗ + ft−1Γiβ
∗ + v′i,t−1β

∗ was substituted in. Solve for ft

ft−1 = 1
γ∗i

(
(1− ρL)yi,t−1 − α∗i − ε∗i,t−1

)
,
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with γ∗i = γi + β∗′Γ′i and multiply both sides with (1− ρL)−1

(1− ρL)−1ft−1 = (1− ρL)−1

γ∗i

(
(1− ρL)yi,t−1 − α∗i − ε∗i,t−1

)
,

f+t−1 = 1
γ∗i

(
(yi,t−1 − (1− ρL)−1α∗i − (1− ρL)−1ε∗i,t−1

)
,

where f+t−1 = (1− ρL)−1ft−1. Next, averaging over i gives

f+t−1 = 1
γ̄∗

(
ȳt−1 − ᾱ∗/(1− ρ)− (1− ρL)−1ε̄∗t−1

)
,

where barred variables are averages and it follows from Lemma 2 that (1 − ρL)−1ε̄∗t−1 =
Op(N−1/2). Given the above we can write F+

−1 = (1 − ρL)−1F−1 = [f+0 , . . . , f+T−1]′ using
ε̄∗+−1 = (1− ρL)−1[ε̄∗0, . . . , ε̄∗T−1]′ as

F+
−1 = Q∗

[
−ᾱ∗
1− ρ

]
1

γ̄∗(1− ρ) −
ε̄∗+−1
γ̄∗

= Q∗P∗ +Op

(
1√
N

)
, (C-16)

with Q∗ = [ιT , ȳ−1] and obvious definition for P∗. Provided a constant and ȳ−1 are included
in Q, we have

MF+
−1 = Op(N−1/2), (C-17)

because in this case MQ∗ = 0 by definition and M is bounded in norm by Lemma 3. Note
that (C-17) does not go through in the multiple factor case or with p > 0 since, lagging (9)
and multiplying both sides with ρ(L)−1 = (1− ρL)−1 yields

f+
t−1 = (C′C)−1 C′

([
1 −ρ(L)−1(β∗)′
0 ρ(L)−1λ (L)

] [
ȳt−1
z̄t−1

]
− ρ(L)−1

[
ᾱ
c̄z

])
+Op(N−1/2),

which shows that an infinite number of lags of z̄t−1 are required to approximate f+
t .

C.2.5 Proof of Lemma 5

Let AF = 1
NT

∑N
i=1 w′iMFγi. Since the rank condition holds by Ass.4 we have substituting

in (B-23) and using γi = γ + ηi from Ass.3

AF = − 1
NT

N∑
i=1

w′iMŪmγi = − 1
T

w̄′MŪmγ −
1
NT

N∑
i=1

w′iMŪmηi = − 1
NT

N∑
i=1

w′iMŪmηi,

since w̄ ⊂ Q such that Mw̄ = 0T×kw . We next make use of M = IT − H to write the
matrix norm of AF as

∥∥∥AF
∥∥∥ ≤ ∥∥∥∥∥ 1

NT

N∑
i=1

w′iŪmηi

∥∥∥∥∥+
∥∥∥∥∥ 1
NT

N∑
i=1

w′iHŪmηi

∥∥∥∥∥ . (C-18)
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Turning to the first term gives∥∥∥∥∥ 1
NT

N∑
i=1

w′iŪmηi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
NT

N∑
i=1

(η′i ⊗w′i)
∥∥∥∥∥ ∥∥∥Ūm

∥∥∥ = Op

(
1√
N

)
,

since
∥∥∥Ūm

∥∥∥ = Op(N−1/2) by Lemma 2 and since substituting in wi = F̌P̈iSw+εi by (B-13)
leads to∥∥∥∥∥ 1

NT

N∑
i=1

(η′i ⊗w′i)
∥∥∥∥∥ ≤

∥∥∥∥∥ 1
NT

N∑
i=1

(
η′i ⊗ S′wP̈′iF̌′

)∥∥∥∥∥+
∥∥∥∥∥ 1
NT

N∑
i=1

(η′i ⊗ ε′i)
∥∥∥∥∥ ,

=
∥∥∥∥∥ 1
NT

N∑
i=1

(
η′i ⊗ S′wP̈′iF̌′

)∥∥∥∥∥+Op

(
1√
N

)
= Op(1), (C-19)

because εi and ηi are independent and loadings are i.i.d. with bounded fourth moments
by Ass.3. For the second term, we find with (C-19),∥∥∥∥∥ 1

NT

N∑
i=1

w′iHŪmηi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
NT

N∑
i=1

(η′i ⊗w′i)
∥∥∥∥∥ ‖H‖ ∥∥∥Ūm

∥∥∥ = Op

(
1√
N

)
, (C-20)

since ‖H‖ is bounded by Lemma 3. Combining results in (C-18) gives∥∥∥AF
∥∥∥ = Op(N−1/2),

which proves that in general
∥∥∥AF

∥∥∥ = Op(Nω) with ω = −1/2.

It remains to show that ω = −1 when m = 1 and p = 0. Write AF explicitly as

AF = − 1
N

N∑
i=1

w′iMŪm

T
ηi = − 1

NT

N∑
i=1

[
y′i,−1MŪmηi
X′iMŪmηi

]
. (C-21)

Suppose that m = 1, p = 0. We can then write Myi,−1 more explicitly by inverting eq.(6)
and employing (C-16) of Lemma 4

Myi,−1 = M
(
F+
−1γi + X+

i,−1β + ε+
i,−1

)
= M

(
X+
i,−1β + ε+

i,−1 −
γi
γ̄∗
ε̄∗+−1

)
, (C-22)

and since p = 0 (no dynamics in zit) we can also write (3) in matrix notation as

Zi = [Xi,Gi] = ιTc′z,i + FΓi + Vi,

where Vi = [vi1, . . . ,viT ]′. Defining Sx = [Ikx ,0kx×kg ]′ as the matrix selecting Xi from Zi

and substituting in (B-23) gives

MXi = MZiSx = M(FΓi + Vi)Sx = M(Vi − ŪmΓi)Sx. (C-23)

Similarly, from (C-16) in Lemma 4

MX+
i,−1 = Mρ(L)−1Zi,−1Sx = M(F+

−1Γi + V+
i,−1)Sx = M(V+

i,−1 − γ̄∗−1ε̄∗+−1Γi)Sx. (C-24)
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Consider the first row of (C-21), substituting in (C-22) gives

1
NT

N∑
i=1

y′i,−1MŪmηi = 1
NT

N∑
i=1

(
β′X+′

i,−1 + ε+′
i,−1 −

γi
γ̄∗
ε̄∗+′−1

)
MŪmηi, (C-25)

where since Ūm and ε̄+∗
−1 are Op(N−1/2) and loadings and errors are independent∥∥∥∥∥ 1

NT

N∑
i=1
ε+′
i,−1MŪmηi

∥∥∥∥∥ ≤ 1
T

∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ ε+′

i,−1

)∥∥∥∥∥ ‖M‖ ∥∥∥Ūm

∥∥∥ = Op(N−1),∥∥∥∥∥ 1
NT

N∑
i=1

γi
γ̄∗
ε̄+∗′
−1 MŪmηi

∥∥∥∥∥ ≤ 1
T

∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗

γi
γ̄∗

)∥∥∥∥∥ ∥∥∥ε̄+∗
−1

∥∥∥ ‖M‖ ∥∥∥Ūm

∥∥∥ = Op(N−1),

and we find for first term of (C-25), after substituting in (C-24),

1
NT

N∑
i=1
β′S′x

(
V+′
i,−1 − γ̄∗−1Γ′iε̄∗+′−1

)
MŪmηi = Op(N−1),

because∥∥∥∥∥ 1
NT

N∑
i=1
β′S′xV+′

i,−1MŪmηi

∥∥∥∥∥ ≤ 1
T

∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ β′S′xV+′

i,−1

)∥∥∥∥∥ ‖M‖ ∥∥∥Ūm

∥∥∥ = Op

( 1
N

)
,∥∥∥∥∥ 1

NT

N∑
i=1
β′S′x

Γ′i
γ̄∗
ε̄+∗′
−1 MŪmηi

∥∥∥∥∥ ≤ 1
T

∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ β′S′x

Γ′i
γ̄∗

)∥∥∥∥∥ ∥∥∥ε̄+∗
−1

∥∥∥ ‖M‖ ∥∥∥Ūm

∥∥∥ = Op

( 1
N

)
,

where we note that the last bound can be sharpened to Op(N−3/2) when γi and Γi are
independent. Regardless, combining results in (C-25) gives

1
NT

N∑
i=1

y′i,−1MŪmηi = Op(N−1). (C-26)

For rows 2 to kw of (C-21) we find, after substituting in (C-23) and using similar arguments
as before

1
NT

N∑
i=1

X′iMŪmηi = 1
NT

N∑
i=1

S′x(V′i − Γ′iŪ′m)MŪmηi = Op(N−1). (C-27)

Combining (C-26)-(C-27) in (C-21) leads to AF = Op(Nω) with ω = −1, as required.

C.2.6 Proof of Lemma 6

Recall from eq.(B-13) that wi = F̌P̈iSw + εi with Sw the selector matrix defined in (B-
11) and F̌, P̈i and εi are defined in eq.(B-5), (B-6) and (B-14) respectively. Let ϑi,s be
the s-th column of wi and note that by Ass.1-3 and 5 the P̈i, εi and F̌ are independent
and stationary with finite variance such that ϑi,s = Op(1) for every i and s and ‖ϑi,s‖ =
Op(
√
T ). Consider the matrix Σ̂ = ∑N

i=1 w′iMwi/NT and note that element s on its
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diagonal is 1
NT

∑N
i=1 ‖Mϑi,s‖2 = Op(1), since ‖Mϑi,s‖ ≤ ‖ϑi,s‖ = Op(

√
T ) for all i and s.

Using the same argument we have for the off-diagonal element on row s and column s′ 6= s∥∥∥∥∥ 1
NT

N∑
i=1
ϑ′i,sMϑi,s′

∥∥∥∥∥ ≤ 1
NT

N∑
i=1

∥∥∥ϑ′i,sMϑi,s′
∥∥∥ ≤ 1

NT

N∑
i=1
‖Mϑi,s‖ ‖Mϑi,s′‖ = Op(1),

such that Σ̂ = Op(1) and the lemma is proved.

C.2.7 Proof of Lemma 7

Consider the following decomposition of Σ̂ obtained by substituting in eq.(B-13)

Σ̂ = 1
NT

N∑
i=1

w′iMwi = 1
NT

N∑
i=1

S′wP̈′iF̌′MF̌P̈iSw + 1
NT

N∑
i=1
ε′iMεi

+ 1
NT

N∑
i=1

S′wP̈′iF̌′Mεi + 1
NT

N∑
i=1
ε′iMF̌P̈iSw.

By Ass.1 and 3, the εi and P̈i are independent of each other and over i such that∥∥∥∥∥ 1
N

N∑
i=1

S′wP̈′iF̌′Mεi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
N

N∑
i=1

(
ε′i ⊗ S′wP̈′i

)∥∥∥∥∥ ∥∥∥F̌∥∥∥ ‖M‖ = Op(N−1/2),

which also uses Lemma 3. Substituting in this result and noting that the summation
operates only on εi and P̈i we can write

vec(Σ̂) =T−1
[
Σ̂ε + (S′w ⊗ S′w) Σ̂P̈(F̌′ ⊗ F̌′)

]
vec (M) +Op(N−1/2),

where Σ̂ε = 1
N

∑N
i=1 (ε′i ⊗ ε′i) and Σ̂P̈ = 1

N

∑N
i=1(P̈′i ⊗ P̈′i). For the latter, since by Ass.1

and 3 the εi and P̈i are independent over i with bounded moments up to the fourth order

Σ̂ε = E (ε′i ⊗ ε′i) +Op(N−1/2) = Σε +Op(N−1/2),
Σ̂P̈ = E(P̈′i ⊗ P̈′i) +Op(N−1/2) = ΣP̈ +Op(N−1/2),

with ΣP̈ = E(P̈′i ⊗ P̈′i) and Σε = E(ε′i ⊗ ε′i). Therefore, matricising vec(Σ̂) yields

Σ̂ =(vec(Ikw)′ ⊗ Ikw)
(
Ikw ⊗

[
Σε + (S′w ⊗ S′w) ΣP̈(F̌′ ⊗ F̌′)

]
T−1vec (M)

)
+Op(N−1/2),

which is the result stated in the lemma.

C.2.8 Proof of Lemma 8

Consider the estimator σ̂2
ε(·) defined in equation (20) evaluated at δ0 6= δ, with δ = [ρ,β′]′

the true parameter vector. Suppose that p∗ ≥ p and Ass.1-5 hold. We can then make use
of eqs.(6) and (B-23) to obtain

σ̂2
ε (δ0) = 1

N(T − c)

N∑
i=1
‖M (yi −wiδ0)‖2 = 1

N(T − c)

N∑
i=1
‖M (wi(δ − δ0) + Fγi + εi)‖2 ,
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= 1
N(T − c)

N∑
i=1

∥∥∥M (
wi(δ − δ0)− Ūmγi + εi

)∥∥∥2
,

= 1
N(T − c)

N∑
i=1
‖M (wi(δ − δ0) + εi)‖2 +Op(N−1/2),

= T

T − c
(δ − δ0)′Σ̂(δ − δ0) + 2

N(T − c)

N∑
i=1

(δ − δ0)′w′iMεi

+ 1
N(T − c)

N∑
i=1
ε′iMεi +Op(N−1/2), (C-28)

since we have
∥∥∥ 1
N

∑N
i=1 w′iMŪmγi

∥∥∥ =
∥∥∥ 1
N

∑N
i=1 w′iMŪmηi

∥∥∥ = Op(N−1/2) as proved in
Lemma 5 such that for any ‖δ − δ0‖ <∞,∥∥∥∥∥ 1

N

N∑
i=1

w′iMŪmηi(δ − δ0)
∥∥∥∥∥ ≤

∥∥∥∥∥ 1
N

N∑
i=1

w′iMŪmηi

∥∥∥∥∥ ‖δ − δ0‖ = Op

(
1√
N

)
,

and because∥∥∥∥∥ 1
N

N∑
i=1
ε′iMŪmγi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
N

N∑
i=1

(γ ′i ⊗ ε′i)
∥∥∥∥∥ ∥∥∥Ūm

∥∥∥ ‖M‖ = Op

( 1
N

)
, (C-29)∥∥∥∥∥ 1

N

N∑
i=1
γ ′iŪ′mMŪmγi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
N

N∑
i=1

(γ ′i ⊗ γ ′i)
∥∥∥∥∥ ∥∥∥Ūm

∥∥∥2
‖M‖ = Op

( 1
N

)
, (C-30)

due to
∥∥∥ 1
N

∑N
i=1(γ ′i ⊗ γ ′i)

∥∥∥ = Op(1) and
∥∥∥ 1
N

∑N
i=1(γ ′i ⊗ ε′i)

∥∥∥ = Op(N−1/2) by Ass.1 and 3,∥∥∥Ūm

∥∥∥ = Op(N−1/2) by Lemma 2 and ‖M‖ = O(1) by Lemma 3. Next, we take the first
two remaining terms in (C-28) individually as N →∞,

T

T − c
(δ − δ0)′Σ̂(δ − δ0) = c2(δ − δ0)′Σ(δ − δ0) +Op(N−1/2), (C-31)

2
T − c

1
N

N∑
i=1

(δ − δ0)′w′iMεi = −c1σ
2
ευ(ρ,H)′(δ − δ0) +Op(N−1/2), (C-32)

where c1 = 2
T−c and c2 = T

T−c . The first result follows from Lemma 7 and the second from
Theorem 1. Also, letting ht,s denote the element on row t and column s of H, c̃ = T − c
and with ε̄t,s = 1

N

∑N
i=1 εi,tεi,s,

1
T − c

1
N

N∑
i=1
ε′iMεi = c̃−1 1

N

N∑
i=1

T∑
t=1

ε2
i,t − c̃−1 1

N

N∑
i=1

T∑
t=1

T∑
s=1

ht,sεi,tεi,s,

= c̃−1
T∑
t=1

ε̄t,t − c̃−1
T∑
t=1

T∑
s=1

ht,sε̄t,s,

= c̃−1
T∑
t=1

ε̄t,t − c̃−1
T∑
t=1

ht,tε̄t,t +Op(N−1/2),
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= c̃−1
[
Tσ2

ε +
T∑
t=1

(
ε̄t,t − σ2

ε

)]
− c̃−1

[
σ2
ε

T∑
t=1

ht,t +
T∑
t=1

ht,t
(
ε̄t,t − σ2

ε

)]
+Op(N−1/2),

= c̃−1σ2
ε

(
T −

T∑
t=1

ht,t

)
+Op(N−1/2) = σ2

ε c̃
−1c̃+Op(N−1/2),

= σ2
ε +Op(N−1/2), (C-33)

since ∑T
t=1 ht,t = tr(H) = c and by Ass.1 ε̄t,s = Op(N−1/2) for t 6= s and ε̄t,t = σ2

ε +
Op(N−1/2). Combining results gives

σ̂2
ε (δ0) = σ2

ε − σ2
εc1υ(ρ,H)′(δ − δ0) + c2(δ − δ0)′Σ(δ − δ0) +Op(N−1/2). (C-34)

This proves (C-8).

Finally, evaluating eq.(20) at δ0 = δ we have, employing again (B-23) in σ̂2
ε(δ),

σ̂2
ε(δ) = 1

N(T − c)

N∑
i=1
‖M(wi(δ − δ) + Fγi + εi)‖2 = 1

N(T − c)

N∑
i=1

∥∥∥M(εi − Ūmγi)
∥∥∥2
,

= 1
N(T − c)

N∑
i=1
ε′iMεi − 2 1

N(T − c)

N∑
i=1
ε′iMŪmγi + 1

N(T − c)

N∑
i=1
γ ′iŪ′mMŪmγi,

which makes, by (C-29) and (C-30),

σ̂2
ε(δ) = 1

N(T − c)

N∑
i=1
ε′iMεi +Op(N−1),

and proves (C-9) of the lemma. Finally, eq.(C-10) in the lemma follows directly from (C-34)
evaluated at δ0 = δ and letting N →∞.

C.3 Statement of theorems
Below we state the theorems that are not presented in the main text or in section A.2.
Theorem 3. Let φ(·) = δ̂−m̂(·), φ̃(·) = limN→∞φ(·) and suppose that p∗ ≥ p and Ass.1-5
hold. Assuming that φ̃(δ0) = 0 implies δ0 = δ, and that χ ⊆ Rkw is compact with δ ∈ χ,

δ̂bc −→p δ as N →∞,

with δ̂bc defined in eq.(21).

C.4 Proof of theorems and corollaries
C.4.1 Proof of Theorem 1

The CCEP estimator for δ defined in (14) is

δ̂ =
(

1
N

N∑
i=1

w′iMwi

T

)−1 1
N

N∑
i=1

w′iMyi
T

.

19



Substituting in eq.(6) gives

δ̂ − δ = Σ̂−1 (Aε + AF
)

= Σ̂−1Aε +Op(N−1/2), (C-35)

where Aε = 1
NT

∑N
i=1 w′iMεi and because Σ̂ = 1

NT

∑N
i=1 w′iMwi = Op(1) by Lemma 6

and AF = 1
NT

∑N
i=1 w′iMFγi = Op(N−1/2) by Lemma 5. Substituting in (B-13), we can

decompose Aε as

Aε = 1
NT

N∑
i=1

S′wP̈′iF̌′Mεi + 1
NT

N∑
i=1
ε′iMεi,

where by the independence of εi and P̈i by Ass.1 and 3, and Lemma 3∥∥∥∥∥ 1
NT

N∑
i=1

S′wP̈′iF̌′Mεi

∥∥∥∥∥ ≤ 1
T

∥∥∥∥∥ 1
N

N∑
i=1

(
ε′i ⊗ S′wP̈′i

)∥∥∥∥∥ ∥∥∥F̌∥∥∥ ‖M‖ = Op(N−1/2).

Next, note that we can write, with ht,s denoting the element on row t and column s of H,
and with ε̄t,s = 1

N

∑N
i=1 εitεis,

1
N

N∑
i=1
ε′iMεi =

T∑
t=1

1
N

N∑
i=1
εitεit −

T∑
t=1

T∑
s=1

ht,s
1
N

N∑
i=1
εitεis =

T∑
t=1
ε̄t,t −

T∑
t=1

T∑
s=1

ht,sε̄t,s,

where making use of (B-14) and Ass.1 and 5, for all t and s[
ε̄t,s − σ2

εq1ρ
t−1−s

1(t−1≥s)
]

= Op(N−1/2),

with q1 = [1,0′kx×1]′ and 1a is the indicator function returning 1 if the condition a is true,
and zero otherwise. This gives, since by Lemma 3 all ht,s are bounded and ε̄t,t = Op(N−1/2),

1
N

N∑
i=1
ε′iMεi =

T∑
t=1
ε̄t,t −

T∑
t=1

T∑
s=1

ht,s
[
ε̄t,s − σ2

εq1ρ
t−1−s

1(t−1≥s)
]
− σ2

εq1

T∑
t=1

T∑
s=1

ht,sρ
t−1−s

1(t−1≥s),

= −σ2
εq1

T∑
t=1

T∑
s=1

ht,sρ
t−1−s

1(t−1≥s) +Op(N−1/2),

and in turn leads to the conclusion

plim
N→∞

Aε = −T−1σ2
εq1

T∑
t=1

T∑
s=1

ht,sρ
t−1−s

1(t−1≥s) = −T−1σ2
ευ(ρ,H),

with υ(ρ,H) = υ(ρ,H)q1 and υ(ρ,H) = ∑T−1
t=1 ρ

t−1∑T
s=t+1 hs,s−t. Next up is the denomi-

nator. From Lemma 7,

Σ̂ = (vec(Ikw)′ ⊗ Ikw)
(
Ikw ⊗

[
Σε + (S′w ⊗ S′w) ΣP̈(F̌′ ⊗ F̌′)

]
T−1vec (M)

)
+Op(N−1/2),

= Σ +Op(N−1/2),
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with ΣP̈ = E(P̈′i ⊗ P̈′i) and Σε = E(ε′i ⊗ ε′i), which are all O(1) terms by Ass.1, 3 and 5.
Hence, combining results gives

plim
N→∞

(δ̂ − δ) = −σ
2
ε

T
Σ−1υ(ρ,H), (C-36)

which is the result stated in eq.(15). Equations (16)-(17) in Theorem 1 are a reformulation
of (C-36) obtained by application of the Frisch-Waugh-Lovell theorem and defining ζ =
plimN→∞(X̆′X̆)−1X̆′y−1 = (S′xΣSx)−1S′xΣq1 and σ2

y̆−1
= plimN→∞

y̆′−1y̆−1
NT

, with y̆−1 =
Mx[y′1,−1, . . . ,y′N,−1]′, Mx = M− X̆(X̆′X̆)−1X̆′, X̆ = M[X′1, . . . ,X′N ]′ and M = IN ⊗M.

C.4.2 Proof for Corollary 1

It will be useful for the derivation of the explicit bias expression in eq.(A-5) to stack eq.(6)
over individuals as

y = (IN ⊗ ιT )α+ ρy−1 + Xβ + FΛ + ε, (C-37)

with F = (IN ⊗ F), y = [y′1, . . . ,y′N ]′, X = [X′1, . . . ,X′N ]′, α = [α1, . . . , αN ]′, Λ =
[γ ′1, . . . ,γ ′N ]′ and ε = [ε′1, . . . , ε′N ]′. With Ass.5 expression (C-37) can be inverted to get

y = (IN ⊗ ιT )α+ + X+β + F+Λ + ε+, (C-38)

with F+ = (IN ⊗ F+) and variables with a + superscript defined as X+ = (1− ρL)−1X.
Using eq.(C-37) and the Frisch-Waugh-Lovell theorem, write the CCEP estimator as

ρ̂ = (y′−1MXy−1)−1y′−1MXy, (C-39)
β̂ = (X′MX)−1 X′M (y− ρ̂y−1) , (C-40)

with MX = MxM, M = IN ⊗M and Mx = INT −MX (X′MX)−1 X′M. Eq.(C-35) implies

plim
N→∞

(ρ̂− ρ) = plim
N→∞

y′−1MXε

y′−1MXy−1
, (C-41)

plim
N→∞

(β̂ − β) = plim
N→∞

(X′MX)−1 X′My−1 (ρ− ρ̂) , (C-42)

such that, defining ζ = plimN→∞ (X′MX)−1 X′My−1 we obtain for (C-42)

plim
N→∞

(β̂ − β) = −ζ plim
N→∞

(ρ− ρ̂), (C-43)

which is the expression in eq.(17).

Next, consider that lagging eq.(C-38) one period gives the following expression for y−1

y−1 = (IN ⊗ ιT )α+ + X+
−1β + (IN ⊗ F+

−1)Λ + ε+
−1.

This leads to

My−1 = MX+
−1β + (IN ⊗MF+

−1)Λ + Mε+
−1. (C-44)
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We will use this result to evaluate (C-41) conditional on C = σ{F̌,Q}. From the strict
exogeneity of X (Ass.1) and the independence of Λ and ε (Ass.3) follows

plim
N→∞

1
NT

y′−1MXε = plim
N→∞

1
NT

y′−1Mε = plim
N→∞

1
NT

(ε+
−1)′Mε,

= plim
N→∞

1
NT

N∑
i=1

(ε+
i,−1)′Mεi. (C-45)

Defining Q̃ = BQ, with Q a fixed matrix conditional on C, and B = IT − ιT ι′T/T , the
numerator of (C-41) is

plim
N→∞

1
NT

N∑
i=1

(ε+
i,−1)′Mεi = plim

N→∞

1
NT

N∑
i=1

(ε+
i,−1)′

[
(εi − ε̄i)− Q̃(Q̃′Q̃)†Q̃′ (εi − ε̄i)

]
,

= − plim
N→∞

1
NT

N∑
i=1

(ε+
i,−1)′ε̄i − plim

N→∞

1
NT

N∑
i=1

(ε+
i,−1)′Q̃(Q̃′Q̃)†Q̃′εi,

= −σ
2
ε

T
A (ρ)− σ2

ε

T

T−1∑
t=1

ρt−1
T∑

s=t+1
h̃s,s−t,

= −σ
2
ε

T
A (ρ)− σ2

ε

T
D(ρ, H̃), (C-46)

with A(ρ) = 1
1−ρ

(
1− 1

T
1−ρT

1−ρ

)
, D(ρ, H̃) = ∑T−1

t=1 ρ
t−1∑T

s=t+1 h̃s,s−t and H̃ = Q̃(Q̃′Q̃)†Q̃′.
Turning to the denominator of equation (C-41), using (C-44) we get

y′−1MXy−1 =
∥∥∥Mx

(
MX+

−1β + (IN ⊗MF+
−1)Λ + Mε+

−1

)∥∥∥2
,

=
∥∥∥MXX+

−1β
∥∥∥2

+
∥∥∥MX(IN ⊗ F+

−1)Λ
∥∥∥2

+
∥∥∥MXε

+
−1

∥∥∥2

+ 2β′(X+
−1)′MXε

+
−1 + 2β′(X+

−1)′MX(IN ⊗ F+
−1)Λ

+ 2Λ′(IN ⊗ (F+
−1)′)MXε

+
−1.

Defining first

C+ =
∥∥∥MXX+

−1β
∥∥∥2

+
∥∥∥MX(IN ⊗ F+

−1)Λ
∥∥∥2

+ 2β′(X+
−1)′MXε

+
−1

+2β′(X+
−1)′MX(IN ⊗ F+

−1)Λ + 2Λ′(IN ⊗ (F+
−1)′)MXε

+
−1,

and taking the limit (conditional on C) gives

plim
N→∞

1
NT

C+ = plim
N→∞

1
NT

∥∥∥MXX+
−1β

∥∥∥2
+ plim

N→∞

1
NT

∥∥∥MX(IN ⊗ F+
−1)Λ

∥∥∥2

+ plim
N→∞

1
NT

2β′(X+
−1)′MX(IN ⊗ F+

−1)Λ, (C-47)

because by Ass.1 and 3

plim
N→∞

1
NT

2Λ′(IN ⊗ (F+
−1)′)MXε

+
−1 = 0,
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plim
N→∞

1
NT

2β′(X+
−1)′MXε

+
−1 = 0.

Hence

plim
N→∞

1
NT

y′−1MXy−1 = plim
N→∞

1
NT

∥∥∥MXε
+
−1

∥∥∥2
+ plim

N→∞

1
NT

C+,

= plim
N→∞

1
NT

∥∥∥Mε+
−1

∥∥∥2
− plim

N→∞

1
NT

(ε+
−1)′MX (X′MX)−1 X′Mε+

−1

+ plim
N→∞

1
NT

C+,

= plim
N→∞

1
NT

N∑
i=1

(ε+
i,−1)′Mε+

i,−1 + plim
N→∞

1
NT

C+. (C-48)

Focusing on the first term of (C-48) and using earlier definitions gives

plim
N→∞

1
NT

N∑
i=1

(ε+
i,−1)′Mε+

i,−1 = plim
N→∞

1
NT

N∑
i=1

(ε+
i,−1)′

[ (
ε+
i,−1 − ε̄+

i,−1

)
− Q̃(Q̃′Q̃)†Q̃′

(
ε+
i,−1 − ε̄+

i,−1

) ]
,

= plim
N→∞

1
NT

T∑
t=1

N∑
i=1

(
ε+
i,t−1 − ε̄+

i,−1

)2

− plim
N→∞

1
NT

N∑
i=1

(ε+
i,−1)′H̃ε+

i,−1,

= σ2
ε

T
B (ρ)− σ2

ε

1− ρ2
1
T

[
tr(H̃) + 2ρ

T−1∑
t=1

ρt−1
T∑

s=t+1
h̃s,s−t

]
,

= σ2
ε

T

(
B (ρ)− 1

1− ρ2

[
c− 1 + 2ρD(ρ, H̃)

])
, (C-49)

where B(ρ) = T
1−ρ2

(
1− 1

T
1+ρ
1−ρ −

2ρ
T 2

1−ρT

(1−ρ)2

)
.

Combining (C-46), (C-47) and (C-49)

plim
N→∞

(ρ̂− ρ) =
−σ2

ε

T

(
A (ρ) +D(ρ, H̃)

)
σ2

ε

T

(
B (ρ)− 1

1−ρ2

[
c− 1 + 2ρD(ρ, H̃)

])
+ plimN→∞

1
NT
C+

,

= −A (ρ)−D(ρ, H̃)
B (ρ)− 1

1−ρ2

[
c− 1 + 2ρD(ρ, H̃)

]
+ plimN→∞

1
Nσ2

ε
C+

, (C-50)

which we reformulate to

plim
N→∞

(ρ̂− ρ) = −

[
A (ρ) +D(ρ, H̃)

]
[
B (ρ)− E(ρ, H̃) + TC

] , (C-51)

23



where E(ρ, H̃) = 1
1−ρ2

[
c− 1 + 2ρD(ρ, H̃)

]
and

C = plim
N→∞

1
NTσ2

ε

(∥∥∥MXX+
−1β

∥∥∥2
+
∥∥∥MX(IN ⊗ F+

−1)Λ
∥∥∥2

+ 2β′(X+
−1)′MX(IN ⊗ F+

−1)Λ
)
,

= plim
N→∞

1
NTσ2

ε

(
β′(X+

−1)′MXX+
−1β + Λ′(F+

−1)′MXF+
−1Λ + 2β′(X+

−1)′MXF+
−1Λ

)
,

= plim
N→∞

β′Ωx̆β + Λ′Ωf̆Λ + 2β′Ωx̆,̆fΛ
σ2
ε

,

with Ωx̆ = (X+
−1)′MXX+

−1/NT , Ωf̆ = (F+
−1)′MXF+

−1/NT , Ωx̆,̆f = (X+
−1)′MXF+

−1/NT and
F+
−1 = (IN ⊗ F+

−1).

C.4.3 Proof of Theorem 3

Let φ(δ0) be the vector of moment conditions employed by CCEPbc in (21) evaluated at
δ0 6= δ, with δ the population parameter vector δ = [ρ,β′]′. Multiplying by Σ̂ and solving
in eq.(6) gives

Σ̂φ(δ0) = 1
NT

N∑
i=1

w′iMyi −
1
NT

N∑
i=1

w′iMwiδ0 + 1
T
σ̂2
ε(δ0)υ(ρ0),

= Σ̂ (δ − δ0) + 1
NT

N∑
i=1

w′iMεi + 1
NT

N∑
i=1

w′iMFγi + 1
T
σ̂2
ε(δ0)υ(ρ0),

= Σ̂(δ − δ0) + 1
T

(
1
N

N∑
i=1

w′iMεi + σ̂2
ε(δ0)υ(ρ)

)
+Op(N−1/2), (C-52)

because 1
NT

∑N
i=1 w′iMFγi = Op(N−1/2) by Lemma 5. Note that we have dropped the

dependence of υ(·) on H for simplicity.
Consider the middle term. From Lemma 8 with ‖δ − δ0‖ <∞ given compactness of χ,

σ̂2
ε (δ0) = σ2

ε − σ2
εc1υ(ρ)′(δ − δ0) + c2(δ − δ0)′Σ(δ − δ0) +Op(N−1/2),

with Σ defined in eq.(C-7) of Lemma 7, and where c1 = 2
T−c and c2 = T

T−c . We also have

1
N

N∑
i=1

w′iMεi = −σ2
ευ(ρ) +Op(N−1/2),

by Theorem 1. As such, by combining results we can write as N →∞ that

1
N

N∑
i=1

w′iMεi + σ̂2
ε(δ0)υ(ρ0)

= −σ2
ευ(ρ) + υ(ρ0)

[
σ2
ε − σ2

εc1υ(ρ)′(δ − δ0) + c2(δ − δ0)′Σ(δ − δ0)
]

+ op(1),
= −σ2

ε [υ(ρ)− υ(ρ0)]− σ2
εc1υ(ρ0)υ(ρ)′(δ − δ0) + c2υ(ρ0)(δ − δ0)′Σ(δ − δ0) + op(1),
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Substituting this result in (C-52) gives
∥∥∥φ(δ0)− φ̃(δ0)

∥∥∥ = op(1) for ‖δ − δ0‖ <∞, with

φ̃(δ0) = (δ − δ0)− 1
T

σ2
εΣ−1 [υ(ρ)− υ(ρ0)] + σ2

εc1Σ−1υ(ρ0)υ(ρ)′(δ − δ0)

− c2Σ−1υ(ρ0)(δ − δ0)′Σ(δ − δ0)
. (C-53)

In (C-53) we note that ‖υ(ρ0)‖ <∞ since ‖H‖ =
√
c from Lemma 3 such that υ(ρ0,H) <

∞ for any finite ρ0 (and where |ρ|< 1 by Ass.5 ensures ‖υ(ρ)‖ <∞ also as T →∞). Also,
c2 = O(1) and since T > c, c1 = O(1). ‖Σ‖ = O(1) is shown in Lemma 7 and σ2

ε <∞ by
Ass.1. This implies that

∥∥∥φ̃(δ0)
∥∥∥ <∞ provided ‖δ − δ0‖ <∞. Also, clearly from (C-53),

φ̃(δ0) = 0kw×1, for δ0 = δ.

Finally, since [υ(ρ)− υ(ρ0)] is determined only by ρ0 − ρ and is zero only for ρ0 = ρ we
take that φ̃(δ0) = 0kw×1 implies δ0 = δ such that, assuming that the admissible parameter
space χ ⊆ Rkw in (21) is compact with δ contained in its interior, we have as in Newey and
McFadden (1994) (Section 2.5) that

δ̂bc −→p δ,

as N →∞.
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D Analysis for (N, T )→∞

D.1 Preliminary results
Consider the decomposition

MF −M = Ū0[Q′0Q0]−1(Ū0)′ + Ū0[Q′0Q0]−1(F0)′ + F0[Q′0Q0]−1(Ū0)′

+ F0
(
[Q′0Q0]−1 − [(F0)′F0]−1

)
(F0)′,

and note that, since F0 = [F∗,0T×(K−m)] and Ū0 = [Ū0
m, Ū0

−m], we have using similar steps
as in the proof of Lemma S.1 of Karabiyik et al. (2017)

MF −M = T−1Ū0
−m[T−1(Ū0

−m)′Ū0
−m]−1(Ū0

−m)′ + T−1Ū0
m[T−1(F∗)′F∗]−1(Ū0

m)′

+ T−1F∗[T−1(F∗)′F∗]−1(Ū0
m)′ + T−1Ū0

m[T−1(F∗)′F∗]−1(F∗)′

+ T−1Q0
(
Σ̂−1

Q − Σ̂−1
F+

u

)
Q′0, (D-1)

with Σ̂Q = T−1Q′0Q0 and

Σ̂F+
u

= 1
T

[
(F∗)′F∗ 0(1+K+m)×(K−m)

0(K−m)×(1+K+m) (Ū0
−m)′Ū0

−m

]
=
[

Σ̂F∗ 0(1+K+m)×(K−m)
0(K−m)×(1+K+m) Σ̂u0

−m

]
,

(D-2)

where Σ̂F∗ = T−1(F∗)′F∗ and Σ̂u0
−m

= T−1(Ū0
−m)′Ū0

−m.

D.2 Statement of lemmas
Lemma 9. Suppose Assumptions 1-3 and 5 hold, then, as (N, T )→∞,

Ü′Ü
T

= Op

( 1
N

)
, (D-3)

Ü′F̌
T

= Op

(
1√
NT

)
,

F̌′F̌
T

= Op (1) , (D-4)

Ü′iF̌
T

= Op

(
1√
T

)
,

ε′iF̌
T

= Op

(
1√
T

)
,

ε′iF̌
T

= Op

(
1√
T

)
, (D-5)

ε′iÜ
T

= Op

( 1
N

)
+Op

(
1√
NT

)
,

ε′iÜ
T

= Op

( 1
N

)
+Op

(
1√
NT

)
. (D-6)

Lemma 10. Suppose Assumptions 1-5 hold, then, as (N, T )→∞,

(Ū0
m)′Ū0

m

T
= Op

( 1
N

)
,

(Ū0
m)′Ū0

−m
T

= Op

(
1√
N

)
,

(Ū0
−m)′Ū0

−m
T

= Op (1) , (D-7)
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(F∗)′F∗
T

= Op (1) , (Ū0
m)′F∗
T

= Op

(
1√
NT

)
,

(Ū0
−m)′F∗
T

= Op

(
1√
T

)
, (D-8)

(Ū0)′F∗
T

= Op

(
1√
T

)
,

ε′iF∗

T
= Op

(
1√
T

)
,

ε′iF∗

T
= Op

(
1√
T

)
, (D-9)

ε′iŪ0
m

T
= Op

( 1
N

)
+Op

(
1√
NT

)
,

ε′iŪ0
m

T
= Op

( 1
N

)
+Op

(
1√
NT

)
, (D-10)

ε′iŪ0
−m
T

= Op

(
1√
N

)
+Op

(
1√
T

)
,

ε′iŪ0
−m
T

= Op

(
1√
N

)
+Op

(
1√
T

)
, (D-11)

ε′iQ0

T
= Op

(
1√
T

)
,

ε′iQ0

T
= Op

(
1√
T

)
,

Q′0Ū0
m

T
= Op

(
1√
N

)
. (D-12)

Lemma 11. Suppose Assumptions 1-5 hold and let P̃i = P̈i − N−1∑N
i=1 P̈i. Then, as

(N, T )→∞,

N−1
N∑
i=1

(
T−1ε′iŪ0

m ⊗ S′wP̃′i
)

= Op

( 1
N3/2

)
+Op

(
1

N
√
T

)
, (D-13)

N−1
N∑
i=1

(
T−1ε′iŪ0

m ⊗ S′wP̃′i
)

= Op

( 1
N3/2

)
+Op

(
1

N
√
T

)
, (D-14)

N−1
N∑
i=1

(
T−1ε′iŪ0

−m ⊗ S′wP̃′i
)

= Op

( 1
N

)
+Op

(
1√
NT

)
, (D-15)

N−1
N∑
i=1

(
T−1ε′iŪ0

−m ⊗ S′wP̃′i
)

= Op

( 1
N

)
+Op

(
1√
NT

)
, (D-16)

N−1
N∑
i=1

(
T−1ε′iF̌⊗ S′wP̃′i

)
= Op

(
1√
NT

)
, (D-17)

N−1
N∑
i=1

(
T−1ε′iF̌⊗ S′wP̃′i

)
= Op

(
1√
NT

)
, (D-18)

N−1
N∑
i=1

(
T−1ε′iQ0 ⊗ S′wP̃′i

)
= Op

( 1
N

)
+Op

(
1√
NT

)
, (D-19)

where the results hold similarly if S′wP̃′i is substituted for η′i.

Lemma 12. Let Assumptions 1-5 hold. Then, as (N, T )→∞,

Σ̂F̌ = T−1F̌′F̌ = ΣF̌ +Op(T−1/2),
Σ̂F∗ = T−1(F∗)′F∗ = ΣF∗ +Op(N−1/2) +Op(T−1/2),
Σ̂F̌F∗ = T−1(F∗)′F∗ = ΣF̌F∗ +Op(N−1/2) +Op(T−1/2),
Σ̂u0

−m
= T−1(Ū0

−m)′Ū0
−m = Σu0

−m
+Op(T−1/2),
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Σ̂u0
−mu0

m
= T−1(Ū0

−m)′
√
NŪ0

m = Σu0
−mu0

m
+Op(T−1/2),

and also ∥∥∥Σ̂−1
F∗ −Σ−1

F∗
∥∥∥ = Op(N−1/2) +Op(T−1/2),∥∥∥∥Σ̂−1

u0
−m
−Σ−1

u0
−m

∥∥∥∥ = Op(T−1/2),

where

ΣF̌ = E(F̌′F̌/T ), ΣÜ = E(Ü′iÜi/T ), ΣF∗ = S′mN′R′P′ΣF̌PRNSm,
ΣF̌F∗ = ΣF̌PRNSm, Σu0

−m
= B′−mT′A−1

0 Ωu(A−1
0 )′TB−m,

Σu0
−mu0

m
= S′−mN′R′ΣÜRNSm, Ωu =

[
σ2
ε 0′k×1

0k×1 Ωv

]
.

Lemma 13. Let Σ̂Q = T−1Q′0Q0 and suppose Assumptions 1-5 hold. Then, as (N, T )→
∞, with Σ̂F+

u
defined in eq.(D-2),∥∥∥Σ̂−1

Q − Σ̂−1
F+

u

∥∥∥ = Op(N−1/2) +Op(T−1/2), (D-20)

and also

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
= −

[
0(1+K+m)×(1+K+m) T−1/2Σ̂Fu

T−1/2Σ̂′Fu 0(K−m)×(K−m)

]
(D-21)

+Op

(
1√
N

)
+Op

(
1√
T

)
+Op

(√
T

N

)
,

where Σ̂Fu = Σ−1
F∗ (F∗ + Ū0

m)′Ū0
−mΣ−1

u0
−m

.

Lemma 14. Suppose Assumptions 1-5 hold and let p∗ ≥ p. Then, as (N, T )→∞,

AF = 1
NT

N∑
i=1

w′iMFγi = Op

( 1
N

)
+Op

(
1√
NT

)
, (D-22)

and letting AF
NT =

√
NTAF, provided that T/N →M <∞,

AF
NT = ΨFvec

(
F̌′
√
NÜ√
T

)
+
√
T

N

(
bF

0 − bF
1

)
+Op

(
1√
N

)
+Op

(
1√
T

)
, (D-23)

with

bF
0 = Ση

[
B′mT′R′0 ⊗ΣF̌F∗Σ

−1
F∗S′mN′R′

]
vec (ΣÜ) ,
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bF
1 = Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′

]
vec (ΣÜ) ,

ΨF = −VF,1 + VF,2 + VF,3 −VF,4,

VF,1 = Ση

[
B′mT′R′0 ⊗ I1+K2m(1+p∗)

]
,

VF,2 = Ση

[
B′mT′R′0 ⊗ΣF̌F∗Σ

−1
F∗S′mN′R′P′

]
,

VF,3 = Ση

[
B′mT′R′0ΣÜRNS−mΣ−1

u0
−m

S′−mN′R′ ⊗ I1+k2m(1+p∗)

]
,

VF,4 = Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′P′

]
.

and where Ση = E(η′i ⊗ S′wP̈′i).

Lemma 15. Suppose Assumptions 1-5 hold. Then, as (N, T )→∞,

Aε = 1
NT

N∑
i=1

w′iMεi = Op

( 1
N

)
+Op

( 1
T

)
+Op

(
1√
NT

)
, (D-24)

and letting Aε
NT =

√
NTAε,

Aε
NT = Op(1) +Op(

√
TN−1/2) +Op(

√
NT−1/2). (D-25)

Lemma 16. Suppose Assumptions 1-5 hold and let p∗ ≥ p. Then, for any δ0 6= δ such
that ‖δ − δ0‖ <∞ we have as (N, T )→∞

σ̂2
ε (δ0) = σ2

ε + (δ − δ0)′Σ̂(δ − δ0) +Op(N−1) +Op(T−1) +Op((NT )−1/2), (D-26)

whereas if δ0 = δ then

σ̂2
ε (δ) = σ2

ε +Op(N−1) +Op((NT )−1/2), (D-27)

with σ̂2(·) defined in (20).

Lemma 17. Suppose Assumptions 1-5 hold and let p∗ ≥ p. Then, as (N, T ) → ∞ with
υ = υ(ρ,H)q1 and σ̂2(·) defined in (20)

Ac = 1
NT

N∑
i=1

w′iMεi + 1
T
σ̂2
ε(δ)υ = Op(N−1) +Op((NT )−1/2). (D-28)

Letting Ac
NT =

√
NTAc and T/N →M <∞,

Ac
NT = 1√

N

N∑
i=1

ε′iεi√
T

+ Ψεvec

[
1√
N

N∑
i=1

(
ε′iF̌√
T
⊗ S′wP̃′i

)]
−
√
TN−1/2bU (D-29)
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+Op

(
1√
N

)
+Op

(
1√
T

)
,

with bU = ΣεU−mΣ−1
u0
−m

Σ′εU−m
, ΣεU−m = S′wΣÜRNS−m, ΣεU−m = E(ε′iÜi/T )RNS−m,

BF = I1+K2m(1+p∗) −ΣF̌PRNSmΣ−1
F∗S′mN′R′P′ and Ψε =

[
vec

(
BF

)′
⊗ Ikw

]
.

Finally, for Ãc(δ0) the vector Ac evaluated at δ0 6= δ

Ãc(δ0) = 1
T

(δ − δ0)′Σ̂(δ − δ0)υ(ρ0) + 1
T
σ2
ε [υ(ρ0)− υ] +Op

( 1
N

)
+Op

(
1√
NT

)
,

where υ(ρ0) = υ(ρ0,H)q1.

Lemma 18. Suppose Assumptions 1-5 hold. Then, as (N, T )→∞,

Σ̂ −→p Σ̇ = ΣF̌P + Σε, (D-30)

where ΣF̌P = (vec(Ikw)′ ⊗ Ikw)
(
Ikw ⊗ΣP̃vec(V

F)
)
, ΣP̃ = E(S′wP̃′i ⊗ S′wP̃′i), VF = ΣF̌ −

ΣF̌PRNSmΣ−1
F∗S′mN′R′P′ΣF̌ and Σε = E(ε′iεi/T ).

D.3 Proof of lemmas
Proof of Lemma 9

The proof for this Lemma is, under Ass.1-3 and 5, identical to that of Lemmas 1 and 2 in
Pesaran (2006). The proof is therefore omitted.

Proof of Lemma 10

To prove this lemma, recall from eqs.(B-18)-(B-20) that F∗ = F̌P̈RNSm, Ū0
m = ÜRNSm,

and Ū0
−m =

√
NÜRNS−m. Hence, we have∥∥∥T−1(Ū0

m)′Ū0
m

∥∥∥ =
∥∥∥S′mN′R′T−1Ü′ÜRNSm

∥∥∥ ≤ ‖RNSm‖2
∥∥∥T−1Ü′Ü

∥∥∥ = Op(N−1),

since
∥∥∥T−1Ü′Ü

∥∥∥ = Op(N−1) by (D-3) of Lemma 9 and we have by definition that ‖R‖ =
Op(1) and ‖N‖ and ‖Sm‖ are O(1). Similarly we obtain∥∥∥T−1(Ū0

−m)′Ū0
−m

∥∥∥ = N
∥∥∥S′−mN′R′T−1Ü′ÜRNS−m

∥∥∥ ≤ ‖RNS−m‖2N
∥∥∥T−1Ü′Ü

∥∥∥ = Op(1),∥∥∥T−1(Ū0
m)′Ū0

−m

∥∥∥ =
√
N
∥∥∥S′mN′R′T−1Ü′ÜRNS−m

∥∥∥ ,
≤ ‖RN‖2 ‖Sm‖ ‖S−m‖

√
N
∥∥∥T−1Ü′Ü

∥∥∥ = Op(N−1/2),

which proves (D-7). Moving on to (D-8), we have, noting that
∥∥∥P̈∥∥∥ = Op(1),

∥∥∥T−1(F∗)′F∗
∥∥∥ =

∥∥∥S′mN′R′P̈′T−1F̌′F̌P̈RNSm
∥∥∥ ≤ ∥∥∥P̈RNSm

∥∥∥2 ∥∥∥T−1F̌′F̌
∥∥∥ = Op(1),
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∥∥∥T−1(Ū0
m)′F∗

∥∥∥ =
∥∥∥S′mN′R′T−1Ü′F̌P̈RNSm

∥∥∥ ≤ ‖RNSm‖2
∥∥∥P̈∥∥∥ ∥∥∥T−1Ü′F̌

∥∥∥ = Op((NT )−1/2),∥∥∥T−1(Ū0
−m)′F∗

∥∥∥ =
√
N
∥∥∥S′−mN′R′T−1Ü′F̌P̈RNSm

∥∥∥ ,
≤ ‖RN‖2 ‖Sm‖ ‖S−m‖

∥∥∥P̈∥∥∥√N ∥∥∥T−1Ü′F̌
∥∥∥ = Op(T−1/2),

where we have made use of (D-4) of Lemma 9. The second and third result in (D-9) follow
analogously from (D-5) of Lemma 9 and, given (D-8), the first result in (D-9) follows from
the definition Ū0 = [Ū0

m, Ū0
−m]. Next up, making use of (D-6) gives∥∥∥T−1ε′iŪ0

m

∥∥∥ =
∥∥∥T−1ε′iÜRNSm

∥∥∥ ≤ ‖RNSm‖
∥∥∥T−1ε′iÜ

∥∥∥ = Op(N−1) +Op((NT )−1/2),

and similarly for
∥∥∥T−1ε′iŪ0

m

∥∥∥. Also∥∥∥T−1ε′iŪ0
−m

∥∥∥ =
∥∥∥T−1ε′iÜRNS−m

∥∥∥ ≤ ‖RNS−m‖
√
N
∥∥∥T−1ε′iÜ

∥∥∥ = Op(N−1/2) +Op(T−1/2),

with the argument being identical for
∥∥∥T−1ε′iŪ0

−m

∥∥∥. This establishes (D-10) and (D-11).
Turning next to T−1ε′iQ0 of (D-12) we find making use of the definition in (B-16)∥∥∥T−1ε′iQ0

∥∥∥ =
∥∥∥T−1ε′i(F0 + Ū0)

∥∥∥ ≤ ∥∥∥T−1ε′iF0
∥∥∥+

∥∥∥T−1ε′iŪ0
∥∥∥ = Op(T−1/2),

because ‖T−1ε′iF0‖ =
∥∥∥T−1ε′i[F∗,0T×(K−m)]

∥∥∥ =
∥∥∥T−1ε′iF̌P̈RNSm

∥∥∥ ≤ ∥∥∥T−1ε′iF̌
∥∥∥ ∥∥∥P̈RNSm

∥∥∥ =
Op(T−1/2) by (D-5) of Lemma 9 and because

∥∥∥T−1ε′iŪ0
∥∥∥ =

∥∥∥T−1ε′i[Ū0
m, Ū0

−m]
∥∥∥ = Op(N−1/2)+

Op(T−1/2) by (D-10) and (D-11). ‖T−1ε′iQ0‖ = Op(T−1/2) of (D-12) can be established in
the same way. Finally, for

∥∥∥T−1Q′0Ū0
m

∥∥∥, making use of (D-7) and (D-8)∥∥∥T−1Q′0Ū0
m

∥∥∥ =
∥∥∥T−1(F0 + Ū0)′Ū0

m

∥∥∥ ≤ ∥∥∥T−1[F∗,0T×(K−m)]′Ū0
m

∥∥∥+
∥∥∥T−1[Ū0

m, Ū0
−m]′Ū0

m

∥∥∥ ,
≤
∥∥∥T−1(F∗)′Ū0

m

∥∥∥+
∥∥∥T−1[Ū0

m, Ū0
−m]′Ū0

m

∥∥∥ = Op(N−1/2).

which then proves the final statement in (D-12), and therefore the lemma.

Proof of Lemma 11

Note that substituting in P̈i = P + P̌i from eq.(B-7) gives by Ass.3 that P̃i = P̌i +
Op(N−1/2). Then, since the following matrix norms are identical∥∥∥∥∥ 1

N

N∑
i=1

(
T−1ε′iŪ0

m ⊗ S′wP̃′i
)∥∥∥∥∥ =

∥∥∥∥∥ 1
N

N∑
i=1

(
S′wP̃′i ⊗ T−1ε′iŪ0

m

)∥∥∥∥∥ ,
we will evaluate the second. Let p̃i,r,d denote the element on row r = 1, . . . , kw and column
d = 1, . . . , 1 +K2m(1 + p∗) of S′wP̃′i. Then the elements on rows kw(r − 1) + 1 to kwr and
columns kw(d−1)+1 to kwd of the second Kronecker product are given by 1

N

∑N
i=1 p̃i,r,d

ε′iŪ
0
m

T
.

To evaluate these terms, consider that we can write, making use of (B-19) and (B-10),

Ū0
m = Ū0

m,−i + 1
N

U0
m,i,
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where Ū0
m,−i = N−1∑N

j=1,j 6=i ÜjRNSm and U0
m,i = ÜiRNSm. Hence∥∥∥∥∥ 1

N

N∑
i=1

p̃i,r,d
ε′iŪ0

m

T

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
N

N∑
i=1

p̃i,r,d

(
ε′iŪ0

m,−i

T

)∥∥∥∥∥+
∥∥∥∥∥ 1
N2

N∑
i=1

p̃i,r,d

(
ε′iU0

m,i

T

)∥∥∥∥∥ ,
= Op

(
1

N
√
T

)
+Op

(
1

N3/2

)
,

because T−1ε′iŪ0
m,−i = Op((NT )−1/2), T−1ε′iU0

m,i = Op(1) and by Ass.3 1
N

∑N
i=1 p̃i,r,d =

Op(N−1/2) with p̃i,r,d independent of the other variables. Since this applies for all r =
1, . . . , kw and d = 1, . . . , 1 +K2m(1 + p∗) we have∥∥∥∥∥N−1

N∑
i=1

(
T−1ε′iŪ0

m ⊗ S′wP̃′i
)∥∥∥∥∥ = Op

(
1

N3/2

)
+Op

(
1

N
√
T

)
,

which is the result in (D-13), and (D-14) follows in similar fashion. In turn, to prove (D-15)
we note that

Ū0
−m =

√
NŪ0

−m,−i + 1√
N

U0
−m,i,

with Ū0
−m,−i = N−1∑N

j=1,j 6=i ÜjRNS−m and U0
−m,i = ÜiRNS−m such that for r =

1, . . . , kw and column d = 1, . . . , 1 + K2m(1 + p∗) we have for the corresponding elements
in the Kronecker product∥∥∥∥∥ 1

N

N∑
i=1

p̃i,r,d
ε′iŪ0

−m
T

∥∥∥∥∥ ≤ √N
∥∥∥∥∥ 1
N

N∑
i=1

p̃i,r,d

(
ε′iŪ0

−m,−i

T

)∥∥∥∥∥+
√
N

∥∥∥∥∥ 1
N2

N∑
i=1

p̃i,r,d

(
ε′iU0

−m,i

T

)∥∥∥∥∥ ,
= Op

( 1
N

)
+Op

(
1√
NT

)
,

since also T−1ε′iŪ0
−m,−i = Op((NT )−1/2) and T−1ε′iU0

−m,i = Op(1). This implies (D-15) and
the result in (D-16) can be established in the same way. Next up is (D-17). The elements
on rows kw(r−1)+1 to kwr and columns (1+K2m(1+p∗))(d−1)+1 to (1+K2m(1+p∗))d
of 1

N

∑N
i=1

(
S′wP̃′i ⊗ T−1ε′iF̌

)
are given by

1
N

N∑
i=1

p̃i,r,d
ε′iF̌
T

=
ā′r,dF̌
T

= Op

(
1√
NT

)
, (D-31)

with ār,d = 1
N

∑N
i=1 p̃i,r,dεi and ‖ār,d‖ = Op(N−1/2) by the independence of p̃i,r,d and εi from

Ass.1 and 3. The result then follows because also ār,d and F̌ are independent stationary
variables. Since (D-31) holds for every sub-matrix∥∥∥∥∥ 1

N

N∑
i=1

(
T−1ε′iF̌⊗ S′wP̃′i

)∥∥∥∥∥ = Op

(
1√
NT

)
,

32



with again an analogous argument for (D-18). The final result is found by noting that

1
N

N∑
i=1

(
T−1ε′iQ0 ⊗ S′wP̃′i

)
= 1
N

N∑
i=1

(
T−1ε′i

(
[F∗,0T×(K−m)] + [Ū0

m, Ū0
−m]

)
⊗ S′wP̃′i

)
,

such that since F∗ = F̌P̈RNSm from (B-18), inserting the preceding results gives

1
N

N∑
i=1

(
T−1ε′iQ0 ⊗ S′wP̃′i

)
= Op

( 1
N

)
+Op

(
1√
NT

)
.

Finally, given the independence of ηi from εj, εj and F̌ for all i, j, t by Ass.3 all the stated
results also hold true when S′wP̃′i is substituted for η′i. This establishes the lemma.

Proof of Lemma 12

Consider that by Assumptions 2 and 5, F̌ is a matrix of covariance stationary variables
with finite fourth moments. As such, the first result Σ̂F̌ = T−1F̌′F̌ = ΣF̌ + Op(T−1/2),
with ΣF̌ = E(T−1F̌′F̌) follows directly. Similarly, from Ass.1 and 5 follows that Σ̂Ü =
T−1NÜ′Ü = ΣÜ + Op(T−1/2), with ΣÜ = E(Ü′iÜi/T ) since error terms are independent
over i. The second and third statements of the lemma are obtained by substituting in
(B-18) and by making use of the first statement and P̈ = P +Op(N−1/2) by Ass.3

Σ̂F∗ = (F∗)′F∗
T

= S′mN′R′P̈′Σ̂F̌P̈RNSm = S′mN′R′P′ΣF̌PRNSm +Op(N−1/2) +Op(T−1/2),

Σ̂F̌F∗ = F̌′F∗

T
= Σ̂F̌P̈RNSm = ΣF̌PRNSm +Op(N−1/2) +Op(T−1/2).

Since F∗′F∗/T is by construction a 1 + K + m × 1 + K + m full rank matrix we also
have Σ̂−1

F∗ = Σ−1
F∗ + Op(N−1/2) + Op(T−1/2). For the next result, consider that Ū0

−m =√
NŪ∗TB−m, with Ū∗ = [ū∗1, . . . , ū∗T ]′ and ū∗t = A−1

0 ūt. Therefore, by Ass.1

Σ̂u0
−m

= T−1(Ū0
−m)′Ū0

−m = B′−mT′A−1
0

(
NT−1

T∑
t=1

ūtū′t

)
(A−1

0 )′TB−m,

= B′−mT′A−1
0 Ωu(A−1

0 )′TB−m +Op(T−1/2),
= Σu0

−m
+Op(T−1/2),

where Σu0
−m

= B′−mT′A−1
0 Ωu(A−1

0 )′TB−m is a (K−m)× (K−m) positive definite matrix

because Ass.1 implies Ωu = E(ui,tu′i,t) =
[
σ2
ε 0′k×1

0k×1 Ωv

]
. Consequently also Σ̂−1

u0
−m

= Σ−1
u0
−m

+

Op(T−1/2). Finally, the last result can be obtained by substituting in (B-19)-(B-20) and
Σ̂Ü = ΣÜ +Op(T−1/2) as follows

Σ̂u0
−mu0

m
= T−1(Ū0

−m)′
√
NŪ0

m = S′−mN′R′Σ̂ÜRNSm = S′−mN′R′ΣÜRNSm +Op(T−1/2).
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Proof of Lemma 13

Consider that by definition

Σ̂Q = T−1Q′0Q0 = T−1(F0)′F0 + T−1(Ū0)′F0 + T−1(F0)′Ū0 + T−1(Ū0)′Ū0,

with, since F0 = [F∗,0T×(K−m)],

T−1(F0)′F0 =
[

Σ̂F∗ 0(1+K+m)×(K−m)
0(K−m)×(1+K+m) 0(K−m)×(K−m)

]
,

and also because by Lemma 10 we have
∥∥∥T−1(Ū0

−m)′F∗
∥∥∥ = Op(T−1/2) and

∥∥∥T−1(Ū0
m)′F∗

∥∥∥ =
Op((NT )−1/2), it follows that

T−1(Ū0)′F0 + T−1(F0)′Ū0 =
[
T−1(F∗)′Ū0

m + T−1(Ū0
m)′F∗ T−1(F∗)′Ū0

−m
T−1(Ū0

−m)′F∗ 0(K−m)×(K−m)

]
= Op

(
1√
T

)
.

Next, making use of Lemma 10

T−1(Ū0)′Ū0 = 1
T

[
(Ū0

m)′Ū0
m (Ū0

m)′Ū0
−m

(Ū0
−m)′Ū0

m (Ū0
−m)′Ū0

−m

]
,

=
[
0(1+K+m)×(1+K+m) 0(1+K+m)×(K−m)
0(K−m)×(1+K+m) Σ̂u0

−m

]
+Op(N−1/2),

and recalling from (D-2) that

Σ̂F+
u

=
[

Σ̂F∗ 0(1+K+m)×(K−m)
0(K−m)×(1+K+m) Σ̂u0

−m

]
, (D-32)

we have, given the results above

Σ̂Q − Σ̂F+
u

=
[
T−1(F∗)′Ū0

m + T−1(Ū0
m)′F∗ T−1(F∗)′Ū0

−m
T−1(Ū0

−m)′F∗ 0(K−m)×(K−m)

]

+ T−1
[

(Ū0
m)′Ū0

m (Ū0
m)′Ū0

−m
(Ū0
−m)′Ū0

m 0(K−m)×(K−m)

]
, (D-33)

= Op(N−1/2) +Op(T−1/2).

Then, since p∗ = 1 we have rk(Σ̂Q) = 1 + K(1 + p∗) = 1 + 2K, rk(Σ̂F∗) = 1 + K + m
and rk(Σ̂u0

−m
) = K − m, such that for the block diagonal matrix rk(Σ̂F+

u
) = rk(Σ̂F∗) +

rk(Σ̂u0
−m

) = 1 + 2K. Therefore, by Theorem 1 of Karabiyik et al. (2017)

Σ̂−1
Q = Σ̂−1

F+
u

+Op(N−1/2) +Op(T−1/2).

This proves (D-20) of the lemma.
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Moving on to the second statement, consider that from Lemma 12∥∥∥Σ̂u0
−m
−Σu0

−m

∥∥∥ = Op(T−1/2),

where Σu0
−m

= B′−mT′A−1
0 Ωu(A−1

0 )′TB−m is a (K−m)×(K−m) positive definite matrix.
Consider also from Lemma 12 that Σ̂F∗ = ΣF∗ + Op(N−1/2) + Op(T−1/2), with ΣF∗ a
(1 +K +m)× (1 +K +m) full rank matrix. Accordingly, we have denoting

ΣF+
u

=
[

ΣF∗ 0(1+K+m)×(K−m)
0(K−m)×(1+K+m) Σu0

−m

]
,

that

Σ̂F+
u

= ΣF+
u

+Op(N−1/2) +Op(T−1/2),

and since rk(Σ̂F+
u

) = rk(ΣF+
u

) also

Σ̂−1
F+

u
= Σ−1

F+
u

+Op(N−1/2) +Op(T−1/2),

with

Σ−1
F+

u
=
[

Σ−1
F∗ 0(1+K+m)×(K−m)

0(K−m)×(1+K+m) Σ−1
u0
−m

]
, (D-34)

which implies in turn, making use of (D-20) that

Σ̂−1
Q = Σ−1

F+
u

+Op(N−1/2) +Op(T−1/2).

Consider then the following identity
√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
= −Σ̂−1

Q

√
T
[
Σ̂Q − Σ̂F+

u

]
Σ̂−1

F+
u
, (D-35)

such that by the results above
√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
= −Σ−1

F+
u

√
T
[
Σ̂Q − Σ̂F+

u

]
Σ−1

F+
u

+Op(N−1/2) +Op(T−1/2).

Using (D-33) we find for the middle term, also making use of Lemma 10,

√
T
[
Σ̂Q − Σ̂F+

u

]
= 1√

T

[
(F∗)′Ū0

m + (Ū0
m)′F∗ (F∗)′Ū0

−m
(Ū0
−m)′F∗ 0(K−m)×(K−m)

]

+ 1√
T

[
(Ū0

m)′Ū0
m (Ū0

m)′Ū0
−m

(Ū0
−m)′Ū0

m 0(K−m)×(K−m)

]
,

= 1√
T

[
0(1+K+m)×(1+K+m) (F∗)′Ū0

−m
(Ū0
−m)′F∗ 0(K−m)×(K−m)

]
+Op

(
1√
N

)

+ 1√
T

[
0(1+K+m)×(1+K+m) (Ū0

m)′Ū0
−m

(Ū0
−m)′Ū0

m 0(K−m)×(K−m)

]
+Op

(√
T

N

)
,
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= 1√
T

[
0(1+K+m)×(1+K+m) (F∗ + Ū0

m)′Ū0
−m

(Ū0
−m)′(F∗ + Ū0

m) 0(K−m)×(K−m)

]
+Op

(
1√
N

)
+Op

(√
T

N

)
.

Hence
√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
= −Σ−1

F+
u

1√
T

[
0(1+K+m)×(1+K+m) (F∗ + Ū0

m)′Ū0
−m

(Ū0
−m)′(F∗ + Ū0

m) 0(K−m)×(K−m)

]
Σ−1

F+
u

+Op

(
1√
N

)
+Op

(
1√
T

)
+Op

(√
T

N

)
,

and making use of (D-34)

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
= − 1√

T

[
0(1+K+m)×(1+K+m) Σ−1

F∗ (F∗ + Ū0
m)′Ū0

−m
Σ−1

u0
−m

(Ū0
−m)′(F∗ + Ū0

m) 0(K−m)×(K−m)

]
Σ−1

F+
u

+Op

(
1√
N

)
+Op

(
1√
T

)
+Op

(√
T

N

)
,

= − 1√
T

 0(1+K+m)×(1+K+m) Σ−1
F∗ (F∗ + Ū0

m)′Ū0
−mΣ−1

u0
−m

Σ−1
u0
−m

(Ū0
−m)′(F∗ + Ū0

m)Σ−1
F∗ 0(K−m)×(K−m)


+Op

(
1√
N

)
+Op

(
1√
T

)
+Op

(√
T

N

)
,

which, by defining Σ̂Fu = Σ−1
F∗ (F∗ + Ū0

m)′Ū0
−mΣ−1

u0
−m

, can be written more compactly as

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
= −

[
0(1+K+m)×(1+K+m) T−1/2Σ̂Fu

T−1/2Σ̂′Fu 0(K−m)×(K−m)

]

+Op

(
1√
N

)
+Op

(
1√
T

)
+Op

(√
T

N

)
.

This is the result in (D-21).

Proof of Lemma 14

Consider AF = 1
NT

∑N
i=1 w′iMFγi. Under Ass.4 and assuming that p∗ ≥ p we can substitute

in (B-23) to obtain

AF = 1
NT

N∑
i=1

w′iMFγi = − 1
NT

N∑
i=1

w′iMŪmγi,

and also, by eq.(5) of Ass.3,

AF = − 1
NT

N∑
i=1

w′iMŪm(γ + ηi) = − 1
T

w̄′MŪmγ −
1
NT

N∑
i=1

w′iMŪmηi,

= − 1
NT

N∑
i=1

w′iMŪmηi,
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because Mw̄ = 0T×kw since w̄ ⊆ Q. Substituting in (B-13) gives

AF = −(AF
1 + AF

2 ), (D-36)

with AF
1 = 1

NT

∑N
i=1 S′wP̈′iF̌′MŪmηi and AF

2 = 1
NT

∑N
i=1 ε

′
iMŪmηi.

We start by evaluating AF
2 , and make use of M = IT −Q(Q′Q)†Q′ = IT −Q0(Q′0Q0)−1Q′0

∥∥∥AF
2

∥∥∥ ≤ ∥∥∥∥∥ 1
N

N∑
i=1

ε′iŪm

T
ηi

∥∥∥∥∥+

∥∥∥∥∥∥ 1
N

N∑
i=1

ε′iQ0

T

(
Q′0Q0

T

)−1 Q′0Ūm

T
ηi

∥∥∥∥∥∥ =
∥∥∥AF

21

∥∥∥+
∥∥∥AF

22

∥∥∥
with obvious definitions for AF

21 and AF
22. Taking on first AF

21, note that

AF
21 =

[
1
N

N∑
i=1

(
η′i ⊗

ε′iŪm

T

)]
vec(Im),

and therefore, by eq.(D-13) of Lemma 11,

∥∥∥AF
21

∥∥∥ ≤ ∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ T−1ε′iŪm

)∥∥∥∥∥ ‖Im‖ = Op(N3/2) +Op(N−1T−1/2).

Next up is, AF
22. We find

∥∥∥AF
22

∥∥∥ ≤ ∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗

ε′iQ0

T

)∥∥∥∥∥
∥∥∥∥∥∥
(

Q′0Q0

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Q′0Ūm

T

∥∥∥∥∥ ,
≤
∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗

ε′i(F0 + Ū0)
T

)∥∥∥∥∥
∥∥∥∥∥∥
(

Q′0Q0

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥Q′0Ūm

T

∥∥∥∥∥ ,
= Op

(
1

N3/2

)
+Op

(
1

N
√
T

)
,

because ‖(T−1Q′0Q0)−1‖ = Op(1),
∥∥∥T−1Q′0Ū0

m

∥∥∥ = Op(N−1/2) by (D-12) of Lemma 10 and∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ T−1ε′i(F0 + Ū0)

)∥∥∥∥∥
≤
∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ T−1ε′iF0

)∥∥∥∥∥+
∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ T−1ε′iŪ0

)∥∥∥∥∥ ,
≤
∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ T−1ε′i[F∗,0T×(K−m)]

)∥∥∥∥∥+
∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ T−1ε′i[Ū0

m, Ū0
−m]

)∥∥∥∥∥ ,
= Op

( 1
N

)
+Op

(
1√
NT

)
,

by (D-13), (D-15) and (D-17) of Lemma 11. It follows that
∥∥∥AF

2

∥∥∥ = Op

(
1

N3/2

)
+Op

(
1

N
√
T

)
. (D-37)
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Next up is AF
1 . Recalling that MF = IT − HF and HF = F∗((F∗)′F∗)−1(F∗)′ we can

decompose it as

AF
1 = 1

NT

N∑
i=1

S′wP̈′iF̌′Ūmηi −
1
NT

N∑
i=1

S′wP̈′iF̌′HFŪmηi −
1
NT

N∑
i=1

S′wP̈′iF̌′(MF −M)Ūmηi,

= AF
11 −AF

12 −AF
13,

with obvious definitions for AF
11, AF

12 and AF
13. For the first two terms we find

∥∥∥AF
11

∥∥∥ ≤ ∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ S′wP̈′i

)∥∥∥∥∥
∥∥∥∥∥F̌′Ūm

T

∥∥∥∥∥ = Op

(
1√
NT

)
,

∥∥∥AF
12

∥∥∥ ≤ ∥∥∥∥∥ 1
N

N∑
i=1

(
η′i ⊗ S′wP̈′i

)∥∥∥∥∥
∥∥∥∥∥F̌′F∗

T

∥∥∥∥∥
∥∥∥∥∥∥
(

(F∗)′F∗
T

)−1
∥∥∥∥∥∥
∥∥∥∥∥(F∗)′Ūm

T

∥∥∥∥∥ = Op

(
1√
NT

)
,

since
∥∥∥ 1
N

∑N
i=1

(
η′i ⊗ S′wP̈′i

)∥∥∥ = Op(1), and Lemmas 9 and 10 show that
∥∥∥T−1(F∗)′Ūm

∥∥∥ =
Op((NT )−1/2),

∥∥∥T−1F̌′F∗
∥∥∥ = Op(1) and ‖(T−1(F∗)′F∗)−1‖ = Op(1).

Next is AF
13. Making use of (D-1) gives the following decomposition

AF
13 = 1

N

N∑
i=1

S′wP̈′i
[
AF

131 + AF
132 + AF

133 + AF
134 + AF

135

]
ηi,

with, defining Σ̂Q = [T−1Q′0Q0],

AF
131 = T−1F̌′Ū0

−m[T−1(Ū0
−m)′Ū0

−m]−1T−1(Ū0
−m)′Ūm,

AF
132 = T−1F̌′Ū0

m[T−1(F∗)′F∗]−1T−1(Ū0
m)′Ūm,

AF
133 = T−1F̌′F∗[T−1(F∗)′F∗]−1T−1(Ū0

m)′Ūm,

AF
134 = T−1F̌′Ū0

m[T−1(F∗)′F∗]−1T−1(F∗)′Ūm,

AF
135 = T−1F̌′Q0

(
Σ̂−1

Q − Σ̂−1
F+

u

)
T−1Q′0Ūm,

which yields, by Lemma 10,∥∥∥AF
131

∥∥∥ ≤ ∥∥∥T−1F̌′Ū0
−m

∥∥∥ ∥∥∥[T−1(Ū0
−m)′Ū0

−m]−1
∥∥∥ ∥∥∥T−1(Ū0

−m)′Ūm

∥∥∥ = Op((NT )−1/2),∥∥∥AF
132

∥∥∥ ≤ ∥∥∥T−1F̌′Ū0
m

∥∥∥ ∥∥∥[T−1(F∗)′F∗]−1
∥∥∥ ∥∥∥T−1(Ū0

m)′Ūm

∥∥∥ = Op(N−3/2T−1/2),∥∥∥AF
133

∥∥∥ ≤ ∥∥∥T−1F̌′F∗
∥∥∥ ∥∥∥[T−1(F∗)′F∗]−1

∥∥∥ ∥∥∥T−1(Ū0
m)′Ūm

∥∥∥ = Op(N−1),∥∥∥AF
134

∥∥∥ ≤ ∥∥∥T−1F̌′Ū0
m

∥∥∥ ∥∥∥[T−1(F∗)′F∗]−1
∥∥∥ ∥∥∥T−1(F∗)′Ūm

∥∥∥ = Op((NT )−1),∥∥∥AF
135

∥∥∥ ≤ ∥∥∥T−1F̌′Q0

∥∥∥ ∥∥∥Σ̂−1
Q − Σ̂−1

F+
u

∥∥∥ ∥∥∥T−1Q′0Ūm

∥∥∥ = Op(N−1) +Op((NT )−1/2),

because also
∥∥∥T−1F̌′Q0

∥∥∥ =
∥∥∥T−1F̌′([F∗,0T×(K−m)] + Ū0)

∥∥∥ = Op(1) and
∥∥∥Σ̂−1

Q − Σ̂−1
F+

u

∥∥∥ =
Op(N−1/2) +Op(T−1/2) from (D-20) of Lemma 13. Hence,∥∥∥AF

13

∥∥∥ = Op(N−1) +Op((NT )−1/2),

38



which implies, in turn
∥∥∥AF

1

∥∥∥ = Op(N−1) +Op((NT )−1/2), and therefore, combining results
for

∥∥∥AF
1

∥∥∥ and
∥∥∥AF

2

∥∥∥ in (D-36)∥∥∥AF
∥∥∥ ≤ ∥∥∥AF

1

∥∥∥+
∥∥∥AF

2

∥∥∥ = Op(N−1) +Op((NT )−1/2),

which is the result stated in eq.(D-22).

Next, let AF
NT =

√
NTAF such that by the results above

AF
NT = AF

NT,1 + AF
NT,2 + AF

NT,3 + AF
NT,4 + AF

NT,5 +Op(N−1/2) +Op(
√
TN−1),

with

AF
NT,1 = − 1

N

N∑
i=1

S′wP̈′i
F̌′
√
NŪm√
T

ηi,

AF
NT,2 = 1

N

N∑
i=1

S′wP̈′i
F̌′F∗

T

(
(F∗)′F∗
T

)−1 (F∗)′
√
NŪm√
T

ηi,

AF
NT,3 = 1

N

N∑
i=1

S′wP̈′i
F̌′Ū0

−m√
T

(
(Ū0
−m)′Ū0

−m
T

)−1 (Ū0
−m)′
√
NŪm

T
ηi,

AF
NT,4 = 1

N

N∑
i=1

S′wP̈′i
F̌′F∗

T

(
(F∗)′F∗
T

)−1 (Ū0
m)′
√
NŪm√
T

ηi,

AF
NT,5 = 1

N

N∑
i=1

S′wP̈′i
F̌′Q0

T

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

] Q′0
√
NŪm

T
ηi.

Taking on first AF
NT,1 we substitute in Ūm = ÜR0TBm by eq.(B-22) and write

AF
NT,1 = −

[
1
N

N∑
i=1

(
η′i ⊗ S′wP̈′i

)]
vec

(
F̌′
√
NŪm√
T

)

= −
[

1
N

N∑
i=1

(
η′i ⊗ S′wP̈′i

)] [
B′mT′R′0 ⊗ I1+K2m(1+p∗)

]
vec

(
F̌′
√
NÜ√
T

)
,

such that denoting

Ση = E
(
η′i ⊗ S′wP̈′i

)
,

which we note exists and is bounded by Ass.3, we have
[

1
N

∑N
i=1

(
η′i ⊗ S′wP̈′i

)]
= Ση +

Op(N−1/2), and therefore

AF
NT,1 = −Ση

[
B′mT′R′0 ⊗ I1+K2m(1+p∗)

]
vec

(
T−1/2F̌′

√
NÜ

)
+Op(N−1/2).

Next, for AF
NT,2 we can write using (B-22) and (B-18) that (F∗)′Ūm = S′mN′R′P̈′F̌′ÜR0TBm

and substitute it into the expression to give

AF
NT,2 =

[
1
N

N∑
i=1

(
η′i ⊗ S′wP̈′i

)] Im ⊗
F̌′F∗

T

(
(F∗)′F∗
T

)−1
 [B′mT′R′0 ⊗ S′mN′R′P̈′

]
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× vec
(

F̌′
√
NÜ√
T

)
.

Since by Lemma 12

T−1F̌′F∗ = ΣF̌F∗ +Op(T−1/2) +Op(N−1/2),
T−1F∗′F∗ = ΣF∗ +Op(T−1/2) +Op(N−1/2),

with ΣF̌F∗ = ΣF̌PRNSm and ΣF∗ = S′mN′R′P′ΣF̌PRNSm, we get

AF
NT,2 = Ση

[
B′mT′R′0 ⊗ΣF̌F∗Σ

−1
F∗S′mN′R′P′

]
vec

(
F̌′
√
NÜ√
T

)
+Op

(
1√
T

)
+Op

(
1√
N

)
.

Continuing on to the next term, substituting in (B-20) and (B-22) gives

AF
NT,3 = 1

N

N∑
i=1

S′wP̈′i

(
F̌′
√
NÜ√
T

)
RNS−mΣ̂−1

u0
−m

S′−mN′R′
(
NÜ′Ü
T

)
R0TBmηi,

where by Lemma 12 ∥∥∥∥Σ̂−1
u0
−m
−Σ−1

u0
−m

∥∥∥∥ = Op(T−1/2),

with Σu0
−m

= B′−mT′A−1
0 Ωu(A−1

0 )′TB−m and Ωu =
[
σ2
ε 0′k×1

0k×1 Ωv

]
. Also, from the proof of

Lemma 12 we have NÜ′Ü/T = ΣÜ +Op(T−1/2), with ΣÜ = E(Ü′iÜi/T ). As such,

AF
NT,3 = 1

N

N∑
i=1

S′wP̈′i

(
F̌′
√
NÜ√
T

)
RNS−mΣ−1

u0
−m

S′−mN′R′ΣÜR0TBmηi +Op

(
1√
T

)
,

and, as before

AF
NT,3 = Ση

[
B′mT′R′0ΣÜRNS−mΣ−1

u0
−m

S′−mN′R′ ⊗ I1+k2m(1+p∗)

]
vec

(
F̌′
√
NÜ√
T

)
+Op(N−1/2) +Op(T−1/2).

For the next term, since using earlier results AF
NT,4 = Op(

√
TN−1/2), we define first

BF
NT,4 =

N∑
i=1

S′wP̈′i
F̌′F∗

T

(
(F∗)′F∗
T

)−1 (Ū0
m)′Ūm

T
ηi,

and note that AF
NT,4 =

√
T
N

BF
NT,4. Substituting in (B-19) and (B-22) gives (Ū0

m)′Ūm =
S′mN′R′Ü′ÜR0TBm and therefore

BF
NT,4 = 1

N

N∑
i=1

S′wP̈′i
F̌′F∗

T

(
(F∗)′F∗
T

)−1
N(Ū0

m)′Ūm

T
ηi,
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= Ση

[
Im ⊗ΣF̌F∗Σ

−1
F∗
]

[B′mT′R′0 ⊗ S′mN′R′] vec (ΣÜ) +Op(T−1/2) +Op(N−1/2),

= Ση

[
B′mT′R′0 ⊗ΣF̌F∗Σ

−1
F∗S′mN′R′

]
vec (ΣÜ) +Op(T−1/2) +Op(N−1/2).

Hence, we have for T/N →M <∞ (implying
√
TN−1 → 0)

AF
NT,4 =

√
TN−1/2BF

NT,4 =
√
TN−1/2bF

0 +Op(N−1/2), (D-38)

with bF
0 = Ση

[
B′mT′R′0 ⊗ΣF̌F∗Σ

−1
F∗S′mN′R′

]
vec (ΣÜ).

Last up is AF
NT,5, given by

AF
NT,5 = 1

N

N∑
i=1

S′wP̈′i
F̌′Q0

T

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

] Q′0
√
NŪm

T
ηi.

First we decompose it into 4 parts using Q0 = F0 + Ū0,

AF
NT,5 = 1

N

N∑
i=1

S′wP̈′i

( 4∑
l=1

AF
NT,5,l

)
ηi,

with∥∥∥AF
NT,5,1

∥∥∥ ≤ √NT ∥∥∥T−1F̌′F0
∥∥∥ ∥∥∥Σ̂−1

Q − Σ̂−1
F+

u

∥∥∥ ∥∥∥T−1(F0)′Ūm

∥∥∥ = Op(N−1/2) +Op(T−1/2),∥∥∥AF
NT,5,2

∥∥∥ ≤ √NT ∥∥∥T−1F̌′F0
∥∥∥ ∥∥∥Σ̂−1

Q − Σ̂−1
F+

u

∥∥∥ ∥∥∥T−1(Ū0)′Ūm

∥∥∥ = Op(
√
TN−1/2) +Op(1),∥∥∥AF

NT,5,3

∥∥∥ ≤ √NT ∥∥∥T−1F̌′Ū0
∥∥∥ ∥∥∥Σ̂−1

Q − Σ̂−1
F+

u

∥∥∥ ∥∥∥T−1(F0)′Ūm

∥∥∥ = Op((NT )−1/2) +Op(T−1),∥∥∥AF
NT,5,4

∥∥∥ ≤ √NT ∥∥∥T−1F̌′Ū0
∥∥∥ ∥∥∥Σ̂−1

Q − Σ̂−1
F+

u

∥∥∥ ∥∥∥T−1(Ū0)′Ūm

∥∥∥ = Op(N−1/2) +Op(T−1/2),

in which case the leading term is AF
NT,5,2. Hence, imposing T/N →M <∞,

AF
NT,5 = 1

N

N∑
i=1

S′wP̈′iT−1F̌′F0
√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
T−1(Ū0)′

√
NŪmηi +Op(N−1/2) +Op(T−1/2),

=
[

1
N

N∑
i=1

(
η′i ⊗ S′wP̈′i

)]
vec

(
T−1F̌′F0

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
T−1(Ū0)′

√
NŪm

)
+Op(N−1/2) +Op(T−1/2),

= Σηvec
(
T−1F̌′F0

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
T−1(Ū0)′

√
NŪm

)
+Op(N−1/2) +Op(T−1/2).

Next, consider the term in the vec(·) operator. Substituting in eq.(D-21) of Lemma 13,
which is

√
T
[
Σ̂−1

Q − Σ̂−1
F+

u

]
= −

[
0(1+K+m)×(1+K+m) T−1/2Σ̂Fu

T−1/2Σ̂′Fu 0(K−m)×(K−m)

]

+Op

(
1√
N

)
+Op

(
1√
T

)
+Op

(√
T

N

)
,
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and noting that F0 = [F∗,0T×(K−m)] and Ū0 = [Ū0
m, Ū0

−m] gives (since T/N →M <∞)

AF
NT,5 = −Σηvec

(
(T−1F̌′F∗)T−1/2Σ̂FuT

−1(Ū0
−m)′
√
NŪm

)
+Op(N−1/2) +Op(T−1/2),

= −Σηvec
(
ΣF̌F∗T

−1/2Σ̂FuΣu0
−mum

)
+Op(N−1/2) +Op(T−1/2),

where Σu0
−mum

= S′−mN′R′ΣÜR0TBm from Lemma 12 and we recall from Lemma 13 that
Σ̂Fu = Σ−1

F∗ (F∗ + Ū0
m)′Ū0

−mΣ−1
u0
−m

. By definition then

ΣF̌F∗T
−1/2Σ̂FuΣu0

−mum
= ΣF̌F∗Σ

−1
F∗
(
T−1/2(F∗)′Ū0

−m

)
Σ−1

u0
−m

Σu0
−mum

,

+ ΣF̌F∗Σ
−1
F∗
(
T−1/2(Ū0

m)′Ū0
−m

)
Σ−1

u0
−m

Σu0
−mum

,

where employing again (B-18)-(B-20) we have (F∗)′Ū0
−m = S′mN′R′P̈′F̌′

√
NÜRNS−m and

(Ū0
m)′Ū0

−m = S′mN′R′Ü′
√
NÜRNS−m. This gives

ΣF̌F∗T
−1/2Σ̂FuΣu0

−mum
= ΣF̌F∗Σ

−1
F∗S′mN′R′P̈′

(
T−1/2F̌′

√
NÜ

)
RNS−mΣ−1

u0
−m

Σu0
−mum

,

+ ΣF̌F∗Σ
−1
F∗S′mN′R′

(
T−1/2

√
NÜ′Ü

)
RNS−mΣ−1

u0
−m

Σu0
−mum

,

and in turn once substituted in AF
NT,5

AF
NT,5 = −Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′P′

]
vec

(
T−1/2F̌′

√
NÜ

)
−Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′

]
vec

(
T−1/2

√
NÜ′Ü

)
+Op(N−1/2) +Op(T−1/2).

Finally, since from Lemma 9 the second term in this expression is of order Op(
√
TN−1/2)

it is clear that

AF
NT,5 = −Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′P′

]
vec

(
T−1/2F̌′

√
NÜ

)
−
√
TN−1/2bF

1 +Op(N−1/2) +Op(T−1/2),

with bF
1 = Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′

]
vec (ΣÜ).

In conclusion, combining the results gives, provided T/N →M <∞,

AF
NT = ΨFvec

(
F̌′
√
NÜ√
T

)
+
√
T

N

(
bF

0 − bF
1

)
+Op

(
1√
N

)
+Op

(
1√
T

)
,

with

bF
0 = Ση

[
B′mT′R′0 ⊗ΣF̌F∗Σ

−1
F∗S′mN′R′

]
vec (ΣÜ) ,

bF
1 = Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′

]
vec (ΣÜ) ,
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ΨF = −VF,1 + VF,2 + VF,3 −VF,4,

VF,1 = Ση

[
B′mT′R′0 ⊗ I1+K2m(1+p∗)

]
,

VF,2 = Ση

[
B′mT′R′0 ⊗ΣF̌F∗Σ

−1
F∗S′mN′R′P′

]
,

VF,3 = Ση

[
B′mT′R′0ΣÜRNS−mΣ−1

u0
−m

S′−mN′R′ ⊗ I1+k2m(1+p∗)

]
,

VF,4 = Ση

[
Σ′u0

−mum
Σ−1

u0
−m

S′−mN′R′ ⊗ΣF̌F∗Σ
−1
F∗S′mN′R′P′

]
,

which is the result stated in eq.(D-23) of the lemma.
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Proof of Lemma 15

Let Aε = 1
NT

∑N
i=1 w′iMεi and note that given w̄ ⊆ Q then Mw̄ = 0T×kw . Therefore,

substituting in (B-13)

Aε = 1
NT

N∑
i=1

(w′i − w̄) Mεi = 1
NT

N∑
i=1

(
S′wP̃′iF̌′ + ε′i − ε̄′

)
Mεi,

= 1
NT

N∑
i=1

S′wP̃′iF̌′Mεi + 1
NT

N∑
i=1
ε′iMεi −

1
T
ε̄′Mε̄,

= Aε
1 + Aε

2 −Aε
3, (D-39)

with P̃i = P̈i − P̈ and obvious definitions for Aε
1,Aε

2 and Aε
3. We start with the first term

and decompose it as

Aε
1 = 1

NT

N∑
i=1

S′wP̃′iF̌′MFεi + 1
NT

N∑
i=1

S′wP̃′iF̌′(MF −M)εi,

= Aε
11 + Aε

12.

For the first term we find, writing it in full and substituting in (B-18), Σ̂F∗ = T−1(F∗)′F∗
and Σ̂F̌ = T−1F̌′F̌,

Aε
11 = 1

N

N∑
i=1

S′wP̃′i
F̌′εi
T
− 1
N

N∑
i=1

S′wP̃′i
F̌′F∗

T

(
F∗′F∗

T

)−1 F∗′εi
T

,

= 1
N

N∑
i=1

S′wP̃′i
[
I1+K2m(1+p∗) − Σ̂F̌P̈RNSmΣ̂−1

F∗S′mN′R′P̈′
] F̌′εi
T

,

=
[
vec

(
B̂F

)′
⊗ Ikw

]
vec

[
1
N

N∑
i=1

(
ε′iF̌
T
⊗ S′wP̃′i

)]
,

= Ψ̂εvec

[
1
N

N∑
i=1

(
ε′iF̌
T
⊗ S′wP̃′i

)]
,

where Ψ̂ε =
[
vec

(
B̂F

)′
⊗ Ikw

]
and B̂F = I1+K2m(1+p∗) − Σ̂F̌P̈RNSmΣ̂−1

F∗S′mN′R′P̈′. From∥∥∥B̂F
∥∥∥ = Op(1) by results in Lemma 10 and eq.(D-17) of Lemma 11 follows

‖Aε
11‖ ≤

∥∥∥Ψ̂ε

∥∥∥ ∥∥∥∥∥ 1
N

N∑
i=1

(
T−1ε′iF̌⊗ S′wP̃′i

)∥∥∥∥∥ = Op

(
1√
NT

)
.

Next, for Aε
12 we use the decomposition in (D-1) and obtain

‖Aε
12‖ ≤ ‖Aε

121‖+ ‖Aε
122‖+ ‖Aε

123‖+ ‖Aε
124‖+ ‖Aε

125‖ = Op(N−1T−1/2) +Op(N−1/2T−1),

because, denoting Σ̂u0
−m

= T−1(Ū0
−m)′Ū0

−m we have

‖Aε
121‖ ≤

∥∥∥∥∥ 1
N

N∑
i=1

(
ε′iŪ0

−m
T

⊗ S′wP̃′i

)∥∥∥∥∥
∥∥∥∥∥F̌′Ū0

−m
T

∥∥∥∥∥ ∥∥∥Σ̂−1
u0
−m

∥∥∥ = Op

(
1

N
√
T

)
+Op

(
1√
NT

)
,
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‖Aε
122‖ ≤

∥∥∥∥∥ 1
N

N∑
i=1

(
ε′iŪ0

m

T
⊗ S′wP̃′i

)∥∥∥∥∥
∥∥∥∥∥F̌′Ū0

m

T

∥∥∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ = Op

(
1

N2
√
T

)
+Op

( 1
N3/2T

)
,

‖Aε
123‖ ≤

∥∥∥∥∥ 1
N

N∑
i=1

(
ε′iF∗

T
⊗ S′wP̃′i

)∥∥∥∥∥
∥∥∥∥∥F̌′Ū0

m

T

∥∥∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ = Op

( 1
NT

)
,

‖Aε
124‖ ≤

∥∥∥∥∥ 1
N

N∑
i=1

(
ε′iŪ0

m

T
⊗ S′wP̃′i

)∥∥∥∥∥
∥∥∥∥∥F̌′F∗

T

∥∥∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ = Op

(
1

N
√
T

)
+Op

(
1

N3/2

)
,

‖Aε
125‖ ≤

∥∥∥∥∥ 1
N

N∑
i=1

(
ε′iQ0

T
⊗ S′wP̃′i

)∥∥∥∥∥
∥∥∥∥∥F̌′Q0

T

∥∥∥∥∥ ∥∥∥Σ̂−1
Q − Σ̂−1

F+
u

∥∥∥ = Op

(
1

N
√
T

)
+Op

(
1√
NT

)
,

by the results in Lemmas 10, 11 and 13. Hence, we conclude that

‖Aε
1‖ = Op((NT )−1/2), (D-40)

and, defining Aε
NT,1 =

√
NTAε

1 also, since B̂F = BF + Op(N−1/2) + Op(T−1/2) by Lemma
12, with BF = I1+K2m(1+p∗) −ΣF̌PRNSmΣ−1

F∗S′mN′R′P′ and Ψε =
[
vec

(
BF

)′
⊗ Ikw

]

Aε
NT,1 = Ψεvec

[
1√
N

N∑
i=1

(
ε′iF̌√
T
⊗ S′wP̃′i

)]
+Op

(
1√
N

)
+Op

(
1√
T

)
+Op

(√
T

N

)
.

(D-41)

We take on Aε
2 next. Decomposing it as before returns

Aε
2 = 1

N

N∑
i=1

ε′iεi
T
− 1
NT

N∑
i=1
ε′iHFεi −

1
NT

N∑
i=1
ε′i(MF −M)εi,

= Aε
21 −Aε

22 −Aε
23. (D-42)

Clearly, since by Ass.1 the elements of εi and εi are contemporaneously uncorrelated

‖Aε
21‖ =

∥∥∥∥∥ 1
N

N∑
i=1

ε′iεi
T

∥∥∥∥∥ = Op

(
1√
NT

)
, (D-43)

whereas for the second term, by (D-8)-(D-9) of Lemma 10,

∥∥∥T−1ε′iHFεi
∥∥∥ ≤ ∥∥∥∥∥ε′iF∗T

∥∥∥∥∥
∥∥∥∥∥∥
(

(F∗)′F∗
T

)−1
∥∥∥∥∥∥
∥∥∥∥∥(F∗)′εi

T

∥∥∥∥∥ = Op

( 1
T

)
,

and therefore

‖Aε
22‖ = Op

(
T−1

)
.

Letting again Aε
NT,22 =

√
NTAε

22 it is clear that∥∥∥Aε
NT,22

∥∥∥ = Op

(√
NT−1/2

)
.
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To evaluate Aε
23 we again split it into 5 key components

‖Aε
231‖ ≤

∥∥∥T−1ε′iŪ0
−m

∥∥∥ ∥∥∥Σ̂−1
u0
−m

∥∥∥ ∥∥∥T−1(Ū0
−m)′εi

∥∥∥ = Op(N−1) +Op(T−1) +Op((NT )−1/2),

‖Aε
232‖ ≤

∥∥∥T−1ε′iŪ0
m

∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ ∥∥∥T−1(Ū0

m)′εi
∥∥∥ = Op(N−2) +Op(N−3/2T−1/2) +Op((NT )−1),

‖Aε
233‖ ≤

∥∥∥T−1ε′iF∗
∥∥∥ ∥∥∥Σ̂−1

F∗
∥∥∥ ∥∥∥T−1(Ū0

m)′εi
∥∥∥ = Op(N−1T−1/2) +Op(N−1/2T−1),

‖Aε
234‖ ≤

∥∥∥T−1ε′iŪ0
m

∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ ∥∥∥T−1(F∗)′εi

∥∥∥ = Op(N−1T−1/2) +Op(N−1/2T−1),

‖Aε
235‖ ≤

∥∥∥T−1ε′iQ0

∥∥∥ ∥∥∥Σ̂−1
Q − Σ̂−1

F+
u

∥∥∥ ∥∥∥T−1Q′0εi
∥∥∥ = Op(T−1) +Op((NT )−1/2),

which leads to
‖Aε

23‖ = Op(N−1) +Op(T−1) +Op((NT )−1/2),
and therefore

‖Aε
2‖ = Op(N−1) +Op(T−1) +Op((NT )−1/2). (D-44)

Finally, for Aε
3 we find

‖Aε
3‖ ≤

∥∥∥T−1ε̄′ε̄
∥∥∥+

∥∥∥T−1ε̄′Q0(T−1Q′0Q0)−1Q′0ε̄
∥∥∥ = Op(N−1), (D-45)

since ‖T−1ε̄′ε̄‖ = Op(T−1/2N−1) due to ε̄ and ε̄ being uncorrelated Op(N−1/2) variables,
and because the norm of the final term can be decomposed in the following five components

‖Aε
31‖ ≤

∥∥∥T−1ε̄′Ū0
−m

∥∥∥ ∥∥∥[T−1(Ū0
−m)′Ū0

−m]−1
∥∥∥ ∥∥∥T−1(Ū0

−m)′ε̄
∥∥∥ = Op(N−1),

‖Aε
32‖ ≤

∥∥∥T−1ε̄′Ū0
m

∥∥∥ ∥∥∥[T−1(F∗)′F∗]−1
∥∥∥ ∥∥∥T−1(Ū0

m)′ε̄
∥∥∥ = Op(N−2),

‖Aε
33‖ ≤

∥∥∥T−1ε̄′F∗
∥∥∥ ∥∥∥[T−1(F∗)′F∗]−1

∥∥∥ ∥∥∥T−1(Ū0
m)′ε̄

∥∥∥ = Op(N−3/2T−1/2),

‖Aε
34‖ ≤

∥∥∥T−1ε̄′Ū0
m

∥∥∥ ∥∥∥[T−1(F∗)′F∗]−1
∥∥∥ ∥∥∥T−1(F∗)′ε̄

∥∥∥ = Op(N−3/2T−1/2),

‖Aε
35‖ ≤

∥∥∥T−1ε̄′Q0

∥∥∥ ∥∥∥Σ̂−1
Q − Σ̂−1

F+
u

∥∥∥ ∥∥∥T−1Q′0ε̄
∥∥∥ = Op(N−3/2) +Op(N−1T−1/2),

where we used the fact that the terms involving ε̄ and ε̄ have the same order as those
involving Ū0

m in Lemma 10. It will be convenient to also define Aε
NT,3 =

√
NTAε

3

Aε
NT,3 =

√
T

N

(√
N ε̄′Ū0

−m
T

)(
(Ū0
−m)′Ū0

−m
T

)−1 ((Ū0
−m)′
√
N ε̄

T

)
+Op

(
1√
N

)
+Op

(√
T

N

)
,

such that if T/N →M <∞, making use of (B-14),

Aε
NT,3 =

√
TN−1/2ΣεU−mΣ−1

u0
−m

Σ′εU−m
+Op(T−1/2) +Op(N−1/2), (D-46)

with ΣεU−m = S′wΣÜRNS−m, ΣεU−m = E(ε′iÜi/T )RNS−m, Σu0
−m

= S′−mN′R′ΣÜRNS−m
and ΣÜ = E(Ü′iÜi/T ).

Combining (D-40)-(D-45) in (D-39) leads to the conclusion that
‖Aε‖ = Op(N−1) +Op(T−1) +Op((NT )−1/2),

which is the result stated in the lemma. Letting Aε
NT =

√
NTAε, the result above implies

‖Aε
NT‖ = Op(1) +Op(

√
TN−1/2) +Op(

√
NT−1/2).
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Proof of Lemma 16

Consider σ̂2
ε(·) defined in eq.(20) evaluated at δ0 6= δ, with δ = [ρ,β′]′ the true parameter

vector. Suppose that p∗ ≥ p and Ass.1-5 hold. We can then make use of (B-23) to get

σ̂2
ε (δ0) = 1

N(T − c)

N∑
i=1
‖M (yi −wiδ0)‖2 = 1

N(T − c)

N∑
i=1
‖M (wi(δ − δ0) + Fγi + εi)‖2 ,

= T

T − c
1
NT

N∑
i=1

∥∥∥M (
wi(δ − δ0)− Ūmγi + εi

)∥∥∥2
.

For its components we find, denoting first Σ̂γ =
[

1
N

∑N
i=1 (γ ′i ⊗ γ ′i)

]
, with

∥∥∥Σ̂γ

∥∥∥ = Op(1) by
Ass.3,∥∥∥∥∥ 1
NT

N∑
i=1
γ ′iŪ′mMŪmγi

∥∥∥∥∥ ≤ ∥∥∥Σ̂γ

∥∥∥ ∥∥∥∥∥Ū′mŪm

T

∥∥∥∥∥+
∥∥∥Σ̂γ

∥∥∥ ∥∥∥∥∥Ū′mQ0

T

∥∥∥∥∥ ∥∥∥Σ̂−1
Q

∥∥∥ ∥∥∥∥∥Q′0Ūm

T

∥∥∥∥∥ = Op

( 1
N

)
,

where we made use of Lemma 10 by noting that Ūm is by the definition above (B-16) a
subset of Ū0

m. Also, since for any ‖δ − δ0‖ <∞, by (D-22) of Lemma 14∥∥∥∥∥ 1
N

N∑
i=1

(δ − δ0)′w
′
iMŪmγi
T

∥∥∥∥∥ ≤ ‖δ − δ0‖
∥∥∥∥∥ 1
N

N∑
i=1

w′iMŪmγi
T

∥∥∥∥∥ = Op

( 1
N

)
+Op

(
1√
NT

)
,

and similarly by (D-24) of Lemma 15∥∥∥∥∥ 1
N

N∑
i=1

(δ − δ0)′w
′
iMεi
T

∥∥∥∥∥ ≤ ‖δ − δ0‖
∥∥∥∥∥ 1
N

N∑
i=1

w′iMεi
T

∥∥∥∥∥ = Op

( 1
N

)
+Op

( 1
T

)
+Op

(
1√
NT

)
.

Also∥∥∥∥∥ 1
NT

N∑
i=1
ε′iMŪmγi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
N

N∑
i=1

ε′iŪm

T
γi

∥∥∥∥∥+
∥∥∥∥∥ 1
N

N∑
i=1

(
γ ′i ⊗

ε′iQ0

T

)∥∥∥∥∥ ∥∥∥Σ̂−1
Q

∥∥∥ ∥∥∥∥∥Q′0Ūm

T

∥∥∥∥∥ ,
≤
∥∥∥∥∥ 1
N

N∑
i=1

(
γ ′i ⊗

ε′iŪm

T

)∥∥∥∥∥ ‖Im‖+
∥∥∥∥∥ 1
N

N∑
i=1

(
γ ′i ⊗

ε′iQ0

T

)∥∥∥∥∥ ∥∥∥Σ̂−1
Q

∥∥∥ ∥∥∥∥∥Q′0Ūm

T

∥∥∥∥∥ ,
Letting γi,d denote the element on row d = 1, . . . ,m of γi, the elements on columns c(d−1)+
1 to cd of 1

N

∑N
i=1 (γ ′i ⊗ T−1ε′iQ0) and columnsm(d−1)+1 tomd of 1

N

∑N
i=1

(
γ ′i ⊗ T−1ε′iŪm

)
are given by

1
N

N∑
i=1

γi,d
ε′iF0

T
+ 1
N

N∑
i=1

γi,d
ε′iŪ0

T
=
[
ā′dF∗

T
,01×(K−m)

]
+
[
ā′dŪ0

m

T
,
ā′dŪ0

−m
T

]
,

1
N

N∑
i=1

γi,d
ε′iŪm

T
= ā′dŪm

T
,

respectively, with ād = 1
N

∑N
i=1 γi,dεi and where we note that ‖ād‖ = Op(

√
TN−1/2) by the

independence of γi,d and εi from Ass.1 and 3. As such, with (B-18)-(B-20) and (B-22)∥∥∥∥∥ ā′dF∗

T

∥∥∥∥∥ ≤
∥∥∥∥∥ ā′dF̌
T

∥∥∥∥∥ ∥∥∥P̈∥∥∥ ‖R‖ ‖N‖ ‖Sm‖ = Op

(
1√
NT

)
,
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∥∥∥∥∥ ā′dŪ0
m

T

∥∥∥∥∥ ≤
∥∥∥∥∥ ā′dÜ
T

∥∥∥∥∥ ‖R‖ ‖N‖ ‖Sm‖ = Op

( 1
N

)
,∥∥∥∥∥ ā′dŪ0

−m
T

∥∥∥∥∥ ≤ √N
∥∥∥∥∥ ā′dÜ
T

∥∥∥∥∥ ‖R‖ ‖N‖ ‖S−m‖ = Op

(
1√
N

)
,∥∥∥∥∥ ā′dŪm

T

∥∥∥∥∥ ≤
∥∥∥∥∥ ā′dÜ
T

∥∥∥∥∥ ‖R0‖ ‖T‖ ‖Bm‖ = Op

( 1
N

)
,

since
∥∥∥∥ ā′dF̌

T

∥∥∥∥ = Op((NT )−1/2) by independence of ād and F̌, and because
∥∥∥∥ ā′dÜ

T

∥∥∥∥ ≤ T−1 ‖ād‖
∥∥∥Ü∥∥∥ =

Op(N−1) since
∥∥∥Ü∥∥∥ = Op(

√
TN−1/2). As such,

∥∥∥ 1
N

∑N
i=1 (γ ′i ⊗ T−1ε′iQ0)

∥∥∥ = Op(N−1/2) and∥∥∥ 1
N

∑N
i=1

(
γ ′i ⊗ T−1ε′iŪm

)∥∥∥ = Op(N−1). Thus, inserting also
∥∥∥T−1Q′0Ūm

∥∥∥ = Op(N−1/2) by
Lemma 10 gives ∥∥∥∥∥ 1

NT

N∑
i=1
ε′iMŪmγi

∥∥∥∥∥ = Op

( 1
N

)
, (D-47)

and therefore,

σ̂2
ε (δ0) = T

T − c
(δ − δ0)′Σ̂(δ − δ0) + T

T − c
1
NT

N∑
i=1
ε′iMεi

+Op

( 1
N

)
+Op

( 1
T

)
+Op

(
1√
NT

)
.

The final term in this expression we can decompose as

1
NT

N∑
i=1
ε′iMεi = 1

N

N∑
i=1

ε′iεi
T
− 1
NT

N∑
i=1
ε′iHεi.

Consider the last term and recall from Lemma 10 that ‖T−1ε′iQ0‖ = Op(T−1/2). Note that
we can write with q0,t denoting the t− th row of Q0 and ε̄t,s = 1

N

∑N
i=1 εitεis, with notably

ε̄t,s = Op(N−1/2) for s 6= t and ε̄t,t = σ2
ε +Op(N−1/2),

1
NT

N∑
i=1
ε′iHεi = 1

N

N∑
i=1

ε′iQ0

T

(
Q′0Q0

T

)−1 Q′0εi
T

= 1
NT 2

N∑
i=1
ε′iQ0Σ̂

−1
Q Q′0εi,

= 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

εitεisq′0,tΣ̂
−1
Q q0,s,

= 1
NT 2

T∑
t=1

T∑
s=1

ε̄t,sq′0,tΣ̂
−1
Q q0,s,

= 1
T 2σ

2
εtr(Q0Σ̂

−1
Q Q′0) + 1

NT 2

T∑
t=1

(ε̄t,t − σ2
ε)q′0,tΣ̂

−1
Q q0,t

+ 1
NT 2

T∑
t=1

T∑
s 6=t

ε̄t,sq′0,tΣ̂
−1
Q q0,s,
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= 1
T 2σ

2
εTc+Op(N−1/2T−1),

= c

T
σ2
ε +Op(N−1/2T−1),

and also for the first term

1
N

N∑
i=1

ε′iεi
T

= 1
NT

N∑
i=1

T∑
t=1

ε2
it = σ2

ε + 1
NT

N∑
i=1

T∑
t=1

(ε2
it − σ2

ε) = σ2
ε + 1

T

T∑
t=1

(ε̄t,t − σ2
ε),

= σ2
ε +Op((NT )−1/2),

which gives, combined into the expression above,

T

T − c

[
1
NT

N∑
i=1
ε′iMεi

]
= T

T − c

[
σ2
ε −

c

T
σ2
ε

]
+Op

(
1√
NT

)
= σ2

ε +Op

(
1√
NT

)
. (D-48)

Finally, since
∥∥∥Σ̂∥∥∥ = Op(1) and making use of T

T−c → 1 we conclude that

σ̂2
ε (δ0) = σ2

ε + (δ − δ0)′Σ̂(δ − δ0) +Op(N−1) +Op(T−1) +Op((NT )−1/2),

which is the first result stated in the lemma.

It remains to consider δ0 = δ. Clearly, in this case

σ̂2
ε (δ) = T

T − c
1
NT

N∑
i=1

∥∥∥M(εi − Ūmγi)
∥∥∥2
,

= T

T − c

[
1
NT

N∑
i=1
ε′iMεi − 2 1

NT

N∑
i=1
ε′iMŪmγi + 1

NT

N∑
i=1
γ ′iŪ′mMŪmγi

]
,

and therefore, substituting in earlier results such as (D-47) and (D-48)

σ̂2
ε (δ) = σ2

ε +Op(N−1) +Op((NT )−1/2).

This proves the lemma.

Proof of Lemma 17

Consider Ac = Aε + 1
T
σ̂2
ε(δ)υ evaluated at δ0 = δ, where υ denotes υ(ρ0,H) evaluated at

ρ0 = ρ. Making use of the notation introduced in Lemma 15, specifically (D-39), we can
decompose it as follows

Ac = Aε + 1
T
σ̂2
ε(δ)υ,

= Aε
1 + Aε

2 −Aε
3 + 1

T
σ̂2
ε(δ)υ,
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= Aε
1 + Aε

21 −Aε
3 −

1
NT

N∑
i=1
ε′iHεi + 1

T
σ̂2
ε(δ)υ,

= Aε
1 + Aε

21 −Aε
3 −Ac

0,

where in the final equality we substituted in Aε
21 = 1

NT

∑N
i=1 ε

′
iεi of (D-42) and defined

Ac
0 = 1

NT

N∑
i=1
ε′iHεi −

1
T
σ̂2
ε(δ)υ.

For this term we can write

Ac
0 = 1

NT

N∑
i=1

[
ε′iHεi − σ2

ευ
]
− 1
T

[
σ̂2
ε(δ)− σ2

ε

]
υ.

Recall that T−1ε′iHεi = T−1ε′iQ0Σ̂
−1
Q T−1Q′0εi and that from Lemma 10 ‖T−1ε′iQ0‖ and

‖T−1ε′iQ0‖ are Op(T−1/2). Also denote with ht,s the element on row t and column s of H
and ε̄t,s = 1

N

∑N
i=1 εitεis such that

[
ε̄t,s − σ2

εq1ρ
t−1−s

1(t−1≥s)
]

= Op(N−1/2) for all t and s,
where 1a denotes the indicator function that returns one if the condition a is true, and zero
otherwise. This gives

1
NT

N∑
i=1

[
ε′iHεi − σ2

ευ
]

= 1
T

T∑
t=1

T∑
s=1

ht,s
1
N

N∑
i=1

[
εitεis − σ2

εq1ρ
t−1−s

1(t−1≥s)
]
,

= 1
T

T∑
t=1

T∑
s=1

ht,s
[
ε̄t,s − σ2

εq1ρ
t−1−s

1(t−1≥s)
]

= Op(N−1/2T−1).

Second, note that the function υ = υ(ρ,H)q1 = tr(HLJ−1(ρ))q1 calculates the sum of the
lower triangular elements of H weighted by the columns of J−1(ρ), with J(ρ) a T×T matrix
with ones on the main diagonal, −ρ on the first lower sub-diagonal, and zeros on all other
entries, and L the T × T lag operator with ones on the first lower sub-diagonal and zeros
on all other entries. We then have that ‖υ‖ = Op(1) since ρ < 1 under Ass.5 such that
each column of the weighting matrix J−1(ρ) contains an exponentially decaying sequence
and its row and column norms are bounded by a finite constant which is independent of T .

Therefore, also substituting in ‖σ̂2
ε(δ)− σ2

ε‖ = Op(N−1) + Op((NT )−1/2) by (D-27) of
Lemma 16 gives

‖Ac
0‖ ≤

∥∥∥∥∥ 1
NT

N∑
i=1

[
ε′iHεi − σ2

ευ
]∥∥∥∥∥+ 1

T

∥∥∥σ̂2
ε(δ)− σ2

ε

∥∥∥ ‖υ‖ = Op(N−1/2T−1).

such that from the respective results in eqs.(D-40), (D-43) and (D-45) of the proof for
Lemma 15 follows

‖Ac‖ ≤ ‖Aε
1‖+ ‖Aε

21‖+ ‖Aε
3‖+ ‖Ac

0‖ = Op(N−1) +Op((NT )−1/2).

Also, letting Ac
NT =

√
NTAc and imposing that T/N →M <∞ yields

Ac
NT = Aε

NT,1 + Aε
NT,21 −Aε

NT,3 +Op(T−1/2),
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with Aε
NT,1 and Aε

NT,3 defined in (D-41) and (D-46), respectively, and where Aε
NT,21 =

1√
N

∑N
i=1

ε′iεi√
T
. Substituting in the respective definitions gives the result stated in the lemma.

Next, consider the moment vector evaluated at any δ0 6= δ such that ‖δ − δ0‖ <∞,

Ãc(δ0) = Aε + T−1σ̂2
ε(δ0)υ(ρ0) = Aε

1 + Aε
21 −Aε

3 − Ãc
0(δ0),

with Ãc
0(δ0) = 1

NT

∑N
i=1 ε

′
iHεi − 1

T
σ̂2
ε(δ0)υ(ρ0) and υ(ρ0) = υ(ρ0,H)q1, and, as before by

eqs.(D-40), (D-43) and (D-45)

Ãc(δ0) = −Ãc
0(δ0) +Op(N−1) +Op((NT )−1/2).

We get using the same steps as above and substituting in earlier results

Ãc
0(δ0) = 1

NT

N∑
i=1

[
ε′iHεi − σ2

ευ
]
− 1
T

[
σ̂2
ε(δ0)− σ2

ε

]
υ(ρ0)− 1

T
σ2
ε [υ(ρ0)− υ] ,

= − 1
T

[
σ̂2
ε(δ0)− σ2

ε

]
υ(ρ0)− 1

T
σ2
ε [υ(ρ0)− υ] +Op(N−1/2T−1).

In turn, substituting in (D-26) of Lemma 16 returns

Ãc
0(δ0) = − 1

T
(δ − δ0)′Σ̂(δ − δ0)υ(ρ0)− 1

T
σ2
ε [υ(ρ0)− υ] +Op(N−1/2T−1),

and therefore

Ãc(δ0) = 1
T

(δ − δ0)′Σ̂(δ − δ0)υ(ρ0) + 1
T
σ2
ε [υ(ρ0)− υ] +Op(N−1) +Op((NT )−1/2),

which ends the proof.

Proof of Lemma 18

Consider, since Mw̄ = 0,

Σ̂ = 1
NT

N∑
i=1

w′iMwi = 1
NT

N∑
i=1

(wi − w̄)′M (wi − w̄) ,

= 1
NT

N∑
i=1

(
F̌P̃iSw + εi − ε̄

)′
M
(
F̌P̃iSw + εi − ε̄

)
,

where noting that εi = ÜiSw it is easily seen from Lemmas 10 and 11∥∥∥∥∥ 1
NT

N∑
i=1

S′wP̃′iF̌′Mε̄

∥∥∥∥∥ = Op

( 1
N

)
,

∥∥∥∥∥ 1
NT

N∑
i=1
ε̄′Mε̄

∥∥∥∥∥ = Op

( 1
N

)
,

∥∥∥∥∥ 1
NT

N∑
i=1
ε′iMε̄

∥∥∥∥∥ = Op

( 1
N

)
.

Also, from (D-40) ∥∥∥∥∥ 1
NT

N∑
i=1

S′wP̃′iF̌′Mεi

∥∥∥∥∥ = Op

(
1√
NT

)
,
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and making use of Lemma 10 and Ass.1 and 5,

1
NT

N∑
i=1
ε′iMεi = 1

N

N∑
i=1

ε′iεi
T
− 1
N

N∑
i=1

ε′iQ0

T

(
Q′0Q0

T

)−1 Q′0εi
T

= 1
N

N∑
i=1

ε′iεi
T

+Op

( 1
T

)
,

= Σε +Op(T−1) +Op((NT )−1/2),

with Σε = E(ε′iεi/T ). Next up is

1
NT

N∑
i=1

S′wP̃′iF̌′MF̌P̃iSw = 1
NT

N∑
i=1

S′wP̃′iF̌′MFF̌P̃iSw −
1
NT

N∑
i=1

S′wP̃′iF̌′(MF −M)F̌P̃iSw,

where for the second term, defining Σ̂P̃ =
[

1
N

∑N
i=1

(
S′wP̃′i ⊗ S′wP̃′i

)]
,

∥∥∥∥∥ 1
NT

N∑
i=1

S′wP̃′iF̌′(MF −M)F̌P̃iSw
∥∥∥∥∥ ≤ ∥∥∥Σ̂P̃

∥∥∥ ∥∥∥F̌′(MF −M)F̌
∥∥∥ ,

for which
∥∥∥Σ̂P̃

∥∥∥ = Op(1) by Ass.3 and the norm in the end can be decomposed into 5
parts by (D-1). Using the shorthand Σ̂Q = [T−1Q′0Q0], Σ̂F∗ = [T−1(F∗)′F∗] and Σ̂u0

−m
=

[T−1(Ū0
−m)′Ū0

−m] we get for each respective component

‖K1‖ ≤
∥∥∥∥∥F̌′Ū0

−m
T

∥∥∥∥∥ ∥∥∥Σ̂−1
u0
−m

∥∥∥ ∥∥∥∥∥(Ū0
−m)′F̌
T

∥∥∥∥∥ = Op

( 1
T

)
,

‖K2‖ ≤
∥∥∥∥∥F̌′Ū0

m

T

∥∥∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ ∥∥∥∥∥(Ū0

m)′F̌
T

∥∥∥∥∥ = Op

( 1
NT

)
,

‖K3‖ ≤
∥∥∥∥∥F̌′F∗

T

∥∥∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ ∥∥∥∥∥(Ū0

m)′F̌
T

∥∥∥∥∥ = Op

(
1√
NT

)
,

‖K4‖ ≤
∥∥∥∥∥F̌′Ū0

m

T

∥∥∥∥∥ ∥∥∥Σ̂−1
F∗
∥∥∥ ∥∥∥∥∥(F∗)′F̌

T

∥∥∥∥∥ = Op

(
1√
NT

)
,

‖K5‖ ≤
∥∥∥∥∥F̌′Q0

T

∥∥∥∥∥ ∥∥∥Σ̂−1
Q − Σ̂−1

F+
u

∥∥∥ ∥∥∥∥∥Q′0F̌
T

∥∥∥∥∥ = Op

(
1√
N

)
+Op

(
1√
T

)
,

which makes use of (B-18)-(B-20) and Lemmas 9, 10 and 13. As such,
∥∥∥F̌′(MF −M)F̌

∥∥∥ =
Op(N−1/2) +Op(T−1/2) and

1
NT

N∑
i=1

S′wP̃′iF̌′MF̌P̃iSw = 1
NT

N∑
i=1

S′wP̃′iF̌′MFF̌P̃iSw +Op

(
1√
N

)
+Op

(
1√
T

)
.

Here we have, recalling Σ̂F̌ = T−1F̌′F̌ and using (B-18) and Lemma 12,

1
NT

N∑
i=1

S′wP̃′iF̌′MFF̌P̃iSw
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= 1
N

N∑
i=1

S′wP̃′iΣ̂F̌P̃iSw −
1
N

N∑
i=1

S′wP̃′iΣ̂F̌P̈RNSmΣ̂−1
F∗S′mN′R′P̈′Σ̂F̌P̃iSw,

= 1
N

N∑
i=1

S′wP̃′iVFP̃iSw +Op(N−1/2) +Op(T−1/2),

= (vec(Ikw)′ ⊗ Ikw)
(
Ikw ⊗ΣP̃vec(V

F)
)

+Op(N−1/2) +Op(T−1/2),

where VF = ΣF̌ −ΣF̌PRNSmΣ−1
F∗S′mN′R′P′ΣF̌ and ΣP̃ = E(S′wP̃′i ⊗ S′wP̃′i).

In conclusion, we have as (N, T )→∞ that

Σ̂ −→p ΣF̌P + Σε,

with ΣF̌P = (vec(Ikw)′ ⊗ Ikw)
(
Ikw ⊗ΣP̃vec(V

F)
)
.
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D.4 Proof of theorems
D.4.1 Proof of Theorem 2

Consider that the CCEPbc estimator in eq.(21) is equivalent to

δ̂bc = arg min
δ0∈χ

1
2 ‖ϕ(δ0)‖2 , (D-49)

with ϕ(δ0) given by

ϕ(δ0) = 1
NT

N∑
i=1

w′iMyi − Σ̂δ0 + 1
T
σ̂2
ε(δ0)υ(ρ0),

and we will use υ(ρ0) = υ(ρ0,H)q1. With eq.(6) the latter can be reformulated as

ϕ(δ0) = Σ̂ (δ − δ0) + 1
NT

N∑
i=1

w′iM(Fγi + εi) + 1
T
σ̂2
ε(δ0)υ(ρ0),

= Σ̂ (δ − δ0) + AF + Ãc(ρ0),

where AF = 1
NT

∑N
i=1 w′iMFγi and Ãc(ρ0) = 1

NT

∑N
i=1 w′iMεi + 1

T
σ̂2
ε(δ0)υ(ρ0). Under the

assumption that χ is compact such that ‖δ − δ0‖ <∞ it follows from Lemmas 14 and 17

ϕ(δ0) = Σ̂ (δ − δ0) + 1
T

(δ − δ0)′Σ̂(δ − δ0)υ(ρ0) + 1
T
σ2
ε [υ(ρ0)− υ] +Op

( 1
N

)
+Op

(
1√
NT

)
,

where from here onward we omit the functional dependence of υ(·) when it is evaluated at
the population parameter ρ. Also inserting Lemma 18 gives

ϕ(δ0) = Σ̇ (δ − δ0) + 1
T

(δ − δ0)′Σ̇(δ − δ0)υ(ρ0) + 1
T
σ2
ε [υ(ρ0)− υ] + op(1).

Note that ‖υ‖ = Op(1) since |ρ| < 1 by Ass.5, and if χ in eq.(D-49) is compact and
accordingly restricted then |ρ0| < 1 and therefore ‖υ(ρ0)‖ = Op(1). Since also

∥∥∥Σ̇∥∥∥ = O(1)
it follows that as (N, T )→∞

ϕ(δ0) = Σ̇ (δ − δ0) + op(1),

for which the solution in (D-49) is clearly unique at δ0 = δ and therefore

δ̂bc −→p δ, (D-50)

as (N, T )→∞.

Define next the following vector evaluated at δ0 = δ,

ψNT =
√
NTϕ(δ) = AF

NT + Ac
NT ,
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with AF
NT =

√
NTAF, Ac

NT = 1√
NT

∑N
i=1 w′iMεi + T−1/2

√
Nσ̂2

ε(δ)υ. Assuming that
T/N →M <∞ and combining in this expression Lemmas 14 and 17 gives

ψNT = 1√
NT

N∑
i=1
ε′iεi + ΨFvec

(
F̌′
√
NÜ√
T

)
+ Ψεvec

[
1√
N

N∑
i=1

(
ε′iF̌√
T
⊗ S′wP̃′i

)]

+
√
T

N

(
bF

0 − bF
1 − bU

)
+Op

(
1√
N

)
+Op

(
1√
T

)
,

where ΨF,bF
0 and bF

1 are fixed finite matrices defined below eq.(D-23) and similarly for
Ψε and bU, which are stated below (D-29).
Then, recalling that the typical element of 1√

N

∑N
i=1

(
ε′iF̌√
T
⊗ S′wP̃′i

)
is given by

√
N ā′r,sF̌√
T

, with

ār,s = 1
N

∑N
i=1 p̃i,r,sεi and p̃i,r,s denoting row r and column s of S′wP̃′i, and that p̃i,r,s, εi and

F̌ are independent over all i and t, we have given the moment restrictions in Ass.1-3 by a
CLT for independent stationary variables as (N, T )→∞

ξ1 = vec

(
1√
N

N∑
i=1

(
ε′iF̌√
T
⊗ S′wP̃′i

))
d−→ nεη d= N (0,ΣF̌ε),

with ΣF̌ε = 1
T
E
[
vec

(
ε′iF̌⊗ S′wP̃′i

)
vec

(
ε′iF̌⊗ S′wP̃′i

)′]
. Also

ξ2 = vec

(
F̌′
√
NÜ√
T

)
d−→ nfu d= N (0,ΣF̌u),

where ΣF̌u = 1
T
E
[
vec

(
F̌′Üi

)
vec

(
F̌′Üi

)′]
and finally

ξ3 = 1√
NT

N∑
i=1
ε′iεi

d−→ nεε d= N (0,Σεε),

with Σεε = 1
T
E [ε′iεiε′iε′i].

Let ξ1,l be the element on the l−th row of ξ1, and similarly for vectors ξ2 and ξ3. Then
we have for any l and s

Cov(ξ1,l, ξ2,s) = 0, Cov(ξ1,l, ξ3,s) = 0, Cov(ξ2,l, ξ3,s) = 0,

where the first two statements hold by E(P̃i) = 0 and the independence of P̃i from F̌, εi
and εi for all i and t by Ass.3, and the last result holds since E(F̌) = 0 from Lemma 1 and
the independence of F̌ from εi and εi by Ass.2. The three normals nεη, nfu and nεε are
therefore independent, and as (N, T )→∞ such that T/N →M <∞ follows

ψNT
d−→ N

(√
TN−1/2b0,Φ

)
, (D-51)

where

b0 = bF
0 − bF

1 − bU, (D-52)
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Φ = Σεε + ΨFΣF̌uΨ′F + ΨεΣF̌εΨ
′
ε. (D-53)

Next, recall from Section A.1 that the Jacobian for the CCEPbc estimator in (D-49) eval-
uated at δ0 is given by

Ja(δ0) = 1
T

[
(υ(ρ0)⊗ σ̇′) +

(
σ̂2
ε(δ0)q1 ⊗ υ̇′

) ]
− Σ̂,

with

σ̇ = 2 T

T − c
Σ̂
(
δ0 − δ̂

)
, υ̇ =

(
T−1∑
t=1

(t− 1)ρt−2
0

T∑
s=t+1

hs,s−t

)
q1.

Consider then that as (N, T )→∞, Σ̂→p Σ̇ by Lemma 18, σ̂2
ε(δ)→p σ2

ε by Lemma 16 and
‖υ̇‖ = Op(1). Also, from Lemmas 14, 15 and 18 follows δ̂ − δ = Σ̂−1(Aε + AF)→p 0kw×1.
Hence, evaluated at δ0 = δ

∆ = plim
(N,T )→∞

Ja(δ) = −Σ̇. (D-54)

As such, with (D-50) and (D-51) we have using standard arguments as in Newey and
McFadden (1994), as (N, T )→∞ such that T/N →M <∞,

√
NT (δ̂bc − δ) d−→ −(∆′∆)−1∆′ψNT ,

which implies, given (D-51),
√
NT

(
δ̂bc − δ

)
d−→ N

(
−
√
TN−1/2(∆′∆)−1∆′b0, (∆′∆)−1∆′Φ∆(∆′∆)−1

)
,

and in turn, since ∆ = −Σ̇ such that (∆′∆)−1∆′ = −Σ̇−1,
√
NT

(
δ̂bc − δ

)
d−→ N

(√
κb, Σ̇−1ΦΣ̇−1)

, (D-55)

where b = Σ̇−1b0 and we denote κ = T/N . Letting next κ→ 0 gives
√
NT

(
δ̂bc − δ

)
d−→ N

(
0kw×1, Σ̇

−1ΦΣ̇−1)
,

which is the result reported in the theorem.

56



E Additional simulation tables

Table E-1: Monte Carlo results for ρ and β : baseline design with ρ = 0.4
Results for ρ̂

bias rmse sizeb

Estimator (N,T) 10 20 30 50 10 20 30 50 10 20 30 50
CCEP 25 -0.198 -0.091 -0.058 -0.035 0.222 0.102 0.067 0.042 0.61 0.55 0.43 0.32

100 -0.201 -0.093 -0.061 -0.036 0.216 0.098 0.064 0.038 0.92 0.97 0.94 0.84
500 -0.199 -0.095 -0.061 -0.036 0.213 0.097 0.062 0.037 0.99 1.00 1.00 1.00
5000 -0.200 -0.094 -0.062 -0.036 0.215 0.096 0.062 0.036 1.00 1.00 1.00 1.00

CCEPbc 25 -0.001 -0.001 0.001 0.000 0.093 0.045 0.033 0.024 0.04 0.06 0.07 0.06
100 0.000 -0.001 0.000 0.000 0.043 0.022 0.016 0.012 0.04 0.05 0.06 0.05
500 0.001 0.000 0.000 0.000 0.020 0.010 0.007 0.005 0.04 0.04 0.04 0.04
5000 0.000 0.000 0.000 0.000 0.006 0.003 0.002 0.002 0.03 0.05 0.05 0.05

CCEPjk 25 0.070 0.015 0.008 0.003 0.267 0.069 0.042 0.028 0.41 0.20 0.13 0.09
100 0.075 0.015 0.007 0.003 0.233 0.049 0.025 0.014 0.63 0.36 0.19 0.09
500 0.077 0.017 0.008 0.003 0.228 0.043 0.019 0.008 0.75 0.64 0.44 0.18
5000 0.079 0.016 0.009 0.003 0.220 0.040 0.017 0.006 0.82 0.80 0.75 0.58

FLSbc 25 -0.085 -0.018 -0.007 -0.003 0.130 0.052 0.037 0.026 0.10 0.03 0.02 0.02
100 -0.105 -0.026 -0.012 -0.005 0.114 0.034 0.020 0.012 0.60 0.20 0.10 0.06
500 -0.110 -0.026 -0.012 -0.005 0.112 0.029 0.014 0.007 0.96 0.72 0.39 0.14
5000 -0.109 -0.026 -0.012 -0.005 0.110 0.028 0.012 0.005 1.00 1.00 0.99 0.77

Results for β̂
CCEP 25 -0.033 -0.010 -0.005 -0.002 0.086 0.048 0.036 0.028 0.07 0.06 0.06 0.06

100 -0.033 -0.008 -0.004 -0.001 0.055 0.025 0.018 0.014 0.15 0.06 0.06 0.06
500 -0.033 -0.008 -0.003 -0.001 0.042 0.014 0.009 0.006 0.40 0.13 0.08 0.06
5000 -0.032 -0.008 -0.004 -0.001 0.040 0.009 0.004 0.002 0.77 0.60 0.27 0.11

CCEPbc 25 0.000 -0.002 -0.002 0.000 0.080 0.047 0.037 0.028 0.04 0.06 0.06 0.05
100 -0.001 0.000 -0.001 0.000 0.038 0.023 0.018 0.014 0.04 0.05 0.05 0.06
500 0.000 0.000 0.000 0.000 0.017 0.010 0.008 0.006 0.04 0.05 0.06 0.05
5000 0.000 0.000 0.000 0.000 0.005 0.003 0.003 0.002 0.03 0.06 0.05 0.05

CCEPjk 25 0.087 0.016 0.006 0.002 0.185 0.060 0.041 0.030 0.35 0.11 0.09 0.07
100 0.083 0.018 0.008 0.003 0.134 0.035 0.021 0.015 0.54 0.20 0.09 0.07
500 0.081 0.017 0.008 0.003 0.123 0.025 0.013 0.007 0.74 0.42 0.20 0.09
5000 0.081 0.018 0.008 0.003 0.119 0.022 0.009 0.003 0.88 0.85 0.76 0.31

FLSbc 25 -0.002 0.009 0.004 0.004 0.085 0.057 0.043 0.032 0.04 0.04 0.03 0.01
100 -0.016 -0.001 0.000 0.001 0.044 0.024 0.018 0.014 0.08 0.04 0.04 0.04
500 -0.022 -0.003 -0.001 0.000 0.029 0.011 0.008 0.006 0.32 0.06 0.06 0.05
5000 -0.021 -0.003 -0.001 0.000 0.025 0.005 0.003 0.002 0.85 0.21 0.08 0.06

Note: See Table 1, but with ρ = 0.4 and β = 0.6
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Table E-3: Monte Carlo results for ρ : dynamics in zit with strong factors (N = 25)

bias rmse sizeb bias rmse sizeb bias rmse sizeb bias rmse sizeb

one factor

T = 10 T = 20 T = 30 T = 50

CCEP_p0(+g) −0.530 0.563 0.90 −0.236 0.251 0.95 −0.140 0.149 0.94 −0.076 0.081 0.90
CCEP_p1(+g) −0.666 0.702 0.81 −0.261 0.279 0.93 −0.148 0.159 0.93 −0.078 0.084 0.89
CCEP_pT (+g) - - - −0.321 0.343 0.89 −0.196 0.210 0.88 −0.090 0.096 0.88
CCEPbc_p0(+g) −0.014 0.193 0.04 −0.006 0.073 0.06 −0.002 0.040 0.05 −0.002 0.023 0.06
CCEPbc_p1(+g) −0.033 0.265 0.03 −0.002 0.084 0.05 −0.001 0.044 0.04 0.000 0.023 0.05
CCEPbc_pT (+g) - - - −0.006 0.106 0.03 −0.004 0.061 0.05 −0.001 0.026 0.04
CCEPjk_p1(+g) - - - 0.123 0.244 0.13 0.084 0.139 0.21 0.034 0.058 0.17
FLSbc −0.254 0.270 0.47 −0.057 0.081 0.06 −0.026 0.048 0.04 −0.011 0.029 0.04

two factors

T = 10 T = 20 T = 30 T = 50

CCEP_p0(+g) −0.560 0.590 0.93 −0.252 0.268 0.97 −0.156 0.164 0.97 −0.085 0.090 0.95
CCEP_p1(+g) −0.720 0.750 0.86 −0.294 0.310 0.96 −0.169 0.177 0.96 −0.086 0.091 0.93
CCEP_pT (+g) - - - −0.364 0.383 0.94 −0.225 0.239 0.94 −0.101 0.106 0.94
CCEPbc_p0(+g) −0.021 0.204 0.05 −0.015 0.075 0.07 −0.010 0.043 0.06 −0.007 0.024 0.06
CCEPbc_p1(+g) −0.023 0.275 0.03 −0.005 0.090 0.07 −0.002 0.045 0.05 −0.001 0.024 0.05
CCEPbc_pT (+g) - - - −0.009 0.109 0.05 0.000 0.065 0.05 0.000 0.027 0.04
CCEPjk_p1(+g) - - - 0.120 0.240 0.14 0.090 0.149 0.24 0.044 0.064 0.22
FLSbc −0.524 0.526 0.89 −0.138 0.162 0.19 −0.047 0.072 0.06 −0.012 0.033 0.03
Note: see Table 4 but with N = 25.
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F Additional figures

Figure F-1: Monte Carlo results for ρ : Boxplots for CCEP and CCEPbc estimators over
N for one normal factor (m = 1, RI = 1) with T = 10
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Notes:

(i) Reported are simulation results for estimating ρ in the baseline case for T = 10 and N = 25, 50, 100, ..., 50.000
(see notes Table 1). The CCEP estimators with a (+g) suffix (lower panel) make use of the gt variable to project
out the factors.

(ii) Dotted red lines indicate the population parameter value (ρ = 0.8). The boxplot ’whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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Figure F-2: Monte Carlo results for ρ : Boxplots for CCEP and CCEPbc estimators over
N for one strong factor (m = 1, RI = 3) with T = 10.
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(i) Reported are simulation results for estimating ρ = 0.8 with m = 1 and RI = 3 for N = 25, 50, 100, ..., 50.000.
The CCEP estimators with a (+g) suffix (lower panel) make use of the gt variable to project out the factors.

(ii) Dotted red lines indicate the population parameter value (ρ = 0.8). The boxplot ’whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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Figure F-3: Monte Carlo results for ρ : Boxplots for CCEP and CCEPbc estimators over
N for two normal factors (m = 2, RI = 1) with T = 10.
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Notes:

(i) Reported are simulation results for estimating ρ = 0.8 with m = 2 and RI = 1 for N = 25, 50, 100, ..., 50.000.
The CCEP estimators with a (+g) suffix (lower panel) make use of the gt variable to project out the factors.

(ii) Dotted red lines indicate the population parameter value (ρ = 0.8). The boxplot ’whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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Figure F-4: Monte Carlo results for ρ: Boxplots for CCEP and CCEPbc estimators over
N for two strong factors (m = 2, RI = 3) with T = 10.
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Notes:

(i) Reported are simulation results for estimating ρ = 0.8 with m = 2 and RI = 3 for N = 25, 50, 100, ..., 50.000.
The CCEP estimators with a (+g) suffix (lower panel) make use of the gt variable to project out the factors.

(ii) Dotted red lines indicate the population parameter value (ρ = 0.8). The boxplot ’whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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